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Abstract
Set-Constrained Delivery Broadcast (SCD-broadcast), recently introduced at ICDCN 2018, is a
high-level communication abstraction that captures ordering properties not between individual
messages but between sets of messages. More precisely, it allows processes to broadcast messages and
deliver sets of messages, under the constraint that if a process delivers a set containing a message
m before a set containing a message m′, then no other process delivers first a set containing m′

and later a set containing m. It has been shown that SCD-broadcast and read/write registers are
computationally equivalent, and an algorithm implementing SCD-broadcast is known in the context
of asynchronous message passing systems prone to crash failures.

This paper introduces a Byzantine-tolerant SCD-broadcast algorithm, which we call BSCD-
broadcast. Our proposed algorithm assumes an underlying basic Byzantine-tolerant reliable broadcast
abstraction. We first introduce an intermediary communication primitive, Byzantine FIFO broadcast
(BFIFO-broadcast), which we then use as a primitive in our final BSCD-broadcast algorithm. Unlike
the original SCD-broadcast algorithm that is tolerant to up to t < n/2 crashing processes, and unlike
the underlying Byzantine reliable broadcast primitive that is tolerant to up to t < n/3 Byzantine
processes, our BSCD-broadcast algorithm is tolerant to up to t < n/4 Byzantine processes. As an
illustration of the high abstraction power provided by the BSCD-broadcast primitive, we show that
it can be used to implement a Byzantine-tolerant read/write snapshot object in an extremely simple
way.
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16:2 Byzantine-Tolerant Set-Constrained Delivery Broadcast

1 Introduction

Reliable broadcast in asynchronous crash-prone systems

Reliable broadcast is a communication abstraction central to fault-tolerant asynchronous
distributed systems. It allows each process to broadcast, with well-defined delivery guarantees,
messages to all processes in the presence of failures. More precisely, it guarantees that
non-faulty processes deliver the same set of messages M , including all the messages they
broadcast, and a subset of the messages broadcast by faulty processes before they crashed.
The fundamental property of the reliable broadcast abstraction asserts that no two non-
faulty processes deliver different sets of messages, and a faulty process delivers a subset of
the messages delivered by the non-faulty processes (two distinct faulty processes possibly
delivering different sets of messages).

Reliable broadcast in the presence of Byzantine processes (BR-broadcast)

Reliable broadcast has been studied in the context of Byzantine failures since the eighties.
A process commits a Byzantine failure if it behaves arbitrarily (i.e., its behavior is not the
one described by the algorithm is it assumed to execute) [10, 12]. Such a failure can be
intentional (also called malicious) or the result of a transient fault which altered its intended
behavior in an unpredictable way. Bracha [3] introduced an elegant signature-free Byzantine
fault-tolerant algorithm for the reliable broadcast abstraction in n-process message-passing
asynchronous systems, where up to t < n/3 processes may be Byzantine.

Set-Constrained Delivery broadcast in asynchronous crash-prone systems

Set-Constrained Delivery broadcast (SCD-broadcast) was introduced in [9] in the context
of crash failures. Rather than individual messages, a process delivers non-empty sets of
messages, satisfying the following ordering property: if a non-faulty process delivers a set of
message ms1 containing a message m and later delivers a set of message ms1′ containing
a message m′, no non-faulty process delivers first a set of message ms2 containing m′ and
later a set of message ms2′ containing m. This communication abstraction is particularly
efficient to build read/write implementable objects, such as the ones described in [14]. It is
shown in [9] that, in asynchronous message-passing systems with up to t crashed processes,
(a) t < n/2 is necessary and sufficient to build SCD-broadcast, and (b) atomic R/W registers
and SCD-broadcast have the same computability power.

Content of the paper

In this paper, we introduce a new communication abstraction, which we call BSCD-broadcast,
that provides similar guarantees to SCD broadcast in the context of Byzantine failures. The
specification and implementation of such a high-level abstraction has a direct practical interest
when realizing many replicated objects. As an example, we show how a Byzantine-tolerant
single-writer/multi-reader snapshot object [1] can be easily built on top of BSCD-broadcast.
More generally, we believe a better understanding of how high-level broadcast abstractions
can be implemented in a Byzantine context can help developers design novel and richer
zero-trust applications, extending their use and applicability beyond the highly-publicized
examples of cryptocurrencies [5, 11] and smart contract platforms [4].

We begin by defining a first abstraction (Section 3.2), BFIFO-broadcast, that guarantees
that non-faulty processes deliver messages from each process in their sending order. Since
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such a sending order cannot be defined for Byzantine processes, the only guarantee provided
in that case is that all non-faulty processes deliver the messages from a given Byzantine
process in the same order. Depending on the BR-broadcast algorithm used (e.g., [3, 8]),
we obtain for BFIFO-broadcast either an algorithm which requires (i) t < n/3 and three
sequential communication steps, or (ii) t < n/5 and two sequential communication steps.

This simple abstraction is then used to build a BSCD-broadcast algorithm (Section 3)
under the assumption t < n/4. The design of our algorithm differs significantly from the
SCD-broadcast algorithm described in [9], due to the fact that in the crash-failure model, a
process behaves correctly until it possibly crashes, whereas a Byzantine process can exhibit an
arbitrary behavior at any time. Precise definitions of both of these communication abstractions
are provided in the paper. Our BSCD-broadcast algorithm requires two sequential BFIFO-
broadcast steps for each BSCD-broadcast message. These two algorithms are built upon a
signature-free Byzantine reliable broadcast primitive and are equally signature-free.

Finally, we build a Byzantine-tolerant snapshot object as an example application of
BSCD-broadcast (Section 4). Let us notice that it has recently been shown that the snapshot
object is instrumental in the implementation of cryptocurrencies [5]. It follows that the
simple implementation (presented below) of such an object in message-passing systems where
processes can exhibit Byzantine failures can benefit to cryptocurrencies and some other
blockchain-based applications.

2 Computation Model

2.1 On the process side
Asynchronous processes

The system is made up of a finite set Π of n > 1 asynchronous sequential processes, namely
Π = {p1, . . . , pn}. Asynchronous means that each process proceeds at its own speed, which
can vary arbitrarily with time, and always remains unknown to the other processes.

Process failures

Up to t processes can exhibit a Byzantine behavior. A Byzantine process is a process that
behaves arbitrarily: it can crash, fail to send or receive messages, send arbitrary messages,
start in an arbitrary state, perform arbitrary state transitions, etc. As a simple example, a
Byzantine process, which is assumed to broadcast a message m to all the processes, can send
a message m1 to some processes, a different message m2 to another subset of processes, and
no message at all to the remaining processes. Moreover, Byzantine processes can collude
to foil non-Byzantine processes. It is however assumed that a Byzantine process cannot
send an infinite number of messages in a finite time, a necessary hypothesis in our proof of
termination. A process that exhibits a Byzantine behavior is also called faulty. Otherwise, it
is correct or non-faulty.

2.2 On the communication side
The basic Byzantine reliable broadcast communication abstraction

This abstraction, denoted BR-broadcast, is a one-shot communication abstraction that
provides two operations, br_broadcast() and br_deliver(). “One-shot” means that a process
executes br_broadcast() at most once, and br_deliver() at most n times (one per possible
sender). As in [6, 13], we use the following terminology: when a process invokes br_broadcast(),
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16:4 Byzantine-Tolerant Set-Constrained Delivery Broadcast

we say that it “br-broadcasts a message”, and when it executes br_deliver(), we say that it
“br-delivers a message”. BR-broadcast is defined by the following properties:

BR-Validity. If a correct process br-delivers a message m from a correct process pi, then
pi br-broadcast m.
BR-Integrity. A correct process br-delivers at most one message m from a process pi.
BR-Termination-1. If a correct process br-broadcasts a message, it br-delivers it.
BR-Termination-2. If a correct process br-delivers a message m from pi (possibly faulty)
then all correct processes eventually br-deliver m from pi.

On the safety side, BR-validity relates the outputs (messages br-delivered) to the inputs
(messages br-broadcast), while BR-integrity states that there is no duplication.

On the liveness side, BR-Termination-2 gives its name to reliable broadcast: be the sender
correct or not, every message br-delivered by a correct process is br-delivered by all correct
processes. Coupled together, the two termination properties further imply that a message
br-broadcast by a correct process is br-delivered by all correct processes. It follows from
these properties that all correct processes br-deliver the same set of messages, and this set
contains at least all the messages br-broadcast by correct processes.

As indicated in the introduction, there are signature-free distributed algorithms, which
build BR-broadcast on top of asynchronous message-passing systems in which processes
may be Byzantine [3, 8].

Terminology

When studying the BR-broadcast abstraction, a messagem br-broadcast by a process is called
an application message. Differently, a message generated by the algorithm implementing the
abstraction is called a protocol message. Similarly in the rest of this paper when studying other
broadcast abstractions, messages handled by that abstraction are referred to as application
messages, and messages generated by the algorithm implementing the abstraction (possibly
through a lower-level abstraction) are referred to as protocol messages.

2.3 Multi-shot Byzantine reliable broadcast
As already stated, BR-broadcast is a one-shot communication abstraction. But BR-broadcast
allows several processes to invoke the operation br_broadcast(), each giving rise to distinct BR-
broadcast instances. Two BR-broadcast instances can be easily distinguished by associating
with each of them the identity of the process that created it.

It follows that a multi-shot BR-broadcast abstraction, which we call MBR-broadcast, can
be very easily obtained by adding a sequence number sn to each BR-broadcast instance. A
MBR-broadcast instance is then identified by a pair 〈i, sn〉, but only sn needs to be provided
in an invocation, namely pi must invoke br_broadcast(sni,m), where sni is the local integer
variable (initialized to 0) used by pi to generate its sequence numbers. Conversely, when a
message is MBR-delivered by a process pi, the information provided to the upper layer is
a triple 〈j, sn,m〉 and we say that pi mbr-delivered the message m from pj with sequence
number sn.

The BR-Validity and BR-Integrity properties for this new multi-shot abstraction become:
MBR-Validity. If a correct process mbr-delivers a message m from a correct process pi

with sequence number sn, then pi mbr-broadcast m with sequence number sn.
MBR-Integrity. Given a sequence number sn, a correct process mbr-delivers at most one
message m associated with sn from a process pi.
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The other properties MBR-Termination-1 and MBR-Termination-2 remain the same as
for BR-broadcast. Multi-shot extensions of the single-shot signature-free BR-broadcast
algorithms introduced in [3, 8] are presented in Appendix A.

3 Byzantine Set-Constrained Delivery Broadcast

3.1 Definition
Set-Constrained Delivery broadcast (SCD-broadcast) was introduced in [9], in the context of
asynchronous systems prone to process crashes (in which it can be built if and only if t < n/2).
We consider here its extension to Byzantine process failures, denoted BSCD-broadcast. This
communication abstraction provides two operations, bscd_broadcast() and bscd_deliver().
(We say that a process bscd-broadcasts messages and bscd-delivers messages.) The operation
bscd_broadcast(m) allows the invoking process to broadcast an application message, while
the operation bscd_deliver() returns a non-empty set of messages to the invoking process.
BSCD-broadcast is defined by the following properties.

BSCD-Validity. If a correct process bscd-delivers a set of messages containing a message
m from a process pi, if pi is correct, it bscd-broadcast m.
BSCD-Integrity. A message is bscd-delivered at most once by each correct process.
BSCD-Order. Let pi be a correct process that first bscd-delivers a set of messages msi

and later bscd-delivers a set of messages ms′i. For any pair of messages m ∈ msi and
m′ ∈ ms′i, no correct process bscd-delivers first a set containing m′ and later bscd-delivers
a set containing m.
BSCD-Termination-1. If a correct process bscd-broadcasts a message m, it bscd-delivers
a message set containing m.
BSCD-Termination-2. If a correct process bscd-delivers a message set containing m, every
correct process bscd-delivers a message set containing m.

As a simple example, let m1, m2, m3, m4, m5, m6, m7 and m8 be messages that have
been bscd-broadcast by different processes. The following message set bscd-deliveries by p1,
p2 and p3 respect the definition of BSCD-broadcast:

at p1: {m1,m2}, {m3,m4,m5}, {m6}, {m7,m8}.
at p2: {m1}, {m3,m2}, {m6,m4,m5}, {m7}, {m8}.
at p3: {m3,m1,m2}, {m6,m4,m5}, {m7}, {m8}.

Differently, due to the deliveries of the message sets including m2 and m3, the following
message set deliveries by p1 and p2 do not satisfy the BSCD-Order property.

at p1: {m1,m2}, {m3,m4,m5}, . . .
at p2: {m1,m3}, {m2}, . . .

3.2 A simple sub-protocol to ease presentation: BFIFO Broadcast
In order to simplify the presentation of our BSCD-broadcast algorithm, we first introduce a
straightforward multi-shot first-in-first-out Byzantine broadcast primitive (BFIFO-broadcast),
that is implemented on top of MBR-broadcast (Section 2.3) by Algorithm 1. Basing our
algorithm on this abstraction allows us to assume that all correct processes agree on the order
of relevant messages for any possible sender, even a Byzantine one. While ordering messages
from each possible sender is an important first step, the crucial property of introducing order
between messages of different processes is achieved later, in Algorithm 2.

OPODIS 2019



16:6 Byzantine-Tolerant Set-Constrained Delivery Broadcast

BFIFO-broadcast is defined by the four MBR-broadcast properties (renamed BFIFO-
Validity, BFIFO-Integrity, BFIFO-Termination-1, and BFIFO-Termination-2), to which we
add a FIFO delivery guarantee, defined as follows:

BFIFO-Order. If a correct process pi bfifo-delivers two messages m and m′ from the
same process pk in the order first m and then m′, no correct process bfifo-delivers m′
before m (BFIFO-Order-1). Moreover, if pk is correct, it bfifo-broadcast m before m′
(BFIFO-Order-2).

In practice, each invocation of bfifo_broadcast() by a process pi is identified by the pair
〈i, sn〉, where sn is the corresponding sequence number. The bfifo-delivery order at correct
processes corresponds to the order of increasing sequence numbers.

Algorithm 1 BFIFO-broadcast on top of MBR-broadcast (code for pi)

init sni ← 0; fifo_deli ← [0, . . . , 0].

operation bfifo_broadcast(m) at pi is
(1) sni ← sni + 1;
(2) br_broadcast(sni, m).

when 〈j, sn, m〉 is br_delivered at pi do
(3) wait

(
sn = fifo_deli[j] + 1

)
;

(4) bfifo_deliver 〈j, sn, m〉;
(5) fifo_deli[j]← fifo_deli[j] + 1.

The proof that Algorithm 1 implements BFIFO-broadcast is provided in Appendix B.1.

3.3 An algorithm for BSCD-broadcast on top of BFIFO-broadcast
Algorithm 2 implements BSCD-broadcast on top of BFIFO-broadcast, with the assumption
t < n/4. This assumption is required in our proof of correctness (see proof of Lemma 17).
An open question remains as to whether t < n/4 is a tight bound for BSCD-broadcast.

This algorithm is used in Section 4 to build a Byzantine-tolerant snapshot object.

Overall intuition and challenges

At its core, Algorithm 2 must prevent any potential disruption caused by Byzantine processes,
as these cannot be assumed to respect any given behaviour. This need for containment of
impredictible behaviour leads to a design that departs fundamentally from the crash-tolerant
SCD-broadcast algorithm proposed in [9].

Whereas the crash-tolerant version SCD-broadcast was able to inject order into the system
by enforcing a waiting period between successive broadcasts from the same source, this
strategy no longer works in a Byzantine setting. This is because nothing prevents Byzantine
processes from issuing overlapping broadcasts, in order to confuse correct processes and
foil the protocol. This apparently subtle limitation renders the protocol considerably more
complex, as correct processes must now cooperate to enforce an order on the broadcasts
initiated by a possibly Byzantine source, while pruning inconsistent control information
produced by Byzantine processes.

More concretely, Algorithm 2 exploits an echo mechanism (the ready messages bfifo-
broadcast at lines 5 and 23, illustrated in Figure 1) to construct temporal barriers that
witness a message’s distribution among participants. The construction of these barriers is
however constrained by preventing correct processes from contributing to the barrier of a
bscd-broadcast from a source pi, if an earlier bscd-broadcast by the same pi (earlier in the
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Algorithm 2 BSCD-broadcast on top of BFIFO-broadcast (t < n/4, code for pi)

init pendingi ← [∅, . . . , ∅];
for each j ∈ {1, · · · , n}, snj ≥ 1

do datai[j, snj]← ⊥; witnessi[j, snj]← [+∞, · · · , +∞]
end for.

operation bscd_broadcast(m) at pi is
(1) bfifo_broadcast init(m).

when 〈j, snj,init(m)〉 is bfifo_delivered at pi

(2) % snj is the sequence number carried by init(m); namely: fifo_deli[j] = snj (cf. Alg. 1)
(3) datai[j, snj] ← m; % we then have id(m) = 〈j, snj〉
(4) pendingi[j] ← pendingi[j] ∪ {snj};
(5) if snj = min(pendingi[j]) then bfifo_broadcast ready(〈j, snj〉) end if;
(6) try_deliver().

when 〈k, snk,ready(〈j, snj〉)〉 is bfifo_delivered at pi

(7) % snk is the sequence number carried by ready(〈j, snj〉); namely: fifo_deli[k] = snk
(8) if witnessi[j, snj][k] = +∞ then witnessi[j, snj][k]← snk end if;
(9) if snj > fifo_deli[j] ∧ |{k′ such that witnessi[j, snj][k′] < +∞}| ≥ t + 1
(10) then pendingi[j]← pendingi[j] ∪ {snj} end if;
(11) try_deliver().

internal operation try_deliver () is
(12) candidatesi ← {〈j, snj〉 such that

(snj ∈ pendingi[j]) ∧ (|{k such that witnessi[j, snj][k] < +∞}| ≥ t + 1)} ;
(13) todeli ← {〈j, snj〉 ∈ candidatesi such that

(datai[j, snj] 6= ⊥) ∧ (|{k such that witnessi[j, snj][k] < +∞}| ≥ n− t)};
(14) while ∃〈j, snj〉 ∈ todeli : ¬

(
∀〈j′, snj′〉 ∈ candidatesi \ todeli, safe(〈j, snj〉, 〈j′, snj′〉)

)
(15) do todeli ← todeli \ {〈j, snj〉}
(16) end while;
(17) if todeli 6=∅ then
(18) ms ← {〈j, snj, datai[j, snj]〉 such that 〈j, snj〉 ∈ todeli};
(19) bscd_deliver(ms);
(20) foreach 〈j, snj〉 ∈ todeli in increasing lexicographical order do
(21) pendingi[j]← pendingi[j] \ {snj};
(22) if (pendingi[j] 6= ∅) ∧(datai[j, min(pendingi[j])] 6= ⊥)
(23) then bfifo_broadcast ready(〈j, min(pendingi[j])〉) end if
(24) end for
(25) end if.

internal predicate safe (〈j, snj〉, 〈j′, snj′〉) is
(26) if (j = j′ ∧ snj < snj′) then return (true) end if;
(27) if |{k such that witnessi[j, snj][k] < witnessi[j′, snj′][k]}| > n

2 then return (true) end if;
(28) return (false).

sense of the bfifo-broadcast) has not yet been bscd-delivered. This sequencing introduces
some order into the set of bscd-broadcast messages unfolding concurrently, and eventually
ensures that received bscd-broadcasts can be locally bundled together and delivered as sets
respecting the BSCD-broadcast specification by correct processes.

A note on sequence numbers and message identity

Application messages, each corresponding to an invocation of bscd_broadcast(), are identified
by a pair 〈j, snj〉 made of a process identity j and a sequence number snj. To simplify the
presentation of the algorithm, and without loss of generality, the sequence numbers given to
bscd-broadcast application messages correspond to the sequence number of an underlying
bfifo-broadcast message noted init(m) in the algorithm. However the BSCD-broadcast
algorithm also bfifo-broadcasts protocol messages of other types (namely, ready messages),
therefore many sequence numbers of bfifo-broadcast messages do not correspond to a bscd-
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Time barrier associated with m

p1

p2

p3

p4

ready(m)

init(m)

Figure 1 The echo mechanism of Algorithm 2

p1

p2

p3

p4

ready(mB)

ready(mA) ready(mC)

Figure 2 Three time barriers

broadcast message. As a consequence, these application messages do not have strictly
sequential numbers.

Local variables at a process

Each process pi manages the following local variables:
pendingi[1..n] is an array of sets, such that pendingi[j] contains the sequence numbers of
the messages known by pi as bscd-broadcast by pj and not yet locally bscd-delivered.
datai[1..n, 1...] is a two-dimensional array, whose entries are initially ⊥. datai[j, snj] stores
the content of message 〈j, snj〉 (the message from pj whose sequence number is snj).
witnessi[1..n, 1...] is another two-dimensional array that records the temporal barriers
observed so far by pi. Each entry witnessi[j, snj] stores the barrier for message 〈j, snj〉, an
array of size n initialized to [+∞, · · · ,+∞]. As the algorithm progresses, witnessi[j, snj][k]
is updated to contain the logical date snk (a sequence number of pk) at which pk witnessed
message 〈j, snj〉 by bfifo-broadcasting the protocol message ready(〈j, snj〉).
candidatesi and todeli are sets containing the identities of message which are potential
candidates to belong to the next message set bscd-delivered by pi; todeli is a refined
subset of candidatesi.

Behavior of a process pi

A process triggers the bscd-broadcast of a message m by simply bfifo-broadcasting the
protocol message init(m) (line 1, illustrated in Fig. 1).

When a process pi bfifo-delivers a message init(m) from a process pj , this protocol
message has been allocated a sequence number called snj (line 2) by the underlying BFIFO
broadcast algorithm (Section 3.2), and consequently 〈j, snj〉 becomes the identity of the
application message m. m is first stored in datai[j, snj] (line 3), and its sequence number snj
is then added to pendingi[j] (line 4), to record that pi knows that pj used an init message
to trigger a bscd-broadcast for the message with sequence number snj, and that pi must
bscd-deliver this message. Finally, if snj is the smallest sequence number in pendingi[j], pi

knows that all earlier messages from pj have been bscd-delivered, and that 〈j, snj〉 is the next
message it will bscd-deliver from pj . It informs of it the other processes by bfifo-broadcasting
the protocol message ready(〈j, snj〉) (line 5, illustrated in Fig. 1) in order to witness the
message 〈j, snj〉. This ready message will contribute to the time barrier needed to order
〈j, snj〉 with respect to other concurrent bscd-broadcast messages (more on this below). pi

then invokes try_deliver() (line 6) to see if it can bscd-deliver a set of messages.
When a process pi bfifo-delivers a witness message ready(〈j, snj〉) from pk regard-

ing a message 〈j, snj〉, pi uses the sequence number of the ready message (called snk,
line 7) to update witnessi[j, snj], the time barrier of the message 〈j, snj〉. Concretely, if
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witnessi[j, snj][k] = +∞, pi learns that pk has witnessed the message identified by 〈j, snj〉
from pj , and pi records the time point at which this happened by updating witnessi[j, snj][k]
to snk (line 8). Then, if pi has not yet bfifo-delivered the message 〈j, snj〉 (first predicate of
line 9) and at least t+ 1 processes (i.e., at least one correct process) have witnessed this mes-
sage (by bfifo-broadcasting a ready(〈j, snj〉) message, second predicate of line 9), it knows
that pj bscd-broadcast a message identified by 〈j, snj〉 and it adds snj to pendingi[j] (line 10).
This early update of pendingi[j] (i.e. before pi receives the corresponding init message from
pj) ensures 〈j, snj〉 will be taken into account in the tests performed by try_deliver () at
lines 12-16 to decide which application messages can be safely bscd-delivered (we return to
these tests just below). Finally, after these various updates, pi invokes try_deliver() (line 11)
to attempt to bscd-deliver a set of messages.

Internal operation try_deliver () and predicate safe ()

In this operation, pi first computes the set candidatesi that contains the message identities
〈j, snj〉 that have been received but not yet delivered (snj ∈ pending[j]), and that have been
witnessed by at least one correct process (first and second predicate of line 12). Then, to
obtain the reduced set todeli (line 13) of messages that can actually be delivered, pi first
purges from candidatesi the message identities whose payload has not been received yet or
that have been witnessed by less than (n− t) processes (a process pk witnesses an application
message m by bfifo-broadcasting ready(〈j, snj〉) at line 5 or 23, whose reception entails the
update of witnessi[j, snj] by pi at line 8, see above).

Once this first purge is complete, pi then removes from todeli (line 15) all the message
identities 〈j, snj〉 (line 14) that make it “unsafe” with respect to messages in candidatesi\todeli

(the messages that have been “confirmed”, but cannot be delivered yet, line 14), where unsafe
is defined as the negation of the predicate safe() defined at lines 26-28. Thus a process will
only bscd-deliver a set of messages todeli whose messages are all safe to bscd-deliver before
those remaining in candidatesi \ todeli. More precisely a message m identified by 〈j, snj〉 is
considered safe by pi to bscd-deliver before a message m′ identified by 〈j′, snj ′〉 if (i) both
have been bscd-broadcast by the same process with snj < snj ′ (line 26) or (ii) pi knows that
a majority of processes witnessed m before m′ (line 27). Thus a process may learn that it is
safe to deliver m before m once it has received enough ready messages for m before ready
messages from m′ by the same senders. Note that this safety relationship is not transitive,
and can lead to complex entanglements. For instance, Figure 2 shows the time barriers of
three messages, i.e. the times at which correct processes and possibly a subset of Byzantine
processes have first bfifo-broadcast ready(m{A,B,C}) messages. In this example, a process
may learn that mA is safe to bscd-deliver before mB, and that mB is safe to bscd-deliver
before mC , but never that mA is safe to bscd-deliver before mC . Thus correct processes
must bscd-deliver mA,mB and mC in the same set.

Finally, if todeli is not empty (line 17), pi computes from this set of message identities the
triplets 〈j, snj, datai[j, snj]〉 (line 18), which define the set of messages ms that it can bscd-
deliver (line 19). Then, according to the messages it has just bscd-delivered, pi updates the
sets pendingi[j] (lines 20-21). Moreover, if such a set remains non-empty, and pi bfifo-delivered
the protocol message init(m) associated with min(pendingi[j]) (line 22), pi bfifo-broadcasts
the protocol message ready(j,min(pendingi[j]) to inform the other processes that this is
the identity of the next message it intends to bscd-deliver from pj (line 24).

I Theorem 1. Algorithm 2 respects the properties of BSCD-Validity, BSCD-Integrity, BSCD-
Ordering, BSCD-Termination-1, and BSCD-Termination-2.
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The following section is devoted to proving this result.

3.4 Proof of Correctness
We start by several intermediate definitions and results before the final proof of Theorem 1.
The most important results are shown in Theorem 18 (BSCD-Order) and Theorem 22
(BSCD-Termination).

I Definition 2. We say a correct process pi bscd-delivers a message m from pj with sequence
number snj if it bscd-delivers a message set ms that contains the tuple 〈j, snj,m〉.

I Theorem 3. If a correct process pi bscd-delivers a message m from a correct process pj,
then pj bscd-broadcast m.

Proof. If a correct process pi bscd-delivers a set containing a message m from pj , then m
has been put in datai[j, snj] for some snj, meaning pi bfifo-delivered init(m) from pj . By
BFIFO-Validity, if pj is correct then it bfifo-broadcast init(m), meaning it bscd-broadcast
m. J

I Definition 4. We say a message identity 〈j, snj〉 is valid if all correct processes bfifo-deliver
a message init(m) from pj at sequence number snj. Otherwise the message identity 〈j, snj〉
is invalid.

I Remark 5. If m is a message bscd-broadcast or bscd-delivered by a correct process, then
we note id(m) = 〈j, snj〉 its identity which is by definition a valid identity. We will note
sender(m) = j and sn(m) = snj.

I Lemma 6. If at some point snj ∈ pendingi[j] for a correct process pi, then 〈j, snj〉 is a
valid message identity, i.e. all correct processes will bfifo-deliver a message init(m) from pj

with sequence number snj.

Proof. If snj is added to pendingi[j] at line 4 then pi bfifo-delivered a message init(m) from
pj at snj, so by BFIFO-Termination so will all other correct processes.

If snj is added to pendingi[j] at line 10 then pi bfifo-delivered ready(〈j, snj〉) from at
least t+ 1 processes, one of which at least is correct. Thus there is a correct process that
bfifo-broadcast ready(〈j, snj〉), meaning it bfifo-delivered init(m) from pj at snj, so by
BFIFO-Termination, all other correct processes also will. J

I Theorem 7. No correct process bscd-delivers several (identical or different) messages for
a given message identity 〈j, snj〉.

Proof. A message that is bscd-delivered by a correct process pi has a unique identity 〈j, snj〉
guaranteed by the bfifo-broadcast of the corresponding init(m) message at pj . At a correct
process pi, BFIFO-Integrity guarantees that init(m) will be delivered only once with sequence
number snj from pj . snj will be added in pendingi[j] at that time or before but cannot
be added again later, and will be removed from pendingi[j] only after init(m) has been
bfifo-delivered, therefore snj can only be removed from pendingi[j] once meaning that m can
be bscd-delivered only once. J

I Lemma 8. If at any correct processes pi at any time of its execution, and for any
pj , snj, pk we have witnessi[j, snj][k] = snk 6= ∞ then snk is the sequence number of the
first ready(〈j, snj〉) message bf-delivered by pi from pk, which is the same at every correct
process, even if pk is Byzantine.
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Proof. If witnessi[j, snj][k] is set to other than ∞ it is when pi bfifo-delivers ready(〈j, snj〉)
from pk. If pi bfifo-delivers ready(〈j, snj〉) from pk several times, the first time will lead
to the execution of witnessi[j, snj][k]← snk and the second one won’t because we now have
witnessi[j, snj][k] 6=∞ (line 8). Correct processes all bfifo-deliver the same messages from pk

in the same order and with the same sequence numbers, therefore they will eventually all
update their witnessi[j, snj][k] variable to the same value. J

I Convention 9. Since only the first ready(〈j, snj〉) bfifo-delivered by a correct process pi

from pk can lead to a change in witnessi[j, pj ][k], we will say that pi “received” ready(〈j, snj〉)
from pk to refer only to the first such ready bfifo-delivered. This is important if the sender
of the ready, pk, is Byzantine since in that case it may bfifo-broadcast several times the same
ready message. We will say that pi received ready(〈j, snj〉) before ready(〈j′, snj ′〉) from pk

if pi bfifo-delivered for the first time ready(〈j, snj〉) from pk before bfifo-delivering for the first
time ready(〈j′, snj ′〉) from pk. We will also say that a correct process receives ready(〈j, snj〉)
before ready(〈j′, snj ′〉) from pk if it bfifo-delivers at least once ready(〈j, snj〉) from pk and
never bfifo-delivers ready(〈j′, snj ′〉) from pk.

I Remark 10. If a correct process receives ready(〈j, snj〉) before ready(〈j′, snj ′〉) from a
process pk, then the same happens for all other correct processes: if pi only bfifo-delivers
one or more ready(〈j, snj〉) from pk and no ready(〈j′, snj ′〉) from pk then all other correct
processes will also bfifo-deliver it or them and they will not bfifo-deliver a ready(〈j′, snj ′〉)
from pk. If pi both bfifo-delivers one or more ready(〈j, snj〉) from pk and one or more
ready(〈j′, snj ′〉) from pk, other correct processes will also bfifo-deliver them, in the same
order and with the same sequence numbers.

I Lemma 11. If at any correct process pi, for any pj , snj, p′j , snj ′ and pk, we have
witnessi[j, snj][k] < witnessi[j′, snj ′][k] at any time of its execution, then that will always be
the case at pi afterwards.

Proof. If witnessi[j, snj][k] < witnessi[j′, snj ′][k] then witnessi[j, snj][k] was set to a non-
infinite value which is the sequence number with which pi bfifo-delivers the first ready(〈j, snj〉)
from pk. The content of witnessi[j, snj][k] will never be changed afterwards, and if
witnessi[j′, snj ′][k] is changed afterwards it will be set to the sequence number with which pi

bfifo-delivers the first ready(〈j′, snj ′〉) from pk which is necessarily larger than the sequence
number of the first ready(〈j, snj〉). J

We now contruct a relation → on messages to capture the fact that a message m can be
safely bscd-delivered before a message m′: if m→ m′, no correct process delivers m′ before
m. The relation → relies on the time barriers of m and m′ arising from the witness messages
ready. We construct → incrementally, starting with a simpler preliminary relation ≺k.

I Definition 12. If correct processes receive ready(〈j, snj〉) before ready(〈j′, snj ′〉) from
pk, we write: 〈j, snj〉 ≺k 〈j′, snj ′〉.

I Remark 13. If pi is a correct process, witnessi[j, snj][k] < witnessi[j′, snj ′][k] can be
interpreted as: “pi knows that 〈j, snj〉 ≺k 〈j′, snj ′〉” and implies 〈j, snj〉 ≺k 〈j′, snj ′〉.

I Definition 14. Let us note m → m′ if (i) there is a majority P of processes such that
∀pk ∈ P,m ≺k m

′, or if (ii) m and m′ are sent by the same process and sn(m) < sn(m′).
Formally: m→ m′ ⇔

(
sender(m) = sender(m′)∧sn(m) < sn(m′)

)
∨
(
|{k : m ≺k m

′}| > n
2
)
.

I Lemma 15. m→ m′ and m′ → m are exclusive: ∀m,m′, ¬(m→ m′ ∧m′ → m).
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Proof. If sender(m) = sender(m′), then suppose w.l.o.g. that sn(m) < sn(m′). We directly
have m→ m′ following from the definition. Moreover, if correct processes bfifo-broadcast
ready(id(m′)), they will do it after they have already bfifo-broadcast ready(id(m)), thus
|{k : m′ ≺k m}| ≤ t, thus we have ¬(m′ → m).

If m and m′ are not from the same sender and m → m′ and m → m′ then we have
|{k : m ≺k m

′}| > n
2 and |{k : m′ ≺k m}| > n

2 . There is a process in the intersection of
these two majorities for which we have a contradiction. J

I Remark 16. → is not a partial order as it is not transitive.

I Lemma 17. If a correct process pi bscd-delivers m before bscd-delivering m′ or bscd-delivers
m and bfifo-delivers init(m′) but never bscd-delivers m′ then m→ m′.

Proof. When m is bscd-delivered by pi, it has received ready(id(m)) from at least n− t
processes. Two cases arise:

Case 1: If pi has already received an ready(id(m′)) from no more than t processes, then
there are at least n− 2t processes for which pi has received a ready (id(m)) and not yet
a ready(id(m′)), therefore |{k : m ≺k m

′}| > n− 2t. The hypothesis of our computing
model is t < n/4, therefore n− 2t > n

2 . We thus have m→ m′.
Case 2: If pi has already received an ready(id(m′)) from t + 1 or more processes
when it bscd-delivered m, then sn(m′) ∈ pendingi[k] (because of line 9), thus id(m′) ∈
candidatesi\todeli, thus by the exit condition of the while loop, either sender(m) =
sender(m′) ∧ sn(m) < sn(m′) or |{k : witnessi[id(m)][k] < witnessi[id(m′)][k]}| > n

2 , in
both cases m→ m′. J

I Theorem 18. Let pi be a correct process that bscd-delivers a set msi containing a message m
and later bscd-delivers a set ms′i containing a message m′. No correct process pj bscd-delivers
first a set ms′j containing m′ and later a message set msj containing m.

Proof. By Lemma 17, such a situation would imply m→ m′ and m′ → m, which we have
shown are exclusive (Lemma 15). J

I Definition 19. We say that a correct process pi knows that m → m′ if either |{k :
witnessi[id(m)][k] < witnessi[id(m′)][k]}| > n

2 or sender(m) = sender(m′) ∧ sn(m) < sn(m′).

I Remark 20. If a correct process pi knows that m→ m′ then m→ m′.

I Remark 21. In the while loop of try_deliver(), a correct process removes a message m
from todeli when there is a message m′ in candidatesi\todeli for which it does not know
that m→ m′. For a correct process to bscd-deliver a set of messages ms, it must know that
m→ m′ for all m ∈ ms and m′ ∈ candidatesi\ms.

I Theorem 22. If a correct process pi bfifo-delivers init(m) from pj, it eventually bscd-
delivers m from pj.

Proof. Suppose by contradiction that there is a correct process that bfifo-delivers an init(m)
but never bscd-delivers m. Let M be the set of these unterminated messages, i.e. the set of
messages m for which correct processes bfifo-deliver init(m) but there is at least one correct
process that does not bscd-deliver m.

Let Mpi
= {m ∈M : sender(m) = pi}, the set of unterminated messages bscd-broadcast

by pi, and S = {i : Mpi 6= ∅}, the set of processes who bscd-broadcast at least one
unterminated message. For i ∈ S, let mi be the message in Mpi

with the lowest sequence
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. . .
A ¬A

¬S

S

M−1 M0 M1

Figure 3 Message sets used in the proof of Theorem 22

number, and let M0 = {mi, i ∈ S}. We use M0 as a boundary to define four sets of messages
that will lead us to a contradiction. Let M−1 = {m : sender(m) ∈ S ∧ sn(m) < sn(mi)} the
set of all messages by processes of S that all correct processes bscd-deliver.

After some time, correct processes all bscd-deliver the messages of M−1, thus all correct
processes will bfifo-broadcast ready(id(mi)) for all i ∈ S after some time. Let A be the set
of messages witnessed (with a ready message) by at least one correct process before one of
the unterminated messages in the “boundary” M0. More formally A is defined by: m′ ∈ A
iff a correct process bfifo-broadcasts ready(id(m′)) before bfifo-broadcasting ready(id(mi))
for some i ∈ S. Because a process may only receive a finite number of messages in a finite
amount of time, the set A is finite. For all m 6∈ A and i ∈ S we have mi → m.

Let AS = {m ∈ A : sender(m) ∈ S} and A¬S = {m ∈ A : sender(m) 6∈ S}. Let
M1 = AS\(M−1 ∪M0). We have that A = A¬S ∪M−1 ∪M0 ∪M1. We have two cases:

Case 1: no correct process ever bscd-delivers a message of M0. In that case, no correct
process will ever bfifo-broadcast a ready for a message of M1, thus the messages of M1
will never be considered in the candidatesi set of correct processes.
Let pi be a correct process. After a certain time pi will have bscd-delivered all messages
of A¬S and of M−1 and will have bfifo-delivered its last ready(id(m)) for a message
m ∈M0, thus it will execute try_deliver() either strictly after all that happens or when
bscd-delivering for the last time messages of A¬S ∪M−1 and after having bfifo-delivered
its last ready(id(m)) for a message m ∈M0. At that point candidatesi will contain only
messages of M0 and messages not in A, and possibly some messages of A¬S ∪M−1 which
will be in todeli at the end of the while loop. Since pi never bscd-delivers messages of
M0, at some point in the while loop it will remove a message m ∈M0.
Let m be the first message of M0 pi removes from todeli, it is removed because there is
an m′ ∈ candidatesi\M0 that violates the exit condition of the loop. We have m′ 6∈M0
because m is the first message of M0 that pi removes from todeli and initially there is no
message ofM0 in candidatesi\todeli, m′ 6∈ A¬S ∪M−1 because all messages of A¬S ∪M−1
remaining at this step are in todeli at the end of the loop, and m′ 6∈ M1 because no
message of M1 is in candidatesi, thus m′ 6∈ A. Since m ∈ M0 and m′ 6∈ A we have
m→ m′ and since pi has bfifo-delivered all messages ready(id(m)) then it knows that
m→ m′, meaning that safe(id(m), id(m′)) = true. Therefore pi cannot remove m from
todeli because of m′. We have a contradiction.
Case 2: there is a correct process pi that bscd-delivers a message m ∈M0. In that case, pi

delivered a certain message set ms that contains m. Let us note U the set of all messages
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pi bscd-delivered before and including ms. For any message m′ for which correct processes
deliver init(m′) and such that m′ 6∈ U , by Lemma 17 we have ∀m′′ ∈ U,m′′ → m′.
Let pj be a correct process that does not bscd-deliver m. After a certain time, it will
receive its last ready for a message of U (in particular, it will have bfifo-delivered
ready(id(m)) from all correct processes), at which time it executes try_deliver() and
removes at least one message of U from todelj (it removes at least m). Moreover no
messages of U are in candidatesi\todeli at the beginning of the loop since pi was able
to bscd-deliver all messages of U and all ready messages for messages of U have been
bfifo-delivered by pj . Let m0 be the first message of U that pj removes from todelj . The
message m0 is removed because of some message m1 6∈ U that violated the condition.
Since pi bscd-delivered m0 before bscd-delivering m1 we have m0 → m1. Since pj has
already bfifo-delivered its last messages ready(id(m0)) then it knows that m0 → m1,
meaning that safe(id(m), id(m′)) = true. Therefore pj cannot remove m from todeli

because of m′. We have a contradiction. J

Final proof of Theorem 1

Proof. BSCD-Validity, BSCD-Integrity and BSCD-Ordering are shown respectively in The-
orem 3, Theorem 7 and Theorem 18. BSCD-Termination-1: if a correct procsess bscd-
broadcasts a message m, then it will bf-broadcast init(m). By BFIFO-Termination it will
thus bf-deliver init(m), thus by Theorem 22 it will bscd-deliver m. BSCD-Termination-2: If
a correct process bscd-delivers m then it has previously bf-delivered init(m). By BFIFO-
Termination all correct processes bf-deliver init(m). By Theorem 22, all correct processes
will bscd-deliver m. J

4 BSCD-broadcast in action: a Byzantine-tolerant snapshot object

The snapshot object was introduced in [1, 2]. A snapshot object can be seen as an array
REG[1..n] of single-writer/multi-reader atomic registers which provides processes with two
operations, denoted write() and snapshot(). The invocation of write(v) by a process pi assigns
atomically v to REG[i]. The invocation of snapshot() returns the value of REG[1..n] as if it
was executed instantaneously. Hence, in any execution of a snapshot object, its operations
write() and snapshot() are linearizable [7]. As mentioned in the introduction, the snapshot
object has recently been shown to be instrumental in the design of cryptocurrency systems [5].

Byzantine Snapshot object on top of BSCD-broadcast

Let us recall that nothing can prevent Byzantine processes from writing fake values in their
register of the snapshot object. The important property is that the registers associated with
correct processes cannot be corrupted by Byzantine processes.

Our algorithm is similar in structure to the multi-writer/multi-reader snapshot object
built on SCD-broadcast that was introduced in [9] in the context of process crash failures.
However a multi-writer snapshot object is intrinsically unsuited to a system with Byzantine
processes as such processes would then be able to prevent all effective communication between
correct ones by overwriting correct processes’ values as soon as they are written, which is
why we focus on a single-writer/multi-reader snapshot object instead. As a consequence, the
analysis of our algorithm shares little in common with that of [9].
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Local data structures at a process pi

Let REG be the snapshot object. At a process pi, it uses three local data structures:
donei is a Boolean variable.
regi[1..n] is the value of REG[1..n] as currently known by pi.
wsni[1..n] is such that wsni[j] is the sequence number of the last write by pj in REG[j],
as known by pi. Such a sequence number is systematically associated (at line 18 of
Algorithm 2) with each invocation of bscd_broadcast write() (line 3 of Algorithm 3).

Algorithm 3 Construction of a snapshot object on top of BSCD-broadcast (code for pi)

init regi ← [⊥, . . . ,⊥]; wsni ← [0, . . . , 0].

operation snapshot() is
(1) donei ← false; bscd_broadcast sync(); wait(donei);
(2) return(regi[1..n]).

operation write(v) is
(3) donei ← false; bscd_broadcast write(v); wait(donei).

when the message set { 〈j1, sn1, write(v1)〉, . . . , 〈jx, snx, write(vx)〉,
〈jx+1, snx+1, sync()〉, . . . , 〈jy, sny, sync()〉 } is bscd-delivered do

(4) for each message 〈j, snj,write(v)〉 ∈ bscd-delivered message set do
(5) if (wsni[j] < snj) then regi[j]← v; wsni[j]← snj end if
(6) end for;
(7) if ∃` : j` = i then donei ← true end if.

Operation snapshot()

When a process invokes snapshot(), it simply invokes bscd_broadcast sync(), where sync is
a synchronization tag, and (with the help of the Boolean donei, lines 1 and 7) waits until
this message has been locally processed. Then, pi returns the value of the local array regi.
The aim of the message sync is to stop the progress of pi so that, once unblocked, it will
have a consistent value of REG it can return (“consistent” refers here to the atomicity of the
snapshot object).

Operation write()

The code of this operation is similar in structure to the synchronization of operation snapshot(),
however instead of reading the registers and returning their values, the process sends a value
to be written but does not return anything. When a process invokes write(v), it simply
invokes bscd_broadcast write(v), where write is an operation tag, and, with the help of
the Boolean donei, waits until this message has been locally processed (lines 3 and 7, this
synchronization pattern is sometimes called “read your writes”).

Processing of a set of messages

This procedure consists in two steps:
Process pi first considers the messages write() that appear in the message set ms it is
bscd-delivering. Each element of ms is actually a triplet 〈j, snj, v〉, such that 〈j, snj〉 is
the identity of the value v, namely the snj-th value written by pj in REG[j]. pi writes v
into regi[j], if this value has not been overwritten by a more recent value (lines 4-6).
After the previous updates, pi sets the Boolean donei to the value true if the message
set contains a message it bscd-broadcast (line 7).
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I Theorem 23. Algorithm 3 builds a linearizable snapshot object in an n-process asyn-
chronous message-passing system where up to t < n/4 processes may commit Byzantine
failures.

The proof of this theorem can be found in Appendix B.2.

5 Conclusion

This paper addressed the design of a Set-Constrained Delivery broadcast abstraction in the
context of n-process asynchronous message-passing systems where up to t processes may
commit Byzantine failures. A first primitive, BFIFO-broadcast, ensures that, for any sender,
all correct processes deliver its messages in the same order (which is their sending order
if the sender is correct). BSCD-broadcast, which is built over BFIFO-broadcast, ensures
that correct processes deliver sets of messages such that, if a correct process p delivers a
set of messages containing a message m and later delivers a set of messages containing a
message m′, no correct process delivers first a set of messages containing m′ and later a set
of messages containing m. As an illustration of BSCD-broadcast, it has been shown how it
facilitates the construction of a Byzantine-tolerant read/write snapshot object.
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A Two Multi-shot Signature-free BR-broadcast Algorithms

In order to make the paper as self-contained as possible, this section presents multi-shot
extensions of the one-shot signature-free BR-broadcast algorithms introduced by G. Bracha [3]
and D. Imbs and M. Raynal [8]. The presentation follows pages 64-71 of [13], where the
reader can also find proofs of these algorithms. In the text of these two extensions, sn denotes
the sequence number of the corresponding BR-broadcast instance, hence a process invokes
br_broadcast(sn,m).

A.1 Underlying Basic Communication System
In both algorithms described below, the processes communicate by exchanging messages
through an asynchronous reliable point-to-point network. “Asynchronous” means that a
message that has been sent is eventually received by its destination process, i.e., there is
no bound on message transfer delays. “Reliable” means that the network does not loose,
duplicate, modify, or create messages. “Point-to-point” means that there is a bi-directional
communication channel between each pair of processes. As a consequence, a process can
identify the sender of each message it receives and no Byzantine process can impersonate
another process. In practice, this means that Byzantine processes cannot control the
underlying communication layer.

A process pi sends a message to a process pj by invoking the primitive “send tag(m)
to pj”, where tag is the type of the message and m its content. To simplify the presentation,
it is assumed that a process can send messages to itself. A process receives a message by
executing the primitive “receive()”. The macro-operation “broadcast tag(m)” is a shortcut
for “for j ∈ {1, · · · , n} do send tag(m) to pj end for”.

A.2 Multi-shot Version of Bracha’s BR-broadcast Algorithm
Algorithm 4 is a multi-shot version of Bracha’s BR-broadcast algorithm. This algorithm
assumes t < n/3. When, on its client side, a process pi invokes br_broadcast(sn,m), it invoke
the macro-operation broadcast() with the protocol message init(sn,m) (line 1).

On it server side a process pi may receive three different types of protocol messages:
init(), echo(), and ready(). A message init carries an application message, while the
messages echo() and ready() carry a process identity and an application message1.

When pi receives init(sn,m) for the first time from a process pj (line 2), it broadcasts
the protocol message echo(〈j, sn〉,m) (line 3). If this message is not the first message
init(sn,−) from pj , pi discards it (in this case, pj is Byzantine).
When pi receives the protocol echo(〈j, sn〉,m) from any process, it broadcasts the
protocol message ready(〈j, sn〉,m) (line 5) if it received echo(〈j, sn〉,m) from enough
different processes (where “enough” means here more than n+t

2 ), and ready(〈j, sn〉,m)
has not yet been broadcast (line 4). This message exchanges ensure that no two correct
processes will br-deliver different message from pj with the sequence number sn, but it is
still possible that a correct process br-delivers m from pj while another correct process
does not br-deliver a message frompj . The role of the message ready(〈j, sn〉,m) is to
prevent a correct process from blocking on the br-delivery of m.

1 The fact that the echo() and ready() messages carry a process identity makes redundant the use of
an identity in the pair 〈−, sn〉 that appear in the messages that are br-broadcast (see the paragraph
“Invocation pattern” at the end of Section 2.3).
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Algorithm 4 Multi-shot version of Bracha’s BR-broadcast algorithm (t < n/3, code for pi)

operation br_broadcast(sn, m) is
(1) broadcast init(sn, m).

when a message init(sn, m) is received from pj do
(2) discard the message if it is not the first message init(sn,−) received from pj ;
(3) broadcast echo(〈j, sn〉, m).

when a message echo(〈j, sn〉, m) is received from any process do
(4) if (echo(〈j, sn〉, m) received from strictly more than n+t

2 different processes)
∧ (ready(〈j, sn〉, m) not yet broadcast)

(5) then broadcast ready(〈j, sn〉, m)
(6) end if.

when a message ready(〈j, sn〉, m) is received from any process do
(7) if (ready(〈j, sn〉, m) received from at least (t + 1) different processes)

∧ (ready(〈j, sn〉, m) not yet broadcast)
(8) then broadcast ready(〈j, sn〉, m)
(9) end if;
(10) if (ready(〈j, sn〉, m) received from at least (2t + 1) different processes)

∧ (〈j, sn, m〉 not yet br_delivered)
(11) then br_deliver 〈j, sn, m〉
(12) end if.

When pi receives ready(〈j, sn〉,m) for any process, it does the following.
Process pi first broadcasts ready(〈j, sn〉,m) (line 8) if (i) not already done and (ii)
it received ready(〈j, sn〉,m) for “enough” processes (where “enough” means here
(t+ 1) processes, which means from at least on correct process, line 7). As previously
indicated, this allows other correct processes not to deadlock.
Then, if pi received ready(〈j, sn〉,m) from “enough” processes (where “enough” means
here ((2t+ 1), which means from at least (t+ 1) correct processes), it locally br-delivers
the pair (sn,m) (from pj), if not yet already done (lines 10-11).

This algorithm is optimal with respect to t-resilience (namely t < n/3). It requires three
consecutive communication steps, and (n− 1) + 2n(n− 1) = 2n2 − n− 1 protocol messages.
The proof of this algorithm relies on the following properties, which assume n > 3t (see [13]
for their proofs):

n− t > n+t
2 .

Any set containing more than n+t
2 different processes, contains at least (t+ 1) non-faulty

processes.
Any two sets of processes Q1 and Q2 of size at least bn+t

2 c+ 1 have at least one correct
process in their intersection.

A.3 Multi-shot Version of Imbs-Raynal’s BR-broadcast Algorithm
Algorithm 5 is a multi-shot version of Imbs-Raynal’s BR-broadcast algorithm. This algorithm
assumes t < n/5. The code of br_broadcast(sn,m) is the same as in the previous algorithm.

On its server side a process pi may receive two different types of protocol messages: init()
and witness(). The processing of init(sn,m) is similar to the one of Algorithm 4. Process
pi simply broadcasts the message witness(〈j, sn〉,m) if it is the first time it received from
pj a message init(sn,−) (line 3). Then, when it receives a message witness(〈j, sn〉,m) pi

does the following.
If it received the same message witness(〈j, sn〉,m) from “enough” processes (where
“enough” means here n− 2t), and it has not yet broadcast this message (line 4), it does it
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Algorithm 5 Multi-shot version of Imbs-Raynal’s BR-broadcast algorithm (t < n/5, code for pi)

operation br_broadcast(sn, m) is
(1) broadcast init(sn, m).

when init(sn, m) is received from pj do
(2) discard the message if it is not the first message init(sn,−) received from pj ;
(3) broadcast witness(〈i, sn〉, m).

when witness(〈j, sn〉, m) is received from any process do
(4) if (witness(〈j, sn〉, m) received from at least (n− 2t) different processes)

∧ (witness(〈i, sn〉, m) not yet broadcast)
(5) then broadcast witness(〈j, sn〉, m)
(6) end if;
(7) if (witness(〈j, sn〉, m) received from at least (n− t) different processes)

∧ (〈j, sn, m〉 not yet br_delivered
)

(8) then br_deliver 〈j, sn, m〉
(9) end if.

(line 5).
If it received witness(〈j, sn〉,m) from “more” processes (where “more” means here n− t),
and it has not yet br-delivered the pair (sn,m) from pj (line 7), it br-delivers it ((line 8).

Let us notice that, as t < n/5, we have n − 2t > 3t, which means that, in this case,
(witness(j,m) was broadcast by at least n − 3t ≥ 2t + 1 correct processes. Then, if it
received witness(j,m) from more different processes, where “more” means” (n−t), pi locally
br-delivers m from pj .

As we can easily see, this algorithm requires two communication steps and n2−1 protocol
messages. This better efficiency with respect to Bracha’s algorithm is obtained at the price
of a weaker t-resilience, namely t < n/5.

B Proofs of Algorithms

This appendix contains the complete proofs for the theorems that were not proved in the
paper.

B.1 BFIFO-broadcast on top of MBR-broadcast
BFIFO-Validity follows directly from MBR-Validity. BFIFO-Integrity (resp. BFIFO-
Termination) follows directly from MBR-Integrity (resp. MBR-Termination), the delivery
condition (line 3), and the increase of fifo_deli[j] (line 5). The formalization of these proofs
are left to the reader. The next (easy) theorem concerns the BFIFO-Order property.

I Theorem 24. Algorithm 1 satisfies the BFIFO-Order property.

Proof. Suppose a correct process pi bfifo-delivers first a message m, then a message m′,
both from the same sender pj . These messages were br-delivered to pi with some sequence
numbers, sn and sn′. As pi bfifo-delivers message from any process in the order defined by
their sequence numbers, we have sn < sn′. It follows then from MBR-Termination-2 that all
correct processes br-deliver m and m′ with sequence numbers sn and sn′, respectively. It
follows that any correct process bfifo-delivers m before m′.

If the sender pj of m and m′ is correct, it associated the sequence number sn with m and
the sequence number sn′ > sn with m′. It follows that pj bfifo-broadcast m before m′. J
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The computability and messages/time complexities of this algorithm are the ones of the
underlying Byzantine reliable broadcast algorithm.

B.2 BSCD-broadcast in action: a Byzantine-tolerant snapshot object
We start by several intermediate definitions and results before the final proof of Theorem 23.

I Lemma 25. If a correct process invokes an operation, it returns from its invocation.

Proof. Let pi be a correct process that invokes a read or write operation. By the BSCD-
Termination-1 property of BSCD-broadcast, it eventually receives a message set containing the
message 〈i, sni, x〉 which it sent at line 1 or 3 of Algorithm 3. As all the statements associated
with the bscd-delivery of a message set terminate, it follows that the synchronization
boolean donei is eventually set to true. Consequently, pi returns from the invocation of its
operation. J

I Definition 26. A sequence number array sna is an array sna = [sna[1], . . . , sna[n]] of n
sequence numbers, one per process.

I Remark 27. In Algorithm 3, wsni is a sequence number array that is used to keep track
of pi’s vision of the operations performed so far.

I Definition 28. Let ≤sna be the product order defined on sequence number arrays as:

sna1 ≤sna sna2 ⇐⇒ ∀k ∈ 1..n, sna1[k] ≤ sna2[k].

Let <sna be the relation defined as:

sna1 <sna sna2 ⇐⇒ (sna1 ≤sna sna2) ∧ (sna1 6= sna2).

I Definition 29. If pi is a correct process, let WSN i be the set of the array values taken by
wsni at line 7 during an execution, after the processing of message sets by process pi. Let
WSN =

⋃
pi correct WSN i.

I Lemma 30. The order <sna is total and well founded on WSN .

Proof. Let us first observe that, for any correct process pi, all values in WSN i are totally
ordered: this comes from wsni whose entries can only increase (line 5). Hence, let sna1 be
an array value of WSN i and sna2 be an array value of WSN j with i 6= j and where both pi

and pj are correct processes.
Let us assume, by contradiction, that ¬(sna1 ≤sna sna2) and ¬(sna2 ≤sna sna1).

Thus there is a k such that sna1[k] > sna2[k] and a k′ such that sna1[k′] < sna2[k′].
According to lines 4 and 5, there is a message 〈k, sna1[k],write(v)〉 that has been received
by pi when wsni = sna1 and not by pj when wsnj = sna2. Similarly, there is a message
〈k′, sna2[k′],write(v′)〉 that has been received by pj when wsnj = sna2 and not by pi when
wsni = sna1. This situation directly contradicts the BSCD-Order property, from which we
conclude that either sna1 ≤sna sna2 or sna2 ≤sna sna1. Therefore <sna is a total order.

Since all elements of WSN are vectors of elements of N, they all have a finite number of
strictly smaller elements, therefore <sna is well founded on WSN . J

I Definition 31. Let C be the set of triples 〈i, sni, x〉 bscd-broadcast by correct processes
when invoking an operation (line 1 or 3), where i and sni is the control information provided
by the BSCD-broadcast abstraction and x is the value sent, either sync() or write(v).
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Since each operation invoked by a correct process corresponds to the BSCD-broadcast of a
unique message, we will identify the corresponding message triple with the invoked operation.

For any 〈i, sni, x〉, 〈j, snj, y〉 ∈ C, we write 〈i, sni, x〉 ≺ 〈j, snj, y〉 if pi returned from its
operation that bscd-broadcast 〈i, sni, x〉 before pj started its operation that bscd-broadcast
〈j, snj, y〉.

I Definition 32. Let W be the set of triples 〈i, sni,write(v)〉 bscd-delivered by correct
processes. This set may contain write operations by Byzantine processes.

I Definition 33. Let O = W ∪ C be the set of read (or sync) and write operations invoked
by correct processes and of write operations received by correct processes from Byzantine
processes.

I Remark 34. As a direct consequence of BSCD-broadcast properties, the set O contains at
most one triplet of the form 〈i, sni,−〉 for given i and sni.

I Lemma 35. 〈i, sni,write(v)〉 ≺ 〈i, sni ′,write(v′)〉 =⇒ sni < sni ′.

Proof. ≺ only applies to operations by correct processes, therefore pi is a correct process.
If a correct process terminates write(v) before starting write(v′), then it bscd-broadcast
write(v) before write(v′), therefore sni < sni ′. J

I Definition 36. If sna is a sequence number array, let W (sna) = {〈i, sni,write(v)〉 ∈W :
sni 6 sna[i]} be the set of write operations included in the time barrier defined by sna.

I Definition 37. If τ is a time at which a correct process pi executes line 7, then:
let wsni(τ) be the value of wsni when pi executes line 7 at time τ
let Ui(τ) be the union of all the message sets bscd-delivered by pi until τ

I Lemma 38. Ui(τ) ∩W = W (wsni(τ)). As a consequence:

Ui(τ) ∩W ⊆ Uj(τ ′) ∩W ⇐⇒ wsni(τ) 6sna wsnj(τ ′),
Ui(τ) ∩W ( Uj(τ ′) ∩W ⇐⇒ wsni(τ) <sna wsnj(τ ′).

Proof. Let 〈j, snj,write(v)〉 be a message of W . If 〈j, snj,write(v)〉 ∈ Ui(τ), then when
pi executes line 7 at time τ , it has already bscd-delivered and processed 〈j, snj,write(v)〉,
therefore wsni(τ)[j] ≥ snj, therefore 〈j, snj,write(v)〉 ∈ W (wsni(τ)). Conversely, if
〈j, snj,write(v)〉 ∈W (wsni(τ)), then at time τ pi has already bscd-delivered and processe a
message 〈j, snj ′,write(v′)〉 with snj ′ ≥ snj. Since BSCD-broadcast preserves sequence num-
ber ordering, pi has already bscd-delivered 〈j, snj,write(v)〉, therefore 〈j, snj,write(v)〉 ∈
Ui(τ).

The two equivalency relations follow directly from replacing Ui(τ) ∩W and Uj(τ ′) ∩W
respectively by W (wsni(τ)) and W (wsnj(τ ′)) and applying the definitions. J

I Definition 39. If op = 〈i, sni, x〉 ∈ O then let sna(op), witness(op) and τ(op) be defined
as follows:

if x =sync(), then by definition of O, pi is a correct process. Let:

sna(op) be the value of wsni when pi returns regi[1 . . . n] (line 2),
witness(op) = pi,
τ(op) be the time at which pi executes line 7 for the last time before returning at line
2.
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if x =write(v) then let:
sna(op) be the smallest sequence number array observed by a correct process and that
has registered the write operation op, which exists because <sna is a well-founded total
order on WSN (by Lemma 30):

sna(op) = min{sna ∈WSN : sna[i] > sni},
τ(op) be the smallest time at which a correct process pj executed line 7 with wsnj =
sna(op),
witness(op) = pj be the correct process that executed line 7 with wsnj = sna(op) at
τ(op).

In both cases, the following relations hold:

sna(op) = wsnwitness(op)(τ(op)),
op ∈ Uwitness(op)(τ(op)).

And if pi is a correct process that invoked op at τinvoke(op) and returned at τreturn(op) then:

τinvoke(op) < τ(op) < τreturn(op).

I Lemma 40. Let op and op′ be two distinct operations such that op ≺ op′. We have
sna(op) 6 sna(op′). Moreover, if op′ ∈W then sna(op) < sna(op′).

Proof. op and op′ are invoked by correct processes. We have τ(op) < τreturn(op) <

τinvoke(op′) < τ(op′).
By BSCD-order, we have:

Uwitness(op)(τ(op)) ⊆ Uwitness(op′)(τ(op′)) ∨ Uwitness(op′)(τ(op′)) ⊆ Uwitness(op)(τ(op)).

However op′ was bscd-broadcast after τ(op) therefore witness(op) cannot have bscd-delivered
op′ at time τ(op). Therefore: op′ ∈ Uwitness(op′)(τ(op′))\Uwitness(op)(τ(op)).

Therefore we are in the case: Uwitness(op)(τ(op)) ⊂ Uwitness(op′)(τ(op′)), from which we
deduce:

Uwitness(op)(τ(op)) ∩W ⊆ Uwitness(op′)(τ(op′)) ∩W,
wsnwitness(op)(τ(op)) 6 wsnwitness(op′)(τ(op′)),

sna(op) 6 sna(op′).

Moreover, if op′ ∈ W then the inclusion and inequalities become strict and we have the
desired results. J

I Definition 41. Let op, op′ ∈ O be two distinct operations. We define → as op → op′ if
either one of the following holds:

(A) op ≺ op′,
(B) sna(op) < sna(op′),
(C) (sna(op) = sna(op′)) ∧ (op ∈W ) ∧ (op′ 6∈W ).

Let →∗ be the reflexive transitive closure of →.

I Lemma 42. →∗ is a partial order on C.

Proof. →∗ is reflexive transitive by construction. Let us prove antisymetry:
Suppose we have op 6= op′ such that op →∗ op′ and op′ →∗ op. By definition of →∗ this

means there are op0, op1, op2, . . . , opm for an m > 1 such that op0 = opm = op, opk = op′
for some k ∈ [1,m− 1], and opi → opi+1 for all i < m.

By the definition and Lemma 40, we have that ∀i < m, sna(opi) 6 sna(opi+1).
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Moreover sna(op0) = sna(opm), and 6 on sequence number arrays is antisymmeteric,
thus we have: ∀i < m, sna(opi) = sna(op0), which eliminates case (B) for all i.

We have two cases:
If for any i < m, opi 6∈ W , then we are necessarily in case (A): opi ≺ opi+1. Since
sna(opi) = sna(opi+1), by the contrapositive of Lemma 40, we have opi+1 6∈W .
By applying this same reasonning recursively, we have that ∀i < m, opi ≺ opi+1. As ≺
is included in the total order of time, it is a partial order, therefore antisymmetric. We
have a contradiction.
Otherwise, ∀i < m, opi ∈ W , which eliminates case (C). By the contrapositive of
Lemma 40, since sna(opi) = sna(opi+1), we have ∀i, opi ⊀ opi+1. All three cases for
opi → opi+1 are impossible, we have a contradiction.

In both cases we have shown a contradiction, therefore →∗ is antisymmetric. J

Final proof of Theorem 23

Proof. Let →op be a topological sort of →∗. →op is a total order that extends →∗. →op
includes the process order ≺ therefore it is real-time compliant.

Let us consider a snapshot operation op = 〈i, sni,sync()〉 by a correct process pi, and let
us show that the value read by pi in each register is the last value written to that register
before op according to →op.

Let us consider a register k and let snk = sna(op)[k]. According to line 3, the value
returned by op for register k is a value v such that opk = 〈k, snk,write(v)〉 is the last
write operation on k known by pi when the snapshot operation returns. By definition of
sna(op) we have sna(opk) 6 sna(op), moreover opk is a write and op is a read, therefore
opk →op op. Moreover, for any different write operation op′k = 〈k, snk′,write(v′)〉 on register
k, we have snk 6= snk ′. If snk ′ < snk then op′k →op opk. Otherwise snk ′ > snk, in which
case sna(op′k) > sna(op), therefore op →op op′k. In both cases, v is the last value written on
register k before the snapshot operation op according to →op.

We have thus shown that Algorithm 3 builds a linearizable single-writer multi-reader
Byzantine tolerant snapshot object. J
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