Multi-phase averaging of

time-optimal low-thrust transfers
L. Dell’'Elce!, J.-B. Caillau?, J.-B. Pomet?

An increasing interest in optimal low-thrust orbital transfers was triggered in the last
decade by technological progress in electric propulsion and by the ambition of efficiently
leveraging on orbital perturbations to enhance the maneuverability of small satellites.

The assessment of a control sequence that is capable of steering a satellite from a
prescribed initial to a desired final state while minimizing a figure of interest is referred
to as maneuver planning. From the dynamical point of view, the necessary conditions
for optimality outlined by the infamous Pontryagin maximum principle (PMP) reveal the
Hamiltonian nature of the system governing the joint motion of state and control variables.

Solving the control problem via so-called indirect techniques, e.g., shooting method,
requires the integration of several trajectories of the aforementioned Hamiltonian. In ad-
dition, PMP conditions exhibit very high sensitivity with respect to boundary values of
the satellite longitude owing to the fast-oscillating nature of orbital motion. Hence, using
perturbation theory to facilitate the numerical solution of the planning problem is ap-
pealing. In particular, averaging techniques were used since the early space age to gain
understanding into the long-term evolution of perturbed satellite trajectories. However, it
is not generally possible to treat low-thrust as any other perturbation (whose spectral con-
tent is well defined and predictable) because the control variables may introduce additional
frequencies in the system.

The talk focuses on time optimal maneuvers in a perturbed orbital environment, and it
addresses two questions: (1) Is it possible to average the vector field of this problem? Opti-
mal control Hamiltonians are not in the classical form of fast-oscillating systems. However,
we demonstrate that averaged trajectories well approximate the original system if the ad-
joint variables of the PMP (i.e., conjugate momenta associated to the enforcement of the
equations of motion) are adequately transformed before integrating the averaged trajec-
tory. We discuss this transformation in detail, and we emphasize fundamental differences
with respect to well-known mean-to-osculating transformations of uncontrolled motion.
(2) What is the impact of orbital perturbations and their frequencies on the controlled tra-
jectory? We show that control variables are highly sensitive to small exogenous forces.
Hence, even the crossing of a high-order resonance may trigger a dramatic divergence be-
tween trajectories of the averaged and original system. We then discuss how averaged
resonant forms may be used to avoid this divergence.

The methodology is finally applied to a deorbiting maneuver leveraging on solar radi-
ation pressure. The presence of eclipses make the original planning problem highly chal-
lenging. Averaging with respect to satellite and Sun longitudes drastically simplifies the
extremal flow yielding an averaged counterpart of the PMP conditions, which is reasonably
easy to solve.
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Low-thrust transfer: a fast-oscillating control problem
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Orbital perturbations may introduce new frequencies

o

.‘. Third-body effects

Earth's non-sphericity 2 Satellite longitude

Objective: Simplify dynamics by averaging
Motivation: Initial guess to shooting algorithms

Challenges: Do adjoint variables introduce additional fast dynamics?
What happens when resonances are crossed?



Outline

1. Minimum time control of fast oscillating systems

2. Averaging the optimal control Hamiltonian

3. Time optimal deorbiting of a solar sail




1. Minimum time control of fast oscillating systems

min f; subject to:
Slow variables.......... |ul|<1

s Low thrust, [(0) = Iy
,, I(t)) = 1
Fast variables €= f f



1. Hamiltonian of the extremal flow

Denote by p; and pg the adjoints to / and ¢

Define the pre-Hamiltonian

m
H' = w(l) -py +€ |fo(l, ) + ) Fi(l, $)u;| -py
=1




1. Hamiltonian of the extremal flow

Denote by p; and pg the adjoints to / and ¢

Define the pre-Hamiltonian

m
H' = w(l) -py +€ |fo(l, ) + ) Fi(l, $)u;| -py
=1

Apply Pontryagin maximum principle
H = max H'(l,¢,py, pg, U)
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1. Necessary conditions for optimality

Boundary conditions

1(0) = Ip Py(0) =0
I(tf) = If Py(if) =0

Equations of motion

dl_oH dp __9H
dt  op; dt ol
dgp o H dpy oOH

dt  apy t o



_l1. Solution of the problem via shooting

Find tr and p(0) such that q(;) = g+




1. How averaging can facilitate the solution via shooting?

Smoothing: Less local minima, facilitates convergence

Reduced system: Independent of ¢, p, is constant

Averaged trajectory
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1. How averaging can facilitate the solution via shooting?

A priori knowledge of the control structure is not needed!
1

Control [-]

t |years]
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2. Can we use averaging? Are adjoints slow or fast?

Hamiltonian:
?

H =Py~ w(l) + €K (1,6, p1, g

Equations of motion of the adjoints:
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2. The averaged control system

Assume that / is in a non-resonant zone (i.e., incommensurate frequencies w(/))

Averaged Hamiltonian

H = 71’ &5 PI> P¢ d¢
Tr

r[“’ p¢+eK( ¢,P1, Py) | do

\

T

For trajectories of interest: p,(f) is e-slow and e-small (not proven here)
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2. A "non-conventional” fast-oscillating problem

Classical fast-oscillating system Problem studied in this talk
d x dx 3 f
o7 = € f(x. 9) ?_E (X ¢, 1) +9(x)
d_¢ = Cl)(X) d_n = € h(X! ¢5 l])
dt L
22 _ wix)
dt

Initial conditions such that
n(t)=0(e) Vtel0,t]
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2. Case study: transfer in the Earth-Moon system
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_lz. How to generate "reliable" averaged trajectories?
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_lz This is because p; is constant and d p’ e%—’,{— p¢%—“,’
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2. Short-periodic variations

Averaged + short periodic trajectory
Y=J+eT (J, )

Time

Near identity transformation:

T(J,p)=—i )

O<|k|<N

. /
Where ¢y are Fourier coefficients of %
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_lZ. Transforming p,(0) is the key

#(0) = (90, 90) deg

10
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t/TMoon



_lZ. Transforming p;(0) is the key
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_lZ. The classical transformation is not adequate for py
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_lZ. Nested transform for the short-periodic variations of p;

First, build the transformation of p,:

Py(#) = Py + Tps(J, ¢, Py Py)

Then, use this information to evaluate the Fourier coefficients of:

oK . Ow
5]
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_lZ. Short-periodic variations of p; are accurately evaluated

1.01

Averaged + short periodic
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_lz. Transforming initial conditions is not yet enough
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2. Is it a resonance effect?

10

$(0) = (90, 90) deg

wi [/ wy |—]

6:1 resonance

t/TMoon [']

26



2. Yes, but divergence happened much earlier!

10

8:1 resonance

I : e '
A
e) $(0) = (90, 90) deg
~—
3

6

x N
4O 20 40
t/TMoon [']

27



2. What happens when resonances are crossed?
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‘lZ. Resonance crossing induces small jumps of p;

X 10°°
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2. Resonant averaged form

Assume that there is k such that:
lw(J) - kK| < cVe

Perform the change of variables:

) 1
L=J, =k—¢2, C}j:k g
Ly Ly
PL =Py Pﬁ‘k b P —kl Bs
- ) - ) a
|kl|2 Lk

Average with respect to «

L 271 k kJ_ k kJ_
7{=/ 7{(L, [ ]ﬁ,[ ]Pﬁ,o)d
k=, PL | T Tk ) Y | TKE TR FARES
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2. Transformation to interface averaged forms

x 10°

Restoring semi-fast angle
L=J+¢e7 (J,B)

|

10
t/TMoon [']

15
31



‘lz. Jumps of adjoints to fast variables are properly
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2. The transform enable 'gluing' of different forms

0.6 i l

15
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3. De-orbiting leveraging on solar radiation pressure

[02) Initial orbit (Molniya-like)
a=26000km, e=0.7,
I =65deg, w=270deg, Q=0deg

Final conditions
Perigee altitude = 250km
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3. Mathematical modeling

Assumptions

SRP is the only perturbation

"Cannonball" model (SRP toward Sun direction)
"Perfect sail" (SRP is negligible when u = 0)

Yvyvy

Attitude dynamics is neglected

Optimal control
» Switching function

s=11(1,9)-p; +91(1,#)Pg

» Control

1 it (¢, pr.pg) > O

0 otherwise

I-
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3. Semi-major axis and eccentricity

4.08

a [Rp]

3.99

0.74

0.69

Osculating
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3. Trajectory of the perigee altitude
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_l3. Short-periodic oscillations include the control structure

1500

Perigee altitude [km]
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3. Control as a function of the phases at initial time
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3. "Four-seasons" control structure

2 bangs per orbit 2 bangs per orbit
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3. "Four-seasons" control structure

o Bang-Bang

u=1
(max SRP)

g Bang-Bang

Ecliptic plane

u=0
(min SRP)
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3. Way forward

Complexity of the model

Orbital perturbations

Eclipses

Singular arcs

» The second fast angle is: Ig,,—Q

» Similar treatment of bang-bang (regularization)
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Conclusion

Non-conventional fast-oscillating dynamical problem

Analogies with others problems in space mechanics (e.g., quasi-satellite orbits)

Key role of the transformation of the adjoints to fast variables

Benefits of averaged control system:

» Reduced set of unknown

» Smoothed trajectories

» Control structure is not required
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