
HAL Id: hal-02385487
https://hal.inria.fr/hal-02385487

Submitted on 28 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On quasi-reversibility solutions to the Cauchy problem
for the Laplace equation: regularity and error estimates

Laurent Bourgeois, Lucas Chesnel

To cite this version:
Laurent Bourgeois, Lucas Chesnel. On quasi-reversibility solutions to the Cauchy problem for the
Laplace equation: regularity and error estimates. ESAIM: Mathematical Modelling and Numerical
Analysis, EDP Sciences, 2020, �10.1051/m2an/2019073�. �hal-02385487�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/266884848?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-02385487
https://hal.archives-ouvertes.fr


On quasi-reversibility solutions to the Cauchy problem
for the Laplace equation: regularity and error estimates

Laurent Bourgeois1, Lucas Chesnel2

1 Laboratoire Poems, CNRS/ENSTA/INRIA, Ensta ParisTech, Université Paris-Saclay, 828, Boulevard
des Maréchaux, 91762 Palaiseau, France;
2 INRIA/Centre de mathématiques appliquées, École Polytechnique, Université Paris-Saclay, Route de
Saclay, 91128 Palaiseau, France.

E-mails: Laurent.Bourgeois@ensta-paristech.fr, Lucas.Chesnel@inria.fr

(November 28, 2019)

Abstract. We are interested in the classical ill-posed Cauchy problem for the Laplace equation.
One method to approximate the solution associated with compatible data consists in considering a
family of regularized well-posed problems depending on a small parameter ε > 0. In this context, in
order to prove convergence of finite elements methods, it is necessary to get regularity results of the
solutions to these regularized problems which hold uniformly in ε. In the present work, we obtain
these results in smooth domains and in 2D polygonal geometries. In presence of corners, due to the
particular structure of the regularized problems, classical techniques à la Grisvard do not work and
instead, we apply the Kondratiev approach. We describe the procedure in detail to keep track of
the dependence in ε in all the estimates. The main originality of this study lies in the fact that the
limit problem is ill-posed in any framework.
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1 Introduction and setting of the problem
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Figure 1: Examples of domains Ω. The thick blue lines represent the support of measurements.

Let us consider a bounded Lipschitz domain Ω ⊂ Rd, d > 1, the boundary ∂Ω of which is
partitioned into two sets Γ and Γ̃. More precisely, Γ and Γ̃ are non empty open sets for the topology
induced on ∂Ω from the topology on Rd, ∂Ω = Γ ∪ Γ̃ and Γ ∩ Γ̃ = ∅ (see Figure 1). The Cauchy
problem we are interested in consists, for some data (g0, g1) ∈ H1/2(Γ) × H−1/2(Γ), in finding
u ∈ H1(Ω) such that 

∆u = 0 in Ω
u = g0 on Γ

∂νu = g1 on Γ,
(1)

where ν is the outward unit normal to ∂Ω. This kind of problem arises when some part Γ̃ of
the boundary of a structure is not accessible, while the complementary part Γ is the support of
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measurements which provide the Cauchy data (g0, g1). It is important to note that in practice those
measurements are contaminated by some noise. Due to Holmgren’s theorem, the Cauchy problem
(1) has at most one solution. However it is ill-posed in the sense of Hadamard: existence may not
hold for some data (g0, g1), as for example shown in [3]. A possibility to regularize problem (1) is to
use the quasi-reversibility method, which goes back to [31] and was revisited in [27]. The original
idea was to replace an ill-posed Boundary Value Problem such as (1) by a family, depending on a
small parameter ε, of well-posed fourth-order BVPs. Much later, the first author introduced the
notion of mixed formulation of quasi-reversibility for the Cauchy problem of the Laplace equation [4].
This notion was extended to general abstract linear ill-posed problems in [7]. The idea is to replace
the ill-posed second-order BVP by a family, again depending on a small parameter ε, of second-order
systems of two coupled BVPs: the advantage is that the order of the regularized problem is the
same as the original one, which is interesting when it comes to the numerical resolution. The price
to pay is the introduction of a second unknown function λε in addition to the principal unknown
uε. Such mixed formulation of quasi-reversibility is the following: for ε > 0, find (uε, λε) ∈ Vg0 × Ṽ0
such that for all (v, µ) ∈ V0 × Ṽ0,

ε

∫
Ω
∇uε · ∇v dx+

∫
Ω
∇v · ∇λε dx = 0∫

Ω
∇uε · ∇µdx−

∫
Ω
∇λε · ∇µdx = 〈g1, µ〉H−1/2(Γ),H̃1/2(Γ),

(2)

where Vg0 = {u ∈ H1(Ω), u|Γ = g0}, V0 = {u ∈ H1(Ω), u|Γ = 0} and Ṽ0 = {λ ∈ H1(Ω), λ|Γ̃ = 0}.
In (2), the brackets stand for duality pairing between H−1/2(Γ) and H̃1/2(Γ). Here H̃1/2(Γ) is the
subspace formed by the functions in H1/2(Γ) which, once extended by 0 on ∂Ω, remain in H1/2(∂Ω).
We observe that in view of Poincaré inequality, the standard norm of H1(Ω) in the spaces V0 and
Ṽ0 is equivalent to the semi-norm ‖ · ‖ defined by ‖ · ‖2 =

∫
Ω |∇ · |2 dx. Let us denote (·, ·) the

corresponding scalar product. We remark that the weak formulation (2) is equivalent to the strong
problem 

∆uε = 0 in Ω
∆λε = 0 in Ω
uε = g0 on Γ

∂νuε − ∂νλε = g1 on Γ
λε = 0 on Γ̃

ε ∂νuε + ∂νλε = 0 on Γ̃,

(3)

where we observe that the two unknowns uε and λε are harmonic functions which are coupled at
the boundary ∂Ω. We have the following theorem.
Theorem 1.1. For all (g0, g1) ∈ H1/2(Γ) × H−1/2(Γ), the problem (2) has a unique solution
(uε, λε) ∈ Vg0 × Ṽ0. There exists a constant C which depends only on the geometry such that

∀ε ∈ (0, 1],
√
ε‖uε‖H1(Ω) + ‖λε‖H1(Ω) ≤ C(‖g0‖H1/2(Γ) + ‖g1‖H−1/2(Γ)).

If in addition we assume that (g0, g1) is such that problem (1) has a (unique) solution u (the data
are said to be compatible), then there exists a constant C which depends only on the geometry such
that

∀ε > 0, ‖uε‖H1(Ω) +
‖λε‖H1(Ω)√

ε
≤ C‖u‖H1(Ω)

and
lim
ε→0
‖uε − u‖H1(Ω) = 0.

To prove such theorem, we need the following lemma, which establishes an equivalent weak formu-
lation to problem (1) and which is proved in [7].
Lemma 1.1. For (g0, g1) ∈ H1/2(Γ)×H−1/2(Γ), the function u is a solution to problem (1) if and
only if u ∈ Vg0 and for all µ ∈ Ṽ0, we have∫

Ω
∇u · ∇µ dx = 〈g1, µ〉H−1/2(Γ),H̃1/2(Γ). (4)
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Proof of Theorem 1.1. Let us begin with the first part of the theorem. There exists a continuous
lifting operator g0 7→ U from H1/2(Γ) to H1(Ω) such that U |Γ = g0. Let us define ûε = uε−U ∈ V0.
By replacing in (2), we obtain that (ûε, λε) ∈ V0 × Ṽ0 satisfies, for all (v, µ) ∈ V0 × Ṽ0, the system

ε

∫
Ω
∇ûε · ∇v dx+

∫
Ω
∇v · ∇λε dx = −ε

∫
Ω
∇U · ∇v dx∫

Ω
∇ûε · ∇µdx−

∫
Ω
∇λε · ∇µdx = 〈g1, µ〉H−1/2(Γ),H̃1/2(Γ) −

∫
Ω
∇U · ∇µdx.

Well-posedness then relies on the Lax-Milgram Lemma applied to the coercive bilinear form

Aε((u, λ); (v, µ)) = ε

∫
Ω
∇u · ∇v dx+

∫
Ω
∇v · ∇λ dx−

∫
Ω
∇u · ∇µdx+

∫
Ω
∇λ · ∇µdx

on V0 × Ṽ0. Choosing v = ûε and µ = λε and subtracting the two above equations, we obtain

ε

∫
Ω
|∇ûε|2 dx+

∫
Ω
|∇λε|2 dx = −ε

∫
Ω
∇U · ∇ûε dx− 〈g1, λε〉+

∫
Ω
∇U · ∇λε dx.

The Cauchy-Schwarz inequality implies

ε‖ûε‖2 + ‖λε‖2 ≤ ε‖U‖‖ûε‖+ ‖g1‖H−1/2(Γ)‖λε‖H1/2(Γ) + ‖U‖‖λε‖.

The equivalence of norm ‖ · ‖ and the standard H1(Ω) norm in spaces V0 and Ṽ0, the continuity of
the trace operator and the continuity of the lifting operator g0 7→ U yield

ε‖ûε‖2H1(Ω) + ‖λε‖2H1(Ω) ≤ Cε‖g0‖H1/2(Γ)‖ûε‖H1(Ω) + (c‖g1‖H−1/2(Γ) + C‖g0‖H1/2(Γ))‖λε‖H1(Ω).

Using the Young’s inequality to deal with the right hand side of the above inequality, the result
follows. Let us prove the second part of the theorem. In the case when the Cauchy data (g0, g1) is
associated with the solution u, then u satisfies the weak formulation (4). By subtracting (4) to the
second equation of (2), we obtain that for all µ ∈ Ṽ0,∫

Ω
∇(uε − u) · ∇µdx−

∫
Ω
∇λε · ∇µdx = 0. (5)

Now setting v = uε − u ∈ V0 in the first equation of (2), setting µ = λε ∈ Ṽ0 in equation (5) and
subtracting the two obtained equations, we get

ε

∫
Ω
∇uε · ∇(uε − u) dx+

∫
Ω
|∇λε|2 dx = 0.

We deduce that the term (uε, uε − u) in the above sum is nonpositive, which from the Cauchy-
Schwarz inequality implies that ‖uε‖ ≤ ‖u‖ and then ‖λε‖ ≤

√
ε‖u‖. Hence there exists a constant

C such that
‖uε‖H1(Ω) ≤ C‖u‖H1(Ω) and ‖λε‖H1(Ω) ≤ C

√
ε‖u‖H1(Ω).

It remains to prove that uε → u in H1(Ω) when ε → 0. The sequence (uε) is bounded in H1(Ω).
Therefore, there exists a subsequence, still denoted (uε), such that uε ⇀ w in H1(Ω) when ε → 0,
with w ∈ H1(Ω). Since the affine space Vg0 is convex and closed, it is weakly closed. This guarantees
that w ∈ Vg0 . Besides, by passing to the limit in the second equation of (2) we obtain that w satisfies
the weak formulation (4). Uniqueness in problem (1) then implies that w = u, so that (uε) weakly
converges to u in H1(Ω). But

‖uε − u‖2 = (uε, uε − u)− (u, uε − u) ≤ −(u, uε − u),

so that weak convergence implies strong convergence. Lastly, a standard contradiction argument
enables us to conclude that all the sequence (uε) strongly converges to u in H1(Ω).
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Remark 1.1. Let us mention that another type of mixed formulation of quasi-reversibility was
introduced in [20], in which the additional unknown lies in Hdiv(Ω) instead of H1(Ω). In addition,
a notion of iterative formulation of quasi-reversibility was introduced and analyzed in [19]. We
believe that the quasi-reversibility formulation (2) is the easiest one to handle to establish regularity
results of the weak solutions.

The estimates of Theorem 1.1 involve H1(Ω) norms of the regularized solution (uε, λε) in the
case of a Lipschitz domain Ω and for the natural regularity of the Cauchy data (g0, g1), that is
H1/2(Γ) × H−1/2(Γ). These estimates were derived in two different cases: the data (g0, g1) are
compatible or not. The main concern of this paper is to analyze, when the domain Ω and the
Cauchy data (g0, g1) are more regular than Lipschitz and H1/2(Γ) × H−1/2(Γ), respectively, the
additional regularity of the solution (uε, λε), whether the data (g0, g1) are compatible or not. We
also want to obtain estimates in the corresponding norms. In order to simplify the analysis, the
additional regularity of the data (g0, g1) is formulated in the following way: we assume that (g0, g1)
is such that there exists a function U in H2(Ω) with (U |Γ, ∂νU |Γ) = (g0, g1) and that we can
define a continuous lifting operator (g0, g1) 7→ U . Denoting f = ∆U ∈ L2(Ω) and considering the
new translated unknown u − U → u, the initial Cauchy problem (1) can be transformed into a
homogeneous one (however still ill-posed): for f ∈ L2(Ω), find u ∈ H1(Ω) such that

−∆u = f in Ω
u = 0 on Γ
∂νu = 0 on Γ.

(6)

We emphasize that this regularity assumption made on the data is not an assumption of regularity of
the solution u. It is simple to construct smooth data in the sense above such that the corresponding
u is only in H1(Ω) and not in H2(Ω). The mixed formulation of quasi-reversibility for problem (6)
takes the following form: for ε > 0, find (uε, λε) ∈ V0 × Ṽ0 such that for all (v, µ) ∈ V0 × Ṽ0,

ε

∫
Ω
∇uε · ∇v dx+

∫
Ω
∇v · ∇λε dx = 0∫

Ω
∇uε · ∇µdx−

∫
Ω
∇λε · ∇µdx =

∫
Ω
fµ dx.

(7)

Note that the strong equations corresponding to problem (7) are

−(1 + ε)∆uε = f in Ω
−(1 + ε)∆λε = −ε f in Ω

uε = 0 on Γ
∂νuε − ∂νλε = 0 on Γ

λε = 0 on Γ̃
ε ∂νuε + ∂νλε = 0 on Γ̃.

(8)

The analog of Theorem 1.1, the proof of which is skipped, is the following.

Theorem 1.2. For all f ∈ L2(Ω) and ε > 0, the problem (7) has a unique solution (uε, λε) ∈ V0×Ṽ0.
There exists a constant C which depends only on the geometry such that

∀ε ∈ (0, 1],
√
ε‖uε‖H1(Ω) + ‖λε‖H1(Ω) ≤ C‖f‖L2(Ω). (9)

If in addition we assume that f is such that problem (6) has a (unique) solution u, then there exists
a constant C which depends only on the geometry such that

∀ε > 0, ‖uε‖H1(Ω) +
‖λε‖H1(Ω)√

ε
≤ C‖u‖H1(Ω) (10)

and
lim
ε→0
‖uε − u‖H1(Ω) = 0.
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The objective is now to study the regularity of the solution (uε, λε) to problem (7) and to complete
the statements (9) and (10) of Theorem 1.2 by giving estimates in stronger norms. One objective,
as will be seen in section 6, is the following. In practice, one has to solve problem (7) in the presence
of two approximations. Firstly, the data f is altered by some noise of amplitude δ. Secondly, the
problem (7) is discretized, for instance with the help of a Finite Element Method (FEM) based on
a mesh of size h. It is then desirable to estimate the error between the approximated solution and
the exact solution as a function of ε, δ and h. Such error estimate for the H1(Ω) norm needs the
solution to be in a Sobolev space Hs(Ω), with s > 1. It could be noted that in a recent contribution
[13] (see also [9, 10, 11, 12]), a discretized method was proposed in order to regularize the Cauchy
problem (1) in the presence of noisy data without introducing a regularized problem such as (7) at
the continuous level. In some sense, the method of [13] relies on a single asymptotic parameter, that
is h, instead of two in our method, that is ε and h. However, we believe that from the theoretical
point of view, the regularity of quasi-reversibility solutions is an interesting problem in itself. To
our best knowledge, it has never been investigated up to now. The difficulty stems from the fact
that we analyze the regularity of a problem involving a small parameter ε which degenerates when
ε tends to 0. There are other contributions (see e.g. [26, 18, 15, 16, 35, 36]) where regularity results
or asymptotic expansions are obtained in situations where the limit problem has a different nature
from the regularized one. For example in [18], the authors study a mixed Neumann-Robin problem
where the small parameter ε is the inverse of the Robin coefficient. But while both the perturbed
problem and the limit one are well-posed in [18], only the perturbed problem is well-posed in our
case, the limit problem being ill-posed (in any framework). Our contribution is original in this sense.
In the present work, we study the regularity of the solution of the regularized problem as ε tends
to zero. We emphasize that computing an asymptotic expansion of the solution with respect to ε
and proving error estimates (for example as in [24, 32]) remains an open problem, the reason be-
ing that, due to the ill-posedness of the limit problem, no result of stability can be easily established.

Our paper is organized as follows. First we consider the simple case of a smooth domain in Section
2, where classical regularity results (see for example [8]) can be used. The case of the polygonal
domain is introduced in Section 3, where we also analyze the regularity of the quasi-reversibility
solution in corners delimited by two edges of Γ or two edges of Γ̃. In this case, the regularity of
functions uε and λε can be analyzed separately with the help of the classical regularity results of [22]
in a polygon for the Laplace equation with Dirichlet or Neumann boundary conditions. In Section
5 we consider the more difficult case of a corner of mixed type, that is delimited by one edge of Γ
and one edge of Γ̃. This analysis relies on the Kondratiev approach [28], which is based on some
properties of weighted Sobolev spaces which are recalled in Section 4. Section 6 is dedicated to the
application of our regularity results to derive some error estimate between the exact solution and
the quasi-reversibility solution in the presence of two perturbations: noisy data and discretization
with the help of a FEM. We also try to illustrate our error estimate by presenting a numerical exam-
ple. Two appendices containing technical results, which are used in Section 5, complete the paper.
The main results of this article are Theorem 2.1 (uniform regularity estimates in smooth domains),
Theorem 3.1 (uniform regularity estimates in 2D polygonal domains) and the final approximation
analysis of Section 6.

2 The case of a smooth domain

Let us first assume that Ω is a domain of class C1,1. If (g0, g1) ∈ H3/2(Γ) × H1/2(Γ), then there
exists a function U ∈ H2(Ω) such that (U |Γ, ∂νU |Γ) = (g0, g1) and even a continuous lifting operator
(g0, g1) 7→ U from H3/2(Γ) × H1/2(Γ) to H2(Ω) (see Theorem 1.5.1.2 in [21]). We are therefore
in the situation described in the Section 1, where the problem to solve is (6). We begin with an
interior regularity result.

Proposition 2.1. For f ∈ L2(Ω), the solution (uε, λε) ∈ V0 × Ṽ0 to the problem (7) is such that
for all ζ ∈ C∞0 (Ω), ζuε and ζλε belong to H2(Ω) and there exists a constant C > 0 which depends
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only on the geometry such that

∀ε ∈ (0, 1],
√
ε‖ζuε‖H2(Ω) + ‖ζλε‖H2(Ω) ≤ C‖f‖L2(Ω).

If in addition f is such that problem (6) has a solution u, then

∀ε ∈ (0, 1], ‖ζuε‖H2(Ω) +
‖ζλε‖H2(Ω)√

ε
≤ C‖u‖H1(∆,Ω),

where the norm ‖ · ‖H1(∆,Ω) is defined by

‖u‖2H1(∆,Ω) = ‖u‖2H1(Ω) + ‖∆u‖2L2(Ω).

Proof. From the first equation of (8), we have that

−∆(ζuε) + ζuε = (−∆ζ + ζ)uε − 2∇ζ · ∇uε + ζ
f

1 + ε
:= Fε.

Clearly Fε ∈ L2(Rd), which by using the Fourier transform implies that

‖ζuε‖H2(Rd) = ‖Fε‖L2(Rd),

and hence
‖ζuε‖H2(Ω) = ‖Fε‖L2(Ω) ≤ C (‖uε‖H1(Ω) + ‖f‖L2(Ω)).

From (9) we obtain that √
ε‖ζuε‖H2(Ω) ≤ C ‖f‖L2(Ω).

If in addition f is such that problem (6) has a (unique) solution u, from (10) we obtain

‖ζuε‖H2(Ω) ≤ C ‖u‖H1(∆,Ω).

The estimates of ζλε are obtained following the same lines.

Let us now establish a global regularity estimate (up to the boundary) in the restricted case when
Γ ∩ Γ̃ = ∅ (see Figure 1 right).

Theorem 2.1. For f ∈ L2(Ω), the solution (uε, λε) ∈ V0 × Ṽ0 to the problem (7) is such that uε
and λε belong to H2(Ω) and there exists a constant C > 0 which depends only on the geometry such
that

∀ε ∈ (0, 1], ε‖uε‖H2(Ω) +
√
ε‖λε‖H2(Ω) ≤ C‖f‖L2(Ω).

If in addition f is such that problem (6) has a solution u, then

∀ε ∈ (0, 1],
√
ε‖uε‖H2(Ω) + ‖λε‖H2(Ω) ≤ C‖u‖H1(∆,Ω).

Proof. Given Γ∩ Γ̃ = ∅, we may find two infinitely smooth functions ζ and ζ̃ such that (ζ, ζ̃) = (1, 0)
in a vicinity of Γ and (ζ, ζ̃) = (0, 1) in a vicinity of Γ̃. We have from the first equation of (8),

−∆(ζuε) = −∆ζuε − 2∇ζ · ∇uε + ζ
f

1 + ε
= Fε.

Since uε = 0 on Γ, from a standard regularity result for the Poisson equation with Dirichlet boundary
condition we obtain

‖ζuε‖H2(Ω) ≤ C‖Fε‖L2(Ω) ≤ C(‖f‖L2(Ω) + ‖uε‖H1(Ω)), (11)

and from (9) we have √
ε‖ζuε‖H2(Ω) ≤ C‖f‖L2(Ω).
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From a standard continuity result for the normal derivative and using ∂νuε − ∂νλε = 0 on Γ, we
obtain √

ε‖∂νλε‖H1/2(Γ) =
√
ε‖∂νuε‖H1/2(Γ) ≤ C‖f‖L2(Ω).

From the second equation of (8) we have

‖∆λε‖L2(Ω) ≤ Cε‖f‖L2(Ω).

Combining the two previous estimates with the fact that λε = 0 on Γ̃ implies the regularity estimate
√
ε‖λε‖H2(Ω) ≤ C‖f‖L2(Ω).

Reusing the second equation of (8), the estimate (9) and that λε = 0 on Γ̃ leads to

‖ζ̃λε‖H2(Ω) ≤ C‖f‖L2(Ω),

and using ε∂νuε + ∂νλε = 0 on Γ̃, we obtain

ε‖∂νuε‖H1/2(Γ̃) = ‖∂νλε‖H1/2(Γ̃) ≤ C‖f‖L2(Ω).

We conclude that
ε‖uε‖H2(Ω) ≤ C‖f‖L2(Ω).

Now let us assume that f is such that problem (6) has a solution u. From (10) and (11) we now
have the better estimate

‖ζuε‖H2(Ω) ≤ C‖u‖H1(Ω,∆).

Using ∂νuε − ∂νλε = 0 on Γ, we obtain

‖∂νλε‖H1/2(Γ) ≤ C‖u‖H1(∆,Ω),

and then
‖λε‖H2(Ω) ≤ C‖u‖H1(∆,Ω).

Reusing the second equation of (8), the estimate (10) and that λε = 0 on Γ̃ leads to

‖ζ̃λε‖H2(Ω) ≤ C
√
ε‖u‖H1(∆,Ω).

Since ε∂νuε + ∂νλε = 0 on Γ̃, we obtain
√
ε‖∂νuε‖H1/2(Γ̃) ≤ C‖u‖H1(∆,Ω).

We conclude that
√
ε‖uε‖H2(Ω) ≤ C‖u‖H1(∆,Ω).

Remark 2.1. From Theorem 1.1 and Proposition 2.1, we notice that in the interior of the domain,
the H2 estimates are the same as the H1 estimates, whether the data are compatible or not. However,
from Theorem 1.1 and Theorem 2.1, when it comes to the H2 estimates in the whole domain, up to
the boundary, one loses a

√
ε factor with respect to the H1 estimates, whether the data are compatible

or not.

3 The case of a polygonal domain

3.1 Main result

From now on, Ω is a polygonal domain in dimension 2. Our motivation is indeed to obtain error
estimates in the context of the discretization with the help of a classical FEM: due to the meshing
procedure in two dimensions, in practice the computational domain is often a polygon. We use the
same notations as in [22] to describe the geometry of such a polygon. Let us assume that ∂Ω is the

7



ω1

Ω
S1

S2

S3

Γ

Γ̃

Figure 2: An example of polygonal domain. S1, S2, S3 represent the three types of vertices that we
will study in §3.2, §5, §3.3 respectively.

union of segments Γj , j = 1, . . . , N , where N is an integer. Let us denote Sj the vertex such that
Sj = Γj∩Γj+1, ωj the angle between Γj and Γj+1 from the interior of Ω, τj the unit tangent oriented
in the counter-clockwise sense and νj the outward normal to ∂Ω. We assume that Γ and Γ̃ are formed
by a finite number of edges, namely n and ñ, respectively, with n+ ñ = N . Let us denote H(Γ) the
subset of functions (g0, g1) ∈ L2(Γ)×L2(Γ) such that (fj , gj) := (g0|Γj , g1|Γj ) ∈ H3/2(Γj)×H1/2(Γj),
j = 1, . . . , n, with the following compatibility conditions at Sj :

fj(Sj) = fj+1(Sj)
∂τjfj ≡ − cos(ωj)∂τj+1fj+1 + sin(ωj)gj+1 at Sj

gj ≡ − sin(ωj)∂τj+1fj+1 − cos(ωj)gj+1 at Sj ,

(12)

and the equivalence φj ≡ φj+1 at Sj means that for small δ > 0∫ δ

0

|φj(xj(−σ))− φj+1(xj(+σ))|2

σ
dσ < +∞,

where xj(σ) denotes the point of ∂Ω which, for small enough |σ| (say |σ| ≤ δ), is at distance σ
(counted algebraically) of Sj along ∂Ω. More precisely, xj(σ) ∈ Γj if σ < 0 and xj(σ) ∈ Γj+1 if
σ > 0. It is proved in [22], that for (g0, g1) ∈ H, there exists a function U ∈ H2(Ω) such that for
each j = 1, . . . , n, (U |Γj , ∂νjU |Γj ) = (fj , gj) and even a continuous lifting (g0, g1) 7→ U from H to
H2(Ω). We are hence again in the framework of section 1, where the problem to solve is (6).

Clearly, the interior estimates given by Proposition 2.1 are true in the polygonal domain since
they are independent of the regularity of the boundary. Let us now analyze the regularity up to the
boundary. As done in [22], the estimates are obtained by using a partition of unity, which enables
us to localize our analysis in three different types of corners (see Figure 2):

• regularity at a corner delimited by two edges which belong to Γ, called a corner of type Γ,

• regularity at a corner delimited by two edges which belong to Γ̃, called a corner of type Γ̃,

• regularity at a corner delimited by one edge which belongs to Γ and one edge which belongs
to Γ̃, called a corner of mixed type.

Let us denote by NC the set of j such that Sj is either a vertex of type Γ or a vertex of type Γ̃ and
NM the set of j such that Sj is a corner of mixed type. We wish to prove the following theorem,
which is obtained by gathering Propositions 2.1, 3.1, 3.2 and 5.1 hereafter.

Theorem 3.1. Let us take sC < minj∈NC (1 + π/ωj) if there exists j ∈ NC such that ωj > π
and sC = 2 otherwise. Let us take sM < minj∈NM (1 + π/(2ωj)) if there exists j ∈ NM such that
ωj ≥ π/2 and sM = 2 otherwise. Let us denote s = min{sC , sM}.

For f ∈ L2(Ω) and ε > 0, the solution (uε, λε) ∈ V0 × Ṽ0 to the problem (7) is such that uε
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and λε belong to Hs(Ω) and there exists a constant C > 0 which depends only on the geometry such
that

∀ε ∈ (0, 1], ε‖uε‖Hs(Ω) +
√
ε‖λε‖Hs(Ω) ≤ C‖f‖L2(Ω).

If in addition we assume that f is such that problem (6) has a (unique) solution u, then

∀ε ∈ (0, 1],
√
ε‖uε‖Hs(Ω) + ‖λε‖Hs(Ω) ≤ C‖u‖H1(∆,Ω).

Remark 3.1. The global estimates of Theorem 3.1 are obtained by gathering all the local estimates
obtained in Propositions 2.1, 3.1, 3.2 and 5.1. Each of these estimates are locally better than the
global estimate of Theorem 3.1.

3.2 Regularity at a corner of type Γ
The regularity of solutions uε and λε near a corner delimited by two edges which belong to Γ can be
analyzed separately. They will be obtained by directly applying the results of [22] for Dirichlet and
Neumann Laplacian problems. Let us consider Sj the vertex of a corner delimited by two edges Γj
and Γj+1 which belong to Γ. Let us denote (rj , θj) the local polar coordinates with respect to the
point Sj and ζj ∈ C∞(Ω) a radial function (depending only on rj) such that ζj = 1 for rj ≤ aj and
ζj = 0 for rj ≥ bj . We assume that bj is chosen such that ζj = 0 in a vicinity of all edges Γk except
for k = j or k = j + 1. In order to simplify notations, we skip the reference to index j, denoting in
particular Sj = S, Γj = Γ0 and Γj+1 = Γω. Let us introduce the finite cone Kb = Ω ∩B(S, b). The
two following lemmata are proved in [22].

Lemma 3.1. For F ∈ L2(Kb), the problem: find U ∈ H1(Kb) such that{
−∆U = F in Kb

U = 0 on ∂Kb
(13)

has a unique solution and there exists a unique constant c ∈ R and a unique function V ∈ H2(Kb)
such that

U = c rπ/ω sin
(
πθ

ω

)
+ V.

Moreover, there exists a constant C > 0 such that

|c|+ ‖V ‖H2(Kb) ≤ C ‖F‖L2(Kb). (14)

In addition, if ω ≤ π then c = 0.

Lemma 3.2. For F ∈ L2(Kb), the problem: find U ∈ H1(Kb) such that
−∆U = F in Kb

U = 0 on ∂B(S, b) ∩ ∂Kb

∂νU = 0 on (Γ0 ∪ Γω) ∩ ∂Kb

(15)

has a unique solution and there exists a unique constant c ∈ R and a unique function V ∈ H2(Kb)
such that

U = c rπ/ω cos
(
πθ

ω

)
+ V.

Moreover, there exists a constant C > 0 such that (14) holds. In addition, if ω ≤ π then c = 0.

Proposition 3.1. Assume that S is the vertex of a corner of type Γ. Let us consider s < 1 + π/ω
if ω > π and s = 2 otherwise. For f ∈ L2(Ω), the solution (uε, λε) ∈ V0 × Ṽ0 to the problem (7)
is such that ζuε and ζλε belong to Hs(Ω) and there exists a constant C > 0 which depends only on
the geometry such that

∀ε ∈ (0, 1],
√
ε(‖ζuε‖Hs(Ω) + ‖ζλε‖Hs(Ω)) ≤ C‖f‖L2(Ω).

If in addition f is such that problem (6) has a solution u, then

∀ε ∈ (0, 1], ‖ζuε‖Hs(Ω) + ‖ζλε‖Hs(Ω) ≤ C‖u‖H1(∆,Ω).
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Proof. From (8) we have that ζuε satisfies problem (13) with

Fε = −∆ζuε − 2∇ζ · ∇uε + ζ
f

1 + ε
. (16)

By using Lemma 3.1, we have that there exists a unique constant cε ∈ R and a unique function
Vε ∈ H2(Kb) such that

ζ(r)uε = cε r
π/ω sin

(
πθ

ω

)
+ Vε

and there exists a constant C > 0 such that

|cε|+ ‖Vε‖H2(Kb) ≤ C ‖Fε‖L2(Kb).

From (16), we deduce that we have

|cε|+ ‖Vε‖H2(Ω) ≤ C(‖uε‖H1(Kb) + ‖f‖L2(Ω)).

From [21, Theorem 1.4.5.3], the function (r, θ) 7→ ζ(r)rπ/ω sin(πθ/ω) belongs to Hs(Ω) for any
s < 1 + π/ω. We conclude from (9) that there exists a constant C > 0 which depends only on the
geometry such that, for s < 1 + π/ω,{ √

ε‖ζuε‖H2(Ω) ≤ C ‖f‖L2(Ω) if ω < π
√
ε‖ζuε‖Hs(Ω) ≤ C ‖f‖L2(Ω) if ω > π.

We remark from (8) that the function dε = uε − λε satisfies −∆dε = f in Ω and ∂νdε = 0 on Γ,
which implies that ζdε satisfies problem (15) with

Fε = −∆ζdε − 2∇ζ · ∇dε + ζf.

By using Lemma 3.2, we have that there exists a unique constant cε ∈ R and a unique function
Vε ∈ H2(Kb) such that

ζdε = c rπ/ω cos
(
πθ

ω

)
+ Vε

and there exists a constant C > 0 such that

|cε|+ ‖Vε‖H2(Kb) ≤ C ‖Fε‖L2(Kb).

We infer that

|cε|+ ‖Vε‖H2(Kb) ≤ C(‖dε‖H1(Kb) + ‖f‖L2(Kb)) ≤ C(‖uε‖H1(Kb) + ‖λε‖H1(Kb) + ‖f‖L2(Kb)).

And we conclude from (9) that there exists a constant C > 0 which depends only on the geometry
such that { √

ε‖ζdε‖H2(Ω) ≤ C ‖f‖L2(Ω) if ω < π
√
ε‖ζdε‖Hs(Ω) ≤ C ‖f‖L2(Ω) if ω > π,

so that λε = dε − uε satisfies the same estimate. The case when f is such that there is a solution u
to (6) follows the same lines: it suffices to use estimate (10) instead of (9).

3.3 Regularity at a corner of type Γ̃
We reuse the notations introduced in the last section.
Proposition 3.2. Assume that S is the vertex of a corner of type Γ̃. Let us consider s < 1 + π/ω
if ω > π and s = 2 otherwise. For f ∈ L2(Ω), the solution (uε, λε) ∈ V0 × Ṽ0 to the problem (7)
is such that ζuε and ζλε belong to Hs(Ω) and there exists a constant C > 0 which depends only on
the geometry such that

∀ε ∈ (0, 1], ε‖ζuε‖Hs(Ω) + ‖ζλε‖Hs(Ω) ≤ C‖f‖L2(Ω).

If in addition we assume that f is such that problem (6) has a (unique) solution u, then

∀ε ∈ (0, 1],
√
ε‖ζuε‖Hs(Ω) +

‖ζλε‖Hs(Ω)√
ε

≤ C‖u‖H1(∆,Ω).
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Proof. From (8) we have that ζλε satisfies problem (13) with

Fε = −∆ζλε − 2∇ζ · ∇λε − εζ
f

1 + ε
.

By using Lemma 3.1, we have that there exists a unique constant cε ∈ R and a unique function
Vε ∈ H2(Kb) such that

ζλε = cε r
π/ω sin

(
πθ

ω

)
+ Vε

and there exists a constant C > 0 such that
|cε|+ ‖Vε‖H2(Kb) ≤ C ‖Fε‖L2(Kb).

We deduce the estimate
|cε|+ ‖Vε‖H2(Kb) ≤ C(‖λε‖H1(Ω) + ε‖f‖L2(Ω)).

And we conclude from (9) that there exists a constant C > 0 which depends only on the geometry
such that, for s < 1 + π/ω {

‖ζλε‖H2(Ω) ≤ C ‖f‖L2(Ω) if ω < π

‖ζλε‖Hs(Ω) ≤ C ‖f‖L2(Ω) if ω > π.

We remark from (8) that the function sε = εuε + λε satisfies −∆sε = 0 in Ω and ∂νsε = 0 on Γ̃,
which implies that ζsε satisfies problem (15) with

Fε = −∆ζsε − 2∇ζ · ∇sε.
By using Lemma 3.2, we have that there exists a unique constant cε ∈ R and a unique function
Vε ∈ H2(Kb) such that

ζsε = cε r
π/ω cos

(
πθ

ω

)
+ Vε

and there exists a constant C > 0 such that
|cε|+ ‖Vε‖H2(Kb) ≤ C ‖Fε‖L2(Kb).

We infer that
|cε|+ ‖Vε‖H2(Kb) ≤ C‖sε‖H1(Kb) ≤ C(ε‖uε‖H1(Kb) + ‖λε‖H1(Kb)).

And we conclude from (9) that there is a constant C > 0 which depends only on Ω such that{
‖ζsε‖H2(Ω) ≤ C ‖f‖L2(Ω) if ω < π

‖ζsε‖Hs(Ω) ≤ C ‖f‖L2(Ω) if ω > π,

so that εuε = sε − λε satisfies the same estimate. The case when f is such that there is a solution
u to (6) is similar.

Remark 3.2. We emphasize that the small parameter ε plays a different role in Proposition 3.1
and in Proposition 3.2. In Proposition 3.1, the exponent in ε is the same before uε and before λε
because the corner is of type Γ and Γ is the support of the Cauchy data. In proposition 3.2, the
exponent in ε before uε is one more than the one before λε because the corner is of type Γ̃ and data
on Γ̃ are unknown.
It remains to analyze the regularity of functions uε and λε at corners of mixed type and to derive
corresponding estimates. As we will see, this is a much more difficult task. The main reason is that
we do not know whether or not the eigenvectors of a certain symbol Lε defined on (0, ω) (see (26))
form a Hilbert basis of L2(0, ω)× L2(0, ω). To bypass this difficulty, we will apply the Kondratiev
approach of the seminal article [28] (see also [33, 34, 29, 30] for more recent presentations). We will
follow strictly the methodology proposed in these works. However, we emphasize that in our study
we have to keep track of the dependence in ε in all the estimates. This is the reason why we present
the procedure in details. Let us mention that a somehow similar analysis has been conducted in a
simpler situation in [14, Annex]. We start by presenting some preliminaries on weighted Sobolev
spaces borrowed from [29].
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4 Some preliminaries on weighted Sobolev spaces

Let us consider the strip B = {(t, θ) ∈ R× (0, ω)} for ω > 0. For β ∈ R and m ∈ N, let us introduce
the weighted Sobolev space

Wm
β (B) = {v ∈ L2

loc(B), eβtv ∈ Hm(B)},

equipped with the norm
‖v‖Wm

β
(B) = ‖eβtv‖Hm(B). (17)

We also denote W̊m
β (B) the closure of C∞0 (B) in Wm

β (B), W̊m
β,0(B) the closure in Wm

β (B) of the set
of functions in C∞0 (B) which vanish in a vicinity of ∂B0 = ∂B ∩ {θ = 0}, W̊m

β,ω(B) the closure in
Wm
β (B) of the set of functions in C∞0 (B) which vanish in a vicinity of ∂Bω = ∂B ∩ {θ = ω}. Let

us introduce the Laplace transform

v̂(λ) = (Lv)(λ) =
∫ +∞

−∞
e−λtv(t) dt. (18)

We recall the following properties of the Laplace transform.

1. The Laplace transform is a linear and continuous map from C∞0 (R) to the space of holomorphic
functions in the complex plane. In addition, we have L(∂tv) = λL(v) for all v ∈ C∞0 (R).

2. For all u, v ∈ C∞0 (R), we have the Parseval identity∫ +∞

−∞
e2βtu(t)v(t) dt = 1

2πi

∫
Reλ=−β

û(λ)v̂(λ) dλ.

Hence, the Laplace transform (18) can be extended as an isomorphism from L2
β(R) to L2(`−β),

where L2
β(R) = {v ∈ L2

loc(R), eβtv ∈ L2(R)} and `−β = {λ = −β + iτ, τ ∈ R}.

3. The inverse Laplace transform is given by the formula

v(t) = (L−1v̂)(t) = 1
2πi

∫
`−β

eλtv̂(λ) dλ.

4. If v ∈ L2
β1

(R) ∩ L2
β2

(R) for β1 < β2, then the function λ 7→ v̂(λ) is holomorphic in the strip
defined by −β2 < Reλ < −β1.

By using the above properties, one can prove that for β ∈ R and m ∈ N, the norm (17) is equivalent
to the norm given by

‖v‖β,m =
(

1
2πi

∫
`−β

‖v̂‖2Hm(0,ω;λ) dλ

)1/2

, (19)

where
‖v̂‖2Hm(0,ω;λ) = ‖v̂‖2Hm(0,ω) + |λ|2m‖v̂‖2L2(0,ω). (20)

Next, we introduce the infinite cone

K = {(r cos θ, r sin θ), r > 0, 0 < θ < ω},

with ω ∈ (0, 2π). For β ∈ R and m ∈ N, let us introduce the weighted Sobolev space V m
β (K) as the

closure of C∞0 (K \ {0}) for the norm

‖v‖Vm
β

(K) =

 ∑
|α|≤m

‖r|α|−m+β∂αx v‖2L2(K)

1/2

. (21)
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We also denote by V̊ m
β (K) the closure of C∞0 (K) in V m

β (K), V̊ m
β,0(K) the closure in V m

β (K) of the
set of functions in C∞0 (K) which vanish in a vicinity of ∂K0 = ∂K ∩ {θ = 0}, V̊ m

β,ω(K) the closure
in V m

β (K) of the set of functions in C∞0 (K) which vanish in a vicinity of ∂Kω = ∂K ∩ {θ = ω}.
One can show that the norm of V m

β (K) is equivalent to the norm

‖v‖ =

∫ +∞

0
r2(−m+β)

m∑
j=0
‖(r∂r)jv(r, ·)‖2Hm−j(0,ω)r dr

1/2

. (22)

The key point consists in the change of variable t = ln r, which transforms the cone K = R∗+×(0, ω)
into the strip B = R × (0, ω). In particular, if we introduce, for a function v defined in K, the
function Ev defined in B by

(Ev)(θ, t) = v(θ, et),

since r∂rv = ∂t(Ev), the norm (22) is equivalent to

‖v‖ =

∫ +∞

0
e2(−m+β+1)t

m∑
j=0
‖∂jt (Ev)(t, ·)‖2Hm−j(0,ω) dt

1/2

,

hence
‖v‖ = ‖e(−m+β+1)tEv‖Hm(B) = ‖Ev‖Wm

β−m+1(B).

This shows that there exists an isomorphism between the spaces V m
β (K) and Wm

β−m+1(B), or in
other words, between Wm

β (B) and V m
β+m−1(K).

We point out that in [25], the weighted spaces V m
β were already used in the context of the regular-

ization of the Cauchy problem (1).

5 The case of a corner of mixed type
The regularity of solutions uε and λε at a corner of mixed type can no longer be analyzed separately.
We use the weighted Sobolev spaces introduced in the previous section. We first consider the quasi-
reversibility problem in the strip B. The strong equations corresponding to (7) in the strip are

−∆uε = ∆λε/ε = f/(1 + ε) in B
uε = 0 and ∂νuε − ∂νλε = 0 on ∂B0

λε = 0 and ε ∂νuε + ∂νλε = 0 on ∂Bω.
(23)

For β ∈ R, define the operator Bβ : D(Bβ)→ R(Bβ) such that Bβ(uε, λε) = (f1, f2), with

(f1, f2) = (−∆uε,−∆λε/ε)
D(Bβ) = {(uε, λε) ∈ W̊ 1

β,0(B) ∩W 2
β (B)× W̊ 1

β,ω(B) ∩W 2
β (B),

∂νuε − ∂νλε = 0 on ∂B0, ε∂νuε + ∂νλε = 0 on ∂Bω}
and R(Bβ) = W 0

β (B)×W 0
β (B).

(24)

This operator is associated with the following problem in the strip B:

−∆uε = f1 in B
−∆λε = ε f2 in B

uε = 0 on ∂B0
∂νuε − ∂νλε = 0 on ∂B0

λε = 0 on ∂Bω
ε ∂νuε + ∂νλε = 0 on ∂Bω.

(25)
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If we apply the Laplace transform to problem (25), the following symbol Lε(λ) : D(Lε) → R(Lε)
such that Lε(λ)(ϕε, ψε) = (g1, g2) naturally appears, with

(g1, g2) = (−(λ2 + d2
θ)ϕε,−

1
ε

(λ2 + d2
θ)ψε)

D(Lε) = {(ϕε, ψε) ∈ H2(0, ω)×H2(0, ω), ϕε(0) = 0, ψε(ω) = 0,
dθϕε(0)− dθψε(0) = 0, εdθϕε(ω) + dθψε(ω) = 0},

and R(Lε) = L2(0, ω)× L2(0, ω).

(26)

We will say that λ ∈ C is an eigenvalue of Lε if Ker Lε(λ) 6= {0}. We have the following lemma.

π/(2ω) 3π/(2ω)−π/(2ω)−3π/(2ω)

ln γε/ω

λ+
n

λ−
n

<e λ

=mλ

Figure 3: Position of the λ±n in the complex plane.

Lemma 5.1. The eigenvalues of the symbol Lε are

λ±n = 1
ω

(
π

2 + nπ ± i ln γε
)
, n ∈ Z, (27)

with
γε =

√
1 + 1

ε
+
√

1
ε

(see Figure 3). (28)

The corresponding (non normalized) eigenfunctions are given by

ϕ±n (θ) = cos(λ±nω) sin(λ±n θ), ψ±n (θ) = sin(λ±n (θ − ω)).

Proof. Let us find all non vanishing pairs (ϕ,ψ) such that −(λ2 + d2
θ)ϕ = 0 and −(λ2 + d2

θ)ψ = 0
in (0, ω) with ϕ(0) = 0, ψ(ω) = 0, dθϕ(0) − dθψ(0) = 0 and εdθϕ(ω) + dθψ(ω) = 0. It is readily
seen that λ = 0 is not an eigenvalue, so that we assume that λ 6= 0 in the sequel. From the two
equations in (0, ω) and the two first boundary conditions, we obtain that

ϕ(θ) = A sin(λθ), ψ(θ) = B sin(λ(θ − ω)).

Then we use the two last boundary conditions, and we obtain (since λ 6= 0)

A−B cos(λω) = 0, εA cos(λω) +B = 0.

The complex number λ is an eigenvalue if and only if

1 + ε cos2(λω) = 0,

that is if and only if cos(λω) = ±i/
√
ε. Hence we deduce that we must have

z2 + 2±i√
ε
z + 1 = 0 for z := eiλω.

The solutions to these two equations are z = ±iγ±ε , with

γ±ε =
√

1 + 1
ε
±
√

1
ε
.
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It remains to find λ such that eiλω = ±iγ±ε . Writing λ = a+ib with (a, b) ∈ R2, since ±i = eiπ(1∓1/2),
we find

e−bω = γ±ε , aω = π(1∓ 1
2) + 2nπ, n ∈ Z.

This implies
bω = − ln γ±ε , aω = π

2 + nπ, n ∈ Z,

which gives the result, in view of ln γ−ε = − ln γ+
ε (note that γ+

ε γ
−
ε = 1).

Remark 5.1. We notice that the symbol Lε has complex eigenvalues and is not self-adjoint. This is
a difference with the symbols which are involved when considering the Laplace equation with Dirichlet
or Neumann boundary conditions.

Let us first consider the case β = 0. Then we simply denote W̊ 1
0,0(B) = H1

0,0(B) and W̊ 1
0,ω(B) =

H1
0,ω(B). We have the following theorem.

Theorem 5.1. The operator B0 defined in (24) is an isomorphism. Furthermore, there exists a
constant C > 0 such that for all (f1, f2) ∈ R(B0), the solution (uε, λε) ∈ D(B0) to the problem (23)
satisfies √

ε‖uε‖H2(B) + ‖λε‖H2(B) ≤ C(‖f1‖L2(B) +
√
ε‖f2‖L2(B)).

Proof. We simply have

D(B0) = {(uε, λε) ∈ H1
0,0(B) ∩H2(B)×H1

0,ω(B) ∩H2(B),
∂νuε − ∂νλε = 0 on ∂B0, ε∂νuε + ∂νλε = 0 on ∂Bω}

and R(B0) = L2(B)× L2(B).

By applying the Laplace transform to the problem (25) with respect to t and by setting λ = iτ with
τ ∈ R, we obtain 

(τ2 − d2
θ)ûε = f̂1 in (0, ω)

(τ2 − d2
θ)λ̂ε = εf̂2 in (0, ω)
ûε(0) = 0

dθûε(0)− dθλ̂ε(0) = 0
λ̂ε(ω) = 0

ε dθûε(ω) + dθλ̂ε(ω) = 0.

For fixed τ , this problem is equivalent to the weak formulation: find (ûε, λ̂ε) ∈ H1
0,0(0, ω)×H1

0,ω(0, ω),
where H1

0,0(0, ω) = {v ∈ H1(0, ω), v(0) = 0} and H1
0,ω(0, ω) = {µ ∈ H1(0, ω), µ(ω) = 0}, such that

for all (v, µ) ∈ H1
0,0(0, ω)×H1

0,ω(0, ω),
ε

∫ ω

0
(dθûε dθv + τ2ûεv) dθ +

∫ ω

0
(dθv dθλ̂ε + τ2v λ̂ε) dθ =

∫ ω

0
ε(f̂1 + f̂2)v dθ∫ ω

0
(dθûε dθµ+ τ2ûεµ) dθ −

∫ ω

0
(dθλ̂ε dθµ+ τ2λ̂εµ) dθ =

∫ ω

0
(f̂1 − εf̂2)µdθ.

(29)

By the Lax-Milgram Lemma, the weak formulation (29) is well-posed and there exists some constant
C > 0 (independent of λ and of ε) such that

√
ε(‖ûε‖H2(0,ω) + |λ|2‖ûε‖L2(0,ω)) + ‖λ̂ε‖H2(0,ω) + |λ|2‖λ̂ε‖L2(0,ω)

≤ C(‖f̂1‖L2(0,ω) +
√
ε‖f̂2‖L2(0,ω)).

(30)

Indeed, by setting v = ûε and µ = λ̂ε in (29), we obtain

ε(‖dθûε‖2L2(0,ω) + |λ|2‖ûε‖2L2(0,ω)) + ‖dθλ̂ε‖2L2(0,ω) + |λ|2‖λ̂ε‖2L2(0,ω)

=
∫ ω

0
ε(f̂1 + f̂2)ûε dθ −

∫ ω

0
(f̂1 − εf̂2)λ̂ε dθ

≤ (ε‖f̂1 + f̂2‖2L2(0,ω) + ‖f̂1 − εf̂2‖2L2(0,ω))
1/2(ε‖ûε‖2L2(0,ω) + ‖λ̂ε‖2L2(0,ω))

1/2

≤
√

1 + ε (‖f̂1‖L2(0,ω) +
√
ε‖f̂2‖L2(0,ω))(ε‖ûε‖2L2(0,ω) + ‖λ̂ε‖2L2(0,ω)))

1/2.
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By using the Poincaré inequality and assuming that ε ≤ 1 we obtain that
√
ε‖ûε‖H1(0,ω) + ‖λ̂ε‖H1(0,ω) ≤ C(‖f̂1‖L2(0,ω) +

√
ε‖f̂2‖L2(0,ω))

and
|λ|2(
√
ε‖ûε‖L2(0,ω) + ‖λ̂ε‖L2(0,ω)) ≤ C(‖f̂1‖L2(0,ω) +

√
ε‖f̂2‖L2(0,ω)),

where C is independent of λ and ε. Now, given that

d2
θûε = |λ|2ûε − f̂1, d2

θλ̂ε = |λ|2λ̂ε − εf̂2,

we deduce
√
ε‖d2

θûε‖L2(0,ω) + ‖d2
θλ̂ε‖L2(0,ω)

≤ |λ|2(
√
ε‖ûε‖L2(0,ω) + ‖λ̂ε‖L2(0,ω)) + C(‖f̂1‖L2(0,ω) +

√
ε‖f̂2‖L2(0,ω))

≤ C(‖f̂1‖L2(0,ω) +
√
ε‖f̂2‖L2(0,ω)),

which implies (30). Finally, we have for all λ = iτ

√
ε‖ûε(λ, ·)‖H2(0,ω,λ) ≤ C(‖f̂1‖L2(0,ω) +

√
ε‖f̂2‖L2(0,ω))

and
‖λ̂ε(λ, ·)‖H2(0,ω,λ) ≤ C(‖f̂1‖L2(0,ω) +

√
ε‖f̂2‖L2(0,ω)),

which by integration on `0 and by definition of the norms ‖ · ‖β,m (see (19)) implies
√
ε‖uε‖0,2 + ‖λε‖0,2 ≤ C(‖f1‖0,0 +

√
ε‖f2‖0,0).

This gives the estimate
√
ε‖uε‖H2(B) + ‖λε‖H2(B) ≤ C(‖f1‖L2(B) +

√
ε‖f2‖L2(B))

which proves that B0 is an isomorphism.

Now we wish to extend the result of Theorem 5.1 to any β /∈ {(π/2 + nπ)/ω, n ∈ Z}.

Theorem 5.2. For any β /∈ {(π/2 + nπ)/ω, n ∈ Z}, the operator Bβ is an isomorphism. Further-
more, there exists a constant C > 0 independent of ε such that for all (f1, f2) ∈ R(Bβ), the solution
(uε, λε) ∈ D(Bβ) to the problem (25) (which depends on β) satisfies

√
ε‖uε‖β,2 + ‖λε‖β,2 ≤ C (‖f1‖β,0 +

√
ε‖f2‖β,0). (31)

Proof. For (f̂1, f̂2) ∈ L2(0, ω)×L2(0, ω), we consider the problem of finding the functions (ûε, λ̂ε) ∈
H1

0, 0(0, ω)×H1
0, ω(0, ω) such that

−ε (d2
θ + λ2)ûε = ε f̂1 in (0, ω)

−(d2
θ + λ2)λ̂ε = ε f̂2 in (0, ω)

dθûε(0)− dθλ̂ε(0) = 0
ε dθûε(ω) + dθλ̂ε(ω) = 0.

(32)

We wish to prove that there is a constant C > 0 such that the solution of problem (32) satisfies
√
ε(‖ûε‖H2(0,ω) + |λ|2‖ûε‖L2(0,ω)) + ‖λ̂ε‖H2(0,ω) + |λ|2‖λ̂ε‖L2(0,ω)

≤ C (‖f̂1‖L2(0,ω) +
√
ε‖f̂2‖L2(0,ω))

(33)

for all ε > 0, λ ∈ `β = {γ ∈ C, Re γ = β}. Note that C depends on β but not on ε, λ ∈ `β.
According to the analytic Fredholm theorem, we know that problem (32) admits a unique solution
if and only if the only solution for (f̂1, f̂2) = (0, 0) is (ûε, λ̂ε) = (0, 0), that is if and only if λ is not
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an eigenvalue of Lε. Lemma 5.1 guarantees that for β /∈ {(π/2 + nπ)/ω, n ∈ Z}, this is indeed the
case for all ε > 0, λ ∈ `β.

Estimate (33) has already been established for β = 0. Now we assume that β 6= 0. In order
to show (33), we work with the decomposition (ûε, λ̂ε) = (u0, λ0) + (u], λ]), where u0 ∈ H1

0, 0(0, ω)
and λ0 ∈ H1

0, ω(0, ω) are the functions which solve{
−(d2

θ + λ2)u0 = f̂1 in (0, ω)
dθu0(ω) = 0 and

{
−(d2

θ + λ2)λ0 = ε f̂2 in (0, ω)
dθλ0(0) = 0.

For these classical problems, by using Proposition 6.1 in Appendix A, there is a constant C > 0
such that

‖d2
θu0‖L2(0,ω) + |λ|2‖u0‖L2(0,ω) ≤ C‖f̂1‖L2(0,ω) (34)

and
‖d2

θλ0‖L2(0,ω) + |λ|2‖λ0‖L2(0,ω) ≤ Cε‖f̂2‖L2(0,ω) (35)

for all λ ∈ `β when β /∈ {(π/2 + nπ)/ω, n ∈ Z}. Here and in what follows, the constant C > 0 may
change from a line to another but is independent of ε > 0, λ ∈ `β := {γ ∈ C, Re γ = β}.

Now, we see that (u], λ]) ∈ H1
0, 0(0, ω)×H1

0, ω(0, ω) satisfies
(d2
θ + λ2)u] = 0 in (0, ω)

(d2
θ + λ2)λ] = 0 in (0, ω)

dθu](0)− dθλ](0) = −dθu0(0)
ε dθu](ω) + dθλ](ω) = −dθλ0(ω).

(36)

Looking for u], λ] of the form u](θ) = A sin(λθ), λ](θ) = B sin(λ(θ − ω)), we find that A and B
must solve the problem(

λ −λ cos(λω)
ε λ cos(λω) λ

)(
A
B

)
=
(
−dθu0(0)
−dθλ0(ω)

)
.

We deduce that
u](θ) = −

dθu0(0) + cos(λω)dθλ0(ω)
λ(1 + ε cos2(λω)) sin(λθ)

and
λ](θ) =

ε cos(λω)dθu0(0)− dθλ0(ω)
λ(1 + ε cos2(λω)) sin(λ(θ − ω)).

From identity (75) of Appendix B, we have | sin(λθ)|2 = (cosh(2τθ)− cos(2βθ))/2, for λ = β + iτ .
We can write

‖u]‖2L2(I) =
∣∣∣∣dθu0(0) + cos(λω)dθλ0(ω)

2λ(1 + ε cos2(λω))

∣∣∣∣2(τ−1 sinh(2τω)− β−1 sin(2βω)). (37)

Since β 6= 0, one can verify that there is C > 0 such that, for all τ ∈ R, we have

β−1 sin(2βω) = |β|−1 sin(2|β|ω) ≤ 2ω ≤ |τ |−1 sinh(2|τ |ω) = τ−1 sinh(2τω) ≤ C e2|τ |ω/|λ|. (38)

Using (38) in (37), we obtain

|λ|4‖u]‖2L2(I) ≤ C |λ|
(

|dθu0(0)|2

|1 + ε cos2(λω)|2 +
| cos(λω)dθλ0(ω)|2

|1 + ε cos2(λω)|2

)
e2|τ |ω. (39)

Now we explain how to obtain estimates for |dθu0(0)| and | cos(λω)dθλ0(ω)|.
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? First we multiply the equation −(d2
θ + λ2)u0 = f̂1 in (0, ω) by cos(λ(θ − ω)) and integrate by

parts. This gives us

−dθu0(0) cos(λω) =
∫ ω

0
d2
θu0 cos(λ(θ − ω))− u0d

2
θ(cos(λ(θ − ω))) dθ = −

∫ ω

0
f̂1 cos(λ(θ − ω)) dθ

and leads to
| cos(λω)dθu0(0)|2 ≤ ‖f̂1‖2L2(0,ω)‖ cos(λ(θ − ω))‖2L2(0,ω). (40)

An analogous computation to what precedes (37), based on Identity (76) of Appendix B, yields

‖ cos(λ(θ − ω))‖2L2(0,ω) = (τ−1 sinh(2τω) + β−1 sin(2βω))/4.

Using the latter result as well as (38), we get

|dθu0(0)|2 ≤ C ‖f̂1‖2L2(I) e
2|τ |ω/(|λ| | cos(λω)|2). (41)

From Identity (76) and by using the fact that β /∈ {(π/2 +nπ)/ω, n ∈ Z}, one can check that there
is a constant C > 0 such that e2|τ |ω/| cos(λω)|2 ≤ C for all τ ∈ R. We deduce from (41) that

|dθu0(0)|2 ≤ C ‖f̂1‖2L2(0,ω)/|λ|. (42)

? Now, we provide an estimate for | cos(λω)dθλ0(ω)|. Multiplying the equation −(d2
θ + λ2)λ0 = ε f̂2

in (0, ω) by cos(λθ) and integrating by parts, we find

dθλ0(ω) cos(λω) =
∫ ω

0
d2
θλ0 cos(λθ)− λ0d

2
θ(cos(λθ)) dθ = −ε

∫ ω

0
f̂2 cos(λθ) dθ.

Working as above, this allows us to write

|dθλ0(ω) cos(λω)|2 ≤ C ε2 ‖f̂2‖2L2(0,ω)e
2|τ |ω/|λ|. (43)

In Lemmas 6.8 and 6.9 proved in Appendix B, we get the following estimates

e2|τ |ω

|1 + ε cos2(λω)|2 ≤ C/ε,
ε2e4|τ |ω

|1 + ε cos2(λω)|2 ≤ C, (44)

where again C > 0 is independent of ε > 0, λ = β + iτ ∈ `β. Therefore, inserting (41) as well as
(43) in (39) and using (44), we obtain

√
ε|λ|2‖u]‖L2(0,ω) ≤ C (‖f̂1‖L2(0,ω) +

√
ε‖f̂2‖L2(0,ω)). Since

‖d2
θu]‖L2(0,ω) = |λ|2‖u]‖L2(0,ω), we infer

√
ε(‖u]‖H2(0,ω) + |λ|2‖u]‖L2(0,ω)) ≤ C (‖f̂1‖L2(0,ω) +

√
ε‖f̂2‖L2(0,ω)). (45)

Now, let us derive a similar estimate for λ]. From the equation before (37), we have

‖λ]‖2L2(0,ω) =
∣∣∣∣ε cos(λω)dθu0(0)− dθλ0(ω)

4λ(1 + ε cos2(λω))

∣∣∣∣2(τ−1 sinh(2τω)− β−1 sin(2βω)). (46)

We infer
|λ|4‖λ]‖2L2(0,ω) ≤ C |λ|

(
ε2| cos(λω)dθu0(0)|2

|1 + ε cos2(λω)|2 +
|dθλ0(ω)|2

|1 + ε cos2(λω)|2

)
e2|τ |ω.

Working as in (41) and (43), we find

| cos(λω)dθu0(0)|2 ≤ C ‖f̂1‖2L2(0,ω) e
2|τ |ω/|λ|

and
|dθλ0(ω)|2 = C ε2 ‖f̂2‖2L2(0,ω)e

2|τ |ω/(|λ| | cos(λω)|2) ≤ C ε2 ‖f̂2‖2L2(0,ω)/|λ|.
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By using again Lemmas 6.8 and 6.9 of Appendix B, we deduce that |λ|2‖λ]‖L2(0,ω) ≤ C (‖f̂1‖L2(0,ω)+√
ε‖f̂2‖L2(0,ω)). Since ‖d2

θλ]‖L2(0,ω) = |λ|2‖λ]‖L2(0,ω), we infer

‖λ]‖H2(0,ω) + |λ|2‖λ]‖L2(0,ω) ≤ C (‖f̂1‖L2(0,ω) +
√
ε‖f̂2‖L2(0,ω)). (47)

From the decomposition (ûε, λ̂ε) = (u0, λ0) + (u], λ]), using estimates (34), (35), (45) and (47), we
finally obtain
√
ε(‖ûε‖H2(0,ω) + |λ|2‖ûε‖L2(0,ω)) + ‖λ̂ε‖H2(0,ω) + |λ|2‖λ̂ε‖L2(0,ω) ≤ C (‖f̂1‖L2(0,ω) +

√
ε‖f̂2‖L2(0,ω)).

It remains to integrate the above estimate on `−β following the definition of the norm ‖ · ‖β,0 given
by (19).

We now consider a problem in the infinite cone K of vertex S and angle ω which is associated with
the problem (25) in the strip via the change of variable t = ln r. For β ∈ R, we define the operator
Cβ : D(Cβ) −→ R(Cβ) such that (f1, f2) = Cβ(uε, λε) with

(f1, f2) = (−∆uε,−∆λε/ε) (48)

and D(Cβ) = {(uε, λε) ∈ V̊ 1
β−1,0(K) ∩ V 2

β (K)× V̊ 1
β−1,ω(K) ∩ V 2

β (K),
∂νuε − ∂νλε = 0 on ∂K0, ε∂νuε + ∂νλε = 0 on ∂Kω}

R(Cβ) = V 0
β (K)× V 0

β (K).
We have the following corollary to Theorem 5.2.

Corollary 5.1. If β − 1 /∈ {(π/2 + nπ)/ω, n ∈ Z}, then the operator Cβ is an isomorphism.
Moreover, there exists a constant C > 0 such that for all (f1, f2) ∈ R(Cβ), the solution (uε, λε) ∈
D(Cβ) to problem (48) satisfies

√
ε‖uε‖V 2

β
(K) + ‖λε‖V 2

β
(K) ≤ C (‖f1‖V 0

β
(K) +

√
ε‖f2‖V 0

β
(K)). (49)

Proof. The equation −∆u = f in K writes in polar coordinates

−((r∂r)2 + ∂2
θ )u = r2f,

which by using the operator E implies that

r2Cβ = E−1Bβ−1E.

Indeed the operator E maps V 2
β (K) to the space W 2

β−2+1(B) = W 2
β−1(B), the space V̊ 1

β−1,0(K)
to the space W̊ 1

β−1,0(B) and the space V̊ 1
β−1,ω(K) to the space W̊ 1

β−1,ω(B), which implies that E

is an isomorphism from D(Cβ) to D(Bβ−1). In addition, the operator Bβ−1 is an isomorphism
if β − 1 /∈ {(π/2 + nπ)/ω, n ∈ Z}. Lastly, the operator E−1 maps the space W 0

β−1(B) to the
space V 0

β−2(K), which implies that E−1 is an isomorphism from R(Bβ−1) to R(Cβ−2). It remains to
remark that the operator f 7→ r−2f maps the space V 0

β−2(K) to the space V 0
β (K), and is hence an

isomorphism from R(Cβ−2) to R(Cβ). This completes the proof of the first part.
The estimate relies again on the identity r2Cβ = E−1Bβ−1E, on the fact that E is an isomorphism
from V 2

β (K) to W 2
β−1(B), on the estimate (31) with β replaced by β−1 and of the fact that r−2E−1

is an isomorphism from W 0
β−1(B) to V 0

β (K).

In order to link the solutions of problem (48) obtained for different β, we need to compute the
adjoint of the symbol Lε defined in (26) and to specify its eigenvalues and eigenfunctions.

Lemma 5.2. The adjoint of the symbol Lε(λ) is the symbol L ∗
ε (λ) : D(L ∗

ε )→ R(L ∗
ε ) with

L ∗
ε (λ)(gε, hε) = (−(λ2 + d2

θ)gε,−
1
ε

(λ2 + d2
θ)hε)

D(L ∗
ε ) = {(gε, hε) ∈ H2(0, ω)×H2(0, ω), dθgε(ω) = 0, dθhε(0) = 0,

gε(ω)− hε(ω) = 0, εgε(0) + hε(0) = 0},
and R(L ∗

ε ) = L2(0, ω)× L2(0, ω).
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Proof. For (ϕ,ψ) ∈ D(Lε) and (g, h) ∈ D(L ∗
ε ), we have by an integration by parts formula∫ ω

0
−(λ2 + d2

θ)ϕg dθ +
∫ ω

0
−1
ε

(λ2 + d2
θ)ψ hdθ

=
∫ ω

0
ϕ −(λ2 + d2

θ)g dθ +
∫ ω

0
ψ −1

ε
(λ2 + d2

θ)h dθ

−dθϕ(ω)g(ω) + dθϕ(0)g(0) + ϕ(ω)dθg(ω)− ϕ(0)dθg(0)

−1
ε
dθψ(ω)h(ω) + 1

ε
dθψ(0)h(0) + 1

ε
ψ(ω)dθh(ω)− 1

ε
ψ(0)dθh(0).

It is readily seen that all the boundary terms vanish due to the boundary conditions satisfied by
(ϕ,ψ) and (g, h) at θ = 0 and θ = ω. This completes the proof.

Lemma 5.3. The eigenvalues of the symbol L ∗
ε are the same as that of Lε and are given by (27)

and (28). The corresponding (non normalized) eigenfunctions are given by

g±n (θ) = cos(λ±nω) cos(λ±n (θ − ω)), h±n (θ) = cos(λ±n θ).

The proof of Lemma 5.3 is the same as the proof of Lemma 5.1 and is therefore not given. Lastly,
we will need a biorthogonality relationship between the eigenfunctions of Lε and that of L ∗

ε .

Lemma 5.4. Assume that j, k ∈ Z and ν, µ = ± satisfy either j + k 6= −1 or µ + ν 6= 0. The
eigenfunctions (ϕ±n , ψ±n ) of Lε and the eigenfunctions (g±n , h±n ) of L ∗

ε satisfy∫ ω

0
ϕνkg

µ
j dθ + 1

ε

∫ ω

0
ψνkh

µ
j dθ = δνµδkjdk,

with
dk = (−1)k+1ω

ε

√
1 + 1

ε
. (50)

Proof. On the one hand, the assumption j + k 6= −1 or µ + ν 6= 0 is equivalent to λµj 6= −λνk. Let
us first assume that k 6= j and ν = µ = +, which implies on the other hand that λµj 6= λνk. Skipping
the sign +, we have

−λ2
k

∫ ω

0

(
ϕkgj + 1

ε
ψkhj

)
dθ =

∫ ω

0

(
∆ϕkgj + 1

ε
∆ψkhj

)
dθ

=
∫ ω

0

(
ϕk∆gj + 1

ε
ψk∆hj

)
dθ = −λ2

j

∫ ω

0

(
ϕkgj + 1

ε
ψkhj

)
dθ.

Since λ2
j 6= λ2

k, this implies that for j 6= k and ν = µ = +, we have∫ ω

0

(
ϕνkg

µ
j + 1

ε
ψνkh

µ
j

)
dθ = 0.

We clearly obtain the same result each time that (k, ν) 6= (j, µ). Let us now assume that k = j and
ν = µ. We have ∫ ω

0
ϕνkg

ν
k dθ = cos2(λνkω)

∫ ω

0
sin(λνkθ) cos(λνk(θ − ω)) dθ

and ∫ ω

0
ψνkh

ν
k dθ =

∫ ω

0
sin(λνk(θ − ω)) cos(λνkθ) dθ = −

∫ ω

0
sin(λνkθ) cos(λνk(θ − ω)) dθ.

Given that 1 + ε cos2(λνkω) = 0, we obtain∫ ω

0
ϕνkg

ν
k dθ + 1

ε

∫ ω

0
ψνkh

ν
kdθ = −2

ε

∫ ω

0
sin(λνkθ) cos(λνk(θ − ω)) dθ. (51)
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But a direct calculus gives∫ ω

0
sin(λνkθ) cos(λνk(θ − ω)) dθ = 1

2

∫ ω

0
sin(λνk(2θ − ω)) dθ + 1

2

∫ ω

0
sin(λνkω) dθ

= 1
2 ω sin(λνkω) = 1

2 ω sin
(
π

2 + kπ + iν ln γε
)

= (−1)k

2 ω cos(iν ln γε) = (−1)k

2 ω cosh(ln γε).

(52)

Since γε =
√

1 + 1/ε+
√

1/ε, we find

cosh(ln γε) = 1
2

(
γε + 1

γε

)
=
√

1 + 1
ε
. (53)

Using (53) and (52) in (51), we get the desired result.

In the next theorem, we compare two solutions of problem (25) associated with two different values
of β.

Theorem 5.3. Assume that β1 < β2 are two real numbers such that βj /∈ {(π/2 + nπ)/ω, n ∈
Z}, j = 1, 2. Let us denote by λν1 , λ

ν
2 , . . . , λ

ν
N , with ν = ±, the eigenvalues of Lε in the strip

−β2 < Reλ < −β1. For (f1, f2) ∈ R(Bβ1) ∩ R(Bβ2), the solutions (uβ1 , λβ1) ∈ D(Bβ1) and
(uβ2 , λβ2) ∈ D(Bβ2) to the problems Bβ1(uβ1 , λβ1) = (f1, f2) and Bβ2(uβ2 , λβ2) = (f1, f2) satisfy the
relationship

(uβ2 , λβ2) = (uβ1 , λβ1) +
∑
ν∈{±}

N∑
k=1

cνke
λνkt(ϕνk, ψνk), (54)

where (ϕνk, ψνk) is the eigenvector of Lε associated with the eigenvalue λνk (see Lemma 5.1) and

cνk = 1
2λνkdk

(
(f1, e

−λν
k
tgνk)L2(B) + (f2, e

−λν
k
thνk)L2(B)

)
. (55)

Here (gνk , hνk) stand for the eigenvector of L ∗
ε associated with the eigenvalue λνk (see Lemma 5.3)

and dk is given by (50).

Proof. The first part of the theorem is obtained by using the residue theorem as in the proof of
[29, Theorem 5.4.1]. Now we establish (55). Let us introduce a cut-off function ξ ∈ R such that
ξ(t) = 0 for t ≤ t1 and ξ(t) = 1 for t ≥ t2, with t1 < t2. From (54) and using the short notation
B = (−∆,−∆/ε), we have

−B(ξ(uβ2 − uβ1), ξ(λβ2 − λβ1)) =
∑
ν∈{±}

N∑
k=1

cνk

(
∆(ξ(eλνktϕνk)) + 1

ε
∆(ξ(eλνktψνk))

)
.

We observe that ∆(ξ(eλνktϕνk)) and ∆(ξ(eλνktϕνk)) are non vanishing only on [t1, t2] × [0, ω], which
implies that for j = 1, . . . , N and µ = ±,

−
(
B(ξ(uβ2 − uβ1), ξ(λβ2 − λβ1)), (e−λ

µ
j tgj , e

−λµj thj)
)
L2(B)×L2(B)

=
∑
ν∈{±}

N∑
k=1

cνk

(
∆(ξ(eλνktϕνk)), e−λ

µ
j tgj

)
L2((t1,t2)×(0,ω))

+1
ε

∑
ν∈{±}

N∑
k=1

cνk

(
∆(ξ(eλνktψνk)), e−λ

µ
j thj

)
L2((t1,t2)×(0,ω))

.
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By an integration by parts formula in the domain (t1, t2)× (0, ω) and by using that ∆(e−λ
µ
j tgj) = 0

and ∆(e−λ
µ
j thj) = 0, we get that

−
(
B(ξ(uβ2 − uβ1), ξ(λβ2 − λβ1)), (e−λ

µ
j tgj , e

−λµj thj)
)
L2(B)×L2(B)

=
∑
ν∈{±}

N∑
k=1

cνk

(
λνke

λνkt2ϕνk, e
−λµj t2gµj

)
L2(0,ω)

+ 1
ε

∑
ν∈{±}

N∑
k=1

cνk

(
(λνkeλ

ν
kt2ψµk , e

−λµj t2hµj

)
L2(0,ω)

−
∑
ν∈{±}

N∑
k=1

cνk

(
eλ

ν
kt2ϕνk,−λ

µ
j e
−λµj t2gµj

)
L2(0,ω)

− 1
ε

∑
ν∈{±}

N∑
k=1

cνk

(
eλ

ν
kt2ψνk ,−λ

µ
j e
−λµj t2hµj

)
L2(0,ω)

.

In view of the biorthogonality relationships of Lemma 5.4 and due to the fact that in case λνk = −λµj
(that is j + k = −1 and ν + µ = 0) the first and third terms within the brackets above compensate
one another as well as the second and fourth terms, we end up with

−
(
B(ξ(uβ2 − uβ1), ξ(λβ2 − λβ1)), (e−λ

µ
j tgj , e

−λµj thj)
)
L2(B)×L2(B)

= 2λµj c
µ
j dj . (56)

On the other end, since β1 < β2, the function uβ2 is more decreasing than uβ1 at +∞. And the
situation is inverted at −∞. The same property holds for λβ2 and λβ1 . Since ξ vanishes at −∞, we
have that (ξuβ2 , ξλβ2) ∈ D(Bβ1) ∩ D(Bβ2). Using an integration by parts in B and the fact that
−β2 < Reλj , we obtain that(

B(ξuβ2 , ξλβ2), (e−λ
µ
j tgj , e

−λµj thj)
)
L2(B)×L2(B)

= 0. (57)

With the same argument, we obtain(
B((1− ξ)uβ1 , (1− ξ)λβ1), (e−λ

µ
j tgj , e

−λµj thj)
)
L2(B)×L2(B)

= 0. (58)

By combining (56), (57) and (58), we get

2λµj c
µ
j dj

=
(
B(ξ(uβ1 − uβ2), ξ(λβ1 − λβ2)), (e−λ

µ
j tgj , e

−λµj thj)
)
L2(B)×L2(B)

=
(
B(ξuβ1 , ξλβ1), (e−λ

µ
j tgj , e

−λµj thj)
)
L2(B)×L2(B)

=
(
B(uβ1 , λβ1), (e−λ

µ
j tgj , e

−λµj thj)
)
L2(B)×L2(B)

−
(
B((1− ξ)uβ1 , (1− ξ)λβ1), (e−λ

µ
j tgj , e

−λµj thj)
)
L2(B)×L2(B)

=
(
B(uβ1 , λβ1), (e−λ

µ
j tgj , e

−λµj thj)
)
L2(B)×L2(B)

=
(
(f1, f2), (e−λ

µ
j tgj , e

−λµj thj)
)
L2(B)×L2(B)

,

which completes the proof.

From the previous theorem in the strip, we obtain the following corollary in the infinite cone by
using the identity r2Cβ = E−1Bβ−1E

Corollary 5.2. Assume that β1 < β2 are two real numbers such that βj − 1 /∈ {(π/2 + nπ)/ω, n ∈
Z}, j = 1, 2. Let us denote by λν1 , λ

ν
2 , . . . , λ

ν
N , with ν = ±, the eigenvalues of Lε in the strip

−β2 + 1 < Reλ < −β1 + 1. For (f1, f2) ∈ R(Cβ1) ∩ R(Cβ2), the solutions (uβ1 , λβ1) ∈ D(Cβ1) and
(uβ2 , λβ2) ∈ D(Cβ2) to the problems Cβ1(uβ1 , λβ1) = (f1, f2) and Cβ2(uβ2 , λβ2) = (f1, f2) satisfy the
relationship

(uβ2 , λβ2) = (uβ1 , λβ1) +
∑
ν∈{±}

N∑
k=1

cνkr
λνk(ϕνk, ψνk),

where
cνk = 1

2λνkdk

(
(f1, r

−λν
kgνk)L2(K) + (f2, r

−λν
khνk)L2(K)

)
.
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Remark 5.2. For real valued functions f1 and f2, we have cνk = c−νk for all k ∈ {1, . . . , N}.

We end up with the main proposition of this section.

Proposition 5.1. Assume that S is the vertex of a corner of mixed type. Let us consider s <
1+π/(2ω) if ω ≥ π/2 and s = 2 otherwise. For f ∈ L2(Ω) and ε > 0, the solution (uε, λε) ∈ V0× Ṽ0
to the problem (7) is such that ζuε and ζλε belong to Hs(Ω) and there exists a constant C > 0 which
depends only on the geometry such that

∀ε ∈ (0, 1], ε‖ζuε‖Hs(Ω) +
√
ε‖ζλε‖Hs(Ω) ≤ C‖f‖L2(Ω).

If in addition we assume that f is such that problem (6) has a (unique) solution u, then

∀ε ∈ (0, 1],
√
ε‖ζuε‖Hs(Ω) + ‖ζλε‖Hs(Ω) ≤ C‖u‖H1(∆,Ω).

Proof. The pair (vε, µε),= (ζuε, ζλε), where (uε, λε) ∈ V0 × Ṽ0 solves (7), satisfies the problem

−∆vε = gε in K
−∆µε = ε hε in K

vε = 0 on ∂K0
∂νvε − ∂νµε = 0 on ∂K0

µε = 0 on ∂Kω

ε ∂νvε + ∂νµε = 0 on ∂Kω,

(59)

with (gε, hε) =
(
−∆ζuε − 2∇ζ · ∇uε + ζ

f

1 + ε
,−∆ζ λε

ε
− 2∇ζ · ∇

(λε
ε

)
− ζ f

1 + ε

)
.

Let us study the regularity of vε, µε by using the properties of the operator Cβ defined in (48).
To proceed, in particular, we will exploit the results of Corollaries 5.1 and 5.2.

First, observing that V 0
0 (K) = L2(K) and that ζ is compactly supported, we deduce that (gε, hε) ∈

V 0
0 (K) × V 0

0 (K). And more generally, we have (gε, hε) ∈ R(Cβ) = V 0
β (K) × V 0

β (K) for all β ≥ 0.
For β = 1, there holds β − 1 /∈ {(π/2 + nπ)/ω, n ∈ Z}. From Corollary 5.1, we infer that C1 is an
isomorphism from

D(C1) = {(vε, µε) ∈ V̊ 1
0,0(K) ∩ V 2

1 (K)× V̊ 1
0,ω(K) ∩ V 2

1 (K),
∂νvε − ∂νµε = 0 on ∂K0, ε∂νvε + ∂νµε = 0 on ∂Kω}

to R(C1) 3 (gε, hε). Let us denote by (v1
ε , µ

1
ε) ∈ D(C1) the unique element of D(C1) such that

C1(v1
ε , µ

1
ε) = (gε, hε). Corollary 5.1 ensures that there is a constant C such that

√
ε‖v1

ε‖V 2
1 (K) + ‖µ1

ε‖V 2
1 (K) ≤ C (‖gε‖V 0

1 (K) +
√
ε‖hε‖V 0

1 (K)).

Let us prove that (v1
ε , µ

1
ε) coincides with (vε, µε). We have (vε, µε) ∈ V̊ 1

0,0× V̊ 1
0,ω. Indeed, vε vanishes

for r ≥ b and from Poincaré’s inequality, there holds∫
Kb

1
r2 v

2
ε dx ≤ C

∫
Kb

|∇vε|2 dx.

The same inequality is valid for µε. Next, let us introduce υ ∈ C∞0 (K) such that υ vanishes in a
vicinity of ∂K0 and ψ ∈ C∞0 (K) such that ψ vanishes in a vicinity of ∂Kω. It is easy to check that
(vε, µε) solves 

ε

∫
K
∇vε · ∇υ dx+

∫
K
∇υ · ∇µε dx =

∫
K
ε(gε + hε) υ dx∫

K
∇vε · ∇ψ dx−

∫
K
∇µε · ∇ψ dx =

∫
K

(gε − ε hε)ψ dx.
(60)
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One can also verify that (v1
ε , µ

1
ε) satisfies (60). Since (vε−v1

ε , µε−µ1
ε) ∈ V̊ 1

0,0× V̊ 1
0,ω, using the density

of the set of functions υ (resp. ψ) in V̊ 1
0,0 (resp. in V̊ 1

0,ω), we conclude that (vε, µε) = (v1
ε , µ

1
ε). Now

we must separate the rest of the analysis according to the configuration.

? Let us first assume that ω < π/2. In this case, for β = 0, we have β−1 /∈ {(π/2 +nπ)/ω, n ∈ Z}.
Then Corollary 5.1 guarantees that C0 is an isomorphism from

D(C0) = {(vε, µε) ∈ V̊ 1
−1,0(K) ∩ V 2

0 (K)× V̊ 1
−1,ω(K) ∩ V 2

0 (K),
∂νvε − ∂νµε = 0 on ∂K0, ε∂νvε + ∂νµε = 0 on ∂Kω}

to R(C0) 3 (gε, hε). Let us denote by (v0
ε , µ

0
ε) ∈ D(C0) the unique element of D(C0) such that

C0(v0
ε , µ

0
ε) = (gε, hε). Corollary 5.1 ensures that there is a constant C such that

√
ε‖v0

ε‖V 2
0 (K) + ‖µ0

ε‖V 2
0 (K) ≤ C (‖gε‖L2(K) +

√
ε‖hε‖L2(K)) (61)

But from Lemma 5.1, the eigenvalues λ±n of Lε satisfy Reλ±n = (π/2 + nπ)/ω, n ∈ Z. As a
consequence when ω < π/2, none of them lies in the strip 0 < Reλ < 1. This implies that

(vε, µε) = (v1
ε , µ

1
ε) = (v0

ε , µ
0
ε).

Besides, we observe that V 2
0 (K) ⊂ H2(Kb). Hence (vε, µε) ∈ H2(Kb)×H2(Kb). Using the estimates{
‖gε‖L2(K) ≤ C(‖uε‖H1(Kb) + ‖f‖L2(Kb))
‖hε‖L2(K) ≤ C(‖λε‖H1(Kb)/ε+ ‖f‖L2(Kb)),

(62)

then from (61), we can write
√
ε‖ζuε‖H2(Ω) + ‖ζλε‖H2(Ω) =

√
ε‖vε‖H2(Kb) + ‖µε‖H2(Kb)

≤ C(
√
ε‖v0

ε‖V 2
0 (K) + ‖µ0

ε‖V 2
0 (K)) ≤ C(‖gε‖L2(Kb) +

√
ε‖hε‖L2(Kb))

≤ C(‖uε‖H1(Kb) + 1√
ε
‖λε‖H1(Kb) + ‖f‖L2(Kb)).

By using (9), finally we get

ε‖ζuε‖H2(Ω) +
√
ε‖ζλε‖H2(Ω) ≤ C‖f‖L2(Ω).

? Now let us assume that ω ≥ π/2. Choose β such that 0 ≤ 1− π/(2ω) < β < 1. In this case, since
β − 1 /∈ {(π/2 + nπ)/ω, n ∈ Z}, the operator Cβ is an isomorphism from

D(Cβ) = {(vε, µε) ∈ V̊ 1
β−1,0(K) ∩ V 2

β (K)× V̊ 1
β−1,ω(K) ∩ V 2

β (K),
∂νuε − ∂νλε = 0 on ∂K0, ε∂νuε + ∂νλε = 0 on ∂Kω}

to R(Cβ) 3 (gε, hε). Let us denote by (vβε , µβε ) ∈ D(Cβ) the unique element of D(Cβ) such that
Cβ(vβε , µβε ) = (gε, hε). Using Corollary 5.1 and the fact that gε, hε are compactly supported with
β > 0, we can write

√
ε‖vβε ‖V 2

β
(K) + ‖µβε ‖V 2

β
(K) ≤ C (‖gε‖V 0

β
(K) +

√
ε‖hε‖V 0

β
(K))

≤ C (‖gε‖L2(K) +
√
ε‖hε‖L2(K)).

(63)

Again, none of the λ±n lies in the strip 0 < Reλ < 1− β, which implies that

(vε, µε) = (v1
ε , µ

1
ε) = (vβε , µβε ).

Besides, note that vε and µε are supported in Kb. The Theorem 5.2 of [37] ensures that the space
V 2
β (Kb) is continuously embedded in the interpolate space [V 2

0 (Kb), V 2
1 (Kb)]θ for all θ ∈ (β, 1). Since
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the spaces V 2
0 (Kb) and V 1

0 (Kb) are continuously embedded in H2(Kb) and H1(Kb), respectively,
we infer that [V 2

0 (Kb), V 2
1 (Kb)]θ is continuously embedded in [H2(Kb), H1(Kb)]θ = H2−θ(Kb) for

all θ ∈ (β, 1). Since β is arbitrarily close to 1 − π/(2ω), we conclude that the space V 2
β (Kb) is

continuously embedded in Hs(Kb) for all s < 1 + π/(2ω). Gathering the estimates (62) and (63),
we infer that for all s < 1 + π/(2ω),

√
ε‖ζuε‖Hs(Ω) + ‖ζλε‖Hs(Ω) =

√
ε‖vε‖Hs(Kb) + ‖µε‖Hs(Kb)

≤ C(
√
ε‖vβε ‖V 2

β
(K) + ‖µβε ‖V 2

β
(K)) ≤ C(‖gε‖L2(Kb) +

√
ε‖hε‖L2(Kb))

≤ C(‖uε‖H1(Kb) + 1√
ε
‖λε‖H1(Kb) + ‖f‖L2(Kb)).

By using the estimate (9), finally we get ε‖ζuε‖Hs(Ω) +
√
ε‖ζλε‖Hs(Ω) ≤ C‖f‖L2(Ω).

Remark 5.3. By using Corollary 5.2 for β1 = 0 and β2 = 1, we obtain all the singular functions
at a corner of mixed type, which are the functions rλνk(ϕνk, ψνk) which belong to H1(Kb) but not to
H2(Kb). The singular functions are readily determined by the value of Re(λνk) = (π/2 + kπ)/ω for
k ∈ Z:

• there is no singularity for ω ≤ π/2,

• singularities are obtained for k = 0 and ν = ± for π/2 < ω ≤ 3π/2,

• singularities are obtained for k = 0, k = 1 and ν = ± for ω > 3π/2.

Note that this conclusion is very similar to the case of the Laplace equation with mixed Dirichlet-
Neumann boundary conditions (see [22]).

6 Application to error estimates

In this last section, we use the regularity estimates for solutions of quasi-reversibility problem (7),
in particular Theorem 3.1, to derive error estimates between the exact solution and the quasi-
reversibility solution obtained in the presence of noisy data and with the help of a FEM.

6.1 Main analysis

Let us assume that Ω is a polygonal domain in two dimensions and that u ∈ H1(Ω) is the exact
solution of problem (6) associated with the exact data f ∈ L2(Ω). In the context of inverse problems,
usually f is not available. Only an approximate data f δ ∈ L2(Ω) is available, with

‖f δ − f‖L2(Ω) ≤ δ, (64)

where δ can be viewed as the amplitude of noise. A natural idea is to solve problem (7) with f δ

instead of f , and a practical way of proceeding is to discretize problem (7) with the help of a FEM.
More precisely, we assume that Ω supports a triangular mesh which is regular in the sense of [17],
the maximal diameter of each triangle being h. Let us denote by V0,h and Ṽ0,h the finite dimensional
subspaces of V0 and Ṽ0, respectively, formed by the continuous functions on Ω which are affine on
each triangle and which vanish on the sides which belong to Γ and Γ̃, respectively. The discretized
version of the mixed formulation of quasi-reversibility (7) is: for ε > 0, find (uε,h, λε,h) ∈ V0,h× Ṽ0,h
such that for all (vh, µh) ∈ V0,h × Ṽ0,h,

ε

∫
Ω
∇uε,h · ∇vh dx+

∫
Ω
∇vh · ∇λε,h dx = 0∫

Ω
∇uε,h · ∇µh dx−

∫
Ω
∇λε,h · ∇µh dx =

∫
Ω
fµh dx.

(65)
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We denote (uδε,h, λδε,h) the solution to problem (65) which is associated with the noisy data f δ instead
of the exact data f . In practice, the solution uδε,h is the only approximate function of the exact
solution u which is accessible, this is why we are interested in the norm of the discrepancy uδε,h − u
in the domain Ω. In this view, we write

‖uδε,h − u‖H1(Ω) ≤ ‖uδε,h − uε,h‖H1(Ω) + ‖uε,h − uε‖H1(Ω) + ‖uε − u‖H1(Ω), (66)

and estimate each term of this decomposition. The first term to estimate corresponds to the error
due to the noisy data. Let us prove the following lemma.

Lemma 6.1. There exists a constant C > 0 which depends only on the geometry such that

‖uδε,h − uε,h‖H1(Ω) ≤ C
δ√
ε
. (67)

Proof. By reusing the bilinear form Aε introduced in the proof of Theorem 1.1, (uδε,h, λδε,h) and
(uε,h, λε,h) are solutions in V0,h × Ṽ0,h to the weak problems: for all (vh, µh) ∈ V0,h × Ṽ0,h,

Aε((uδε,h, λδε,h); (vh, µh)) = −
∫

Ω
f δµh dx, Aε((uε,h, λε,h); (vh, µh)) = −

∫
Ω
fµh dx.

Taking the difference, setting (vh, µh) = (uδε,h − uε,h, λδε,h − λε,h), we get

ε‖uδε,h − uε,h‖2 + ‖λδε,h − λε,h‖2 ≤ ‖f δ − f‖L2(Ω)‖λδε,h − λε,h‖L2(Ω),

where we recall that ‖ · ‖ denotes the H1(Ω) semi-norm. We complete the proof by using the
Poincaré inequality and (64).

The second term of (66) corresponds to the error due to discretization. Let us prove the following
lemma, which is a consequence of Theorem 3.1.

Lemma 6.2. There is a constant C > 0 which depends only on the geometry and on u such that

‖uε,h − uε‖H1(Ω) ≤ C
hs−1

ε
, (68)

where s is given in the statement of Theorem 3.1.

Proof. The proof relies in particular on Céa’s Lemma. Since we need a uniform estimate with
respect to ε, we detail the proof. For all (vh, µh) ∈ V0,h × Ṽ0,h, we have

Aε((uε − uε,h, λε − λε,h); (vh, µh)) = 0.

This implies that for all (vh, µh) ∈ V0,h × Ṽ0,h,

Aε((uε − uε,h, λε − λε,h); (uε − uε,h, λε − λε,h)) = Aε((uε − uε,h, λε − λε,h); (uε − vh, λε − µh)),

hence
Aε((uε − uε,h, λε − λε,h); (uε − uε,h, λε − λε,h))

≤ inf
(vh,µh)∈V0,h×Ṽ0,h

|Aε((uε − uε,h, λε − λε,h); (uε − vh, λε − µh))| .

But on the one hand, we have

Aε((uε − uε,h, λε − λε,h); (uε − uε,h, λε − λε,h)) = ε‖uε − uε,h‖2 + ‖λε − λε,h‖2

while on the other hand, there holds

inf
(vh,µh)∈V0,h×Ṽ0,h

|Aε((uε − uε,h, λε − λε,h); (uε − vh, λε − µh))|

≤ (ε‖uε − uε,h‖+ ‖λε − λε,h‖) inf
vh∈V0,h

‖uε − vh‖+ (‖uε − uε,h‖+ ‖λε − λε,h‖) inf
µh∈Ṽ0,h

‖λε − µh‖.
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By using the classical interpolation error estimates in Hs(Ω) for s > 1 (see [22]), we know that
there exists a constant C > 0 which depends only on the geometry such that

inf
vh∈V0,h

‖uε − vh‖ ≤ C hs−1‖uε‖Hs(Ω), inf
µh∈Ṽ0,h

‖λε − µh‖ ≤ C hs−1‖λε‖Hs(Ω).

Theorem 3.1 in the case of exact data f implies that there is a constant C > 0 which depends on
the geometry and on u such that

‖uε‖Hs(Ω) ≤ C
1√
ε

and ‖λε‖Hs(Ω) ≤ C.

From the three above estimates, we get

inf
(vh,µh)∈V0,h×Ṽ0,h

|Aε((uε − uε,h, λε − λε,h); (uε − vh, λε − µh))|

≤ C
hs−1
√
ε

(ε‖uε − uε,h‖+ ‖λε − λε,h‖) + C hs−1(‖uε − uε,h‖+ ‖λε − λε,h‖)

≤ C
hs−1
√
ε

(
√
ε‖uε − uε,h‖+ ‖λε − λε,h‖).

Eventually we end up with

ε‖uε − uε,h‖2 + ‖λε − λε,h‖2 ≤ C
hs−1
√
ε

(ε‖uε − uε,h‖2 + ‖λε − λε,h‖2)1/2,

which completes the proof.

Estimating the third term in (66) is strongly related to the stability of the Cauchy problem for
the Laplace equation, a topic which has a long history since the pioneering paper [23] (see e.g.
[38, 39, 2, 3, 1, 40, 5, 6]). It is well-known that since such problem is exponentially ill-posed, the
corresponding stability estimate is at best of logarithmic type (see for example [5]). To our best
knowledge, an estimate of η(ε) := ‖uε − u‖H1(Ω), which tends to 0 when ε tends to 0 in view
of Theorem 1.2, is unknown. However, a logarithmic stability estimate for ‖uε − u‖L2(Ω) can be
derived from Theorem 1.9 in [1] and a Hölder stability estimate for ‖uε − u‖H1(G) can be derived
from Propositions 2.2 and 2.3 in [5], where G is a subdomain of Ω which excludes a vicinity of Γ̃
and a vicinity of corners.

Lemma 6.3. There exists a constant C > 0 which depends only on the geometry and on u and a
constant µ ∈ (0, 1) which depends only on the geometry such that

‖uε − u‖L2(Ω) ≤ C
1(

log(1/ε)
)µ .

Proof. From (6) and (8), the functions uε − u and λε satisfy
−∆(uε − u) = −εf/(1 + ε) in Ω

uε − u = 0 on Γ
∂ν(uε − u) = ∂νλε on Γ.

(69)

By using the estimate (10) of Theorem 1.2, we get

‖uε − u‖H1(Ω) ≤ C, ‖∆(uε − u)‖L2(Ω) ≤ C ε, ‖∂ν(uε − u)‖H−1/2(Γ) ≤ C
√
ε.

By plugging these estimates in Theorem 1.9 of [1], we obtain the result.

Lemma 6.4. There exists a constant C > 0 which depends only on the geometry and on u and a
constant µ ∈ (0, 1) which depends only on the geometry such that

‖uε − u‖H1(G) ≤ C εµ.
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Proof. We start again from the system (69) satisfied by the function uε − u in Ω. Let us consider
some x0 ∈ Γ and a sufficiently small r > 0 such that Γ0 = Γ ∩B(x0, r) is the interior of a segment.
We have that, by using a trace inequality,

‖∂ν(uε − u)‖L2(Γ0) = ‖∂νλε‖L2(Γ0) ≤ C ‖λε‖H3/2(ω0),

where ω0 = Ω ∩B(x0, r). Then, by interpolation

‖λε‖H3/2(ω0) ≤ C ‖λε‖
1/2
H1(ω0)‖λε‖

1/2
H2(ω0).

Now, the estimates of λε given by Theorems 1.2 and 2.1 provide

‖λε‖H1(ω0) ≤ C
√
ε, ‖λε‖H2(ω0) ≤ C.

We end up with
‖∂ν(uε − u)‖L2(Γ0) ≤ C ε1/4.

Plugging the estimates

‖uε − u‖H1(Ω) ≤ C, ‖∆(uε − u)‖L2(Ω) ≤ C ε, ‖∂ν(uε − u)‖L2(Γ0) ≤ C ε1/4

in Propositions 2.3 (propagation of smallness from a subpart of the boundary to the interior of the
domain) and 2.2 (interior propagation of smallness) in [5], we obtain the result.

Remark 6.1. Our analysis does not provide a uniform bound of ‖uε−u‖Hs(Ω) with respect to ε for
some s > 1. Such uniform bound is required when trying to propagate smallness from the interior
up to the boundary (see Proposition 2.4 in [5]). This is why a stability estimate for ‖uε − u‖H1(Ω)
can not be obtained from what precedes.

In conclusion, by gathering (66)-(68), we end up with the final estimate

‖uδε,h − u‖H1(Ω) ≤ C
δ√
ε

+ C
hs−1

ε
+ η(ε), (70)

where s is given in the statement of Theorem 3.1 and η converges to 0 when ε tends to 0 at best with
a logarithmic convergence rate in view of Lemma 6.3. An important application of the estimate
(70) is that when δ → 0, we have to choose ε = ε(δ) and h = h(ε) such that

lim
δ→0

δ√
ε(δ)

= 0, lim
ε→0

hs−1(ε)
ε

= 0

in order to obtain a good approximation of the exact solution from noisy data and by using our
FEM.

Remark 6.2. Taking Lemma 6.4 into account, the estimate (70) is slightly improved in the truncated
domain G:

‖uδε,h − u‖H1(G) ≤ C
(
δ√
ε

+ h

ε
+ εµ

)
, (71)

where the exponent of h is 1 because the domain G excludes all the corners (we use a slight adaptation
of Theorem 2.1).

6.2 Numerical illustrations

In this paragraph, we present the results of preliminary numerical experiments we conducted to
illustrate certain features of the estimate (70). We set

Ω = (0, 1)× (0, 1) and Γ = ({0} × (0, 1)) ∪ ({1} × (0, 1)) ∪ ((0, 1)× {0}),
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as well as f = −∆u, where
u(x, y) = (sin(x) sin(1− x) sin(y))2.

Note that the function u satisfies u = ∂νu = 0 on Γ. As a consequence, u is the solution of the
Cauchy problem (6). Then for a given small ε > 0, we numerically approximate the solution of
the mixed formulation of quasi-reversibility (7) using a P1 FEM. To proceed, we use the library
FreeFem++1. This gives us a numerical solution uε,h where h corresponds to the mesh size. The
mesh of the domain Ω is structured and composed of triangles that are all the same. We emphasize
that in order to interpret the results more easily, that is to analyze the conjugate effects of ε and h
on the error, we take f δ = f . In other words, we work with noiseless data.
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Figure 4: Curves ‖uε,h − u‖H1(Ω) with respect to h for ε = 10−5, ε = 10−6 and ε = 10−7.

In Figure 4, we have displayed the curve ‖uε,h − u‖H1(Ω) as a function of h for different values of
ε. Given the geometry considered here, Theorem 3.1 ensures that we can take s = 2 in (70). As a
consequence, we have the theoretical estimate

‖uε,h − u‖H1(Ω) ≤ C
h

ε
+ η(ε), (72)

where the function η is not known but at best logarithmic (see the discussion above). We observe
that ‖uε,h − u‖H1(Ω) is a function that decreases as h tends to zero. However, such function seems
linear for small values of ε and turns out to be a constant for large values of ε in the region where h
is small (see the left curve of Figure 4). An attempt to explain such phenomenon is the following:
for small values of ε, the first term in the right-hand side of (72) is much larger than the second one,
so that the linearity with respect to h is visible. This is confirmed, looking at the vertical scales
indicated on the figure, by the fact that the maximal error is increasing when ε is decreasing. For
large values of ε, the second term becomes dominant and does not depend on h, which explains why
a threshold is visible.
Such effect can be attenuated if we truncate the domain close to the boundary ∂Ω\Γ = (0, 1)×{1},
that is where the data are unknown. Indeed, as we can see on Figure 5, the numerical errors create
some instability close to that part of the boundary.
In Figure 6, we set G̃ = (0, 1)× (0, 0.9) (interior domain) and we represent the curve ‖uε,h−u‖H1(G̃)
as a function of h for different values of ε. In that case, adapting a bit (71) (because Γ has some
corners but angles are right angles), we obtain the theoretical estimate

‖uε,h − u‖H1(G̃) ≤ C
(
h

ε
+ εµ

)
(73)

for some positive µ. In this situation, in agreement with (73), we observe that the linear behaviour
with respect to h as h tends to zero appears quite clearly, because the first term in the right-hand
side of (73) is not absorbed by the second one any more, for all values of ε that we consider. This
may be due to the fact that the Hölder estimate C εµ is much smaller than the estimate η(ε), which
is at best logarithmic.

1FreeFem++, http://www.freefem.org/ff++/.
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Figure 5: Exact solution u (left) and error uε,h − u (right) for ε = 10−8, h ≈ 7.1× 10−3.
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Figure 6: Curves ‖uε,h − u‖H1(G̃) with respect to h for ε = 10−5, ε = 10−6 and ε = 10−7. Here
G̃ = (0, 1)× (0, 0.9).
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Figure 7: Curves ‖uε,h − u‖H1(Ω) (left) and ‖uε,h − u‖H1(G̃) (right) with respect to log ε for h ≈
8.3× 10−3.

Finally, in Figure 7 we show the curves ‖uε,h−u‖H1(Ω) (left) and ‖uε,h−u‖H1(G̃) (right) with respect
to log ε for a given h, by using the same horizontal and vertical scales. In accordance with (72) and
(73), we observe that for a fixed h, when ε decreases to zero, the errors firstly improve and secondly
deteriorate. This is especially observable for the error in Ω (left picture).

Appendix A: A basic uniform estimate

For λ ∈ C, we introduce the symbol J (λ) : D(J ) −→ L2(0, ω) where

D(J ) = {u ∈ H1
0,0(0, ω) ∩H2(0, ω), dθu(ω) = 0}

and
J (λ)ϕ = −(λ2 + d2

θ)ϕ.
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The goal of the appendix is to establish the following result.

Proposition 6.1. If Reλ /∈ {(π/2 + nπ)/ω, n ∈ Z}, then J is an isomorphism and if ϕ ∈ D(J )
satisfies J (ϕ) = g ∈ L2(0, ω), we have the estimate

‖d2
θϕ‖L2(0,ω) + |λ|2‖ϕ‖L2(0,ω) ≤ C ‖g‖L2(0,ω), (74)

where C > 0 is independent of g and Imλ.

To prove proposition 6.1, we need three lemmas. We first consider a simple situation when λ is
purely imaginary.

Lemma 6.5. If λ = iτ , τ ∈ R, the mapping J is an isomorphism and if ϕ ∈ D(J ) satisfies
J (ϕ) = g ∈ L2(0, ω), we have

‖d2
θϕ‖L2(0,ω) + |λ|2‖ϕ‖L2(0,ω) ≤ 3 ‖g‖L2(0,ω).

Proof. For λ = iτ with τ ∈ R, due to the Lax-Milgram lemma and Poincaré inequality, for all
g ∈ L2(0, ω) there exists a unique ϕ ∈ H1

0,ω(0, ω) such that (τ2 − d2
θ)ϕ = g and dθϕ(ω) = 0. Then

d2
θϕ = τ2ϕ − g ∈ L2(0, ω). Hence J (λ) is invertible and continuous. From the Banach theorem,

J (λ) is an isomorphism. More precisely, the Lax-Milgram lemma implies that

‖dθϕ‖2L2(0,ω) + |λ|2‖ϕ‖2L2(0,ω) = (g, ϕ)L2(0,ω),

in particular
|λ|2‖ϕ‖L2(0,ω) ≤ ‖g‖L2(0,ω).

Since in addition d2
θϕ = τ2ϕ− g, we have

‖d2
θϕ‖L2(0,ω) ≤ |λ|2‖ϕ‖L2(0,ω) + ‖g‖L2(0,ω) ≤ 2 ‖g‖L2(0,ω),

which completes the proof.

We will say that λ ∈ C is an eigenvalue of J if Ker J (λ) 6= {0}. We have the following lemma.

Lemma 6.6. For all λ ∈ C, J (λ) : D(J ) −→ L2(0, ω) is an isomorphism if and only if λ is not
one of the λn = (π/2 + nπ)/ω, n ∈ Z.

Proof. Lemma 6.5 indicates that the result is true for any λ ∈ iR. It follows from the analytic
Fredholm theorem that J (λ) : D(J ) −→ L2(0, ω) is an isomorphism if and only if λ is not an
eigenvalue of J . It is straightforward that the eigenvalues of J are λn = (π/2+nπ)/ω, n ∈ Z, the
corresponding eigenfunctions being given by ϕn(θ) = sin((π/2 + nπ)θ/ω). The result follows.

We now consider a situation where λ is no longer purely imaginary.

Lemma 6.7. There exists a real positive constant δ such that for all λ ∈ C satisfying

|Reλ| < δ |Imλ|,

the operator J is an isomorphism and if ϕ ∈ D(J ) satisfies J (λ)ϕ = g ∈ L2(0, ω), then

‖d2
θϕ‖L2(0,ω) + |λ|2‖ϕ‖L2(0,ω) ≤ 4 ‖g‖L2(0,ω).

Proof. We already know from Lemma 6.5 that the result holds for λ ∈ iR. Now let us consider the
case when λ /∈ iR. We write λ as λ = ±i|λ|eiψ for ψ ∈ (−π/2, π/2). Set λ̃ = ±i|λ|. Since |λ| = |λ̃|,
we have

‖d2
θϕ‖L2(0,ω) + |λ|2‖ϕ‖L2(0,ω) = ‖d2

θϕ‖L2(0,ω) + |λ̃|2‖ϕ‖L2(0,ω).

Let us define g̃ = J (λ̃)ϕ. According to Lemma 6.5, we have

‖d2
θϕ‖L2(0,ω) + |λ|2‖ϕ‖L2(0,ω) ≤ 3 ‖g̃‖L2(0,ω).
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We have that
‖g̃‖L2(0,ω) ≤ ‖g‖L2(0,ω) + ‖g̃ − g‖L2(0,ω)

and
‖g̃ − g‖L2(0,ω) = ‖J (λ̃)ϕ−J (λ)ϕ‖L2(0,ω) ≤ |λ̃2 − λ2|‖ϕ‖L2(0,ω).

We obtain that
‖g̃ − g‖L2(0,ω) ≤ |e2iψ − 1|2|λ|2‖ϕ‖L2(0,ω).

For all ε > 0, there exist δ small enough such that ‖g̃ − g‖L2(0,ω) ≤ ε|λ|2‖ϕ‖L2(0,ω). By choosing
3ε = 1/4 we eventually obtain the result.

Proof of Proposition 6.1. Lemma 6.7 implies that for all λ ∈ C such that Reλ = β and |Im(λ)| ≥ νβ,
we have the estimate

‖d2
θϕ‖L2(0,ω) + |λ|2‖ϕ‖L2(0,ω) ≤ C ‖g‖L2(0,ω),

where C > 0 is independent of λ, g and νβ depends only on β. For λ ∈ [β − iνβ, β + iνβ], the
symbol J (λ) is invertible according to Lemma 6.6. The analytic Fredholm theorem guarantees
that the inverse operator λ 7→ J (λ)−1 is continuous outside of its poles. Since the segment
[−β− iνβ,−β+ iνβ] is compact, we deduce that the above estimate remains true for all λ such that
Reλ = β with a constant C which depends neither on g nor Imλ.

Appendix B: Proofs of Lemmas 6.8 and 6.9
In order to prove Lemmas 6.8 and 6.9, we will need the following formulas, which hold for any λ ∈ C
and θ ∈ R,

cos(λθ) = cos(Re(λ)θ) cosh(Im(λ)θ)− i sin(Re(λ)θ) sinh(Im(λ)θ)

and
sin(λθ) = sin(Re(λ)θ) cosh(Im(λ)θ) + i cos(Re(λ)θ) sinh(Im(λ)θ).

They imply
| sin(λθ)|2 = (cosh(2Im(λ)θ)− cos(2Re(λ)θ))/2 (75)

and
| cos(λθ)|2 = (cosh(2Im(λ)θ) + cos(2Re(λ)θ))/2. (76)

In the following lemmas, we give the proof of two technical results needed in the previous analysis.

Lemma 6.8. Assume that β /∈ {(π/2 + nπ)/ω, n ∈ Z}. There is a constant C > 0 independent of
ε > 0, λ = β + iτ ∈ `β such that

e2|τ |ω

|1 + ε cos2(λω)|2 ≤ C/ε. (77)

Proof. Observing that e2|τ |ω ≤ 4 cosh(τω)2, we see that to establish (77), it is sufficient to show
that there is some η > 0 such that

η
√
ε cosh(τω)

|1 + i
√
ε cos(λω)|2

η
√
ε cosh(τω)

|1− i
√
ε cos(λω)|2 ≤ 1. (78)

We will study the two factors on the left hand side of (78) proving that for η > 0 small enough they
are both smaller than one. Let us consider the first one. A direct computation gives

|1 + i
√
ε cos(λω)|2 = ε cos(βω)2 cosh(τω)2 + (1 +

√
ε sin(βω) sinh(τω))2. (79)

Define the polynomial function P such that

P (X) = X2 cos(βω)2 cosh(τω)2 + (1 +X sin(βω) sinh(τω))2 − ηX cosh(τω).
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We see that the first factor on the left hand side of (78) is smaller than one as soon as P is positive
on R. Since P (0) = 1 > 0, it is sufficient to show that its discriminant is negative. We find

∆P = (2 sin(βω) sinh(τω) + η cosh(τω))2 − 4(cos(βω)2 cosh(τω)2 + sin(βω)2 sin(τω)2)
=

(
(η2 − 4 cos(βω)2) cosh(τω) + 4η sin(βω) sinh(τω)

)
cosh(τω).

Observing that | sinh(τω)| < cosh(τω), we can write

(η2 − 4 cos(βω)2) cosh(τω) + 4η sin(βω) sinh(τω)
≤ (η2 + 4η| sin(βω)| − 4 cos(βω)2) cosh(τω).

Therefore, since cos(βω) 6= 0 when β /∈ {(π/2 + nπ)/ω, n ∈ Z}, we see that we can find η > 0
small enough (but independent of τ) such that ∆P < 0. This shows that the first factor on the left
hand side of (78) is smaller than one. A completely similar approach allows one to prove that the
second factor is also smaller than one. As a consequence, (78) is satisfied for η small enough and so
is (77).

Lemma 6.9. Assume that β /∈ {(π/2 + nπ)/ω, n ∈ Z}. There is a constant C > 0 independent of
ε > 0, λ = β + iτ ∈ `β such that

ε2e4|τ |ω

|1 + ε cos2(λω)|2 ≤ C. (80)

Proof. As in the proof of Lemma 6.8, one can check that it is sufficient to show that there is some
η > 0 such that

ηε cosh(τω)2

|1 + i
√
ε cos(λω)|2

ηε cosh(τω)2

|1− i
√
ε cos(λω)|2 ≤ 1. (81)

In (79), we obtained

|1± i
√
ε cos(λω)|2 = ε cos(βω)2 cosh(τω)2 + (1∓

√
ε sin(βω) sinh(τω))2. (82)

Therefore, we can write

|1± i
√
ε cos(λω)|2 − ηε cosh(τω)2

= ε(cos(βω)2 − η) cosh(τω)2 + (1∓
√
ε sin(βω) sinh(τω))2 > 0

for η small enough. This is enough to conclude.
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