
HAL Id: hal-02383109
https://hal.archives-ouvertes.fr/hal-02383109

Submitted on 27 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Fire Triangle
Pierre-Marie Pédrot, Nicolas Tabareau

To cite this version:
Pierre-Marie Pédrot, Nicolas Tabareau. The Fire Triangle: How to Mix Substitution, Dependent
Elimination, and Effects. Proceedings of the ACM on Programming Languages, ACM, 2020, pp.1-28.
�10.1145/3371126�. �hal-02383109�

https://hal.archives-ouvertes.fr/hal-02383109
https://hal.archives-ouvertes.fr

58

The Fire Triangle
How to Mix Substitution, Dependent Elimination, and Effects

PIERRE-MARIE PÉDROT, Inria, France
NICOLAS TABAREAU, Inria, France

There is a critical tension between substitution, dependent elimination and effects in type theory. In this paper,

we crystallize this tension in the form of a no-go theorem that constitutes the fire triangle of type theory. To

release this tension, we propose 𝜕CBPV, an extension of call-by-push-value (CBPV) —a general calculus of
effects—to dependent types. Then, by extending to 𝜕CBPV the well-known decompositions of call-by-name

and call-by-value into CBPV, we show why, in presence of effects, dependent elimination must be restricted

in call-by-name, and substitution must be restricted in call-by-value. To justify 𝜕CBPV and show that it is

general enough to interpret many kinds of effects, we define various effectful syntactic translations from

𝜕CBPV to Martin-Löf type theory: the reader, weaning and forcing translations.

CCS Concepts: • Theory of computation→ Type theory.

Additional Key Words and Phrases: Type Theory, Effects

ACM Reference Format:
Pierre-Marie Pédrot and Nicolas Tabareau. 2020. The Fire Triangle: How to Mix Substitution, Dependent

Elimination, and Effects. Proc. ACM Program. Lang. 4, POPL, Article 58 (January 2020), 28 pages. https:

//doi.org/10.1145/3371126

1 INTRODUCTION

obs. effects

su
bs

tit
ut

io
n dep. elim

.

Fig. 1. The substitution-dependent
elimination-observable effects triangle

The addition of effects to a logical system via syntactic trans-

lations is not new and can be traced back to double-negation

translations [Glivenko 1929], although the modern stand-

point can undoubtedly be attributed to Moggi in his seminal

paper [Moggi 1991].

Since the inception of dependent type theory, several peo-

ple tried to apply the techniques coming from simply-typed

settings to enrich it with new reasoning principles, typically

classical logic. The early attempts were mixed, if not outright

failures. Most notably, Barthe and Uustalu showed that writ-

ing a typed CPS translation preserving dependent elimination

was out of reach [Barthe and Uustalu 2002], and similarly Her-

belin proved that CIC was inconsistent with computational

classical logic [Herbelin 2005].

Retrospectively, this should not have been that surprising.

This incompatibility is the reflection of a very ancient issue:

mixing of classical logic with the axiom of choice, whose intuitionistic version is a consequence of

Authors’ addresses: Pierre-Marie Pédrot, Inria, Gallinette Project-Team, Nantes, France; Nicolas Tabareau, Inria, Gallinette

Project-Team, Nantes, France.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2020 Copyright held by the owner/author(s).

2475-1421/2020/1-ART58

https://doi.org/10.1145/3371126

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 58. Publication date: January 2020.

https://doi.org/10.1145/3371126
https://doi.org/10.1145/3371126
https://doi.org/10.1145/3371126

58:2 Pierre-Marie Pédrot and Nicolas Tabareau

dependent elimination, is a well-known source of foundational problems [Martin-Löf 2006]. While

in the literature much emphasis has been put on the particular case of classical logic, we argue in

this paper that this is an instance of a broader phenomenon, namely that observable side-effects

are at odds with dependent type theory, in a pick two out of three conundrum. This mismatch is

evocatively dubbed the Fire Triangle (Fig. 1) and is discussed in detail in Section 2.

To get out of this pit, we propose in this article a generic solution based on well-known tools

coming from the study of the semantics of programming languages, allowing to safely add effects

to type theory. It consists in a generalization of Levy’s CBPV [Levy 2001] to the dependently-

typed setting, coined 𝜕CBPV, whose design has been fueled by the recent work of the authors’ on

effectful type theories. In particular, we provide syntactic models of 𝜕CBPV to justify it, as well as

decompositions into it arising from the usual embeddings into CBPV. This new theory explains

for instance the recent attempt by Bowman et al. [Bowman et al. 2018] at working around the

negative result of Barthe and Uustalu regarding a type-preserving CPS of CIC using a parametricity

equation which corresponds exactly to the general notion of thunkability in 𝜕CBPV.

1.1 Plan of the Paper
In Section 2, we dive into the fundamental impossibility theorem that explains why people had a

hard time extending type theory with effects. This is the major insight of the paper and will be

used to give intuitions about the workarounds.

Section 3 describes 𝜕CBPV, a system that allows to safely mix effects and dependent type theory.

In Sections 5, 6 and 7, we give syntactic decompositions from several flavours of type theory into

𝜕CBPV. Dually, Sections 8, 9 and 10 provide syntactic models of 𝜕CBPV based on previous work.

All of these translations are summarized bellow.

CIC
[·]\

((

CIC𝑣
[·]v

// 𝜕CBPV
Weaning

//

Forcing

((

Reader

CIC

BTT
[·]n

66

ECIC

We then show how 𝜕CBPV can be instantiated with various effects, giving rise for instance to a

generic catch operator, an elegant setting for normalization by evaluation, or a generalization of

the open modality. Section 11 provides further comparisons with similar attempts.

2 SUBSTITUTION, DEPENDENT ELIMINATION AND OBSERVABLE EFFECTS
2.1 The Fire Triangle: A General No-Go Theorem
Let us now make precise this tension between substitution, dependent elimination and observable

effects. To formulate and prove a general no-go theorem, we first need to make formal what we

mean by each of the three notions under consideration. To remain as abstract as possible with

respect to the underlying type theory, we will use two different typing judgments:

Γ ⊢ 𝑡 : 𝐴

saying that 𝑡 has type 𝐴 in context Γ and

Γ ⊢ ★ : 𝐴

saying that 𝐴 is inhabited in context Γ.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 58. Publication date: January 2020.

The Fire Triangle 58:3

In this setting, we can readily express what it means for a type theory to feature substitution:

an inhabited type containing a free variable 𝑥 : 𝐴 is still inhabited when 𝑥 is substituted with any

term 𝑢 : 𝐴.

Definition 1 (Substitution). A type theory enjoys substitution if the following rule is admissible.

Γ, 𝑥 : 𝐴 ⊢ ★ : 𝐵 Γ ⊢ 𝑢 : 𝐴

Γ ⊢ ★ : 𝐵{𝑥 := 𝑢}
To express what it means to feature dependent elimination and observable effects, we need to

consider a basic type with at least two elements. We thus now assume that the theory features a

type B with two inhabitants ⊢ true : B and ⊢ false : B. In this setting, dependent elimination on

booleans can simply be stated as the fact that if a type with one boolean free variable 𝑥 is inhabited

when 𝑥 is substituted by true and by false, then it is inhabited in general.

Definition 2 (Dependent elimination). A type theory enjoys dependent elimination on booleans if

the following rule is admissible (where □ denotes a universe of types).

Γ, 𝑥 : B ⊢ 𝐴 : □ Γ ⊢ ★ : 𝐴{𝑥 := true} Γ ⊢ ★ : 𝐴{𝑥 := false}
Γ, 𝑥 : B ⊢ ★ : 𝐴

Dependent elimination can be generalized to all inductive types, and is the type theory equivalent

to induction principles.

Finally, we need to express what it means for a type theory (or programming language) to be

observably effectful. Intuitively, a type theory is pure when every term observationally behaves as

a value. So a simple way to formalize what it means to be observably effectful is to say that there

exists a boolean term which is not observationally equivalent to true nor false.

Definition 3 (Observable Effects). A type theory is observably effectful if there exists a closed term
⊢ 𝑡 : B that is not observationally equivalent to a value, that is, there exists a context 𝐶 such that

𝐶 [true] ≡ true and 𝐶 [false] ≡ true, but 𝐶 [𝑡] ≡ false (where ≡ denotes definitional equality).

With those three notions in hand, we can state and prove a generalization of Herbelin’s paradox,

which is actually pointing out its essence, and provide a no-go theorem for a type theory featuring

at the same time substitution, dependent elimination and observable effects. In the following, we

assume that ⊥ is the empty type and ⊤ the type with exactly one element.

Theorem 1 (Fire triangle). An observably effectful type theory that enjoys substitution and
dependent elimination is inconsistent.

Proof. We define (Leibniz) equality by

𝑡 = 𝑢 := Π𝑃 : 𝐴 → □. 𝑃 𝑡 ↔ 𝑃 𝑢.

Note that we could equivalently assume that the type theory features identity types. We take 𝑡

and 𝐶 as provided by Definition 3. By dependent elimination, it holds that 𝑥 : B ⊢ ★ : 𝐶 [𝑥] = true.
By substitution, ⊢ ★ : 𝐶 [𝑡] = true. By conversion and because 𝐶 [𝑡] ≡ false, this implies

⊢ ★ : false = true.
But, by dependent elimination, we also have ⊢ ★ : false = true → ⊥. Indeed, instanting

false = true with 𝑃 defined by 𝑃 false ≡ ⊥ and 𝑃 true ≡ ⊤, we get an inhabitant of ⊥ from an

inhabitant of ⊤. □

Example 1. An archetypical example of an observably effectful term can be obtained with

callcc [Griffin 1990]. It is indeed possible to use it to write a term decide : □ → B that de-

cides whether a type is inhabited. Obviously, decide 𝐴 cannot enjoy canonicity in general. Such

booleans are called backtracking or non-standard, and are the root of Herbelin’s paradox.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 58. Publication date: January 2020.

58:4 Pierre-Marie Pédrot and Nicolas Tabareau

Non Example 1. The definition of observable effects does not capture all effects in the literature.

For instance, it does not apply to a printing operation, the presence of exception without handlers,

or non-termination. In those cases, it is not possible to reason on effects in the type theory.

Before looking at a way to tame this fire triangle, let us look at the consequence of this theorem

when the evaluation strategy is fixed—either call-by-value or call-by-name.

2.2 Substitution in Call-By-Value
The by-value 𝛽-reduction is the congruence closure of the generator

(_𝑥 : 𝐴. 𝑡) 𝑣 →v 𝑡{𝑥 := 𝑣}
where 𝑣 is a syntactic value. As every function in call-by-value can expect its argument to be a

value, this explains why dependent elimination as defined in Definition 2 is always valid: every

predicate on B holds as soon as it holds on true and false, because they are the only non-variable

values of that type.

Constrastingly, substitution cannot hold in general, because it would imply that if a type with

an open (boolean) variable is inhabited, it remains inhabited when the variable is substituted by

any term. This is not correct if there are observably effectful terms, making the substitution by an

arbitrary term invalid. This explains why, in a call-by-value setting, one usually consider a value
restriction [Lepigre 2016; Wright 1995] when a substitution is involved, e.g.,

Γ ⊢ 𝑣 : 𝐴 Γ, 𝑥 : 𝐴 ⊢ 𝐵 : □𝑖 Γ, 𝑥 : 𝐴 ⊢ 𝑢 : 𝐵

Γ ⊢ let 𝑥 : 𝐴 := 𝑣 in 𝑢 : 𝐵{𝑥 := 𝑣}
where 𝑣 is required to be a syntactic value.

2.3 Dependent Elimination in Call-By-Name
The by-name 𝛽-reduction is the congruence closure of the generator

(_𝑥 : 𝐴. 𝑡) 𝑢 →n 𝑡{𝑥 := 𝑢}
where 𝑢 is any term of the type theory. This means that in a call-by-name setting, substitution

always holds by construction. However, as already noticed in [Jaber et al. 2016; Pédrot and Tabareau

2017], dependent elimination is now lost in general. Clearly, if there are observably effectful terms,

knowing the behaviour of a predicate on boolean values is not enough to know the behaviour of

the predicate in general. Intuitively, this is because doing a case analysis on a boolean term triggers

the evaluation of the term into a value, thus potentially performing some effects. If this evaluation

is not triggered also in the type, there is a kind of desynchronization between effects performed in

the term and effects performed in the type.

To recover consistency of the theory, one may consider Baclofen Type Theory [Pédrot and

Tabareau 2017] (BTT) which is a way to enforce this synchronization. More specifically, on boolean

terms, one needs to provide first non-dependent case analysis

recB : Π𝑃 : □. 𝑃 → 𝑃 → B→ 𝑃 .

Using case analysis, it is possible to define a boolean storage operator 𝜎B which takes a boolean

predicate and returns another similar predicate that starts by doing a case analysis on its argument.

𝜎B : B→ (B→ □) → □

:= recB ((B→ □) → □) (_𝑘. 𝑘 true) (_𝑘. 𝑘 false)
This notion of storage operator has been introduced by Krivine in classical realisability [Krivine

1994] to solve fundamentally the same problem, that is, implementing induction over classical

integers. Using this storage operator, it is now possible to define a dependent case analysis which

reflects the triggered evaluation in the term by the use of the storage operator in the type.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 58. Publication date: January 2020.

The Fire Triangle 58:5

value types 𝐴, 𝐵 ::= U 𝑋 | B
computation types 𝑋,𝑌 ::= 𝐴 → 𝑋 | F 𝐴

Fig. 2. Call-by-push-value (types only)

drecB: Π𝑃 : B→ □. 𝑃 true → 𝑃 false → Π𝑏 : B. 𝜎B 𝑏 𝑃

2.4 Examples
In the literature, there are to our knowledge four ways of dealing with this fire triangle:

(1) No effects + substitution + dependent elimination: this is the good old plain CIC.
(2) Effects + dependent elimination + restricted substitution: albeit not strictly speaking depen-

dent type theory, this is the path followed by PML [Lepigre 2016].

(3) Effects + substitution + restricted dependent elimination: this is what BTT [Pédrot and

Tabareau 2017] is all about.

(4) Effects + substitution + dependent elimination, but inconsistent: the exceptional type the-

ory [Pédrot and Tabareau 2018] is an instance of this. One can argue that this is a paradigm

shift from a dependent type theory to a dependently-typed programming language, where
consistency is not relevant.

Let us now turn to a subsuming approach, by lifting a well-established calculus of effects to a

dependent setting.

2.5 Explicit Handling of Effects: Call-By-Push-Value
Call-by-push-value [Levy 2001] (CBPV) was introduced by Levy to provide a unified setting inwhich
to talk about call-by-name and call-by-value evaluations. It clarifies the situation by describing both

call-by-value and call-by-name as two distinct embeddings, leading to a more atomic presentation.

CBPV’s types (and terms) are divided into two classes: pure values and effectful computations (see

Figure 2). It is possible to go from one to the other using the two type constructorsU and F that

mimic the two parts of the adjunction decomposing a computational monad. In this presentation,

the function space is a computation type ranging over values, and data types such as booleans are

value types. Call-by-name and call-by-value strategies can then be decomposed into CBPV.
The by-value translation [−]v is defined on arrows as

[𝐴 → 𝐵]v := U ([𝐴]v → F [𝐵]v)
and the correctness lemma states that when Γ ⊢ 𝑡 : 𝐴 then

[Γ]v ⊢𝑐 [𝑡]v : F [𝐴]v.
Here, the need for value restriction in substitution appears clearly because a variable of type 𝐴 is

translated as a variable of the value type [𝐴]v, whereas a term of type 𝐴 is translated as a term

of the computation type F [𝐴]v. Therefore, not every term can substitute a variable, only those

that corresponds to a value. Note that the value restriction is a syntactic notion, but in CBPV, it is
possible to express a semantic notion of being a value, called thunkability.
The by-name translation [−]n is defined as

[𝐴 → 𝐵]n := U [𝐴]n → [𝐵]n.
and the correctness lemma states that when Γ ⊢ 𝑡 : 𝐴 then

U [Γ]n ⊢𝑐 [𝑡]n : [𝐴]n.
Here, substitution is always valid as a variable of type 𝐴 is translated as a variable of the value

type U [𝐴]n, whereas a term of type 𝐴 is translated as a term of the computation type [𝐴]n. Thus

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 58. Publication date: January 2020.

58:6 Pierre-Marie Pédrot and Nicolas Tabareau

any (thunk of a) term can substitute a variable. However, the translation of B is given by F B and

elimination is encoded by first evaluating the term into a boolean value and then applying the

elimination principle. This is the reason why in call-by-name, this implicit evaluation performed

by dependent elimination has to be reflected in the type, giving rise to BTT. Note that dually

to thunkability, there is a more semantic version of storage operators, which caracterizes which

predicates morally starts by evaluating their argument. The semantic property is called linearity,

a notion that has been first described by Munch-Maccagnoni [Munch-Maccagnoni 2014] and

rephrased recently in the context of CBPV by Levy [Levy 2017] (see Section 3.5 for a definition of

thunkability and linearity).

We advocate in this paper that providing a good definition of a dependent version of CBPV,
dubbed 𝜕CBPV, is the key to understanding the interaction between substitution, dependent

elimination and effects.

2.6 Taming the Fire Triangle: Dependent Call-By-Push-Value
Several attempts have already been performed to define a dependent version of CBPV. But to do

this, one need to solve one main issue:

“How to define a dependent version of the let binder?”

Indeed, the introduction rule for let in CBPV is given by the following rule:

Γ ⊢𝑐 𝑡 : F 𝐴 Γ, 𝑥 : 𝐴 ⊢𝑐 𝑢 : 𝑋

Γ ⊢𝑐 let 𝑥 : 𝐴 := 𝑡 in 𝑢 : 𝑋

But if we assume that𝑋 depends on 𝑥 : 𝐴, it is not possible to directly substitute 𝑥 for 𝑡 because 𝑡 has

type F 𝐴. In [Vákár 2015] and [Ahman et al. 2016], this problem has been solved by considering a

value restriction, similarly to what is done to solve a similar issue in call-by-value. But we advocate

here for a more general solution, which corresponds more closely to the solution introduced in

BTT: using a let binder also in the type to synchronize the evaluation of 𝑡 in the term and in the

type.

However, we cannot simply introduce an introduction rule for let where let appears on both

side. Indeed, doing this, we would not have access to the non-dependent let anymore as in general

let 𝑥 : 𝐴 := 𝑡 in 𝑢 is not convertible to 𝑢 even if 𝑢 does not depend on 𝑥 . Intuitively, this is because

the first term performs the effects present in 𝑡 while the second one does not.

The other central question that needs to be solved to turn CBPV into a proper dependent type

theory is:

“What is the notion of universes in presence of effects?”

Indeed, one may wonder whether a universe of types deals with value types or computation types

and whether it is itself a value type or a computation type? In [Ahman 2018], Ahman introduces

only a universe of value types, which is itself a value type. But then, to prevent this universe from

being trivial, he has to define a value-typed version of dependent product in the theory. Not only

does this departs from the standard definition of CBPV, but we also claim that this turns out to be

a faux pas preventing to merely describe pervasive and crucial structure arising from our models.

In this paper, we advocate that the notion of universes in 𝜕CBPV should reflect the structure of

syntax, with a universe hierarchy □𝑣
𝑖 of value types and an orthogonal universe hierarchy □𝑐

𝑖 of

computation types. In this setting, F can be seen as a function from □𝑣
𝑖 to □

𝑐
𝑖 and U as a function

in the backward direction—making □𝑣
𝑖 and □𝑐

𝑖 interact. But as universes are themselves types, one

may wonder whether F □𝑣
𝑖 is convertible to □𝑐

𝑖 , and dually whether U □𝑐
𝐼
is convertible to □𝑣

𝑖 .

This suggests that finding the right presentation and equational theory for 𝜕CBPV is not an

easy matter. In this paper, we depart from the usual categorical model approach and choose to use

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 58. Publication date: January 2020.

The Fire Triangle 58:7

a more syntactic guideline, looking at effectful program transformations already existing in the

literature. This tells us in particular that F □𝑣
𝑖 should not be considered convertible to □𝑐

𝑖 (and

similarly for U □𝑐
𝐼
and □𝑣

𝑖) as it is true only for some slightly degenerated models.

2.7 A Syntactic Guideline: Weaning and Forcing
We follow the general approach of syntactic models advocated for in [Boulier et al. 2017]. Recall

that the base idea is to show the consistency of a source theory S using a translation into a target

theory T , for which we already know consistency. Technically, this amounts to any term𝑀 in S
being translated by induction over its syntax into a term [𝑀] in T , through a typing soundness
theorem stating that El [Γ] ⊢ [𝑀] : El [𝐴] whenever Γ ⊢ 𝑀 : 𝐴. Here, El is an internal operation

which coerces a translated type into a type of the target type theory.

In this paper, the critical point is not consistency, which can be simply proven by translating

𝜕CBPV directly to Martin-Löf type theory (MLTT) or the Calculus of Inductive Constructions

(CIC)1, interpreting every effectful operator trivially, thus giving a pure model of 𝜕CBPV. Rather,
we focus more on an auxiliary lemma used to prove typing soundness: a form of computational
soundness which says that [𝑀] ≡ [𝑁] whenever𝑀 ≡ 𝑁 . More precisely, syntactical models provide

a meaning interpretation of effectful operations, which makes it possible to distinguish the right

equational theory for 𝜕CBPV shared by all such models.

There are two main effectful program transformation that have been considered into CIC: (i)
the forcing translation with its call-by-value [Jaber et al. 2012] and call-by-name [Jaber et al. 2016]

variants, (ii) the weaning translation [Pédrot and Tabareau 2017] which corresponds to a call-by-

name variant of Moggi’s monadic translation. Those two translations provide two extreme points

in the possible syntactical models of CBPV, where either F orU is degenerated. A significant part

of this paper is to show that those translations can be extended to translations from 𝜕CBPV to CIC.

3 DEPENDENT CALL-BY-PUSH-VALUE
In this section, we present an extension of Levy’s CBPV [Levy 2001] to dependent types. We coined

the name 𝜕CBPV to avoid confusion with Vákár’s dCBPV.

3.1 Syntax of 𝜕CBPV
As usual, 𝜕CBPV’s types and terms are divided into two classes: pure values 𝑣 and effectful com-

putations 𝑡 , a dichotomy which is reflected in the typing rules. Note that contrarily to the simply

typed setting, we can not distinguish terms and types anymore. To ease the reading, we do not use

the usual underline notion for computations, and rather use the convention that capital letters of

the beginning of the latin alphabet (𝐴, 𝐵, . . .) are for value types and capital letters of the end of the

latin alphabet (𝑋,𝑌, . . .) are for computation types. The syntax and typing rules are given in Figure

3. The terms are given by their typing judgement, written Γ ⊢𝑣 𝑣 : 𝐴 for values and Γ ⊢𝑐 𝑡 : 𝑋

for computations, where Γ is a context of values, that is a finite sequence 𝑥0 : 𝐴0; . . . ;𝑥𝑛 : 𝐴𝑛 of

identifiers associated to a value type. Note that the annotation specifying the kind of sequent at

hand is only written out for readability, as the the separation between values and computations is

enforced by typing.

3.2 Meaning of Types
As we have said, there are two classes of types, value types and computation types. Those two

classes are reflected respectively by two parallel universe hierarchies □𝑣
𝑖 and □𝑐

𝑖 . Note that the

1
We do not make a strong distinction betweenMLTT and CIC, as we consider CIC without the universe of propositions,

which is very similar to MLTT. In the sequel, we refer to CIC for this common setting.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 58. Publication date: January 2020.

58:8 Pierre-Marie Pédrot and Nicolas Tabareau

values 𝐴, 𝐵, 𝑣,𝑤 ::= □𝑣
𝑖
| U 𝑋 | Σ𝑥 : 𝐴. 𝐵 | 𝐴 + 𝐵 | eq 𝐴 𝑣 𝑤 | 𝑥 | thunk 𝑡

| (𝑣,𝑤) | inl 𝑣 | inr𝑤 | refl
computations 𝑋,𝑌, 𝑡,𝑢 ::= □𝑐

𝑖
| F 𝐴 | Π𝑥 : 𝐴.𝑋 | force 𝑡 | _𝑥 : 𝐴. 𝑡 | 𝑡 𝑣 | let 𝑥 : 𝐴 := 𝑡 in 𝑢 | return 𝑣

| recΣ (𝑣, 𝑋, 𝑡) | rec+ (𝑣, 𝑋, 𝑡1, 𝑡2) | receq (𝑣, 𝑋, 𝑡)
environments Γ ::= · | Γ, 𝑥 : 𝐴

⊢ ·
Γ ⊢𝑣 𝐴 : □𝑣

𝑖

⊢ Γ, 𝑥 : 𝐴

Γ ⊢𝑣 𝐴 : □𝑣
𝑖

Γ, 𝑥 : 𝐴 ⊢𝑣 𝑥 : 𝐴

Γ ⊢𝑣 𝐵 : □𝑣
𝑖

Γ ⊢𝑣 𝑥 : 𝐴

Γ, 𝑦 : 𝐵 ⊢𝑣 𝑥 : 𝐴

Γ ⊢𝑐 𝑡 : 𝑌 𝑋 ≡ 𝑌 Γ ⊢𝑐 𝑋 : □𝑐
𝑖

Γ ⊢𝑐 𝑡 : 𝑋
Γ ⊢𝑣 𝑣 : 𝐵 𝐴 ≡ 𝐵 Γ ⊢𝑣 𝐴 : □𝑣

𝑖

Γ ⊢𝑣 𝑣 : 𝐴

⊢ Γ

Γ ⊢𝑣 □𝑣
𝑖
: □𝑣

𝑖+1

⊢ Γ

Γ ⊢𝑐 □𝑐
𝑖
: □𝑐

𝑖+1

Γ ⊢𝑣 𝐴 : □𝑣
𝑖

Γ ⊢𝑐 F 𝐴 : □𝑐
𝑖

Γ ⊢𝑐 𝑋 : □𝑐
𝑖

Γ ⊢𝑣 U 𝑋 : □𝑣
𝑖

Γ ⊢𝑣 𝐴 : □𝑣
𝑖

Γ, 𝑥 : 𝐴 ⊢𝑐 𝑋 : □𝑐
𝑗

Γ ⊢𝑐 Π𝑥 : 𝐴.𝑋 : □𝑐
max(𝑖, 𝑗)

Γ ⊢𝑣 𝐴 : □𝑣
𝑖

Γ, 𝑥 : 𝐴 ⊢𝑣 𝐵 : □𝑣
𝑗

Γ ⊢𝑣 Σ𝑥 : 𝐴. 𝐵 : □𝑣
max(𝑖, 𝑗)

Γ ⊢𝑣 𝐴 : □𝑣
𝑖

Γ ⊢𝑣 𝑣 : 𝐴 Γ ⊢𝑣 𝑤 : 𝐴

Γ ⊢𝑣 eq 𝐴 𝑣 𝑤 : □𝑣
𝑖

Γ ⊢𝑣 𝐴 : □𝑣
𝑖

Γ ⊢𝑣 𝐵 : □𝑣
𝑗

Γ ⊢𝑣 𝐴 + 𝐵 : □𝑣
max(𝑖, 𝑗)

Γ ⊢𝑐 𝑡 : 𝑋
Γ ⊢𝑣 thunk 𝑡 : U 𝑋

Γ ⊢𝑣 𝑣 : U 𝑋

Γ ⊢𝑐 force 𝑣 : 𝑋

Γ ⊢𝑣 𝑣 : 𝐴

Γ ⊢𝑐 return 𝑣 : F 𝐴

Γ ⊢𝑐 𝑡 : F 𝐴 Γ ⊢𝑐 𝑋 : □𝑐
𝑖

Γ, 𝑥 : 𝐴 ⊢𝑐 𝑢 : 𝑋

Γ ⊢𝑐 let 𝑥 : 𝐴 := 𝑡 in 𝑢 : 𝑋

Γ, 𝑥 : 𝐴 ⊢𝑐 𝑋 : □𝑐
𝑖

Γ, 𝑥 : 𝐴 ⊢𝑐 𝑡 : 𝑋
Γ ⊢𝑐 _𝑥 : 𝐴. 𝑡 : Π𝑥 : 𝐴.𝑋

Γ ⊢𝑐 𝑡 : F 𝐴 Γ, 𝑥 : 𝐴 ⊢𝑐 𝑋 : □𝑐
𝑖

Γ, 𝑥 : 𝐴 ⊢𝑐 𝑢 : 𝑋

Γ ⊢𝑐 dlet 𝑥 : 𝐴 := 𝑡 in 𝑢 : let 𝑥 : 𝐴 := 𝑡 in 𝑋

Γ ⊢𝑐 𝑡 : Π𝑥 : 𝐴.𝑋 Γ ⊢𝑣 𝑣 : 𝐴

Γ ⊢𝑐 𝑡 𝑣 : 𝑋 {𝑥 := 𝑣}

Γ ⊢𝑣 𝑣 : 𝐴 Γ ⊢𝑣 𝑤 : 𝐵{𝑥 := 𝑣} Γ ⊢𝑣 Σ𝑥 : 𝐴. 𝐵 : □𝑣
𝑖

Γ ⊢𝑣 (𝑣,𝑤) : Σ𝑥 : 𝐴. 𝐵

Γ ⊢𝑣 𝑣 : Σ𝑥 : 𝐴. 𝐵 Γ ⊢𝑐 𝑋 : (Σ𝑥 : 𝐴. 𝐵) → □𝑐
𝑖

Γ ⊢𝑐 𝑡 : Π(𝑥 : 𝐴) (𝑦 : 𝐵). 𝑋 (𝑥,𝑦)
Γ ⊢𝑐 recΣ (𝑣, 𝑋, 𝑡) : 𝑋 𝑣

Γ ⊢𝑣 𝐴 : □𝑣
𝑖

Γ ⊢𝑣 𝐵 : □𝑣
𝑖

Γ ⊢𝑣 𝑣 : 𝐴

Γ ⊢𝑣 inl 𝑣 : 𝐴 + 𝐵

Γ ⊢𝑣 𝐴 : □𝑣
𝑖

Γ ⊢𝑣 𝐵 : □𝑣
𝑖

Γ ⊢𝑣 𝑤 : 𝐵

Γ ⊢𝑣 inr𝑤 : 𝐴 + 𝐵

Γ ⊢𝑣 𝑣 : 𝐴 + 𝐵 Γ ⊢𝑐 𝑋 : (𝐴 + 𝐵) → □𝑐
𝑖

Γ ⊢𝑐 𝑢1 : Π𝑥 : 𝐴.𝑋 (inl𝑥) Γ ⊢𝑐 𝑢2 : Π𝑦 : 𝐵. 𝑋 (inr𝑦)
Γ ⊢𝑐 rec+ (𝑣, 𝑋,𝑢1, 𝑢2) : 𝑋 𝑣

Γ ⊢𝑣 𝐴 : □𝑣
𝑖

Γ ⊢𝑣 𝑣 : 𝐴

Γ ⊢𝑣 refl : eq 𝐴 𝑣 𝑣

Γ ⊢𝑣 𝑣 : eq 𝐴 𝑤1 𝑤2 Γ ⊢𝑐 𝑋 : Π𝑦 : 𝐴. eq 𝐴 𝑤1 𝑦 → □𝑐
𝑖

Γ ⊢𝑐 𝑡 : 𝑋 𝑤1 refl

Γ ⊢𝑐 receq (𝑣, 𝑋, 𝑡) : 𝑋 𝑤2 𝑣

Fig. 3. Dependent call-by-push-value

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 58. Publication date: January 2020.

The Fire Triangle 58:9

typing judgment Γ ⊢𝑣 𝑣 : 𝐴 implies that 𝐴 is a value type of sort □𝑣
𝑖 for some 𝑖 , and similarly

for Γ ⊢𝑐 𝑡 : 𝑋 and □𝑐
𝑖 . In particular, value (resp. computation) types are always values (resp.

computations).

Those hierarchies are parallel in the sense that □𝑣
𝑖 has type □

𝑣
𝑖+1 and □𝑐

𝑖 has type □
𝑐
𝑖+1. But the

are also connected by two operations: F which transforms a value type into a computation type

and U which transforms a computation type into a value type. For simplicity of the presentation

of the system, we do not consider more refined notions on the universe hierarchies such as

cumulativity or universe polymorphism but they can be integrated smoothly as those notions are

largely independent from the notion of value and computation types.

As for function types in CBPV, dependent products of the form Π𝑥 : 𝐴.𝑋 are computation types,

with domain a value type and codomain a computation type. Note that the fact that the domain

is a value type is necessary because contexts are only composed of value types. As it is the case

in CIC, to preserve the stratification induced by the universe hierarchy, the universe level of the

dependent product is the maximum of the universe levels of its domain and codomain.

Contrastingly, inductive types are value types whose type parameters are also value types. Here,

we only consider three representative instances, namely dependent sums Σ𝑥 : 𝐴. 𝐵, coproducts

𝐴 + 𝐵 and equality eq 𝐴 𝑣1 𝑣2.

3.3 Meaning of Terms
Let us first recall the intuition behind the terms coming directly from CBPV. The thunk primitive is

to be understood as away of boxing a computation into a value. Its dual force runs the computation.
2

The return primitive creates a pure computation from a value. The (non-dependent) let binding

first evaluates its argument, possibly generating some effects, binds the purified result to the

variable and continues with the remaining term.

Dependent products come as usual with a notion of _-abstraction and application. The rule for

application 𝑡 𝑣 performs directly the substitution in the (dependent) type, without any restriction,

because 𝑣 is already a value.

The main addition is a dependent version of the let binding, that we call dlet. It behaves as let
but the type of the conclusion cannot be 𝑋 anymore, nor a direct substitution 𝑋 {𝑥 := 𝑡} because
𝑡 is not a value. This is why we need also to evaluate 𝑡 in the type, meaning that the type of the

conclusion is a (non-dependent) let itself, which is reminiscent of a technique found in [Bizjak

et al. 2016]. Note that we cannot use a single rule for both dependent and non-dependent let
binding, contrarily to what happens for dependent product and arrow type. This is because if we

do so, let 𝑥 : 𝐴 := 𝑡 in 𝑋 would have type let 𝑥 : 𝐴 := 𝑡 in □𝑐
𝑖 which is not a sort of the system.

Indeed, as we will see using syntactical models such as forcing or weaning, the rule

let 𝑥 : 𝐴 := 𝑡 in □𝑐
𝑖 ≡ □𝑐

𝑖

is not admissible in 𝜕CBPV because the left-hand side performs the effects of 𝑡 while the right-hand

side does not. We insist that it is critical for □𝑐
𝑖 to be itself a computation, for otherwise the type of

dlet would not make sense. This is a major difference with Ahman’s system [Ahman 2018].

Finally, inductive types comes with their usual constructors and (dependent) elimination rule.

As for application, the substitution in the type of the conclusion can be performed directly, without

any restriction, because 𝑣 is a value.

3.4 Reduction of 𝜕CBPV
Definition 4 (𝜕CBPV reduction). We define the 𝜕CBPV reduction as the congruence closure of

the following generators.

2
This name has nothing to do with forcing itself and is a coincidence.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 58. Publication date: January 2020.

58:10 Pierre-Marie Pédrot and Nicolas Tabareau

(_𝑥 : 𝐴. 𝑡) 𝑣 → 𝑡{𝑥 := 𝑣}
let 𝑥 : 𝐴 := return 𝑣 in 𝑡 → 𝑡{𝑥 := 𝑣}
dlet 𝑥 : 𝐴 := return 𝑣 in 𝑡 → 𝑡{𝑥 := 𝑣}
force (thunk 𝑡) → 𝑡

recΣ ((𝑣,𝑤), 𝑋,𝑢) → 𝑢 𝑣 𝑤

rec+ (inl 𝑣, 𝑋,𝑢1, 𝑢2) → 𝑢1 𝑣

rec+ (inr𝑤,𝑋,𝑢1, 𝑢2) → 𝑢2 𝑤

receq (refl, 𝑋,𝑢) → 𝑢

We write ≡ for the equivalence generated by this reduction when the context is clear, otherwise

we may subscript it as ≡𝜕CBPV.

Remark 1. We do not include the usual associativity rules for let-bindings and their dlet coun-
terparts in 𝜕CBPV conversion. These rules happen to hold in our models, but in general not

definitionally, sometimes even requiring adding the function extensionality axiom to CIC. Thus
there is no hope to consider them for conversion in an intensional setting.

3.5 Unifying Thunkability and Linearity
As we have already mentioned in Section 2, there are two central notions to consider when

looking at a dependent version of CBPV, thunkability for substitution and linearity for large

dependent elimination. Thunkability for CBPV has been introduced by Levy [Levy 2001] after the

work of Führmann [Führmann 1999]. It semantically expresses the fact that a potentially effectful

computation is effect-free, i.e., behaves as a value without performing any effect. Linearity has been

considered byMunch-Maccagnoni [Munch-Maccagnoni 2014] and rephrased recently in the context

of CBPV by Levy [Levy 2017]. It semantically expresses the fact that a function is effect-preserving,

e.g., by evaluating its arguments first and once. In the works of [Levy 2017; Munch-Maccagnoni

2014], there are several equivalent definitions of those notions, which make the duality more or less

explicit. However, those definitions are equivalent in the model, that is from an extensional point

of view. In this paper, we work in an intensional setting, so the formulation of definitions matters.

We base our definitions of thunkability and linearity on the following notion of compatibility

between functions and effectful computations.

Definition 5 (Compatibility). A function 𝑓 : U F 𝐴 → 𝑋 and an effectful computation 𝑡 : F 𝐴

are said to be compatible, written 𝑓 ⊥⊥ 𝑡 , when the following definitional equation holds:

let 𝑥 : 𝐴 := 𝑡 in 𝑓 (thunk (return 𝑥)) ≡ 𝑓 (thunk 𝑡).

From this notion of compatibility, one can recover both linearity and thunkability by focusing at

a universal compatibility property of either the function or of the effectful computation.

Definition 6 (Linearity). A function 𝑓 : U F 𝐴 → 𝑋 is linear when for every effectful computation

𝑡 : F 𝐴, we have 𝑓 ⊥⊥ 𝑡 .

Definition 7 (Thunkability). An effectful computation 𝑡 : F 𝐴 is thunkablewhen for every function
𝑓 : U F 𝐴 → 𝑋 , we have 𝑓 ⊥⊥ 𝑡 .

We show in the rest of this paper that this particular way of formulating thunkability and linearity

is appropriate, when describing predicates on which substitution can be defined (in call-by-value)

and predicates on which dependent elimination can be performed (in call-by-name).

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 58. Publication date: January 2020.

The Fire Triangle 58:11

4 𝜕CBPV IN ACTION
4.1 Generic Catch For Exceptions
The Exceptional Type Theory [Pédrot and Tabareau 2018] (ExTT) extends type theory with an

exception mechanism. In order to remain compatible with standard type theory, ExTT sticks to the

call-by-name semantics. This has no consequence on the exception-raising part of the type system,

which is materialized by a function raise : Π𝐴 : □. E → 𝐴 where E is the type of exceptions.

Contrastingly, this limits the ability to catch exceptions at the only place where values appear

in call-by-name, namely pattern-matching. As such, every inductive type provides a generalized

catch recursor with an additional clause handling the exception case. For instance, the catch+
error-handling recursor for the sum type has type

Π(𝐴𝐵 : □) (𝑃 : (𝐴 + 𝐵) → □).
(Π𝑥 : 𝐴. 𝑃 (inl𝑥)) → (Π𝑦 : 𝐵. 𝑃 (inr𝑦)) → (Π𝑒 : E. 𝑃 (raise (𝐴 + 𝐵) 𝑒)) →
Π𝑠 : 𝐴 + 𝐵. 𝑃 𝑠

and is equipped with the three expected equations, i.e. two for constuctors and one corresponding

to catching the exception.

This is fairly obvious in the model justifying ExTT. It is indeed a syntactic translation into

CIC which essentially interprets types as pointed types, leaves functions untouched but adds one

exceptional constructor to every inductive. As such, the catch operator is actually translated as

the recursor in the target theory.

Yet, this restriction on exception-catching in ExTT is in stark opposition to what happens in

call-by-value, where one can catch exceptions raised from arbitrary thunks. Thankfully, 𝜕CBPV
provides a unified language that allows solving this problem elegantly. That is, in the weaning

translation from Section 9 specialized to the case of the error monad, in addition to an exception

type E : □𝑣
0
and a primitive raise : Π𝐴 : □𝑣

𝑖 . E → F 𝐴, it is also possible to precisely express

the call-by-value generic catch without losing the dependently-typed flavour of the call-by-name

combinator. Namely, there exists a universal catch combinator of type

Π(𝐴 : □𝑣
𝑖) (𝑃 : U (U (F 𝐴) → □𝑐

𝑖)) .
U (Π𝑎 : 𝐴. force 𝑃 (thunk (return 𝑎))) → U (Π𝑒 : E. force 𝑃 (thunk (raise 𝐴 𝑒))) →

Π𝑥 : U (F 𝐴). force 𝑃 𝑥

which internalizes the fact that a computation in F 𝐴 is either a value or an exception, in the type

system itself. Furthermore, it obeys the two expected equations for both values of its argument.

From this, it is possible to recover the specialized combinators after performing the call-by-name

decomposition from Section 5.

4.2 Proof-Relevant Open Modality
The open modality [Univalent Foundations Program 2013] is used to create new subuniverses inside

type-theory in which a mere proposition P is assumed to hold. Computationally, it corresponds

to the so-called reader monad, where the type of the cell being read is proof-irrelevant, so as to

preserve the good properties of the resulting subuniverse.

Thanks to 𝜕CBPV, the full reader effect can be brought to dependent type theory, without having

to restrict P to be a mere proposition. Obviously, the price to pay is that there are now observable

effects in the resulting theory. The reader effect is given in 𝜕CBPV by:

• a value type of global cells P : □𝑣
0

• a reading primitive read : F P
• a well-scoped type writing primitive into : P → U □𝑐

𝑖 → □𝑐
𝑖

• a well-scoped writing primitive enter : Π(𝑝 : P) (𝐴 : U □𝑐
𝑖).U (force 𝐴) → into 𝑝 𝐴

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 58. Publication date: January 2020.

58:12 Pierre-Marie Pédrot and Nicolas Tabareau

enter 𝑝 (thunk □𝑐
𝑖
) 𝐴 ≡ into 𝑝 𝐴 into 𝑝 (thunk □𝑐

𝑖
) ≡ □𝑐

𝑖
into 𝑝 (thunk (F 𝐴)) ≡ F 𝐴

into 𝑝 (thunk (Π𝑎 : 𝐴.𝑋)) ≡ Π𝑎 : 𝐴. into 𝑝 (thunk 𝑋)
enter 𝑝 (thunk (F P)) (thunk read) ≡ return 𝑝

Fig. 4. Reader equations

subject to equations, the most relevant ones being described in Figure 4.

Intuitively, into is a modality that allows to evaluate a type inside a particular value of the

global cell, which corresponds logically to relativization of the type argument. The modality

definitionally commutes with type formers as described in Figure 4. The two primitives read and

enter respectively access the global cell, and set it locally inside a computation. Contrarily to the

usual reader monad, its decomposition as an adjunction forces one to wrap the return type of the

enter primitive inside that modality. Note nevertheless that, thanks to the modality equations,

enter 𝑝 (thunk (F 𝐴)) does have typeU (F 𝐴) → F 𝐴 as expected. Through our generalization,

it is clear that enter corresponds to the return operation of the modality.

As witnessed by the equations, it so happens that into is just the specialization of enter over
the type of types, which is needed to type universes. The remaining equation is the expected

interaction between reading and writing.

4.3 Normalization by Evaluation (NbE)
One of the standard ways to implement NbE consists in constructing a presheaf model over a

syntactic category of contexts [Abel 2012]. The model is summarily given by the following data:

• A semantic entailment Γ ⊩ 𝑡 : 𝐴 between a context Γ, a term 𝑡 and a type 𝐴.

• A soundness lemma that allows to derive Γ ⊩ 𝑡 : 𝐴 from Γ ⊢ 𝑡 : 𝐴 .

• A syntactic characterization of neutral terms Γ ⊢ne 𝑡 : 𝐴 and normal terms Γ ⊢nf 𝑡 : 𝐴. While

the latter capture the usual notion of terms that cannot be reduced further, the former are a

subclass of normal terms that do not trigger new reductions through substitution.

• A two-part completeness pair, made of a reflection function ↓Γ𝐴 : Γ ⊢ne 𝑛 : 𝐴 ↦→ Γ ⊩ 𝑛 : 𝐴 and

a reification function ↑Γ𝐴 : Γ ⊩ 𝑡 : 𝐴 ↦→ Γ ⊢nf 𝑣 : 𝐴.

By combining soundness with completeness, one readily obtains an NbE algorithm.

Reasoning in the presheaf topos instead of going through the low-level assembly-like unfolding

of presheaf scaffolding, leads to an extremely compact description of the NbEmodel [Coquand 2019].

Eschewing well-known issues with positive datatypes, it is somewhat folklore that this presheaf

construction can be understood as a way to add a well-scoped global environment corresponding to

the current context of the proof being built [Jaber et al. 2016]. In other words, presheaves provide a

form of side-effects, and the presheaf topos is known as the direct style presentation of the resulting

programming language. We sketch here how 𝜕CBPV would provide the syntactic equivalent of the

presheaf topos to write an NbE algorithm. The formal definitions of the additional effects at hand

are defined in Section 10, but can be conveniently described by the following data, where we omit

the expected equations.

• A value type ctx : □𝑣
0
and a value-returning binary predicate ⊆ (−,−) over ctx. The ctx

type stands for contexts of the object language, and is equipped with the expected primitives

like context extension and the like, while ⊆ captures context ordering.

• A function here : F ctx returning the current surrounding context.

• A function enter : ΠΓ : ctx. let Δ : ctx := here in Γ ⊆ Δ → U (F 𝐴) → F 𝐴 allowing to

locally set the current context inside a computation U (F 𝐴) provided the new context

extends the current one.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 58. Publication date: January 2020.

The Fire Triangle 58:13

This is very similar to the reader monad primitives described above, except for the monotonicity

requirement for enter. It is now possible to define the NbE components without having to ever

refer to the context indexing. For instance, the effectful predicate ⊩ 𝑡 : 𝐴 is inductively defined to

implicitly refer to the current context and makes use of enter to define the arrow case, as:

⊩ 𝑡 : 𝐴 ⇒ 𝐵 := U (Π𝑥 : Tm 𝐴.⊩ 𝑥 : 𝐴 → F (⊩ app (𝑡, 𝑥) : 𝐵)).
Note how the usual quantification over context extension is encoded by the adjunction. Similarly,

reification at an arrow type can be implemented without refering to the ambient context, by simply

using enter. We will refrain from describing it further as it would lead us into too much detail.

5 CALL-BY-NAME TRANSLATION
In this section, we provide the extension to a dependent setting of the call-by-name translation of

the simply-type _-calculus into CBPV. Here, the source of the translation is not CIC, but a version
with a restricted dependent elimination, that is called BTT. We discuss at the end of this section

how BTT could be extended using the notion of linearity.

5.1 Call-By-Name Translation: the Negative Fragment
We define in this section the translation of CC𝜔 into 𝜕CBPV. The source system constitutes what

is known as the negative fragment, i.e. a type theory whose only type formers are Π-types and a

tower of universes. For conciseness, we will not recall the rules of CC𝜔 , which are standard.

Definition 8 (By-name translation). The by-name translation [−]n from CC𝜔 into 𝜕CBPV is

defined as follows.

[□𝑖]n := □𝑐
𝑖

[Π𝑥 : 𝐴. 𝐵]n := Π𝑥 : U [𝐴]n . [𝐵]n

[𝑥]n := force 𝑥

[𝑡 𝑢]n := [𝑡]n (thunk [𝑢]n)
[_𝑥 : 𝐴. 𝑡]n := _𝑥 : U [𝐴]n . [𝑡]n

This translation is very similar to the call-by-name embedding of simply-typed _-calculus into

CBPV. In particular, [𝐴 → 𝐵]n := U [𝐴]n → [𝐵]n provided that the arrow is interpreted as a

non-dependent product. Also, every CC𝜔 term is translated as a computation.

As expected, this translation preserves conversion and typing.

Proposition 1 (Substitution). We have
[𝑡{𝑥 := 𝑟 }]n ≡𝜕CBPV [𝑡]n{𝑥 := thunk [𝑟]n}.

Proposition 2. If 𝑡 ≡CC𝜔
𝑢 then [𝑡]n ≡𝜕CBPV [𝑢]n.

Proposition 3. If Γ ⊢CC𝜔
𝑡 : 𝐴 then U [Γ]n ⊢𝑐 [𝑡]n : [𝐴]n.

5.2 Extension to BTT

The call-by-name translation is known for being biased towards the negative fragment. Most

notably, the above translation does not use the F type former and the associated terms at all. This

contrasts with the interpretation of inductive types, which has important consequences on their

interplay with effects. For the sake of conciseness, we only detail the translation of coproducts here.

Sum are translated by first lifting the translation of underlying types using U, applying the sum

and then lifting back the resulting value type to a computation type using F .

[𝐴 + 𝐵]n := F ((U [𝐴]n) + (U [𝐵]n))
The translation of constructors is analogous:

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 58. Publication date: January 2020.

58:14 Pierre-Marie Pédrot and Nicolas Tabareau

[rec+ (𝑡, 𝑋,𝑢1, 𝑢2)]n := let 𝑣 := [𝑡]n in rec+ (𝑣, __. [𝑋]n, [𝑢1]n, [𝑢2]n)

[drec+ (𝑡, 𝑋,𝑢1, 𝑢2)]n := dlet 𝑣 := [𝑡]n in

rec+ (𝑣, _𝑣 . [𝜎𝐴+𝐵]n (thunk (return 𝑣)) (thunk [𝑋]n), [𝑢1]n, [𝑢2]n)

Fig. 5. CBN translation of recursors for coproducts

[inl 𝑡]n := return (inl (thunk [𝑡]n)) [inr 𝑡]n := return (inr (thunk [𝑡]n)).
The translation of the recursor is more problematic as it requires one to recover the value out of

the computation by using a let binder. As mentionned in Section 2.3, the dependent elimination

principle is restricted in BTT. For instance, for the case of coproducts, there are two recursors: the

non-dependent rec+, and the dependent drec+. The former is as usual:

Γ ⊢BTT 𝑡 : 𝐴 + 𝐵

Γ ⊢BTT 𝑃 : □𝑖

Γ ⊢BTT 𝑢1 : 𝐴 → 𝑃

Γ ⊢BTT 𝑢2 : 𝐵 → 𝑃

Γ ⊢BTT rec+ (𝑡, 𝑃,𝑢1, 𝑢2) : 𝑃

and the latter has a type guarded by a storage operator:

Γ ⊢BTT 𝑡 : 𝐴 + 𝐵

Γ ⊢BTT 𝑃 : (𝐴 + 𝐵) → □𝑖

Γ ⊢BTT 𝑢1 : Π𝑥 : 𝐴. 𝑃 (inl𝑥)
Γ ⊢BTT 𝑢2 : Π𝑦 : 𝐵. 𝑃 (inr𝑦)

Γ ⊢BTT drec+ (𝑡, 𝑃,𝑢1, 𝑢2) : 𝜎𝐴+𝐵 𝑡 𝑃

where 𝜎𝐴+𝐵 is the storage operator defined as

𝜎𝐴+𝐵 : (𝐴 + 𝐵) → ((𝐴 + 𝐵) → □) → □

:= _𝑣. rec+ (𝑣, ((𝐴 + 𝐵) → □) → □,
_𝑥 𝑘. 𝑘 (inl𝑥), _𝑦 𝑘. 𝑘 (inr𝑦))

Thus, the separation between let and dlet in 𝜕CBPV is reflected in BTT, under the form of two

recursors rec+ and drec+ translated in Figure 5. To prove an extension of Proposition 2 to BTT, the
main point is to check that [drec+ (𝑡, 𝑋,𝑢1, 𝑢2)]n has a type convertible to [𝜎𝐴+𝐵 𝑣 𝑋]n. But actually,
the return type of the recursor in the translation of drec+ has precisely been made to be of the

form 𝜎𝐴+𝐵 , convertible to the expected one up-to the use of the reduction rule of let and force.

5.3 Extending BTT with Linearity
There is a more direct translation of drec+ (𝑣, 𝑋,𝑢1, 𝑢2) provided that the translation of 𝑋 is linear.

Indeed, one can simply define

[drec+ (𝑡, 𝑋,𝑢1, 𝑢2)]n := dlet 𝑣 := [𝑡]n in rec+ (𝑣, _𝑣 . [𝑋]n (thunk (return 𝑣)), [𝑢1]n, [𝑢2]n))

If so, the translation of drec+ (𝑡, 𝑋,𝑢1, 𝑢2) has type let 𝑣 := [𝑡]n in [𝑋]n (thunk (return 𝑣))
which is convertible to [𝑋]n (thunk [𝑡]n) by linearity.

However, linearity of a predicate is a semantic notion and is undecidable in general. Ahman [Ah-

man 2018] provides a syntactic under-approximation of linearity and introduces the linear arrow

𝑋 ⊸ 𝑌 , which is intuitively the subtype of U 𝑋 → 𝑌 restricted to linear functions. This syntactic

characterization captures in particular storage operators, but is slightly more general as it also

allows the use of commutative cuts.

Defining a version of BTT where a similar syntactic restriction of linearity is used to generalize

storage operators is beyond the scope of this paper.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 58. Publication date: January 2020.

The Fire Triangle 58:15

6 CALL-BY-VALUE TRANSLATION
In this section, we describe the extension to a dependent setting of the call-by-value translation

of simply typed _-calculus. In particular, we show that this translation does not scale well to

dependency indicating that call-by-value is not appropriate to deal with dependency.

6.1 Call-By-Value Translation in CBPV

The standard by-value translation interprets types 𝐴 as value types [[𝐴]]v (in particular [[□𝑖]]v ≡
□𝑣

𝑖), and terms 𝑡 : 𝐴 as computations of [𝑡]v : F [[𝐴]]v. But from 𝐴 : □𝑖 , we only get [𝐴]v : F □𝑣
𝑖 ,

and there is no way to define [[𝐴]]v : □𝑣
𝑖 as using a let binding can only produce a computation

type and not a value type (we come back to this problem in Section 6.2). To solve this, we need

to define [[𝐴]]v primitively to [𝐴]v, which is only possible if we know that 𝐴 is a syntactic value.

Therefore, the type theory CIC𝑣
we can interpret must satisfy the following proposition.

Proposition 4. If Γ ⊢CIC𝑣 𝐴 : □ then 𝐴 is a syntactic value.

This can be obtained by stratifying the syntax into values and computations to enforce that types

are always values (again, we only deal with coproducts, the other inductive types are translated in

the same way).

values 𝐴, 𝐵, 𝑣,𝑤 ::= □𝑖 | Π𝑥 : 𝐴. 𝐵 | 𝐴 + 𝐵 | _𝑥 : 𝐴. 𝑡 | 𝑥 | inl 𝑣 | inr 𝑣
computations 𝑡,𝑢 ::= 𝑣 | 𝑡 𝑢 | let 𝑥 : 𝐴 := 𝑡 in 𝑢 | rec+ (𝑣, 𝐴,𝑢1, 𝑢2)

We do not detail the typing rules of CIC𝑣
as we do not want to dwell too much on it. Figure 6

presents the rule for application and let binding. The by-value translation can then be extended to

a dependent setting by translating a value 𝑣 as [[𝑣]]v and a term 𝑡 as [𝑡]v.

Γ ⊢ 𝑡 : Π𝑥 : 𝐴. 𝐵 Γ ⊢ 𝑣 : 𝐴

Γ ⊢ 𝑡 𝑣 : 𝐵{𝑥 := 𝑣}
Γ ⊢ 𝑡 : 𝐴 Γ ⊢ 𝐵 : □𝑖 Γ, 𝑥 : 𝐴 ⊢ 𝑢 : 𝐵

Γ ⊢ let 𝑥 : 𝐴 := 𝑡 in 𝑢 : 𝐵

Fig. 6. Call-by-value type theory

Definition 9 (By-value translation). The by-value translation is defined in Figure 7.

This translation satisfies a correctness property, distinguishing between values and computations.

Proposition 5. If Γ ⊢ 𝑣 : 𝐴 then [[Γ]]v ⊢𝑣 [[𝑣]]v : [[𝐴]]v and if Γ ⊢ 𝑡 : 𝐴 then [[Γ]]v ⊢𝑐 [𝑡]v :

F [[𝐴]]v.

Proposition 6. If 𝑡 →v 𝑢 then [𝑡]v ≡ [𝑢]v.

6.2 Limitation of Call-By-Value
The theory induced by this stratification between values and computations is a very weak one.

First, types are by construction restricted to be values. This means in particular that the let binder

can not be dependent because otherwise its type would be a computation—similarly to the rule

dlet/let of 𝜕CBPV. Secondly, there is no way to perform any kind of large elimination. Indeed,

there are only two ways to use the variable introduced by a dependent product: either as a type

itself when it lives in a universe, or by passing this variable to an indexed type (such as equality).

This theory could be extended to reflect more faithfully the 𝜕CBPV target, at a cost of a much

more intricate syntax, i.e. by allowing chains of let bindings to the right hand side of a colon,

and duplicating the application rule to reflect the let/dlet split. Such a theory would be way too

complex to be explained shortly here, so we will refrain from doing it.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 58. Publication date: January 2020.

58:16 Pierre-Marie Pédrot and Nicolas Tabareau

[[□𝑖]]v := □𝑣
𝑖

[[Π𝑥 : 𝐴. 𝐵]]v := U (Π𝑥 : [[𝐴]]v . F [[𝐵]]v)

[[𝐴 + 𝐵]]v := [[𝐴]]v + [[𝐵]]v

[[_𝑥 : 𝐴. 𝑡]]v := thunk (_𝑥 : [𝐴]v . [𝑡]v)

[[𝑥]]v := 𝑥

[[inl 𝑣]]v := inl [[𝑣]]v

[[inr 𝑣]]v := inr [[𝑣]]v

[𝑣]v := return [[𝑣]]v

[𝑡 𝑢]v := let 𝑓 := [𝑡]v in
let 𝑥 := [𝑢]v in force 𝑓 𝑥

[let 𝑣 := 𝑡 in 𝑢]v := let 𝑥 := [𝑡]v in [𝑢]v

[rec+ (𝑣, 𝐴,𝑢1, 𝑢2)]v := rec+ ([[𝑣]]v, 𝐴, [𝑢1]v, [𝑢2]v)

Fig. 7. Call-by-value translation

6.3 Recovering CIC through Thunkability
The stratification required by the call-by-value translation is necessary to know syntactically that

[𝐴]v ≡ return [[𝐴]]v

when 𝐴 is a type. But there is another more semantic way of having a similar property, by ensuring

that the translation of a term is always thunkable. This way, we know that the translation [𝐴]v of
a type 𝐴 is always effect-free and thus morally equivalent to return 𝐴′

for some value type 𝐴′
.

We make this intuition formal in the next section by defining a third translation into 𝜕CBPV.

7 CALL-BY-THUNKABLE TRANSLATION
Building on the notion of effect compatibility, we describe in this section an embedding of all of

CIC—including full dependent elimination and substitution—into an extension of 𝜕CBPV. The basic
idea under this translation is twofold:

• First, we embed a call-by-value language in call-by-name, as we would do through a CPS.

This solves the issue of types being restricted to values from Section 6.

• Second, we restrict the computations to be observationally pure, by requiring them to preserve

thunkability everywhere.

This technique is similar to Girard’s boring translation [Girard 1987] in linear logic. As it will

turn out in Section 10, this is essentially what happens in the standard presheaf construction.

Definition 10. We extend 𝜕CBPV with a built-in notion of thunkability defined in Figure 8.

This extension can be intuitively described as follows.

• The type Eℓ 𝑋 is equal to let 𝐴 : □𝑣
𝑖 := 𝑋 in F 𝐴 but is defined only for thunkable types. Its

equation on values allows transparently considering elements ofF 𝐴 as living in Eℓ (return𝐴).
• The judgment Γ ⊢ 𝑡 th. encodes the fact that a computation Γ ⊢ 𝑡 : Eℓ 𝑋 satisfies the

thunkability equations when it makes sense typing-wise. Returned values are in particular

thunkable, and thunkability is preserved by constructions not introducing effects.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 58. Publication date: January 2020.

The Fire Triangle 58:17

𝐴, 𝐵, 𝑣,𝑤 ::= . . . | El𝑋 | Θ𝑥 : 𝐴. 𝐵 | \𝑥 : 𝐴. 𝑣 | 𝑡 ·𝑤 | ⇑ 𝑡

𝑋,𝑌, 𝑡,𝑢 ::= . . . | Eℓ 𝑋 | ⇓ 𝑣

Γ ⊢ 𝑋 : F □𝑣
𝑖

Γ ⊢ 𝑋 th.

Γ ⊢ El𝑋 : □𝑣
𝑖

Γ ⊢ 𝑋 : F □𝑣
𝑖

Γ ⊢ 𝑋 th.

Γ ⊢ Eℓ 𝑋 : □𝑐
𝑖

Γ ⊢ 𝑡 : Eℓ 𝑋 Γ ⊢ 𝑡 th.
Γ ⊢ ⇑ 𝑡 : El𝑋

Γ ⊢ 𝑣 : El𝑋

Γ ⊢ ⇓ 𝑣 : Eℓ 𝑋
Γ ⊢ 𝑣 : El𝑋

Γ ⊢ ⇓ 𝑣 th.

Γ ⊢ 𝐴 : □𝑣
𝑖

Γ, 𝑥 : 𝐴 ⊢ 𝐵 : El (return □𝑣
𝑗
)

Γ ⊢ Θ𝑥 : 𝐴. 𝐵 : □𝑣
max(𝑖, 𝑗)

Γ, 𝑥 : 𝐴 ⊢ 𝑣 : El (⇓ 𝐵)
Γ ⊢ \𝑥 : 𝐴. 𝑣 : Θ𝑥 : 𝐴. 𝐵

Γ ⊢ 𝑡 : Θ𝑥 : 𝐴. 𝐵 Γ ⊢ 𝑤 : 𝐴

Γ ⊢ 𝑡 ·𝑤 : El (⇓ 𝐵{𝑥 := 𝑤})
Γ ⊢ 𝑣 : 𝐴

Γ ⊢ return 𝑣 th.
Γ ⊢ 𝑡 th. Γ, 𝑥 : 𝐴 ⊢ 𝑢 th.

Γ ⊢ let 𝑥 : 𝐴 := 𝑡 in 𝑢 th.

Γ ⊢ 𝑡 th. Γ, 𝑥 : 𝐴 ⊢ 𝑢 th.

Γ ⊢ dlet 𝑥 : 𝐴 := 𝑡 in 𝑢 th.

let 𝑥 : 𝐴 := ⇓ 𝑡 in Φ{return 𝑥} ≡ Φ{⇓ 𝑡} ⇓ ⇑ 𝑡 ≡ 𝑡 (\𝑥 : 𝐴. 𝑣) ·𝑤 ≡ 𝑣{𝑥 := 𝑤}
Eℓ (return 𝐴) ≡ F 𝐴

Fig. 8. Thunkable types

• The type El𝑋 captures the subset type {𝑣 : U (Eℓ 𝑋) | · ⊢ force 𝑣 th.} provided 𝑋 is

thunkable itself so that the expression typechecks. One can project out the underlying

element of Eℓ 𝑋 with ⇓ − (which corresponds to force −), and embed values with ⇑ − (which

corresponds to thunk −).
• The type Θ𝑥 : 𝐴. 𝐵 morally stands for Π𝑥 : 𝐴. El (⇓ 𝐵), but this type does not make sense in

𝜕CBPV as the codomain is a value type. This type is more correctly described as functions

𝑓 : Π𝑥 : 𝐴. F 𝐵0 that preserve thunkability pointwise when 𝐵 ≡ ⇑ (return 𝐵0).
Note that the thunkability property does not appear as a part of the proof term and needs to be

reconstructed out of thin air. As such, when describing the thunkability extension in our syntactic

translations, we will always assume that our target theory will be some extensional flavour of CIC,
i.e. where propositional equality can be reflected as definitional equality. It seems unlikely to be

able internalize thunkability in an intensional type theory without diving into a coherence hell.

7.1 Negative Fragment
Definition 11 (Thunkable translation). The thunkable translation [−]\ from CC𝜔 into 𝜕CBPV is

defined as follows.

[[𝐴]]\ := El (⇓ [𝐴]\)
[□𝑖]\ := ⇑ return □𝑣

𝑖

[Π𝑥 : 𝐴. 𝐵]\ := ⇑ return (Θ𝑥 : [[𝐴]]\ . [𝐵]\)
[𝑥]\ := 𝑥

[𝑡 𝑢]\ := ⇑ let 𝑓 := ⇓ [𝑡]\ in ⇓ (𝑓 · [𝑢]\)
[_𝑥 : 𝐴. 𝑡]\ := ⇑ return (\𝑥 : [[𝐴]]\ . [𝑡]\)

As explained above, assuming El (return 𝐴) is a semantic subtype ofU (F 𝐴), it is fairly obvious
that this translation mixes call-by-name features (e.g. arguments are thunked) with call-by-value

ones (e.g. the translation of Π and □).

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 58. Publication date: January 2020.

58:18 Pierre-Marie Pédrot and Nicolas Tabareau

Proposition 7. We have for any terms 𝑡 and 𝑟 [𝑡{𝑥 := 𝑟 }]\ ≡𝜕CBPV [𝑡]\ {𝑥 := [𝑟]\ }.

Proposition 8. If 𝑡 ≡CC𝜔
𝑢 then [𝑡]\ ≡𝜕CBPV [𝑢]\ .

Proposition 9. If Γ ⊢CC𝜔
𝑡 : 𝐴 then [[Γ]]\ ⊢ [𝑡]\ : [[𝐴]]\ .

Proof. By induction on the typing derivation. This proof relies crucially on thunkability.

□

7.2 Positive Fragment
Again, we only present the translation for coproduct types, as it is similar for other inductive types.

Definition 12. The thunkable translation of coproduct types is defined below.

[𝐴 + 𝐵]\ := ⇑ (return ([[𝐴]]\ + [[𝐵]]\))
[inl 𝑡]\ := ⇑ (return (inl [𝑡]\))
[inr𝑢]\ := ⇑ (return (inr [𝑢]\))
[rec+ (𝑡, 𝑃,𝑢1, 𝑢2)]\ := ⇑ dlet 𝑠 := ⇓ [𝑡]\ in rec+ (𝑠, 𝑃, �̃�1, �̃�2)
where

• 𝑃 := _𝑠. Eℓ (⇓ [𝑃 𝑠0]\){𝑠0 := ⇑ (return 𝑠)}
• �̃�𝑖 := _𝑥. ⇓ [𝑢𝑖 𝑥0]\ {𝑥0 := ⇑ (return 𝑥)}

Proposition 10. Assuming 𝜕CBPV enjoys the [-rule ⇑ (⇓ 𝑡) ≡ 𝑡 and that recursors preserve
thunkability, then [−]\ interprets coproducts with full dependent elimination.

Proof. The difficult case consists in proving that the eliminator has the expected CIC type, the

other ones being straightforward. Two things need to be proved thus:

• first that the eliminator is well-typed, i.e.

�̃�1 : Π𝑥 : [[𝐴]]\ . 𝑃 (inl𝑥)
�̃�2 : Π𝑦 : [[𝐵]]\ . 𝑃 (inr𝑦)

• second that its type is convertible to the one of full dependent elimination, i.e.

let 𝑠 := ⇓ [𝑠]\ in 𝑃 𝑠 ≡ Eℓ (⇓ [𝑃 𝑠]\)
The first part is immediate, but as a technicality requires the above [-rule, which holds defini-

tionally in all the 𝜕CBPV models of this paper. The second part is a direct but crucial application of

the thunkability of [𝑠]\ and Proposition 7.

□

This translation can be extended to any inductive type, as long as there is a 𝜕CBPV countepart.

Therefore:

Theorem 2. The thunkable translation is a model of CIC.

This shows that to interpret all of CIC into 𝜕CBPV, it is necessary to be explicit about the absence
of effects in the term, using the notion of thunkability. This way, as all terms are thunkable, all

predicates are linear, and thus we get both substitution and large dependent elimination.

8 READER TRANSLATION
The reader translation is a very simple model of 𝜕CBPV that corresponds computationally to

the addition of a global cell. This cell can be read, hence the name, and can also be updated in a

well-scoped way, i.e. the update cannot escape from the term being evaluated.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 58. Publication date: January 2020.

The Fire Triangle 58:19

[[𝑋]]𝑐 := Π𝑝 : P. [𝑋] 𝑝 [𝑥] := 𝑥

[[𝐴]]𝑣 := [𝐴] [𝑡 𝑣] := _𝑝 : P. [𝑡] 𝑝 [𝑣]
[□𝑐

𝑖
] := _𝑝 : P.□𝑖 [_𝑥 : 𝐴. 𝑡] := _𝑝 : P. _𝑥 : [[𝐴]]𝑣 . [𝑡] 𝑝

[□𝑣
𝑖
] := □𝑖 [thunk 𝑡] := [𝑡]

[U 𝑋] := Π𝑝 : P. [𝑋] 𝑝 [force 𝑣] := _𝑝 : P. [𝑣] 𝑝
[F 𝐴] := _𝑝 : P. [𝐴] [return 𝑣] := _𝑝 : P. [𝑣]
[Π𝑥 : 𝐴.𝑋] := _𝑝 : P.Π𝑥 : [[𝐴]]𝑣 . [𝑋] 𝑝 [let 𝑥 : 𝐴 := 𝑡 in 𝑢] := _𝑝 : P. (_𝑥 : [[𝐴]]𝑣 . [𝑢] 𝑝) ([𝑡] 𝑝)
[[·]] := · [dlet 𝑥 : 𝐴 := 𝑡 in 𝑢] := _𝑝 : P. (_𝑥 : [[𝐴]]𝑣 . [𝑢] 𝑝) ([𝑡] 𝑝)
[[Γ, 𝑥 : 𝐴]] := [[Γ]], 𝑥 : [[𝐴]]𝑣

Fig. 9. Reader Translation

8.1 Translation
Definition 13 (Reader translation). We assume a type for the cell ⊢CIC P : □0, and define the

reader translation from 𝜕CBPV into CIC in Figure 9.

Note how the translation of computations systematically starts with an abstraction over 𝑝 : P,
the current global cell.

Theorem 3 (Soundness). The following hold.
• Γ ⊢𝑐 𝑡 : 𝑋 implies [[Γ]] ⊢ [𝑡] : [[𝑋]]𝑐 ,
• Γ ⊢𝑣 𝑣 : 𝐴 implies [[Γ]] ⊢ [𝑣] : [[𝐴]]𝑣
• 𝑡 ≡ 𝑢 implies [𝑡] ≡ [𝑢] and similarly for values.

We show how to extend this model to 𝜕CBPV coproduct type. Other inductive types are treated

similarly.

Definition 14. We translate coproducts as follows:

[𝐴 + 𝐵] := [[𝐴]]𝑣 + [[𝐵]]𝑣

[inl 𝑣] := inl [𝑣]

[inr𝑤] := inr [𝑤]

[rec+ (𝑣, 𝑋,𝑢1, 𝑢2)] := _𝑝 : P. rec+ ([𝑣], �̃� , �̃�1, �̃�2)
where we write

�̃� := _𝑠. [𝑋] 𝑝 𝑠 and �̃�𝑖 := _𝑥 . [𝑢𝑖] 𝑝 𝑥 .

Soudness is easily showed to be preserved by this extension.

Theorem 4. The reader translation is a model of 𝜕CBPV.

8.2 Reader Effects
We implement the primitive described in Section 4.2 in Figure 10. It is easy to check that the

equations given previously for those primitives hold.

8.3 A Glimpse of BTT
This model is simple enough to understand clearly what goes wrong in call-by-name dependent

elimination, and why the restriction to BTT is necessary.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 58. Publication date: January 2020.

58:20 Pierre-Marie Pédrot and Nicolas Tabareau

[P] : [[□𝑣
0
]]𝑣

:= P

[read] : [[F P]]𝑐

:= _𝑝 : P. 𝑝

[into] : [[P → U □𝑐
𝑖
→ □𝑐

𝑖
]]𝑐

:= _(_ : P) (𝑝 : P) (𝐴 : P→ □𝑖) . 𝐴 𝑝

[enter] : [[Π(𝑝 : P) (𝐴 : U □𝑐
𝑖
).U (force 𝐴) → into 𝑝 𝐴]]𝑐

:= _(_ : P) (𝑝 : P) (𝐴 : P→ □𝑖) (𝑥 : Π𝑝 : P. 𝐴 𝑝). 𝑥 𝑝

Fig. 10. Reader Effects

Example 2. Unfolding the translations, implementing dependent elimination for coproducts in

[[−]n] amounts to, given

• 𝐴, 𝐵 : P→ □
• 𝑠 : P→ [[𝐴]]𝑐 + [[𝐵]]𝑐
• 𝑃 : P→ (P→ [[𝐴]]𝑐 + [[𝐵]]𝑐) → □
• 𝑢1 : Π𝑝 : P.Π𝑥 : [[𝐴]]𝑐 . 𝑃 𝑝 (_𝑞 : P. inl𝑥)
• 𝑢2 : Π𝑝 : P.Π𝑦 : [[𝐵]]𝑐 . 𝑃 𝑝 (_𝑞 : P. inr𝑦)

being able to produce, barring conversion constraints, some

𝑒 : Π𝑝 : P. 𝑃 𝑝 𝑠

But there is little hope! If P is not a singleton, there is no reason for 𝑠 to be either constantly left or

constantly right. For instance, if P := B, there are extensionally four possible cases for the shape of

𝑠 , but the hypotheses only cover the two constant ones. Thus dependent elimination fails.

8.4 Thunkability
The reader translation also models the extensions needed for the call-by-thunkable interpretation.

In the remainder of this section, we assume that the target theory enjoys extensionality.

Proposition 11. A term 𝑡 : [[F 𝐴]]𝑐 ≡ P→ [[𝐴]]𝑣 satisfies the thunkable equation through the
reader translation iff 𝑝, 𝑞 : P ⊢ 𝑡 𝑝 ≡ 𝑡 𝑞.

In particular, if 𝑋 : F □𝑣
𝑖 is thunkable, it is possible to extend this semantic thunkability to

inhabitants of Eℓ 𝑋 := let 𝐴 : □𝑣
𝑖 := 𝑋 in F 𝐴 by defining thunkability of any 𝑡 : Eℓ 𝑋 as

\𝑋 𝑡 := Π(𝑝 𝑞 : P). [𝑡] 𝑝 = [𝑡] 𝑞.
We insist on the crucial fact that this equation is only well-typed if 𝑋 is thunkable itself, as the

left-hand side has type [𝑋] 𝑝 when the right-hand side has type [𝑋] 𝑞.
All the other constructions are defined as described intuitively in Section 7, e.g.

[El𝑋] := Σ𝑥 : [[Eℓ 𝑋]]𝑐 . \𝑋 𝑥

and similarly Θ𝑥 : 𝐴. 𝐵 is the subtype of functions that are pointwise thunkable.

Proposition 12. The reader translation is a model of call-by-thunkable.

Interestingly, the call-by-thunkable translation is not trivially isomorphic to a pure theory. Terms

in El𝑋 can use the P argument and remain thunkable, as long as they use it in a proof-irrelevant

way. This is surprisingly similar to the restriction of the open modality to mere propositions.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 58. Publication date: January 2020.

The Fire Triangle 58:21

9 WEANING TRANSLATION IN 𝜕CBPV

9.1 Weaning Translation
This section describes the weaning translation from 𝜕CBPV into CIC, based on the notion of self-
algebraic proto-monad. The weaning translation corresponds to a call-by-name variant of Moggi’s

monadic translation [Moggi 1991] in a dependent setting. In the same way as in Moggi’s work, the

coarse idea is to interpret computations in terms of algebras for a monad T in a pure type theory.

However, Moggi’s interpretation considered free algebras (that is type of the form T 𝐴) which

amounts in categorical language to considering the Kleisli category induced by the monad. In a

dependent setting, it appears to the other extreme case, considering every algebra, is more suitable.

This corresponds to the Eilenberg-Moore category induced by the monad. In a dependent setting,

the monadic interpretation requires more structure on the monad under consideration. Because the

universe of computation types is reflected in the theory, the universe of algebra must itself be an

algebra for the monad, a situation that we coined self-algebraic monad. Note that because we don’t
need all the monadic laws usually available for a monad, we talk here about proto-monad instead.

In this section, we directly rephrase the weaning translation in the setting of 𝜕CBPV whereas in

the original paper, the translation is based on BTT. The weaning translation can be instantiated for

instance to describe dynamic exceptions, non-determinism or non-termination. See [Pédrot and

Tabareau 2017] for a more in-depth description of the translation and its various applications.

Definition 15 ([Pédrot and Tabareau 2017]). A self-algebraic proto-monad is given by the following

universe-polymorphic family of CIC terms:

• T : □𝑖 → □𝑖

• ret : Π𝐴 : □𝑖 . 𝐴 → T 𝐴
• bnd : Π(𝐴 : □𝑖) (𝐵 : □𝑗). T 𝐴 → (𝐴 → T 𝐵) → T 𝐵
• El : T □□𝑖 → □□𝑖

• hbnd : Π(𝐴 : □𝑖) (𝐵 : T □□𝑗). T 𝐴 → (𝐴 → (El 𝐵).𝜋1) → (El 𝐵).𝜋1
where

□□𝑖 := Σ𝐴 : □𝑖 . T 𝐴 → 𝐴

furthermore subject to the following definitional equations:

El (ret □□𝑖 𝐴) ≡ 𝐴

bnd 𝐴 𝐵 (ret 𝐴 𝑡) 𝑓 ≡ 𝑓 𝑡

hbnd 𝐴 𝐵 (ret 𝐴 𝑡) 𝑓 ≡ 𝑓 𝑡 .

For brevity, we will use implicit type arguments for the monadic combinators. Similarly, when

forming inhabitants of □□ in the translation below, we will omit the algebra morphism and simply

write {{𝐴}} : □□ given any 𝐴 : □. The morphisms are the same as in our previous paper [Pédrot and

Tabareau 2017] and are canonical, e.g. for a type of the form T 𝐴, it is the free morphism.

Definition 16 (Weaning). Assuming a self-algebraic proto-monad, we define the weaning trans-

lation from 𝜕CBPV to CIC by induction over the term syntax in Figure 11. We only deal with

coproducts, dependent sums and equality can be handled in the same way.

This translation gives rise to a syntactical model of 𝜕CBPV.

Proposition 13 (Soundness). The following hold.
• Γ ⊢𝑐 𝑡 : 𝑋 implies [[Γ]] ⊢CIC [𝑡] : [[𝑋]]𝑐 .
• Γ ⊢𝑣 𝑣 : 𝐴 implies [[Γ]] ⊢CIC [𝑡] : [[𝐴]]𝑣 .
• 𝑡 ≡𝜕CBPV 𝑢 implies [𝑡] ≡CIC [𝑢] and similarly for values.

Proof. Similar to [Pédrot and Tabareau 2017]. □

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 58. Publication date: January 2020.

58:22 Pierre-Marie Pédrot and Nicolas Tabareau

[[𝑋]]𝑐 := (El [𝑋]).𝜋1 [𝑥] := 𝑥

[[𝐴]]𝑣 := [𝐴] [thunk 𝑡] := [𝑡]
[□𝑐

𝑖
] := ret {{T □□𝑖 }} [force 𝑣] := [𝑣]

[□𝑣
𝑖
] := □𝑖 [_𝑥 : 𝐴. 𝑡] := _𝑥 : [[𝐴]]𝑣 . [𝑡]

[F 𝐴] := ret {{T 𝐴}} [𝑡 𝑣] := [𝑡] [𝑣]
[U 𝑋] := [[𝑋]]𝑐 [let 𝑥 : 𝐴 := 𝑡 in 𝑢] := bnd [𝑡] (_𝑥 : [[𝐴]]𝑣 . [𝑢])
[Π𝑥 : 𝐴.𝑋] := ret {{Π𝑥 : [[𝐴]]𝑣 . [[𝑋]]𝑐 }} [dlet 𝑥 : 𝐴 := 𝑡 in 𝑢] := hbnd [𝑡] (_𝑥 : [[𝐴]]𝑣 . [𝑢])
[𝐴 + 𝐵] := [[𝐴]]𝑣 + [[𝐵]]𝑣 [return 𝑣] := ret [𝑣]
[[·]] := · [inl 𝑣] := inl [𝑣]
[[Γ, 𝑥 : 𝐴]] := [[Γ]], 𝑥 : [[𝐴]]𝑣 [inr𝑤] := inr [𝑤]

[rec+ (𝑣, 𝑋,𝑢1, 𝑢2)] := rec+ ([𝑣], [𝑋], [𝑢1], [𝑢2])

Fig. 11. Weaning Translation

[E] : [[□𝑣
0
]]𝑣

:= E

[raise] : [[E → Π𝐴 : □𝑣
𝑖
. F 𝐴]]𝑐

:= _(𝑒 : E) (𝐴 : □𝑖) . inr 𝑒
[catch] : [[Π(𝐴 : □𝑣

𝑖
) (𝑃 : U (U (F 𝐴) → □𝑐

𝑖
)) .

U (Π𝑎 : 𝐴. force 𝑃 (thunk (return 𝑎))) →
U (Π𝑒 : E. force 𝑃 (thunk (raise 𝐴 𝑒))) →
Π𝑥 : U (F 𝐴) . force 𝑃 𝑥]]𝑐

:= _(𝐴 : □𝑖) (𝑃 : (𝐴 + E) → T □□𝑖).
_(𝑢𝑣 : Π𝑎 : 𝐴. (El (𝑃 (inl𝑎))) .𝜋1) (𝑢𝑒 : Π𝑒 : E. (El (𝑃 (inr 𝑒))) .𝜋1) (𝑥 : 𝐴 + E) .

rec+ (𝑥, _𝑥 . (El (𝑃 𝑥)).𝜋1, 𝑢𝑣, 𝑢𝑒)

Fig. 12. Exceptional effects

Corollary 1. The weaning translation is a model of 𝜕CBPV.

9.2 Effectful Primitives
Through this model, it is possible to extend 𝜕CBPV with all the new primitives coming from the T
type constructor. For instance, any free algebraic monad is also a self-algebraic one trivially. In

this case, any constructor from this monad is straightforwardly reflected as a new parameterized

computation of type F 𝐴 for some 𝐴, and the induction principle over T is reflected as a kind

of generalized try-catch block. For the sake of simplicity, we consider T 𝐴 := 𝐴 + E for some

exception type E in the target theory, with El (inl𝑋) := 𝑋 and El (inr 𝑒) := Ω 𝑒 for some

arbitrary Ω : E→ □□, and we implement the primitives from Section 4 in Figure 12.

The translation is slightly cluttered due to the fact that computation types are algebras, but apart

from that the implementation is fairly simple. Raising an exception corresponds to using the right

injection of the sum type, and the generalized try-catch block uses dependent elimination over the

monadic value to dispatch the corresponding branch.

9.3 Thunkability
Thunkability is not very interesting in this model. Assuming extensionality, we have indeed:

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 58. Publication date: January 2020.

The Fire Triangle 58:23

Proposition 14. A term 𝑡 : [[F 𝐴]]𝑐 ≡ T [[𝐴]]𝑣 is thunkable iff there exists 𝑣 : [[𝐴]]𝑣 s.t. 𝑡 ≡ ret 𝑣 .

The weaning translation does provide the required extensions for the call-by-thunkable decom-

position, but the resulting model is essentially the target theory, as thunkability prevent any effect

to creep in.

10 FORCING TRANSLATION IN 𝜕CBPV

This section is devoted to the definition of the forcing model of 𝜕CBPV. This model is essentially

the one from [Jaber et al. 2012] and bears similarity with a CBPV model described by Levy [Levy

2001, 2002] which is a state-like, simply-typed variant of it. Contrarily to the other 𝜕CBPV models

presented in this paper, we require the target theory, henceforth refered to as ECIC, to be extensional,
i.e. propositional and definitional equality must coincide. This requirement is slightly stronger

than [Jaber et al. 2012] to be able to interpret 𝜕CBPV conversion by conversion in the target.

The forcing translation described in [Jaber et al. 2012] can be seen as a formalisation of the

presheaf construction in category theory. Given a base category P, whose objects are traditional
referred to as forcing conditions, and an initial forcing condition 𝑝 , a computation type is interpreted

as a family of types indexed by the forcing conditions 𝑞 that can be reached from 𝑝 , with a

monotonicity requirement. In Kripke terminology, one says that 𝑞 is in the future of 𝑝 . In a

categorical setting, this corresponds to functors from P to the category of sets. The rest of the

translation is performed in the same way, reflecting the categorical machinery of presheaves. In

particular, the translation of dependent product comes with an external equality requirement which

reflects the naturality condition of natural transformations.

In 𝜕CBPV, we can split the translation in two steps. First a translation which does not mentioned

the naturality condition and then the definition of what it means to be thunkable in this setting—

which corresponds precisely to the naturality condition in the presheaf construction. Therefore,

the translation of CIC described in [Jaber et al. 2012] can be recovered by combining the forcing

translation on 𝜕CBPV with the call-by-thunkable translation of Section 7.

10.1 Forcing Translation
First of all, we need a notion of base category in the target.

Definition 17 (Base category). A base category is given by the four ECIC terms below:

• P : □0;

• ≤ : P→ P→ □0;

• 1 : Π𝑝 : P. 𝑝 ≤ 𝑝;

• ∗ : Π(𝑝 𝑞 𝑟 : P). 𝑝 ≤ 𝑞 → 𝑞 ≤ 𝑟 → 𝑝 ≤ 𝑟

subject to the following conversion rules.

1𝑝 ∗ 𝑓 ≡ 𝑓 𝑓 ∗ 1𝑞 ≡ 𝑓 𝑓 ∗ (𝑔 ∗ ℎ) ≡ (𝑓 ∗ 𝑔) ∗ ℎ

For clarity, we use an infix notation with implicit type arguments. While we stick to a notation

reminiscent of preorders, the relation is not necessarily proof-irrelevant.We assume in the remainder

of this section a fixed base category that we will call forcing conditions. We will use the binder

notation (𝑞 𝛼 : 𝑝) for (𝑞 : P) (𝛼 : 𝑞 ≤ 𝑝).

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 58. Publication date: January 2020.

58:24 Pierre-Marie Pédrot and Nicolas Tabareau

[[𝐴]]Γ𝑝 := [𝐴]Γ𝑝 .type 𝑝 1𝑝 [𝑥]Γ𝑝 := 𝑥

[□𝑐
𝑖
]Γ
𝑝

:= □𝑖 [thunk 𝑡]Γ𝑝 := _(𝑞 𝛼 : 𝑝). 𝛼 •Γ [𝑡]Γ𝑞
[□𝑣

𝑖
]Γ
𝑝

:= {{_(𝑞 𝛼 : 𝑝) .□□𝑖 𝑞}} [force 𝑣]Γ𝑝 := [𝑣]Γ𝑝 𝑝 1𝑝

[Π𝑥 : 𝐴.𝑋]Γ𝑝 := Π𝑥 : [[𝐴]]Γ𝑝 . [𝑋]Γ𝑝 [_𝑥 : 𝐴. 𝑡]Γ𝑝 := _𝑥 : [[𝐴]]Γ𝑝 . [𝑡]
Γ,𝑥 :𝐴
𝑝

[U 𝑋]Γ𝑝 := {{_(𝑞 𝛼 : 𝑝) .Π(𝑟 𝛽 : 𝑞) .
(𝛽 ∗ 𝛼) •Γ [𝑋]Γ𝑟 }}

[𝑡 𝑣]Γ𝑝 := [𝑡]Γ𝑝 [𝑣]Γ𝑝

[F 𝐴]Γ𝑝 := [[𝐴]]Γ𝑝 [let 𝑥 : 𝐴 := 𝑡 in 𝑢]Γ𝑝 := (_𝑥 : [[𝐴]]𝑝 . [𝑢]Γ,𝑥 :𝐴𝑝) [𝑡]Γ𝑝
[[·]]𝑝 := 𝑝 : P [dlet 𝑥 : 𝐴 := 𝑡 in 𝑢]Γ𝑝 := (_𝑥 : [[𝐴]]𝑝 . [𝑢]Γ,𝑥 :𝐴𝑝) [𝑡]Γ𝑝
[[Γ, 𝑥 : 𝐴]]𝑝 := [[Γ]]𝑝 , 𝑥 : [[𝐴]]Γ𝑝 [return 𝑣]Γ𝑝 := [𝑣]Γ𝑝

Assuming 𝛼 : 𝑞 ≤ 𝑝 , we write
𝛼 ◦Γ

𝐴
𝑡 := [𝐴]Γ𝑝 .mono 𝑝 1𝑝 𝑞 𝛼 𝑡

𝛼 •Γ 𝑡 := 𝑡{𝑥𝑖 := 𝛼 ◦Γ
𝐴𝑖

𝑥𝑖 | (𝑥𝑖 : 𝐴𝑖) ∈ Γ}.

Fig. 13. Forcing Translation

Definition 18 (Monotonic types). Given 𝑝 : P and a universe index 𝑖 , we define □□𝑖 𝑝 , the type of

monotonic types at 𝑝 as:

type : Π(𝑞 𝛼 : 𝑝) .□𝑖

mono : Π(𝑞 𝛼 : 𝑝) (𝑟 𝛽 : 𝑞).
type 𝑞 𝛼 → type 𝑟 (𝛽 ∗ 𝛼)

refl : Π(𝑞 𝛼 : 𝑝) (𝑥 : type 𝑞 𝛼).
mono 𝑞 𝛼 𝑞 1𝑞 𝑥 = 𝑥

trns : Π(𝑞 𝛼 : 𝑝) (𝑟 𝛽 : 𝑞) (𝑠 𝛾 : 𝑟) (𝑥 : type 𝑞 𝛼).
mono 𝑞 𝛼 𝑠 (𝛾 ∗ 𝛽) 𝑥 =

mono 𝑟 (𝛽 ∗ 𝛼) 𝑠 𝛾 (mono 𝑞 𝛼 𝑟 𝛽 𝑥)

We use a record notation for readability, but this can readily be understood as an iterated Σ-type.

In what follows, given 𝐴 : Π(𝑞 𝛼 : 𝑝).□𝑖 we will just write {{𝐴}} for the monotonic type with field

type : 𝐴 if the other fields are canonical.

Definition 19 (Forcing translation). The forcing translation, defined at Fig. 13, is indexed by a

𝜕CBPV environment Γ and a condition 𝑝 and produces an ECIC term.

Let us walk through this definition. Computation types are interpreted as mere types, while

value types are interpreted as monotonic types. In particular as □𝑣
𝑖 : □

𝑣
𝑖+1, one needs to equip the

value universe with that structure as well. As mentioned above, we omit non-type fields.

The F former simply forgets about the additional structure, whileU freely turns a P-indexed
type into a monotonic one by quantifying over all lower conditions. Every time we quantify over a

forcing condition (𝑞 𝛼 : 𝑝), we need to lift all the free variables of the subterms by making 𝛼 act

on them. This happens in the thunk and U cases. We need to do this because there is a mismatch

between free variables which live at level 𝑞 while we would like them to live at level 𝑝 . Dually, the

force translation resets a boxed term by applying it to the current condition.

Remark 2. While at first sight the reader translation looks like a trivialization of the forcing transla-

tion where the base category is a full preorder, it is not the case. The monotonicity requirement is

absent from the reader translation, and consequently the lifting of open variables is also non-existent

there.

Proposition 15. If [[Γ]]𝑝 ⊢ECIC 𝑡 : 𝐴, then 1𝑝 •Γ 𝑡 ≡ 𝑡 and (𝛽 ∗ 𝛼) •Γ 𝑡 ≡ 𝛼 •Γ (𝛽 •Γ 𝑡) assuming
well-typedness of morphisms.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 58. Publication date: January 2020.

The Fire Triangle 58:25

Proposition 16 (Typing soundness). Assume Γ ⊢𝑐 t : X, then [[Γ]]𝑝 ⊢ [𝑡]Γ𝑝 : [𝑋]Γ𝑝 and similarly
for values.

Proposition 17 (Computational soundness). For all Γ ⊢𝑐 t,u : A, if 𝑡 ≡ 𝑢 then [𝑡]Γ𝑝 ≡ [𝑢]Γ𝑝 and
similarly for values.

As usual, those properties need to be proved by mutual induction. Extensionality in the target

is critical for them to hold though, because we need to rewrite equations coming from refl and
trns in arbitrary contexts.

As for presheaves, inductive types are translated pointwise. Once again, we only describe the

coproduct translation.

Definition 20. Coproducts are translated as follows.

[𝐴 + 𝐵]Γ𝑝 := {{_(𝑞 𝛼 : 𝑝) . (𝛼 •Γ [[𝐴]]Γ𝑞) + (𝛼 •Γ [[𝐵]]Γ𝑞)}}

[inl 𝑣]Γ𝑝 := inl [𝑣]Γ𝑝
[inr𝑤]Γ𝑝 := inr [𝑤]Γ𝑝
[rec+ (𝑣, 𝑋,𝑢1, 𝑢2)]Γ𝑝 := rec+ ([𝑣]Γ𝑝 , [𝑋]Γ𝑝 , [𝑢1]Γ𝑝 , [𝑢2]Γ𝑝)

Soundness is trivially extended.

Theorem 5. The forcing translation is a model of 𝜕CBPV.

This model is quite interesting. It is not the usual presheaf construction, because we do not

require naturality of functions. As such, precomposing it with the by-name or by-value translation

into 𝜕CBPVwould not provide a model ofCIC, but rather of BTT orCIC𝑣
, forfeiting respectively de-

pendent elimination or arbitrary substitution. Note that precomposing with the by-name translation

essentially gives the forcing translation defined in [Jaber et al. 2016].

10.2 Thunkability
What would the thunkable translation look like? To answer this, we need to peek at the forcing

translation of thunkability. Without further ado:

Proposition 18. A term Γ ⊢𝜕CBPV 𝑡 : F 𝐴 is thunkable iff it is natural, i.e. for all 𝑝, 𝑞, 𝛼 : 𝑞 ≤ 𝑝 ,

𝛼 •Γ [𝑡]Γ𝑞 ≡ECIC 𝛼 ◦Γ
𝐴
[𝑡]Γ𝑝 .

This naturality property matches exactly the one from categorical presheaves, and can be

rewritten abstractly as

[[Γ]]𝑝
[𝑡]Γ𝑝

//

𝛼 •Γ (−)
��

[[𝐴]]Γ𝑝

𝛼 ◦Γ
𝐴
(−)

��

[[Γ]]𝑞
[𝑡]Γ𝑞

// [[𝐴]]Γ𝑞

To the best of our knowledge, this property had never been observed as such in the literature,

even though it is far-reaching. The closest thing can be found in Levy’s state-like model [Levy 2002],

where naturality is part of the definition of the model, rather than a property arising a posteriori
from a generic equation unrelated to the model at hand.

This is the deep reason why usual presheaves actually provide a full model of dependent type

theory, including both substitution and dependent elimination. Namely, the presheaf category is at

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 58. Publication date: January 2020.

58:26 Pierre-Marie Pédrot and Nicolas Tabareau

its very core the restriction of an effectful type theory to thunkable terms. The only place where

this needs to be performed is on non-value types, that is, Π-types.
The trade-off of this construction is that thunkability is quite an extensional property, which

does not matter in topos theory, but is not easily amenable in type theory. In particular, it remains

an open problem to describe a syntactic presheaf model targetting an intensional CIC, although
the extension of CIC with strict propositions [Gilbert et al. 2019] seems to bring such a model into

the realm of possibility.

11 RELATEDWORK
With the growing popularity of dependent type theory, there has been a recent surge in interest

around this topic. In addition to the papers which were the source for the models of 𝜕CBPV [Jaber

et al. 2016; Pédrot and Tabareau 2017, 2018], there are two lines of work that are particularly close

to the current paper, namely Ahman’s [Ahman 2018] and Vákár’s [Vákár 2015, 2017].

We concede that Ahman’s eMLTT system is very similar in spirit to our solution, as it features

a restriction based on algebra homomorphisms, which are the categorical equivalent of linear

morphisms. Unfortunately, he falls short of providing a satisfying account of large elimination. The

type structure of his system embeds no less than a copy of an effect-free CIC to handle type-level

computation, which prevents decomposing large elimination through the usual CBPV route. The

current paper solves this limitation straightforwardly by equipping computation types, seen as

terms, with an algebra structure. Furthermore, categorical models are of little use when it comes to

intensional properties, which is why we argue in favour of our syntactic models.

[Pédrot and Tabareau 2017] already advocated against Vákár’s dCBPV. For the sake of self-

containedness, we summarize their grievances here. Vákár’s system is twofold. First, he gives a

base system that is very weak where there is no real way to depend on terms, similarly to the

system we sketch in Section 6. Upon realizing that the system is mostly useless, he adds a extension

rule allowing to lift any inhabitant of free computations in types. Unluckily, this rule is equivalent

to postulating that all predicates are linear, which, by the Fire Triangle, means that any model

satisfying this rule is either pure or inconsistent.

Let us also mention an interesting recent attempt by Bowman et al. [Bowman et al. 2018] at

working around the negative result of Barthe and Uustalu regarding a type-preserving CPS of CIC.
Their model fundamentally relies on an impredicative universe as well as an extensional target,

which we find a bit disappointing. Nonetheless, the parametricity equation that they admit as a

free theorem is no more than thunkability through the CPS translation, which makes their system

a sibling of the by-thunkable decomposition.

We will end by citing a slightly more distant, but still related work by Lepigre [Lepigre 2016].

Although his system is somewhere in between NuPRL and HOL, he faces the same issues of

interactions between effects and dependency, this time in a call-by-value setting. In order for the

system to be usable in practice, this naturally leads him to extend value restriction from a syntactic

criterion to a semantic one akin to thunkability.

ACKNOWLEDGEMENTS
This research has been funded by the CoqHoTT ERC Grant 637339.

REFERENCES
Andreas Abel. 2012. Normalization by Evaluation, Dependent Types and Impredicativity. Ph.D. Dissertation. Institut für

Informatik Ludwig-Maximilians-Universität München.

Danel Ahman. 2018. Handling Fibred Algebraic Effects. Proc. ACM Program. Lang. 2, POPL, Article 7 (Jan. 2018), 29 pages.
https://doi.org/10.1145/3158095

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 58. Publication date: January 2020.

https://doi.org/10.1145/3158095

The Fire Triangle 58:27

Danel Ahman, Neil Ghani, and Gordon D. Plotkin. 2016. Dependent Types and Fibred Computational Effects. In 19th
International Conference on Foundations of Software Science and Computation Structures. Springer Berlin Heidelberg,

Eindhoven, The Netherlands, 36–54. https://doi.org/10.1007/978-3-662-49630-5_3

Gilles Barthe and Tarmo Uustalu. 2002. CPS Translating Inductive and Coinductive Types. In Proceedings of Partial Evaluation
and Semantics-based Program Manipulation. ACM, 131–142.

Ales Bizjak, Hans Bugge Grathwohl, Ranald Clouston, Rasmus Ejlers Møgelberg, and Lars Birkedal. 2016. Guarded Dependent

Type Theory with Coinductive Types. In Foundations of Software Science and Computation Structures - 19th International
Conference, FOSSACS 2016, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2016,
Eindhoven, The Netherlands, April 2-8, 2016, Proceedings (Lecture Notes in Computer Science), Bart Jacobs and Christof

Löding (Eds.), Vol. 9634. Springer, 20–35. https://doi.org/10.1007/978-3-662-49630-5_2

Simon Boulier, Pierre-Marie Pédrot, and Nicolas Tabareau. 2017. The Next 700 Syntactical Models of Type Theory. In

Proceedings of Certified Programs and Proofs. ACM, 182–194.

William J. Bowman, Youyou Cong, Nick Rioux, and Amal Ahmed. 2018. Type-preserving CPS translation of Σ and Π types

is not not possible. PACMPL 2, POPL (2018), 22:1–22:33. https://doi.org/10.1145/3158110

Thierry Coquand. 2019. Canonicity and normalization for dependent type theory. Theor. Comput. Sci. 777 (2019), 184–191.
https://doi.org/10.1016/j.tcs.2019.01.015

Carsten Führmann. 1999. Direct Models of the Computational Lambda-calculus. Electronic Notes in Theoretical Computer
Science 20 (1999), 245 – 292. https://doi.org/10.1016/S1571-0661(04)80078-1 MFPS XV, Mathematical Foundations of

Progamming Semantics, Fifteenth Conference.

Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau. 2019. Definitional proof-irrelevance without K.

PACMPL 3, POPL (2019), 3:1–3:28. https://doi.org/10.1145/3290316

Jean-Yves Girard. 1987. Linear Logic. Theor. Comput. Sci. 50 (1987), 1–102. https://doi.org/10.1016/0304-3975(87)90045-4

V. Glivenko. 1929. Sur Quelques Points de la Logique de M. Brouwer. Bulletins de la classe des sciences 15 (1929), 183–188.
Timothy Griffin. 1990. A Formulae-as-Types Notion of Control. In Conference Record of the Seventeenth Annual ACM

Symposium on Principles of Programming Languages, San Francisco, California, USA, January 1990. 47–58. https:

//doi.org/10.1145/96709.96714

Hugo Herbelin. 2005. On the Degeneracy of Sigma-Types in Presence of Computational Classical Logic. In Seventh
International Conference, TLCA ’05, Nara, Japan. April 2005, Proceedings (Lecture Notes in Computer Science), Pawel
Urzyczyn (Ed.), Vol. 3461. Springer, 209–220.

Guilhem Jaber, Gabriel Lewertowski, Pierre-Marie Pédrot, Matthieu Sozeau, and Nicolas Tabareau. 2016. The Definitional

Side of the Forcing. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, New
York, NY, USA, July 5-8, 2016. 367–376.

Guilhem Jaber, Nicolas Tabareau, and Matthieu Sozeau. 2012. Extending Type Theory with Forcing. In LICS 2012 : Logic In
Computer Science. Dubrovnik, Croatia, 0–0.

Jean-Louis Krivine. 1994. Classical Logic, Storage Operators and Second-Order lambda-Calculus. Ann. Pure Appl. Logic 68, 1
(1994), 53–78. https://doi.org/10.1016/0168-0072(94)90047-7

Rodolphe Lepigre. 2016. A Classical Realizability Model for a Semantical Value Restriction. In Programming Languages
and Systems - 25th European Symposium on Programming, ESOP 2016, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings. 476–502.
https://doi.org/10.1007/978-3-662-49498-1_19

Paul Blain Levy. 2001. Call-by-push-value. Ph.D. Dissertation. Queen Mary, University of London.

Paul Blain Levy. 2002. Possible World Semantics for General Storage in Call-By-Value. In Computer Science Logic, 16th
International Workshop, CSL 2002, 11th Annual Conference of the EACSL, Edinburgh, Scotland, UK, September 22-25, 2002,
Proceedings. 232–246. https://doi.org/10.1007/3-540-45793-3_16

Paul Blain Levy. 2017. Contextual Isomorphisms. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages. ACM, New York, NY, USA, 400–414. https://doi.org/10.1145/3009837.3009898

Per Martin-Löf. 2006. 100 years of Zermelo’s axiom of choice: what was the problem with it? Comput. J. 49, 3 (2006),

345–350. https://doi.org/10.1093/comjnl/bxh162

Eugenio Moggi. 1991. Notions of Computation and Monads. Information and Computation 93, 1 (July 1991), 55–92.

Guillaume Munch-Maccagnoni. 2014. Models of a Non-Associative Composition. In 17th International Conference on
Foundations of Software Science and Computation Structures, Anca Muscholl (Ed.), Vol. 8412. Springer, Grenoble, France,

396–410.

Pierre-Marie Pédrot and Nicolas Tabareau. 2017. An effectful way to eliminate addiction to dependence. In 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017. IEEE Computer

Society, 1–12. https://doi.org/10.1109/LICS.2017.8005113

Pierre-Marie Pédrot and Nicolas Tabareau. 2018. Failure is Not an Option - An Exceptional Type Theory. In Programming
Languages and Systems - 27th European Symposium on Programming, ESOP 2018, Held as Part of the European Joint

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 58. Publication date: January 2020.

https://doi.org/10.1007/978-3-662-49630-5_3
https://doi.org/10.1007/978-3-662-49630-5_2
https://doi.org/10.1145/3158110
https://doi.org/10.1016/j.tcs.2019.01.015
https://doi.org/10.1016/S1571-0661(04)80078-1
https://doi.org/10.1145/3290316
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1145/96709.96714
https://doi.org/10.1145/96709.96714
https://doi.org/10.1016/0168-0072(94)90047-7
https://doi.org/10.1007/978-3-662-49498-1_19
https://doi.org/10.1007/3-540-45793-3_16
https://doi.org/10.1145/3009837.3009898
https://doi.org/10.1093/comjnl/bxh162
https://doi.org/10.1109/LICS.2017.8005113

58:28 Pierre-Marie Pédrot and Nicolas Tabareau

Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings. 245–271.
https://doi.org/10.1007/978-3-319-89884-1_9

The Univalent Foundations Program. 2013. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for
Advanced Study.

Matthijs Vákár. 2015. A Framework for Dependent Types and Effects. arXiv:arXiv:1512.08009 https://arxiv.org/abs/1512.08009

draft.

Matthijs Vákár. 2017. In Search of Effectful Dependent Types. Ph.D. Dissertation. University of Oxford.

Andrew Wright. 1995. Simple Imperative Polymorphism. In LISP and Symbolic Computation. 343–356.

Proc. ACM Program. Lang., Vol. 4, No. POPL, Article 58. Publication date: January 2020.

https://doi.org/10.1007/978-3-319-89884-1_9
http://arxiv.org/abs/arXiv:1512.08009
https://arxiv.org/abs/1512.08009

	Abstract
	1 Introduction
	1.1 Plan of the Paper

	2 Substitution, Dependent Elimination and Observable Effects
	2.1 The Fire Triangle: A General No-Go Theorem
	2.2 Substitution in Call-By-Value
	2.3 Dependent Elimination in Call-By-Name
	2.4 Examples
	2.5 Explicit Handling of Effects: Call-By-Push-Value
	2.6 Taming the Fire Triangle: Dependent Call-By-Push-Value
	2.7 A Syntactic Guideline: Weaning and Forcing

	3 Dependent Call-By-Push-Value
	3.1 Syntax of CBPV
	3.2 Meaning of Types
	3.3 Meaning of Terms
	3.4 Reduction of CBPV
	3.5 Unifying Thunkability and Linearity

	4 CBPV in Action
	4.1 Generic Catch For Exceptions
	4.2 Proof-Relevant Open Modality
	4.3 Normalization by Evaluation (NbE)

	5 Call-by-Name Translation
	5.1 Call-By-Name Translation: the Negative Fragment
	5.2 Extension to BTT
	5.3 Extending BTT with Linearity

	6 Call-by-Value Translation
	6.1 Call-By-Value Translation in CBPV
	6.2 Limitation of Call-By-Value
	6.3 Recovering CIC through Thunkability

	7 Call-by-Thunkable Translation
	7.1 Negative Fragment
	7.2 Positive Fragment

	8 Reader Translation
	8.1 Translation
	8.2 Reader Effects
	8.3 A Glimpse of BTT
	8.4 Thunkability

	9 Weaning Translation in CBPV
	9.1 Weaning Translation
	9.2 Effectful Primitives
	9.3 Thunkability

	10 Forcing Translation in CBPV
	10.1 Forcing Translation
	10.2 Thunkability

	11 Related Work
	References

