
HAL Id: hal-02376986
https://hal.inria.fr/hal-02376986

Preprint submitted on 22 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

metric-learn: Metric Learning Algorithms in Python
William de Vazelhes, Cj Carey, Yuan Tang, Nathalie Vauquier, Aurélien Bellet

To cite this version:
William de Vazelhes, Cj Carey, Yuan Tang, Nathalie Vauquier, Aurélien Bellet. metric-learn: Metric
Learning Algorithms in Python. 2019. �hal-02376986�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/266891943?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-02376986
https://hal.archives-ouvertes.fr

metric-learn: Metric Learning Algorithms in Python

William de Vazelhes william.de-vazelhes@inria.fr
INRIA, France

CJ Carey perimosocordiae@gmail.com
Google LLC, United States

Yuan Tang terrytangyuan@gmail.com
Ant Financial, United States

Nathalie Vauquier nathalie.vauquier@inria.fr
INRIA, France

Aurélien Bellet aurelien.bellet@inria.fr

INRIA, France

Editor:

Abstract

metric-learn is an open source Python package implementing supervised and weakly-
supervised distance metric learning algorithms. As part of scikit-learn-contrib, it
provides a unified interface compatible with scikit-learn which allows to easily perform
cross-validation, model selection, and pipelining with other machine learning estimators.
metric-learn is thoroughly tested and available on PyPi under the MIT licence.

Keywords: Machine Learning, Python, Metric Learning, Scikit-learn

1. Introduction

Many approaches in machine learning require a measure of distance between data points.
Traditionally, practitioners would choose a standard distance metric (Euclidean, City-Block,
Cosine, etc.) using a priori knowledge of the domain. However, it is often difficult to design
metrics that are well-suited to the particular data and task of interest. Distance metric
learning, or simply metric learning (Bellet et al., 2015), aims at automatically constructing
task-specific distance metrics from data. A key advantage of metric learning is that it
can be applied beyond the standard supervised learning setting (data points associated
with labels), in situations where only weaker forms of supervision are available (e.g., pairs
of points that should be similar/dissimilar). The learned distance metric can be used to
perform retrieval tasks such as finding elements (images, documents) of a database that
are semantically closest to a query element. It can also be plugged into other machine
learning algorithms, for instance to improve the accuracy of nearest neighbors models (for
classification, regression, anomaly detection...) or to bias the clusters found by clustering
algorithms towards the intended semantics. Finally, metric learning can be used to perform
dimensionality reduction. These use-cases highlight the importance of integrating metric
learning with the rest of the machine learning pipeline and tools.

c© William de Vazelhes and CJ Carey and Yuan Tang and Nathalie Vauquier and Aurélien Bellet.

ar
X

iv
:1

90
8.

04
71

0v
1

 [
cs

.L
G

]
 1

3
A

ug
 2

01
9

de Vazelhes, Carey, Tang, Vauquier and Bellet

'Tom'

'Kate'

(a) class supervision

'similar'

'dissimilar'

(b) pair supervision

 D(, ,) < D(,)

 D(, ,) < D(,)

(c) quadruplet supervision

Figure 1: Different types of supervision for metric learning illustrated on face image data
taken from the Labeled Faces in the Wild dataset (Huang et al., 2012).

metric-learn is an open source package for metric learning in Python, which imple-
ments many popular metric-learning algorithms with different levels of supervision through
a unified interface. Its API is compatible with scikit-learn (Pedregosa et al., 2011), a
prominent machine learning library in Python. This allows for streamlined model selection,
evaluation, and pipelining with other estimators.

2. Background on Metric Learning

Metric learning is generally formulated as an optimization problem where one seeks to find
the parameters of a distance function that minimize some objective function over the input
data. All algorithms currently implemented in metric-learn learn so-called Mahalanobis
distances. Given a real-valued parameter matrix L of shape (n components, n features)

where n features is the number of features describing the data, the associated Mahalanobis
distance between two points x and x′ is defined as DL(x, x′) =

√
(Lx− Lx′)>(Lx− Lx′).

This is equivalent to Euclidean distance after linear transformation of the feature space
defined by L. Thus, if L is the identity matrix, standard Euclidean distance is recovered.
Mahalanobis distance metric learning can thus be seen as learning a new embedding space,
with potentially reduced dimension n components. Note that DL can also be written as
DL(x, x′) =

√
(x− x′)>M(x− x′), where we refer to M = L>L as the Mahalanobis matrix.

Metric learning algorithms can be categorized according to the form of data supervision
they require to learn a metric. metric-learn currently implements algorithms that fall
into the following categories. Supervised learners learn from a dataset with one label per
training example, aiming to bring together points from the same class while spreading
points from different classes. For instance, data points could be face images and the class
could be the identity of the person (see Figure 1a). Pair learners require a set of pairs of
points, with each pair labeled to indicate whether the two points are similar or not. These
methods aim to learn a metric that brings pairs of similar points closer together and pushes
pairs of dissimilar points further away from each other. Such supervision is often simpler
to collect than class labels in applications when there are many labels. For instance, a
human annotator can often quickly decide whether two face images correspond to the same
person (Figure 1b) while matching a face to its identity among many possible people may be
difficult. Finally, quadruplet learners consider 4-tuples of points and aim to learn a metric
that brings the two first points of each quadruplet closer than the two last points. This
can be used to learn a metric space in which closer points are more similar with respect
to an attribute of interest, which may be continuous and difficult to annotate accurately

2

metric-learn: Metric Learning Algorithms in Python

(e.g., the age of a person on an image, see Figure 1c). Quadruplet supervision is also used
in problems with a class hierarchy.

3. Overview of the Package

The current release of metric-learn (v.0.5.0) can be installed from the Python Package
Index (PyPI), for Python 2.7 and 3.5 or later. The source code is available on GitHub at
http://github.com/scikit-learn-contrib/metric-learn and is free to use, provided
under the MIT license. metric-learn depends on core libraries from the SciPy ecosys-
tem: numpy, scipy, and scikit-learn. Detailed documentation (including installation
guidelines, the description of the algorithms and the API, as well as examples) is available
at http://contrib.scikit-learn.org/metric-learn. The development is collaborative
and open to all contributors through the usual GitHub workflow of issues and pull requests.
Community interest for the package has been demonstrated by its recent inclusion in the
scikit-learn-contrib organization which hosts high-quality scikit-learn-compatible
projects,1 and by its more than 740 stars and 170 forks on GitHub at the time of writing.
The quality of the code is ensured by a thorough test coverage (96% as of July 2019). Every
new contribution is automatically checked by a continuous integration platform to enforce
sufficient test coverage as well as syntax formatting with flake8.

Currently, metric-learn implements 9 popular metric learning algorithms. Super-
vised learners include Neighborhood Components Analysis (NCA, Goldberger et al., 2004),
Large Margin Nearest Neighbors (LMNN, Weinberger and Saul, 2009), Relative Compo-
nents Analysis (RCA, Shental et al., 2002),2 Local Fisher Discriminant Analysis (LFDA,
Sugiyama, 2007) and Metric Learning for Kernel Regression (MLKR, Weinberger and
Tesauro, 2007). The latter is designed for regression problems with continuous labels. Pair
learners include Mahalanobis Metric for Clustering (MMC, Xing et al., 2002), Information
Theoretic Metric Learning (ITML, Davis et al., 2007) and Sparse High-Dimensional Metric
Learning (SDML, Qi et al., 2009). The package implements one quadruplet learner: Metric
Learning from Relative Comparisons by Minimizing Squared Residual (LSML, Liu et al.,
2012). Detailed descriptions of these algorithms can be found in the package documentation.

4. Software Architecture and API

metric-learn provides a unified interface to all metric learning algorithms. It is designed
to be fully compatible with the functionality of scikit-learn. All metric learners in-
herit from an abstract BaseMetricLearner class, which itself inherits from scikit-learn’s
BaseEstimator. All classes inheriting from BaseMetricLearner should implement two
methods: get metric (returning a function that computes the distance, which can be
plugged into scikit-learn estimators like KMeansClustering) and score pairs (return-
ing the distances between a set of pairs of points passed as a 3D array). Mahalanobis
distance learning algorithms also inherit from a MahalanobisMixin interface, which has an
attribute components corresponding to the transformation matrix L of the Mahalanobis
distance. MahalanobisMixin implements get metric and score pairs accordingly as well

1. https://github.com/scikit-learn-contrib/scikit-learn-contrib
2. RCA takes as input slightly weaker supervision in the form of chunklets (groups of points of same class).

3

http://github.com/scikit-learn-contrib/metric-learn
http://contrib.scikit-learn.org/metric-learn
https://github.com/scikit-learn-contrib/scikit-learn-contrib

de Vazelhes, Carey, Tang, Vauquier and Bellet

as a few additional methods. In particular, transform allows to transform data using
components , and get mahalanobis matrix returns the Mahalanobis matrix M = LTL.

Supervised metric learners inherit from scikit-learn’s base class TransformerMixin,
the same base class used by sklearn.LinearDiscriminantAnalysis and others. As such,
they are compatible for pipelining with other estimators via sklearn.pipeline.Pipeline.

Weakly supervised algorithms (pair and quadruplet learners) fit and predict on a set
of tuples passed as a 3-dimensional array. Tuples can be pairs or quadruplets depending
on the algorithm. Pair learners take as input an array-like pairs of shape (n pairs, 2,

n features), as well as an array-like y pairs of shape (n pairs,) giving labels (similar
or dissimilar) for each pair. In order to predict the labels of new pairs, one needs to set
a threshold on the distance value. This threshold can be set manually or automatically
calibrated (at fit time or afterwards on a validation set) to optimize a given score such as
accuracy or F1-score using the method calibrate threshold. Quadruplet learners work
on array-like of shape (n quadruplets, 4, n features), where for each quadruplet the
two first elements are the ones we want to be closer than the two last ones. They can
naturally predict whether a new quadruplet is in the right order by comparing the two
pairwise distances. These design choices enable use of scikit-learn’s scoring functions out
of the box, as well as the standard routines for model selection, including GridSearchCV.
To illustrate, the following code snippet computes cross validation scores for ITML (with
default parameters) on pairs from Labeled Faces in the Wild (Huang et al., 2012).

>>> from sklearn.datasets import fetch_lfw_pairs

>>> from sklearn.model_selection import cross_validate, train_test_split

>>> from sklearn.decomposition import PCA

>>> from metric_learn import ITML

>>> pairs, y_pairs = [fetch_lfw_pairs()[key] for key in ['pairs', 'target']]

>>> pairs = PCA(n_components=25).fit_transform(pairs.reshape(4400, -1)).reshape(-1, 2, 25)

>>> pairs, _, y_pairs, _ = train_test_split(pairs, 2*y_pairs-1)

>>> cross_validate(ITML(), pairs, y_pairs, scoring='roc_auc', return_train_score=True)

5. Future Work

metric-learn is under active development. We list here some promising directions to fur-
ther improve the package. To scale to large datasets, we would like to implement stochastic
solvers (SGD and its variants), forming batches of tuples on the fly to avoid loading all data
in memory at once. We also plan to incorporate new algorithms that provide added value to
the package, in particular some that learn from triplet supervision (Schultz and Joachims,
2003), can deal with multi-label (Liu and Tsang, 2015) and high-dimensional problems (Liu
and Bellet, 2019), or learn other forms of metrics (e.g., nonlinear ones, bilinear similarities,
and multiple local metrics, see Bellet et al., 2015).

Acknowledgments

We are thankful to Inria for funding 2 years of development. We also thank scikit-learn

developers from the Inria Parietal team (in particular Gaël Varoquaux, Alexandre Gramfort
and Olivier Grisel) for fruitful discussions on the design of the API and funding to attend
SciPy 2019, as well as scikit-learn-contrib reviewers for their valuable feedback.

4

metric-learn: Metric Learning Algorithms in Python

References

Aurélien Bellet, Amaury Habrard, and Marc Sebban. Metric Learning. Morgan & Claypool
Publishers, 2015.

Jason V. Davis, Brian Kulis, Prateek Jain, Suvrit Sra, and Inderjit S. Dhillon. Information-
Theoretic Metric Learning. In ICML, 2007.

Jacob Goldberger, Sam Roweis, Geoff Hinton, and Ruslan Salakhutdinov. Neighbourhood
Components Analysis. In NIPS, 2004.

Gary B. Huang, Marwan Mattar, Honglak Lee, and Erik Learned-Miller. Learning to Align
from Scratch. In NIPS, 2012.

E. Y. Liu, Z. Guo, X. Zhang, V. Jojic, and W. Wang. Metric Learning from Relative
Comparisons by Minimizing Squared Residual. In ICDM, 2012.

Kuan Liu and Aurélien Bellet. Escaping the Curse of Dimensionality in Similarity Learning:
Efficient Frank-Wolfe Algorithm and Generalization Bounds. Neurocomputing, 333:185–
199, 2019.

Weiwei Liu and Ivor W. Tsang. Large Margin Metric Learning for Multi-Label Prediction.
In AAAI, 2015.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine Learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

Guo-Jun Qi, Jinhui Tang, Zheng-Jun Zha, Tat-Seng Chua, and Hong-Jiang Zhang.
An Efficient Sparse Metric Learning in High-dimensional Space via L1-penalized Log-
determinant Regularization. In ICML, 2009.

Matthew Schultz and Thorsten Joachims. Learning a Distance Metric from Relative Com-
parisons. In NIPS, 2003.

Noam Shental, Tomer Hertz, Daphna Weinshall, and Misha Pavel. Adjustment Learning
and Relevant Component Analysis. In ECCV, 2002.

Masashi Sugiyama. Dimensionality Reduction of Multimodal Labeled Data by Local Fisher
Discriminant Analysis. Journal of Machine Learning Research, 8:1027–1061, 2007.

Kilian Q. Weinberger and Lawrence K. Saul. Distance Metric Learning for Large Margin
Nearest Neighbor Classification. Journal of Machine Learning Research, 10:207–244,
2009.

Kilian Q. Weinberger and Gerald Tesauro. Metric Learning for Kernel Regression. In
AISTATS, 2007.

Eric P. Xing, Andrew Y. Ng, Michael I. Jordan, and Stuart J. Russell. Distance Metric
Learning with Application to Clustering with Side-Information. In NIPS, 2002.

5

	1 Introduction
	2 Background on Metric Learning
	3 Overview of the Package
	4 Software Architecture and API
	5 Future Work

