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ABSTRACT

Typical energy sources for Organic Rankine Cycle (ORC) power systems feature variable heat
load, hence turbine inlet/outlet thermodynamic conditions. The use of organic compounds
with heavy molecular weight introduces uncertainties in the fluid thermodynamic modeling
and complexity in the turbomachinery aerodynamics, with supersonic flows and strong shocks,
which grow in relevance in the aforementioned off-design conditions. These features also depend
strongly on the local blade shape, which can be influenced by the geometric tolerances of the
blade manufacturing. This study presents a Robust Optimization (RO) analysis on a typical
supersonic nozzle cascade for ORC applications under the combined effect of uncertainties as-
sociated to operating conditions and geometric tolerances: a classical formulation consisting in
minimizing the mean of a well-suited performance function, constraining the average mass flow
rate to be within a prescribed range is addressed, by means of a bi-level Gaussian Process (GP)
surrogate-based approach. Influence of the operating conditions range and geometric variability
are investigated considering several scenarios, in which the different effects act in combina-
tion or separated; results indicate that the combination of different classes of uncertainites has
an impact on the robust-optimal blade shape and, in turn, in their response in the frame of
uncertain scenarios.

1. INTRODUCTION

Small-medium scale ORC power plants have received great interest in both the technical and
academic community, in particular due to its ability to recover mechanical energy from low-
grade heat sources such as, solar, geothermy, biomass or waste heat. As well known (Macchi
(2013); Meroni et al. (2018)), the performance of the ORC power system is strongly linked to
the efficiency of the turbine. The turbine aerodynamics is complicated by the use of organic
fluids, which combine low enthalpy drops, high-expansion ratio per stage and low speed of sound,
leading to transonic or supersonic ORC turbines, which demand the use of converging-diverging
cascades and are commonly prone to strong shock waves and chocked flow conditions.

Recent advances of fluid dynamic simulation tools accounting for so-called dense gas effects,
induced by the use of organic fluid described by complex Equation of State (EOS), has permitted
the development of Fluid-dynamic Shape Optimization (FSO) approaches for automated design
of ORC blade cascades. Nevertheless, in ORC applications, the operational variability of the
hot and cold sources often results in significant variations of inflow and outflow conditions at the
turbine. Moreover, geometric imperfections of turbine cascades, stemming from manufacturing
processes, may have a detrimental influence of the machine performance, which grow in relevance
in the aforementioned off-design conditions. The fluid-dynamic design of ORC turbines could
benefit for automated design methodologies, possibly integrating uncertainties.
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This work presents the results of the application of a robust shape optimization method to the
design of a typical converging-diverging turbine nozzle for ORC applications, first introduced
by Colonna et al. (2008), and extensively studied in the context of deterministic optimization
(Pini et al. (2015a); Vitale et al. (2017); Persico et al. (2019)) and multi-point optimization
(Pini et al. (2014)). Some recent works investigated design of the aforementioned blade under
epistemic uncertainties (Razaaly et al. (2019a)) due to turbulence modelling, and investigated
the ’robustness’ of the blade design under aleatoric uncertainties due to variability in the operat-
ing conditions, uncertainty in the thermodynamic model parameters, and geometric tolerances
(Razaaly et al. (2019b)).This study presents a RO framework under bother operational and
geometrical (aleatory) uncertainties. The mean of the performance function is minimized (clas-
sic RO formulation), while the mean mass-flow rate is constrained to lie within a prescribed
range centered to the nominal value. Different scenarios involving operational and geometrical
uncertainties are considered, the latter being modeled using a non-stationary gaussian random
field, discretized with a Karhunen-Loeve expansion.

The paper is organized as follows. Section 2 describes the turbine cascade, the parametrization
adopted to control the blade geometry and provides details on the physical solver and the
mesh. Section 3 and 4 presents respectively the uncertainty modelling framework and the
optimization methods. Section 5 analyses the resulting optimal blades discussing in particular,
their performances under uncertainties.

2. TURBINE BLADE MODEL

2.1 Cascade Geometry and Parametrization
The Biere represents a refence two-dimensional benchmark geometry to test the design of devices
operating with the siloxane fluid MDM (Octamethyltrisiloxane, C8H24O2Si3). This blade profile
is meant to obtain a convergent-divergent cascade passage which serves to accelerate the fluid up
to a supersonic speed. Across the cascade, the fluid is expanded from superheated conditions. As
the flow past the cascade is highly supersonic (M ≈ 2 at the blade trailing edge), compressibility
effects play a key role. Indeed, because of the high Mach number achieved at the nozzle exit,
a typical fish-tail shock pattern is generated downstream the trailing edge. The presence of
strong shocks past stator vanes may result in large losses and thus the design of the trailing
edge region is critical to the turbine efficiency. Moreover, shock-waves propagate through the
vane and usually interact with the boundary layer developing over the suction side of the
neighboring blade, thus further compromising the efficiency of the cascade.

The Biere pressure and suction sides are parametrized using a unique B-spline curve of degree
3 (Farin (2002)), defined over a total number of 30 Control Points (CP). The design vector
x ∈ Ω ⊂ R9 parametrizing the 2D cascade is constituted by a subset of 9 CPs allowed to be
displaced in the direction normal to the baseline geometry, Ω referring to the design space.

2.2 Numerical Simulations and mesh
Since the study aims at the aerodynamic optimization of the blade profile, the flow model
focuses on the two-dimensional flow at the midspan section of the cascade. The numerical
domain is periodic with a pitch spacing of 45-mm. The flow is simulated up to a distance of
0.5 and 2 chord-lengths ahead and past the blade, respectively. The SU2 open-source suite
(Economon et al. (2016)) was used for the CFD simulations, based on inviscid models. We
used a generalized Approximate Riemann solver (ARS), of Roe type, with the SU2’s library of
thermodynamic models for complex fluid flows in the non-ideal regime (Vitale et al. (2015)).
using the improved Peng-Robinson-Stryjek–Vera (iPRSV) Equation Of State (EOS). An im-
plicit Monotone Upstream-centered Schemes for Conservation Laws (MUSCL) scheme, with
van Albada slope limiter, is used to ensure second-order accuracy and prevent spurious oscil-
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lations in the steady-state solution. Non-Reflecting Boundary Conditions (Giles (1990)) are
also implemented to suppress the non-physical reflection of acoustic pressure perturbations at
outflow boundaries. Detailed convergence analyses (not shown) have been performed, leading
to a computational mesh of the flow domain with 36,000 triangular elements, which represents
a trade-off between accuracy and computational cost.

During the optimization process, several blade profiles are progressively generated. A dedicated
mesh deformation tool based on Radial Basis Functions (RBF), originally presented in De Boer
et al. (2007) and successfully applied in Pini et al. (2015b); Razaaly et al. (2019b) allows high
flexibility and robustness while maintaining the grid connectivity.

The objective function (∆P ) is defined as the standard deviation of the azimuthal distribution
of static pressure half an axial chord downstream of the blade Trailing Edge (TE). Indeed,
minimizing ∆P within the optimization is convenient for such highly supersonic cascade since
it allows achieving a severe reduction of the shock strength, and hence of the shock loss, thus
improving the cascade performance and, at the same time, reducing the perturbations entering
the downstream rotor (Persico et al. (2019)). The mass-flow rate per unit span ṁ, normalized
with respect to the nominal value is the second Quantity of Interest (QoI), as used to formulate
the constraints.

Total Pressure P t
in, total Temperature T t

in, and axial flow direction are assigned at the inlet,
while static pressure P s

out is given at the outlet.

3. UNCERTAINTY TREATMENT

The geometric variations due to blade manufacturing are assumed to be represented by a non-
stationary gaussian random field of null mean Dow and Wang (2014), fully described by its auto-
covariance function (see Razaaly et al. (2019b) for details), using a constant standard deviation
σ0 = 3×10−5m, the latter quantifying the level of manufacturing variability. A Karhunen-Loeve
(KL) expansion, based on a spectral decomposition of the autocovariance function (Betz et al.
(2014)) permits to parametrize the random field with a standard gaussian vector of dimension
7, u ∼ N (0,I7).

Following Colonna et al. (2008), we consider first a nominal (or full-load) operating condition for
this nozzle cascade, characterized by an inlet thermodynamic state close to the saturation curve,
and a high expansion ratio equal to ≈ 6. As well known, ORC power systems are requested to
operate at part-load for long periods during their technical life, due to changes in the thermal
power made available by the heat source and in the condenser temperature; this variation implies
a large change in the turbine pressure ratio, resulting in a variation of aerodynamic loading on
each cascade. In Colonna et al. (2008), the implication of part-load operation for this cascades
was estimated so to reduce the pressure ratio to ≈ 4, by an increase of cascade outlet pressure.
The latter comment lead us to consider the operating conditions variability as reported in
Table 1, featuring a large variability w.r.t. the outlet pressure, assuming independence and
uniform distributions for each component of the resulting random vector ξ modelling the input
variability. A scenario accounting only for operating conditions leading to a random vector ξ of
dimension 3 is considered, while another ore accounts also for both geometric and operational
conditions variability, permitting to investigate the impact of geometric uncertainties on the
RO profiles.

Within the robust optimization process, the first order statistics of the QoIs, namely ∆P ,
and ṁ, are evaluated by means of 24 CFD samples {ξi, f(ξi)}i, f denoting a QoI, where
the ξi are selected following Latin-Hypercube-Sampling (LHS). A combinaison of Gaussian-
Process (GP) surrogate and Monte-Carlo (MC) is then carried out to estimate the statistics.
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Table 1: Operating Conditions (Nominal and Uncertain). Random Vector
ξ = (P s

out, P
t
in, T

t
in,u) ∈ R10 or ξ = (P s

out, P
t
in, T

t
in) ∈ R3, u denoting the components of the KL

expansion describing the random field modeling geometric variations due to manufacturing
processes.

Condition P t
in [bars] T t

in [K] P s
out [bar] u

Nominal (DO) 8.0 543.65 1.333 0R7

Scenario 1 (RO-1) U[7.95,8.05] U[543.3,544.0] U[1.333,2.015] N (0,I7)
Scenario 2 (RO-2) U[7.95,8.05] U[543.3,544.0] U[1.333,2.015] -

A comprehensive Uncertainty Quantification (UQ) assessment is performed a posteriori on the
resulting optimized profiles based on 100 CFD samples, chosen using LHS in the stochastic
space (see Razaaly et al. (2019b) for full details). It permits in particular to reconstruct the full
Probability Density Function (PDF) of scalar QoIs and statistics of high dimensional QoIs. A
dedicated convergence analysis performed on the baseline profile has shown that using 24 CFD
samples permit to recover first order statistics with a relative error lower than 1%, the reference
value obtained with 200 CFD simulations. Additionally, PDFs of different QoIs reconstructed
using 100, 200 or 400 CFD simulations almost merge, while higher order statistics corresponds,
with negligible relative errors.

4. OPTIMIZATION FRAMEWORK

The optimization framework is described in the following, based on bayesian optimization
(E. Brochu and de Freitas (2010)).

4.1 Deterministic Optimization
The following constrained Deterministic Optimization (DO) is performed, at nominal conditions
ξ0 (Table 1):

Minimize ∆P (x,ξ0)
s.t. ṁ(x,ξ0) ∈∆

x ∈ Ω (1)

where ∆ = [0.98,1.02], x the vector of control points belonging to the design space Ω ⊂ Rd, d = 9.
We rely on a classical Bayesian framework for Surrogate-Based Optimization (SBO), the popular
Efficient Global Optimization (EGO, E. Brochu and de Freitas (2010)). Specifically, we consider
a sequential approach where Gaussian Process (GP)-based surrogate models C. E. Rasmussen
(2006) are built to approximate the objective and constraint functions. At each step of the
sequence, a new design is obtained maximizing the so-called Expected Improvement (EI), whose
expression analytically depends on the current GP surrogate. This approach permits both to
identify promising regions of Ω and to explore portions of the design space characterized by high
uncertainty on the GP surrogate. The latter one is initialized considering 5d initial samples in
the design space, using LHS. The GP is iteratively refined as the proposed sample is evaluated
by means of CFD, the procedure being repeated until either a stopping criterion is met, or the
budget of CFD evaluations is exhausted.
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4.2 Robust Optimization
The following constrained mean-based RO is solved, for both the uncertainties reported as
scenarios 1 and 2 in Table 1:

Minimize E[∆P (x,ξ)]
s.t. E[ṁ(x,ξ)] ∈∆

x ∈ Ω (2)

where E refers to the expectation operator induced by the random vector ξ (Table 1). A simple
nested (a.k.a. bi-level) approach is considered here, following a strategy very similar to DO.
Indeed, instead of performing a single CFD evaluation at nominal conditions for each design
vector x representing a blade profile, the following procedure is conducted. An UQ analysis
is performed based on 24 CFD simulations, yielding an estimation of the mean of both the
objective and constraint functions.

5. RESULTS

In this section, we present the results of the optimization problems described in Section 4. DO,
RO considering scenario 1 and RO (Table 1) considering scenario 2 resulting profiles will be
referred respectively as DO, RO-1 and RO-2 profiles. The UQ assessment proposed are based on
the variability induced by scenario 1, since including both operational conditions and geometric
variability.

5.1 Optimization Procedure
Figure 1 reports optimization convergence curves featuring the best normalized objective func-
tion as a function of the number of designs considered. Note that during the optimization
process, some CFD computations lead to an objective function value lower than the current
best, but not retained as such since violating one constraint. The DO requires approximately
80 designs (80 CFD simulations) to reach convergence, while ROs feature slower convergence
trends; in both cases, the optimization algorithm stops after around 200 designs (∼ 24 × 200
CFD simulations). This phenomemon is largely due to the increased numerical noise associated
to first order statistics of the objective function ∆P , w.r.t. its deterministic evaluations, leading
to a global surrogate used directly within the bayesian deterministic optimization framework of
lower quality, hence delaying the convergence process. This observation is indeed emphasized
for RO-1, which considers more uncertainties than RO-2. Inviscid CFD simulations were per-
formed on a cluster equipped with Intel(R) Xeon(R) CPU X5650 at 2.67 GHz, using 24 CPUs
in parallel. An adaptive CFD between 10 and 100 is used. Simulations are assumed to be
converged when density residuals are decreased by ten orders of magnitude (which always holds
here), with a computation cost of around 500s for 1 CFD simulation on 1CPU.

5.2 Probability Density Functions
To gain further understanding of the ROs over DO results, the Probability Density Functions
(PDF) of ∆P , of the normalized mass flow rate ṁ and of the mass-average outlet angle w.r.t.
the axial direction αout are presented in Figure 2. W.r.t. the DO profile, the robust optimal
profiles RO-1 and RO-2, are characterized by PDF distributions of ∆P significantly displaced
towards the lowest values and featuring tighter support. This is an evident marker of a reduced
variability, namely of an improved robustness of the cascade performance w.r.t. the variabil-
ity induced by operational and geometric variability. The two RO blades are substantially
equivalent from a stochastic perspective, even though RO-2 seems to feature a slightly reduced
variability over RO-1 in terms of ∆P . The ṁ PDFs have a similar gaussian-like shapes, the
mean of the two RO’s profiles being approximately at the upper limit of the constraint (102%),
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(a) DO (b) RO-1 (c) RO-2

Figure 1: Convergence curves during the optimization. The red vertical line indicates the
number of designs to consider necessary for the GP-based DO/RO initialization. Green (resp.

blue) dots indicate the (resp. best) objective function. For ROs (b-c), the corresponding
number of CFD evaluations is 24 ×Nx, Nx being the number of designs.

while the DO profile features a mass-flow rate at nominal conditions close the lower limit: its
PDF considering uncertainties tends to shift its mean value towards the reference mass-flow
rate. The PDFs associated to the outlet angle αout features noticeable observations. Indeed,
the DO profile distribution exhibits a slightly narrower support w.r.t. RO’ ones, sign of a lower
variability, even if one might expect the opposite behaviour due to their respective determinis-
tic and robust design aspects. However, from a pure mathematical perspective, this finding is
totally compatible with the adopted formulation, since the flow angle is not accounted in the
optimization process.

(a) ∆P (kPa) (b) ṁ (%) (c) αout (○)

Figure 2: PDF of the objective function ∆P , the normalized mass flow rate (constraint
function) ṁ and outlet angle αout, for the three resulting designs (DO, RO-1, RO-2). (b)

Vertical lines correspond to the upper/lower bounds of the mass-flow constraint, formulated in
the mean value for ROs, and nominal one for DO.

5.3 Blade Profiles
The optimal blade profiles obtained with the three optimization processes discussed above are
shown in Figure 3.

The DO profile features a slightly more accentuated curvature in the diverging section the bladed
channel, i.e. between the (sonic) throat and the cascade opening, with a almost straight suction
side in the region of unguided turning. As discussed in previous design exercises performed on
this cascade (with different nominal conditions though), such shape eliminates the strong shock
originated in the baseline cascade flow1 with beneficial effects on both the uniformity of the

1The baseline profile aerodynamics is not documented here for sake of brevity, since largely discussed in
previously cited works.
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pressure field downstream of the cascade and its related loss.

The RO’ designs, very similar to each other, differ significantly from the DO layout, especially
at the Trailing Edge (TE), in the throat region and on the suction side. Nevertheless, the
general action of the optimization is analogous to the one discussed for DO. The throat opening
is now slightly larger w.r.t. the one of the DO case, consistently with the 2% larger mass-flow
rate already commented in Figure 2(b). Crucial differences emerge on the pressure and suction
side of the blade in correspondance to the blade opening. As a matter of fact, the cross-section
of the cascade passage is much lower to the one of the DO blade. This is consistent with the
fact that, in the uncertain scenario, the mean outlet pressure is higher than the deterministic
value. As a result, the RO procedure tends to reduce the the throat-to-opening area ratio w.r.t.
the DO. The two RO blades also feature minor, though visible differences, mostly concentrated
in the diverging section of the suction side, i.e. the one most affecting the ∆P QoI, indicating
that the manufacturing tolerances may have an impact in the definition of the optimal blade
shape in the most sensitive regions.

(a)

Figure 3: Blade profiles comparison.

5.4 UQ Physical Flow
On the basis of physical considerations, the aerodynamics of the optimized blades are investi-
gated under uncertain flow conditions. The mean and standard deviation of Mach contours2
are reported respectively in Figures 4 and 5. It’s worth mentioning that the analysis of contour
statistics is not straightforward, as the Mach number value at each node of the mesh results
from a statistical procedure equivalent to a locally independent UQ treatment, and hence, the
resulting field is not referring to a specific condition. As a consequence, the analysis of detailed
features might be misleading and only general trends will be discussed. Moreover, the analysis of
the flow field at nominal conditions and perfect blade geometry relevance is questionable within
this uncertain treatment, as the discussion of the PDFs of QoIs suggest. The mean distribution
computed for the DO exhibits the detrimental effects due to the rear shock generated at the TE
for the whole variability range. The throat-to-opening area ratio of the DO blade, larger than
the RO ones, is indeed too large for most of the realizations occurring within the prescribed
variability, so the cascade mostly operates in post-compression conditions. RO cascades sig-
nificantly reduce the aforementioned effect, featuring an almost uniform mean Mach number
distribution at the cascade exit. This consideration is, to some extent, less established for the
RO-2 layout, whose optimization formulation does not incorporate geometric variability. In
order to highlight the local variability over the flow field, the Mach Standard Deviation (Std) is
reviewed in the following. A large Std is established in the region influenced by the compression
wave/shock and in the wake. A visible reduction in Std is observed when investigating the RO
profiles, which however exhibit a Std flow pattern similar to that of DO.

2under uncertain conditions, evaluated using a Kriging-Principal Component Analysis(PCA)-MC framework
as detailed in Razaaly et al. (2019b), considering around 70 modes targeting to a cumulative energy conservation
beyond 99.99%.
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(a) DO (b) RO-1 (c) RO-2

Figure 4: Mean Mach contours (first order statistics).

(a) DO (b) RO-1 (c) RO-2

Figure 5: Standard Deviation Mach contours (second order statistics).

Additionally, the first order statistics (mean) of the Mach number distribution over the blade
surface is reported in Figure 6, the variability being represented by the two standard deviation
bounds centered in the mean. The mean distributions appear relatively similar among the DO
and RO blades; however a further inspection reveals a higher peak Mach number for the DO
blade, followed by a post-compression effect already recalled, penalizing the cascade performane
in off-design conditions. Moreover, the variability appears also larger for the DO than for the two
ROs. Interestingly, but not surprisingly due to the chocked-flow condition of all the cascades,
the variability in Mach number is negligible everywhere but on the suction side, downstream of
the blade opening. In this region, high variability characterizes all the optimal blades, but the
DO one exhibit the largest std. This evidence, combined with the corresponding one visible in
terms of Mach number contours, suggests that the robust design procedure allows reducing the
variability in the entire flow field.

6. CONCLUSION

This paper has illustrated a robust optimization framework for turbine design considering un-
certainties due to large variations of operating conditions and geometric variability due to
manufacturing. Two robust designs, one of them accounting for operational variability only,
are compared to a deterministic optimal cascade obtained at nominal conditions. In particu-
lar, the influence on the PDF of QoIs as well as on the flow field is examined. The technique
makes use of a bi-level surrogate-based algorithm, combining a classic bayesian optimization
loop and classic Kriging-based UQ tools. The blade profile is parametrized via B-splines, and
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μ
μ+2σ

(a) DO

μ
μ+2σ

(b) RO-1

μ
μ+2σ

(c) RO-2

Figure 6: Mach number distribution over the optimized blades: mean and two standard
deviation bounds.

a mesh-deformation tool based on RBF permits to handle modified geometries within the op-
timization process and UQ analysis accounting for geometric variability modeling. The results
have demonstrated that, for a benchmark supersonic ORC turbine, the robust optimization
provides relevant benefits over classic deterministic optimization at nominal point, in terms of
the variability of the performance QoI. The proposed methodology is, therefore, able to reduce
the sensitivity to operating condition of the performance of a typical ORC first-stage nozzle.
Since such component provides a very relevant contribution to the whole turbine aerodynamic
loss, the obtained design has the potential for improving significantly the performance of the
whole ORC power system, by reducing the efficiency penalty at part-load. Short-term future
studies will investigate further test-cases featuring different variability and design conditions to
better explore the potential of RO for ORC turbines.
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