
HAL Id: hal-02375697
https://hal.archives-ouvertes.fr/hal-02375697

Submitted on 22 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Practical Open-Loop Optimistic Planning
Edouard Leurent, Odalric-Ambrym Maillard

To cite this version:
Edouard Leurent, Odalric-Ambrym Maillard. Practical Open-Loop Optimistic Planning. European
Conference on Machine Learning, Sep 2019, Würzburg, Germany. �hal-02375697�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/266893045?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-02375697
https://hal.archives-ouvertes.fr

Practical Open-Loop Optimistic Planning

Edouard Leurent1,2(�) and Odalric-Ambrym Maillard1

1 SequeL team, INRIA Lille - Nord Europe, France
{edouard.leurent,odalric.maillard}@inria.fr

2 Renault Group, France

Abstract. We consider the problem of online planning in a Markov
Decision Process when given only access to a generative model, restricted
to open-loop policies - i.e. sequences of actions - and under budget
constraint. In this setting, the Open-Loop Optimistic Planning (OLOP)
algorithm enjoys good theoretical guarantees but is overly conservative
in practice, as we show in numerical experiments. We propose a modified
version of the algorithm with tighter upper-confidence bounds, KL-OLOP,
that leads to better practical performances while retaining the sample
complexity bound. Finally, we propose an efficient implementation that
significantly improves the time complexity of both algorithms.

Keywords: Planning · Online learning · Tree search.

1 Introduction

In a Markov Decision Process (MDP), an agent observes its current state s from a
state space S and picks an action a from an action space A, before transitioning to
a next state s′ drawn from a transition kernel P (s′|s, a) and receiving a bounded
reward r ∈ [0, 1] drawn from a reward kernel P (r|s, a). The agent must act so
as to optimise its expected cumulative discounted reward E

∑
t γ

trt, also called
expected return, where γ ∈ [0, 1) is the discount factor. In Online Planning [14],
we do not consider that these transition and reward kernels are known as in
Dynamic Programming [1], but rather only assume access to the MDP through
a generative model (e.g. a simulator) which yields samples of the next state
s′ ∼ P (s′|s, a) and reward r ∼ P (r|s, a) when queried. Finally, we consider a
fixed-budget setting where the generative model can only be called a maximum
number of times, called the budget n.

Monte-Carlo Tree Search (MCTS) algorithms were historically motivated by
the application of computer Go, and made a first appearance in the CrazyStone
software [8]. They were later reformulated in the setting of Multi-Armed Bandits
by [12] with their Upper Confidence bounds applied to Trees (UCT) algorithm.
Despite its popularity [15,17,16], UCT has been shown to suffer from several
limitations: its sample complexity can be at least doubly-exponential for some
problems (e.g. when a narrow optimal path is hidden in a suboptimal branch),
which is much worse than uniform planning [7]. The Sparse Sampling algorithm
of [11] achieves better worst-case performance, but it is still non-polynomial and

2 E. Leurent and O-A. Maillard

doesn’t adapt to the structure of the MDP. In stark contrast, the Optimistic
Planning for Deterministic systems (OPD) algorithm considered by [10] in the case
of deterministic transitions and rewards exploits the structure of the cumulative
discounted reward to achieve a problem-dependent polynomial bound on sample
complexity. A similar line of work in a deterministic setting is that of SOOP
and OPC by [3,4] though they focus on continuous action spaces. OPD was later
extended to stochastic systems with the Open-Loop Optimistic Planning (OLOP)
algorithm introduced by [2] in the open-loop setting: we only consider sequences of
actions independently of the states that they lead to. This restriction in the space
of policies causes a loss of optimality, but greatly simplifies the planning problem
in the cases where the state space is large or infinite. More recent work such
as St0p [18] and TrailBlazer [9] focus on the probably approximately correct
(PAC) framework: rather than simply recommending an action to maximise the
expected rewards, they return an ε-approximation of the value at the root that
holds with high probability. This highly demanding framework puts a severe
strain on these algorithms that were developed for theoretical analysis only and
cannot be applied to real problems.

Contributions The goal of this paper is to study the practical performances of
OLOP when applied to numerical problems. Indeed, OLOP was introduced along
with a theoretical sample complexity analysis but no experiment was carried-out.
Our contribution is threefold:

– First, we show that in our experiments OLOP is overly pessimistic, especially
in the low-budget regime, and we provide an intuitive explanation by casting
light on an unintended effect that alters the behaviour of OLOP.

– Second, we circumvent this issue by leveraging modern tools from the ban-
dits literature to design and analyse a modified version with tighter upper-
confidence bounds called KL-OLOP. We show that we retain the asymptotic
regret bounds of OLOP while improving its performances by an order of
magnitude in numerical experiments.

– Third, we provide a time and memory efficient implementation of OLOP
and KL-OLOP, bringing an exponential speedup that allows to scale these
algorithms to high sample budgets.

The paper is structured as follows: in section 2, we present OLOP, give some
intuition on its limitations, and introduce KL-OLOP, whose sample complexity is
further analysed in section 3. In section 4, we propose an efficient implementation
of the two algorithms. Finally in section 6, we evaluate them in several numerical
experiments.

Notations Throughout the paper, we follow the notations from [2] and use the
standard notations over alphabets: a finite word a ∈ A∗ of length h represents
a sequence of actions (a0, · · · , ah) ∈ Ah. Its prefix of length t ≤ h is denoted
a1:t = (a0, · · · , at) ∈ At. A∞ denotes the set of infinite sequences of actions. Two
finite sequences a ∈ A∗ and b ∈ A∗ can be concatenated as ab ∈ A∗, the set of

Practical Open-Loop Optimistic Planning 3

finite and infinite suffixes of a are respectively aA∗ = {c ∈ A∗ : ∃b ∈ A∗ such
that c = ab} and aA∞ defined likewise, and the empty sequence is ∅.

During the planning process, the agent iteratively selects sequences of ac-
tions until it reaches the allowed budget of n actions. More precisely, at time
t during the mth sequence, the agent played am1:t = am1 · · · amt ∈ At and re-
ceives a reward Y mt . We denote the probability distribution of this reward as
ν(am1:t) = P (Y mt |st, amt)

∏t−1
k=1 P (sk+1|sk, amk), and its mean as µ(am1:t), where s1

is the current state.
After this exploration phase, the agent selects an action a(n) so as to minimise

the simple regret rn = V − V (a(n)), where V = V (∅) and V (a) refers to the
value of a sequence of actions a ∈ Ah, that is, the maximum expected discounted
cumulative reward one may obtain after executing a:

V (a) = sup
b∈aA∞

∞∑
t=1

γtµ(b1:t), (1)

2 Kullback-Leibler Open-Loop Optimistic Planning

In this section we present KL-OLOP, a combination of the OLOP algorithm of [2]
with the tighter Kullback-Leibler upper confidence bounds from [5]. We first frame
both algorithms in a common structure before specifying their implementations.

2.1 General structure

First, following OLOP, the total sample budget n is split in M trajectories of
length L in the following way:

M is the largest integer such that MdlogM/(2 log 1/γ)e ≤ n;
L = dlogM/(2 log 1/γ)e.

The look-ahead tree of depth L is denoted T =
∑L
h=0A

h.
Then, we introduce some useful definitions. Consider episode 1 ≤ m ≤ M .

For any 1 ≤ h ≤ L and a ∈ Ah, let

Ta(m)
def=

m∑
s=1

1{as1:h = a}

be the number of times we played an action sequence starting with a, and Sa(m)
the sum of rewards collected at the last transition of the sequence a:

Sa(m)
def=

m∑
s=1

Y sh 1{as1:h = a}

The empirical mean reward of a is µ̂a(m)
def=

Sa(m)

Ta(m)
if Ta(m) > 0, and +∞

otherwise. Here, we provide a more general form for upper and lower confidence

4 E. Leurent and O-A. Maillard

Algorithm 1: General structure for Open-Loop Optimistic Planning
1 for each episode m = 1, · · · ,M do
2 Compute Ua(m− 1) from (4) for all a ∈ T
3 Compute Ba(m− 1) from (5) for all a ∈ AL

4 Sample a sequence with highest B-value: am ∈ argmaxa∈AL Ba(m− 1)

5 return the most played sequence a(n) ∈ argmaxa∈AL Ta(M)

Table 1: Different implementations of Algorithm 1 in OLOP and KL-OLOP
Algorithm OLOP KL-OLOP

Interval I R [0, 1]
Divergence d dQUAD dBER

f(m) 4 logM 2 logM + 2 log logM

bounds on these empirical means:

Uµa (m)
def=max

{
q ∈ I : Ta(m)d(Sa(m)

Ta(m) , q) ≤ f(m)
}

(2)

Lµa(m)
def=min

{
q ∈ I : Ta(m)d(Sa(m)

Ta(m) , q) ≤ f(m)
}

(3)

where I is an interval, d is a divergence on I × I → R+ and f is a non-decreasing
function. They are left unspecified for now and their particular implementations
and associated properties will be discussed in the following sections.

These upper-bounds Uµa for intermediate rewards finally enable us to define
an upper bound Ua for the value V (a) of the entire sequence of actions a:

Ua(m)
def=

h∑
t=1

γtUµa1:t(m) +
γh+1

1− γ
(4)

where γh+1

1−γ comes from upper-bounding by one every reward-to-go in the sum (1),
for t ≥ h+ 1. In [2], there is an extra step to "sharpen the bounds" of sequences
a ∈ AL by taking:

Ba(m)
def= inf

1≤t≤L
Ua1:t(m) (5)

The general algorithm structure is shown in Algorithm 1. We now discuss
two specific implementations that differ in their choice of divergence d and
non-decreasing function f . They are compared in Table 1.

2.2 OLOP

To recover the original OLOP algorithm of [2] from Algorithm 1, we can use a
quadratic divergence dQUAD on I = R and a constant function f4 defined as follows:

dQUAD(p, q)
def= 2(p− q)2, f4(m)

def= 4 logM

Practical Open-Loop Optimistic Planning 5

Indeed, in this case Uµa (m) can then be explicitly computed as:

Uµa (m) = max

{
q ∈ R : 2(

Sa(m)

Ta(m)
− q)2 ≤ 4 logM

Ta(m)

}
= µ̂a(m) +

√
2 logM

Ta(m)

which is the Chernoff-Hoeffding bound used originally in section 3.1 of [2].

2.3 An unintended behaviour

From the definition of Ua(m) as an upper-bound of the value of the sequence
a, we expect increasing sequences (a1:t)t to have non-increasing upper-bounds.
Indeed, every new action at encountered along the sequence is a potential loss of
optimality. However, this property is only true if the upper-bound defined in (2)
belongs to the reward interval [0, 1].

Lemma 1. (Monotony of Ua(m) along a sequence)

– If it holds that Uµb (m) ∈ [0, 1] for all b ∈ A∗, then for any a ∈ AL the sequence
(Ua1:h(m))1≤h≤L is non-increasing, and we simply have Ba(m) = Ua(m).

– Conversely, if Uµb (m) > 1 for all b ∈ A∗, then for any a ∈ AL the sequence
(Ua1:h(m))1≤h≤L is non-decreasing, and we have Ba(m) = Ua1:1(m).

Proof. We prove the first proposition, and the same reasoning applies to the
second. For a ∈ AL and 1 ≤ h ≤ L− 1, we have by (4):

Ua1:h+1
(m)− Ua1:h(m) = γh+1Uµa1:h+1

(m) +
γh+2

1− γ
− γh+1

1− γ
= γh+1(Uµa1:h+1

(m)︸ ︷︷ ︸
∈[0,1]

−1) ≤ 0

We can conclude that (Ua1:h(m))1≤h≤L is non-increasing and that Ba(m) =
inf1≤h≤L Ua1:h(m) = Ua1:L(m) = Ua(m). ut

Yet, the Chernoff-Hoeffding bounds used in OLOP start in the Uµa (m) > 1
regime – initially Uµa (m) =∞ – and can remain in this regime for a long time
especially in the near-optimal branches where µ̂a(m) is close to one.

Under these circumstances, the Lemma 1 has a drastic effect on the search
behaviour. Indeed, as long as a subtree under the root verifies Uµa (m) > 1 for every
sequence a, then all these sequences share the same B-value Ba(m) = Ua1:1(m).
This means that OLOP cannot differentiate them and exploit information from their
shared history as intended, and behaves as uniform sampling instead. Once the
early depths have been explored sufficiently, OLOP resumes its intended behaviour,
but the problem is only shifted to deeper unexplored subtrees.

This consideration motivates us to leverage the recent developments in the
Multi-Armed Bandits literature, and modify the upper-confidence bounds for the
expected rewards Uµa (m) so that they respect the reward bounds.

6 E. Leurent and O-A. Maillard

0 Lµ
a µ̂a Uµ

a 1

1
Ta
f(m)

dber(µ̂a, q)

Fig. 1: The Bernoulli Kullback-Leibler divergence dBER, and the corresponding
upper and lower confidence bounds Uµa and Lµa for the empirical average µ̂a. Lower
values of f(m) give tighter confidence bounds that hold with lower probabilities.

2.4 KL-OLOP

We propose a novel implementation of Algorithm 1 where we leverage the analysis
of the kl-UCB algorithm from [5] for multi-armed bandits with general bounded
rewards. Likewise, we use the Bernoulli Kullback-Leibler divergence defined on
the interval I = [0, 1] by:

dBER(p, q)
def= p log

p

q
+ (1− p) log 1− p

1− q

with, by convention, 0 log 0 = 0 log 0/0 = 0 and x log x/0 = +∞ for x > 0. This
divergence and the corresponding bounds are illustrated in Figure 1.

Uµa (m) and Lµa(m) can be efficiently computed using Newton iterations, as
for any p ∈ [0, 1] the function q → dBER(p, q) is strictly convex and increasing
(resp. decreasing) on the interval [p, 1] (resp. [0, p]).

Moreover, we use the constant function f2 : m→ 2 logM + 2 log logM . This
choice is justified in the end of section 5. Because f2 is lower than f4, the Figure 1
shows that the bounds are tighter and hence less conservative than that of OLOP,
which should increase the performance, provided that their associated probability
of violation does not invalidate the regret bound of OLOP.

Remark 2 (Upper bounds sharpening). The introduction of the B-values Ba(m)
was made necessary in OLOP by the use of Chernoff-Hoeffding confidence bounds
which are not guaranteed to belong to [0, 1]. On the contrary, we have in KL-OLOP
that Uµa (m) ∈ I = [0, 1] by construction. By Lemma 1, the upper bounds
sharpening step in line 3 of Algorithm 1 is now superfluous as we trivially have
Ba(m) = Ua(m) for all a ∈ AL.

Practical Open-Loop Optimistic Planning 7

3 Sample complexity

We say that un = Õ(vn) if there exist α, β > 0 such that un ≤ α log(vn)
βvn. Let

us denote the proportion of near-optimal nodes κ2 as:

κ2
def= lim sup

h→∞

∣∣∣∣{a ∈ aH : V (a) ≥ V − 2
γh+1

1− γ

}∣∣∣∣1/h
Theorem 3 (Sample complexity). We show that KL-OLOP enjoys the same
asymptotic regret bounds as OLOP. More precisely, for any κ′ > κ2, KL-OLOP
satisfies:

E rn =

0̃
(
n
− log 1/γ

log κ′
)
, if γ

√
κ′ > 1

0̃
(
n−

1
2

)
, if γ

√
κ′ ≤ 1

4 Time and memory complexity

After having considered the sample efficiency of OLOP and KL-OLOP, we now turn
to study their time and memory complexities. We will only mention the case of
KL-OLOP for ease of presentation, but all results easily extend to OLOP.

The Algorithm 1 requires, at each episode, to compute and store in memory
of the reward upper-bounds and U-values of all nodes in the tree T =

∑L
h=0A

h.
Hence, its time and memory complexities are

C(KL-OLOP) = O(M |T |) = O(MKL). (6)

The curse of dimensionality brought by the branching factor K and horizon
L makes it intractable in practice to actually run KL-OLOP in its original form
even for small problems. However, most of this computation and memory usage
is wasted, as with reasonable sample budgets n the vast majority of the tree T
will not be actually explored and hence does not hold any valuable information.

We propose in Algorithm 2 a lazy version of KL-OLOP which only stores and
processes the explored subtree, as shown in Figure 2, while preserving the inner
workings of the original algorithm.

Theorem 4 (Consistency). The set of sequences returned by Algorithm 2 is
the same as the one returned by Algorithm 1. In particular, Algorithm 2 enjoys
the same regret bounds as in Theorem 3.

Property 5 (Time and memory complexity). Algorithm 2 has time and memory
complexities of:

C(Lazy KL-OLOP) = O(KLM2)

The corresponding complexity gain compared to the original Algorithm 1 is:

C(Lazy KL-OLOP)
C(KL-OLOP)

=
n

KL−1

8 E. Leurent and O-A. Maillard

Fig. 2: A representation of the tree T +
m , with K = 2 actions and after episode

m = 2, when two sequences have been sampled. They are represented with solid
lines and dots •, and they constitute the explored subtree Tm. When extending
Tm with the missing children of each node, represented with dashed lines and
diamonds �, we obtain the full extended subtree T +

m . The set of its leaves is
denoted L+

m and shown as a dotted set.

which highlights that only a subtree corresponding to the sample budget n is
processed instead of the search whole tree T .

Proof. At episode m = 1, · · · ,M , we compute and store in memory the reward
upper-bounds and U-values of all nodes in the subtree T +

m . Moreover, the tree
T +
m is constructed iteratively by adding K nodes at most L times at each episode

from 0 to m. Hence, |T +
m | = O(mKL). This yields directly C(Lazy KL-OLOP) =∑M

m=1O(mKL) = O(M2KL). ut

5 Proof of Theorem 3

We follow step-by step the pyramidal proof of [2], and adapt it to the Kullback-
Leibler upper confidence bound. The adjustments resulting from the change
of confidence bounds are highlighted. The proofs of lemmas which are not
significantly altered are listed in the Supplementary Material.

We start by recalling their notations. Let 1 ≤ H ≤ L and a∗ ∈ AL such that
V (a∗) = V . Considering sequences of actions of length 1 ≤ h ≤ H, we define the
subset Ih of near-optimal sequences and the subset J of sub-optimal sequences
that were near-optimal at depth h− 1:

Ih =

{
a ∈ Ah : V − V (a) ≤ 2

γh+1

1− γ

}
,Jh =

{
a ∈ Ah : a1:h−1 ∈ Ih−1 and a 6∈ Ih

}
By convention, I0 = {∅}. From the definition of κ2, we have that for any

κ′ > κ2, there exists a constant C such that for any h ≥ 1, |Ih| ≤ Cκ′
h Hence,

we also have |Jh| ≤ K|Ih−1| = O(κ′
h
).

Practical Open-Loop Optimistic Planning 9

Algorithm 2: Lazy Open Loop Optimistic Planning
1 Let M be the largest integer such that M logM/(2 log 1/γ) ≤ n
2 Let L = logM/(2 log 1/γ)

3 Let T +
0 = L+

0 = {∅}
4 for each episode m = 1, · · · ,M do
5 Compute Ua(m− 1) from (4) for all a ∈ T +

m−1

6 Compute Ba(m− 1) from (5) for all a ∈ L+
m−1

7 Sample a sequence with highest B-value: a ∈ argmax
a∈L+

m−1
Ba(m− 1)

8 Choose an arbitrary continuation am ∈ aAL−|a| // e.g. uniformly
9 Let T +

m = T +
m−1 and L+

m = L+
m−1

10 for t = 1, · · · , L do
11 if am1:t 6∈ T +

m then
12 Add am1:t−1A to T +

m and L+
m

13 Remove am1:t−1 from L+
m

14 return the most played sequence a(n) ∈ argmax
a∈L+

m
Ta(M)

Now, for 1 ≤ m ≤M , a ∈ At with t ≤ h, h′ < h, we define the set Pah,h′(m)
of suffixes of a in Jh that have been played at least a certain number of times:

Pah,h′(m) =
{
b ∈ aAh−t ∩ Jh : Tb(m) ≥ 2f(m)(h+ 1)2γ2(h

′−h+1) + 1
}

and the random variable:

τah,h′(m) = 1{Ta(m− 1) < 2f(m)(h+ 1)2γ2(h
′−h+1) + 1 ≤ Ta(m)}

Lemma 6 (Regret and sub-optimal pulls). The following holds true:

rn ≤
2KγH+1

1− γ
+

3K

M

H∑
h=1

∑
a∈Jh

γh

1− γ
Ta(M)

The rest of the proof is devoted to the analysis of the term E
∑
a∈Jh Ta(M).

The next lemma describes under which circumstances a suboptimal sequence of
actions in Jh can be selected.

Lemma 7 (Conditions for sub-optimal pull). Assume that at step m+ 1
we select a sub-optimal sequence am+1: there exist 0 ≤ h ≤ L, a ∈ Jh such that
am+1 ∈ aA∗. Then, it implies that one of the following propositions is true:

Ua∗(m) < V, (UCB violation)

or
h∑
t=1

γtLµa1:t(m) ≥ V (a), (LCB violation)

10 E. Leurent and O-A. Maillard

or
h∑
t=1

γt
(
Uµa1:t(m)− Lµa1:t(m)

)
>
γh+1

1− γ
(Large CI)

Proof. As am+1
1:h = a and because the U-values are monotonically increasing along

sequences of actions (see Remark 2 and Lemma 1), we have Ua(m) ≥ Uam+1(m).
Moreover, by Algorithm 1, we have am+1 = argmaxa∈AL Ua(m) and a∗ ∈ AL, so
Uam+1(m) ≥ Ua∗(m) and finally Ua(m) ≥ Ua∗(m).

Assume that (UCB violation) is false, then:

h∑
t=1

γtUµa1:t(m) +
γh+1

1− γ
= Ua(m) ≥ Ua∗(m) ≥ V (7)

Assume that (LCB violation) is false, then:

h∑
t=1

γtLµa1:t(m) < V (a), (8)

By taking the difference (7) - (8),

h∑
t=1

γt
(
Uµa1:t(m)− Lµa1:t(m)

)
+
γh+1

1− γ
> V − V (a)

But a ∈ Jh, so V − V (a) ≥ 2γh+1

1−γ , which yields (Large CI) and concludes the
proof. ut

In the following lemma, for each episode m we bound the probability of
(UCB violation) or (LCB violation) by a desired confidence level δm, whose
choice we postpone until the end of this proof. For now, we simply assume that
we picked a function f that satisfies f(m) log(m)e−f(m) = O(δm). We also denote
∆M =

∑M
m=1 δm.

Lemma 8 (Boundary crossing probability). The following holds true, for
any 1 ≤ h ≤ L and m ≤M ,

P ((UCB violation) or (LCB violation) is true) = O((L+ h)δm)

Proof. Since V ≤
∑h
t=1 γ

tµ(a∗1:t) +
γh+1

1−γ , we have,

P ((UCB violation)) = P (Ua∗(m) ≤ V)

= P

(
L∑
t=1

γtUµa∗1:t
(m) ≤

L∑
t=1

γtµ(a∗1:t)

)
≤ P

(
∃1 ≤ t ≤ L : Uµa∗1:t

(m) ≤ µ(a∗1:t)
)

≤
L∑
t=1

P
(
Uµa∗1:t

(m) ≤ µ(a∗1:t)
)

Practical Open-Loop Optimistic Planning 11

In order to bound this quantity, we reduce the question to the application of a
deviation inequality. For all 1 ≤ t ≤ L, we have on the event {Uµa∗1:t(m) ≤ µ(a∗1:t)}
that µ̂a∗1:t(m) ≤ Uµa∗1:t(m) ≤ µ(a∗1:t) < 1. Therefore, for all 0 < δ < 1− µ(a∗1:t), by
definition of Uµa∗1:t(m):

d(µ̂a∗1:t(m), Uµa∗1:t
(m) + δ) >

f(m)

Ta∗1:t(m)

As d is continuous on (0, 1)× [0, 1], we have by letting δ → 0 that:

d(µ̂a∗1:t(m), Uµa∗1:t
(m)) ≥ f(m)

Ta∗1:t(m)

Since d is non-decreasing on [µ̂a∗1:t(m), µ(a∗1:t)],

d(µ̂a∗1:t(m), µ(a∗1:t)) ≥ d(µ̂a∗1:t(m), Uµa∗1:t
(m)) ≥ f(m)

Ta∗1:t(m)

We have thus shown the following inclusion:

{Uµa∗1:t(m) ≤ µ(a∗1:t)} ⊆
{
µ(a∗1:t) > µ̂a∗1:t(m) and d(µ̂a∗1:t(m), µ(a∗1:t)) ≥

f(m)

Ta∗1:t(m)

}
Decomposing according to the values of Ta∗1:t(m) yields:

{Uµa∗1:t(m) ≤ µ(a∗1:t)} ⊆
m⋃
n=1

{
µ(a∗1:t) > µ̂a∗1:t,n and d(µ̂a∗1:t,n, µ(a

∗
1:t)) ≥

f(m)

n

}
We now apply the deviation inequality provided in Lemma 2 of Appendix A

in [5]: ∀ε > 1, provided that 0 < µ(a∗1:t) < 1,

P

(
m⋃
n=1

{
µ(a∗1:t) > µ̂a∗1:t,n and ndBER(µ̂a∗1:t,n, µ(a

∗
1:t)) ≥ ε

})
≤ edε logmee−ε .

By choosing ε = f(m), it comes

P ((UCB violation)) ≤
L∑
t=1

edf(m) logmee−f(m) = O(Lδm)

The same reasoning gives: P ((LCB violation)) = O(hδm). ut

Lemma 9 (Confidence interval length and number of plays). Let 1 ≤
h ≤ L, a ∈ Jh and 0 ≤ h′ < h. Then (Large CI) is not satisfied if the following
propositions are true:

∀0 ≤ t ≤ h′, Ta1:t(m) ≥ 2f(m)(h+ 1)2γ2(t−h−1) (9)

and
Ta(m) ≥ 2f(m)(h+ 1)2γ2(h

′−h−1) (10)

12 E. Leurent and O-A. Maillard

Proof. We start by providing an explicit upper-bound for the length of the
confidence interval Uµa1:t − L

µ
a1:t . By Pinsker’s inequality:

dBER(p, q) > dQUAD(p, q)

Hence for all C > 0,

dBER(p, q) ≤ C =⇒ 2(q − p)2 < C =⇒ p−
√
C/2 < q < p+

√
C/2

And thus, for all b ∈ A∗, by definition of Uµ and Lµ:

Uµb (m)− Lµb (m) ≤ Sb(m)

Tb(m)
+

√
f(m)

2Tb(m)
−

(
Sb(m)

Tb(m)
−

√
f(m)

2Tb(m)

)
=

√
2f(m)

Tb(m)

Now, assume that (9) and (10) are true. Then, we clearly have:

h∑
t=1

γt
(
Uµa1:t(m)− Lµa1:t(m)

)
≤

h′∑
t=1

γt

√
2f(m)

Ta1:t(m)
+

h∑
t=h′+1

γt

√
2f(m)

Ta1:t(m)

≤ 1

(h+ 1)γ−h−1

h′∑
t=1

1 +
1

(h+ 1)γ−h−1

h∑
t=h′+1

γt−h
′

≤ γh+1

h+ 1

(
h′ +

γ

1− γ

)
≤ γh+1

1− γ
. ut

Lemma 10. Let 1 ≤ h ≤ L, a ∈ Jh and 0 ≤ h′ < h. Then τah,h′ = 1 implies that
either equation (UCB violation) or (LCB violation) is satisfied or the following
proposition is true:

∃1 ≤ t ≤ h′ : |Pa1:th,h′(m)| < γ2(t−h
′) (11)

Lemma 11. Let 1 ≤ h ≤ L and 0 ≤ h′ < h. Then the following holds true,

E |P∅h,h′(M)| = Õ

γ−2h′1h′>0

h′∑
t=0

(γ2κ′)t + (κ′)h∆M

 .

Lemma 12. Let 1 ≤ h ≤ L. The following holds true,

E
∑
a∈Jh

Ta(M) = Õ
(
γ−2h + (κ′)h(1 +M∆M +∆M) + (κ′γ−2)h∆M

)
Thus by combining Lemma 6 and 12 we obtain:

E rn = Õ
(
γH + γ−HM−1 + (κ′γ)HM−1(1 +M∆M +∆M) + (κ′)Hγ−HM−1∆M

)
Finally,

Practical Open-Loop Optimistic Planning 13

– if κ′γ2 ≤ 1, we take H = blogM/(2 log 1/γ)c to obtain:

E rn = Õ

(
M−

1
2 +M−

1
2 +M−

1
2M

log κ′
2 log 1/γ∆M

)
For the last term to be of the same order of the others, we need to have ∆M =

O(M−
log κ′

2 log 1/γ). Since κ′γ2 ≤ 1, we achieve this by taking ∆M = O(M−1).
– if κ′γ2 > 1, we take H = blogM/ log κ′c to obtain:

E rn = Õ
(
M

log γ
log κ′ +M

log γ
log κ′ (1 +M∆M +∆M) +M

log 1/γ

log κ′ ∆M

)
Since κ′γ2 > 1, the dominant term in this sum isM

log γ
log κ′M∆M . Again, taking

∆M = O(M−1) yields the claimed bounds.

Thus, the claimed bounds are obtained in both cases as long as we can impose
∆M = O(M−1), that is, find a sequence (δm)1≤m≤M and a function f verifying:

M∑
m=1

δm = O(M−1) and f(m) log(m)e−f(m) = O(δm) (12)

By choosing δm =M−2 and f(m) = 2 logM + 2 log logM , the corresponding
KL-OLOP algorithm does achieve the regret bound claimed in Theorem 3.

6 Experiments

We have performed some numerical experiments to evaluate and compare the
following planning algorithms1:

– Random: returns a random action, we use it as a minimal performance baseline.
– OPD: the Optimistic Planning for Deterministic systems from [10], used as a

baseline of optimal performance. This planner is only suited for deterministic
environments, and exploits this property to obtain faster rates. However, it
is expected to fail in stochastic environments.

– OLOP: as described in section 2.2.2
– KL-OLOP: as described in section 2.4.2
– KL-OLOP(1): an aggressive version of KL-OLOP where we used f1(m) = logM

instead of f2(m). This threshold function makes the upper bounds even
tighter, at the cost of an increased probability of violation. Hence, we expect
this solution to be more efficient in close-to-deterministic environments.
However, since we have no theoretical guarantee concerning its regret as we
do with KL-OLOP, it might not be conservative enough and converge too early
to a suboptimal sequence, especially in highly stochastic environments.

1 The source code is available at https://eleurent.github.io/kl-olop/
2 Note that we use the lazy version of OLOP and KL-OLOP presented in Section 4,
otherwise the exponential running-time would have been prohibitive.

https://eleurent.github.io/kl-olop/

14 E. Leurent and O-A. Maillard

They are evaluated on the following tasks, using a discount factor of γ = 0.8:

– A highway driving environment [13]: a vehicle is driving on a road randomly
populated with other slower drivers, and must make their way as fast as
possible while avoiding collisions by choosing on the the following actions:
change-lane-left, change-lane-right, no-op, faster, slower.

– A gridworld environment [6]: the agent navigates in a randomly-generated
gridworld composed of either empty cells, terminal lava cells, and goal cells
where a reward of 1 is collected at the first visit.

– A stochastic version of the gridworld environment with noisy rewards, where
the noise is modelled as a Bernoulli distribution with a 15% probability of
error, i.e. receiving a reward of 1 in an empty cell or 0 in a goal cell.

101 102 103 104

budget

3.25

3.50

3.75

4.00

4.25

4.50

4.75

5.00

re
tu

rn

Highway

agent

OPD

KL-OLOP

KL-OLOP(1)

OLOP

Random

101 102 103 104

budget

0.5

1.0

1.5

2.0

2.5

re
tu

rn

Gridworld

agent

OPD

KL-OLOP

KL-OLOP(1)

OLOP

Random

101 102 103 104

budget

0.8

1.0

1.2

1.4

1.6

1.8

re
tu

rn

Stochastic Gridworld

agent

OPD

KL-OLOP

KL-OLOP(1)

OLOP

Random

Fig. 3: Numerical experiments: for each environment-agent configuration, we
compute the average return over 100 runs — along with its 95% confidence
interval — with respect to the available budget n.

The results of our experiments are shown in Figure 3. The ODP algorithm
converges very quickly to the optimal return in the two first environments, shown
in Figure 3a and Figure 3b, because it exploits their deterministic nature: it
needs neither to estimate the rewards through upper-confidence bounds nor to
sample whole sequences all the way from the root when expanding a leaf, which
provides a significant speedup. It can be seen as an oracle allowing to measure
the conservativeness of stochastic planning algorithms. And indeed, even before
introducing stochasticity, we can see that OLOP performs quite badly on the
two environments, only managing to solve them with a budget in the order of
103.5. In stark contrast, KL-OLOP makes a much better use of its samples and
reaches the same performance an order of magnitude faster. This is illustrated
by the expanded trees shown in Figure 4: ODP exploits the deterministic setting
and produces a sparse tree densely concentrated around the optimal trajectory.
Conversely, the tree developed by OLOP is evenly balanced, which suggests that
OLOP behaves as uniform planning as hypothesised in Section 2.3. KL-OLOP is
more efficient and expands a highly unbalanced tree, exploring the same regions
as ODP. Furthermore, in the stochastic gridworld environment shown in Figure
3c, we observe that the deterministic ODP planner’s performance saturates as

https://github.com/eleurent/highway-env/
https://github.com/maximecb/gym-minigrid

Practical Open-Loop Optimistic Planning 15

Fig. 4: The look-ahead trees (down to depth 6) expanded by the planning algo-
rithms from the same initial state in the highway environment with the same
budget n = 103. The width of edges represents the nodes visit count Ta(M).

it settles to suboptimal trajectories, as expected. Conversely, the stochastic
planners all find better-performing open-loop policies, which justifies the need
for this framework. Again, KL-OLOP converges an order of magnitude faster than
OLOP. Finally, KL-OLOP(1) enjoys good performance overall and displays the most
satisfying trade-off between aggressiveness in deterministic environments and
conservativeness in stochastic environments; hence we recommend this tuning for
practical use.

7 Conclusion

We introduced an enhanced version of the OLOP algorithm for open-loop online
planning, whose design was motivated by an investigation of the over-conservative
search behaviours of OLOP. We analysed its sample complexity and showed that
the original regret bounds are preserved, while its empirical performances are
increased by an order of magnitude in several numerical experiments. Finally, we
proposed an efficient implementation that benefits from a substantial speedup,
facilitating its use for real-time planning applications.

16 E. Leurent and O-A. Maillard

Acknowledgments

This work has been supported by CPER Nord-Pas de Calais/FEDER DATA Ad-
vanced data science and technologies 2015-2020, the French Ministry of Higher Ed-
ucation and Research, INRIA, and the French Agence Nationale de la Recherche.

References

1. Bellman, R.: Dynamic Programming. Princeton University Press (1957)
2. Bubeck, S., Munos, R.: Open Loop Optimistic Planning. In: Proc. of COLT (2010)
3. Buşoniu, L., Daniels, A., Munos, R., Babuska, R.: Optimistic planning for

continuous-action deterministic systems. IEEE Symposium on Adaptive Dynamic
Programming and Reinforcement Learning, ADPRL (2013)

4. Buşoniu, L., Páll, E., Munos, R.: Continuous-action planning for discounted infinite-
horizon nonlinear optimal control with Lipschitz values. Automatica 92(December),
100–108 (2018)

5. Cappé, O., Garivier, A., Maillard, O.A., Munos, R., Stoltz, G.: Kullback-Leibler Up-
per Confidence Bounds for Optimal Sequential Allocation. The Annals of Statistics
41(3), 1516–1541 (2013)

6. Chevalier-Boisvert, M., Willems, L., Pal, S.: Minimalistic gridworld environment
for openai gym. https://github.com/maximecb/gym-minigrid (2018)

7. Coquelin, P.A., Munos, R.: Bandit Algorithms for Tree Search. Proc. of UAI (2007)
8. Coulom, R.: Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search.

In: Proc. of International Conference on Computer and Games (2006)
9. Grill, J.B., Valko, M., Munos, R.: Blazing the trails before beating the path:

Sample-efficient Monte-Carlo planning. In: Proc. of NeurIPS (2016)
10. Hren, J.F., Munos, R.: Optimistic planning of deterministic systems. Lecture Notes

in Computer Science (2008)
11. Kearns, M., Mansour, Y., Ng, A.Y.: A sparse sampling algorithm for near-optimal

planning in large Markov decision processes. In: Proc. of IJCAI (2002)
12. Kocsis, L., Szepesvári, C.: Bandit based monte-carlo planning. In: Proc. of ECML

(2006)
13. Leurent, E.: An environment for autonomous driving decision-making. https:

//github.com/eleurent/highway-env (2018)
14. Munos, R.: From Bandits to Monte-Carlo Tree Search: The Optimistic Principle

Applied to Optimization. Foundations and Trends R© in Machine Learning (2014)
15. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G.,

Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S.,
Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M.,
Kavukcuoglu, K., Graepel, T., Hassabis, D.: Mastering the game of go with deep
neural networks and tree search. Nature 529, 484–503 (2016)

16. Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot,
M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., Hassabis, D.: A
general reinforcement learning algorithm that masters chess, shogi, and go through
self-play. Science 362(6419), 1140–1144 (2018)

17. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,
Hubert, T., Baker, L., Lai, M., Bolton, A., et al.: Mastering the game of go without
human knowledge. Nature 550(7676), 354 (2017)

18. Szorenyi, B., Kedenburg, G., Munos, R.: Optimistic planning in Markov decision
processes using a generative model. In: Proc. of NeurIPS (2014)

https://github.com/maximecb/gym-minigrid
https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env

	Practical Open-Loop Optimistic Planning

