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Abstract 19 

Senescence, the decline of physiological parameters with increasing age, is a quasi-20 

ubiquitous phenomenon in the living world. However, the observed patterns of senescence 21 

can markedly differ between across species and populations, between sexes and even among 22 

individuals. To identify the drivers of this variation in senescence, experimental approaches 23 

are essential and involve the development of tools and new study models. In fact, current 24 

knowledge of the senescence process is mostly based on studies on vertebrates and principal 25 

information about senescence in invertebrates is mostly limited to model organisms such as 26 

Caenorhabditis elegans or Drosophila melanogaster. In this context, we tested whether 27 

biomarkers of vertebrate aging could be used to study senescence in a new invertebrate 28 

model: the common woodlouse Armadillidium vulgare. More specifically, we looked for the 29 

effect of age in woodlouse on three well established physiological biomarkers of aging in 30 

vertebrates: immune cells (cell size, density and viability), β-galactosidase activity, and 31 

Telomerase Reverse Transcriptase (TERT) (essential subunit of the telomerase protein) gene 32 

expression. We found that the size of immune cells was higher in older individuals, whereas 33 

their density and viability decreased, and that the β-galactosidase activity increased with age, 34 

whereas the Telomerase Reverse Transcriptase (TERT) gene expression decreased. These 35 

findings demonstrate that woodlouse display age-related changes in biomarkers of vertebrate 36 

senescence, with different patterns depending on gender. Thus, the tools used in studies of 37 

vertebrate senescence can be successfully used in studies of senescence of invertebrates such 38 
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as the woodlouse. The application of commonly used tools to new biological models offers a 39 

promising approach to assess the diversity of senescence patterns across the tree of life. 40 

 41 

Keywords 42 

Cellular senescence, immunosenescence, Telomerase Reverse Transcriptase (TERT), β-43 

galactosidase activity. 44 

 45 

1. Introduction 46 

Many theories have tried to explain why senescence is a quasi-ubiquitous phenomenon 47 

in the living organisms. For instance, the disposable soma theory proposed the senescence 48 

process as a result of damages accumulation over time. These damages are strongly 49 

influenced by the environment, leading to trade-offs between the different functions (e.g. 50 

between reproduction and somatic maintenance) and shaping a high diversity of senescence 51 

patterns across species and populations, among individuals, and between sexes. One current 52 

challenge is to understand the selective forces and mechanisms driving this diversity of 53 

senescence patterns. 54 

At the cellular level, senescence corresponds to the cellular deterioration leading to 55 

stop the cellular cycle (Campisi & di Fagagna, 2007). As ageing is associated with cellular 56 

senescence (Herbig et al., 2006; Wang et al., 2009; Lawless et al., 2010), many biomolecular 57 

parameters potentially inform about senescence and can therefore be valuable tools for 58 
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studying this process (de Jesus & Blasco, 2012). For example, the evolution of the integrity 59 

and efficiency of immune cells is particularly relevant to study cellular senescence because a 60 

diminution of the number of effective immune cells with increasing age takes place in both 61 

vertebrates (e.g. Cheynel et al., 2017) and invertebrates (e.g. Park et al., 2011). Another 62 

marker used to study cellular senescence is the enzymatic activity of the β-galactosidase. This 63 

enzyme is a hydrolase that transforms polysaccharides in monosaccharides. The lysosomal 64 

activity of this enzyme is increased when the cell enters in senescence (Dimri et al., 1995; 65 

Itahana et al., 2007). This phenomenon occurs in senescent cells of many organisms ranging 66 

from humans (Gary & Kindell, 2005) to honeybees (Hsieh & Hsu, 2011). Another protein 67 

linked to the cellular senescence process is the telomerase, a ribonucleo protein complex 68 

composed by two essential components, the telomerase reverse transcriptase (TERT) and the 69 

telomerase RNA (TR) and other accessorial proteins (Podlevsky et al., 2007). Telomerase 70 

lengthens the ends of telomeres (i.e. DNA sequences located at the end of chromosomes that 71 

protect chromosome integrity and shorten after each cell division). Cell senescence arises 72 

when the telomere length becomes critically short (Chiu & Harley, 1997; Shay & Wright, 73 

2005). The telomerase activity depends on organism, age and also tissues (e.g. (Gomes et al., 74 

2010)). For instance, telomerase is active during the development before birth and after only 75 

in stem and germ cells in humans (Liu et al., 2007; Morgan, 2013) while in the Daphnia 76 

pulicaria, the telomerase activity in all tissues of the body decreases with increasing age 77 

(Schumpert et al., 2015). The TERT is essential in the telomerase protein complex and has 78 
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been shown to be related to cell survival in humans (Cao et al., 2002). The TERT has also 79 

been detected in numerous species including vertebrates, fungi, ciliates and insects (Robertson 80 

& Gordon, 2006; Podlevsky et al., 2007). 81 

As patterns of senescence are strongly diversified within the living world, it seems 82 

essential to study organisms displaying markedly different life histories strategies to 83 

understand the causes and mechanisms underlying this diversity. Thus, invertebrates are 84 

increasingly used in experimental studies of senescence (Stanley, 2012; Ram & Costa, 2018). 85 

In addition to share similarities with vertebrates in terms of senescence, they can be 86 

manipulated experimentally and they are easier to be monitored throughout their entire 87 

lifetime (Ram & Costa, 2018). These advantages make them models of choice for studying 88 

senescence. Here, we propose the common woodlouse A. vulgare as a promising new model 89 

for studying senescence. Woodlouse can live beyond three years and display sex-specific 90 

senescence patterns in natural populations (Paris & Pitelka, 1962). In addition, one study has 91 

already reported evidence of immuno senescence in this species (Sicard et al., 2010).  92 

 93 

In this context, we tested the suitability of β-galactosidase activity, immune cell 94 

parameters and the TERT gene expression to cause age-specific responses in the common 95 

woodlouse Armadillidium vulgare. According to the literature, we expected an increase in β-96 

galactosidase activity, and a decrease of both TERT gene expression and immune cell 97 
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viability and density in A. vulgare. As males have higher adult survival than females (Paris & 98 

Pitelka, 1962), cellular senescence patterns are also expected to be sex-specific in A. vulgare.  99 

 100 

2. Materials & Methods  101 

2.1. Biological model 102 

A. vulgare individuals used in the following experiments were derived from a wild 103 

population collected in Denmark in 1982. These animals have been maintained on moistened 104 

soil under the natural photoperiod of Poitiers (France 46.58°N, 0.34°E, 20°C) at 20°C fed ad 105 

libitum with dried linden leaves and carrots. Crosses were monitored to control and promote 106 

genetic diversity. For each clutch obtained, individuals were sexed, and brothers and sisters 107 

were separated to ensure virginity. In common woodlouse, individuals molt throughout their 108 

lives, with approximately one molt per month. During this process all the cells of the 109 

concerned tissues are renewed at 20°C (Steel, 1980). However, the brain, the nerve cord and 110 

gonads are not renewed during molting and are therefore relevant candidates for tissue-111 

specific study of senescence in this species. Males and females were tested separately to 112 

assess the impact of sex. 113 

 114 

2.2Measure of β-galactosidase activity 115 

Animals 116 
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To test the impact of age on the on β-galactosidase activity,180 individuals were used: 117 

90 young (i.e. 6-months-old, 45 males and 45 females) and 90 old (2-years-old, 45 males and 118 

45 females) individuals. 119 

Protocol 120 

 Individuals were dissected separately in Ringer solution (Sodium Chloride 394 mM, 121 

Potassium Chloride 2 mM, Calcium Chloride 2 mM, Sodium Bicarbonate 2 mM) and nerve 122 

cord was removed. To obtain a sufficient amount of protein, we made pools of five nerve 123 

cords (from five different individuals of the same age). The five nerve cords were filed in 500 124 

µL of Lyse Buffer 1X (CHAPS 5 mM, Citric acid 40 mM, Sodium Phosphate 40 mM, 125 

Benzamidine 0.5 mM, PMSF 0.25 mM, pH = 6) (Gary & Kindell, 2005), and then were 126 

centrifuged at 15000g at 4°C for 30 minutes. The supernatant was taken and kept at -80°C 127 

until its utilization. The protein concentration was determined by the BCA assay 128 

(Thermofisher) and was homogenized at 0.1 mg/mL. The β-galactosidase activity was 129 

measured as described by Gary and Kindell (2005). Briefly, 100 µL of extracted protein at the 130 

concentration of 0.1 mg/mL were added to 100 µL of reactive 4-methylumbelliferyl-D-131 

galactopyranoside (MUG) solution in a 96 well-microplate. The MUG reactive, in contact to 132 

β-galactosidase, leads by hydrolysis to the synthesis of 4-methylumbelliferone (4-MU), which 133 

is detectable using fluorescent measurements. Measures were performed by the multimode 134 

microplate reader Mithras (LB940 HTS III, Berthold; excitation filter: 120 nm, emission filter 135 

460 nm) for 120 minutes. Two technical replicates were measured for each pool. 136 
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 137 

2.3Measure of immune cell parameters 138 

Animals 139 

To test the impact of age on the immune cell parameters (i.e. density, viability, and 140 

size) in A. vulgare, 60 mature individuals were used: 30 young (i.e. 1-year-old, 15 males and 141 

15 females) and 30 old (3-years-old, 15 males and 15 females) individuals. 142 

Protocol 143 

To study the impact of age on the immune parameters, a hole was bored in the middle 144 

of the 6th segment and 3 µL of haemolymph were collected (per individual) with an 145 

eyedropper and deposited promptly in 15 µL of anticoagulant solution(MAS-EDTA (EDTA 9 146 

mM, Trisodium citrate 27 mM, NaCl 336 mM, Glucose 115 mM, pH 7, (Rodriguez et al., 147 

1995))). Then, 6 µL of Trypan blue at 0.4% (Invitrogen) were added to color the dead cells. 148 

Thereafter, 10 µL of this solution were deposed in counting slide (Invitrogen Coutness®, 149 

Thermofisher). The immune cell density, the immune cell viability and the immune cell size 150 

were evaluated using an automated Cell Counter (Invitrogen Countess®). 151 

 152 

2.4 Measure of TERT gene expression  153 

The identification of the Telomerase Reverse Transcriptase (TERT)gene was firstly 154 

performed from the A. vulgare genome (Chebbi et al., 2019). In order to check whether this 155 

gene was present and preserved in crustaceans, phylogenetic analyses were carried out 156 
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upstream (see Supplementary materials 1, 2, 3 and 4). This gene has been found in crustacean 157 

transcriptomes and the topology of the TERT gene tree follows the phylogenetic relationships 158 

between the involved species (Supplementary material 3), suggesting a conserved role of the 159 

TERT gene. 160 

Gene expression 161 

Animals 162 

We tested the effect of age on the expression of TERT gene within 4 different age 163 

groups: (1) 4-months-old, (2) 1-year-old, (3) 2-years-old and (4) 3-years-old. Females and 164 

males were tested separately by pools of 5 individuals in 1-, 2-, 3-years-old groups and by 165 

pools of 7 individuals in 4-months-old group. All conditions require 4 replicates for each sex. 166 

176 individuals were used for this experiment. For each group we tested the expression level 167 

of the TERT gene in two different tissues: the nerve cord (somatic line) and gonads (germinal 168 

line).  169 

Protocol  170 

Animals were washed by immersion for 30s in a 30% sodium hypochlorite solution 171 

followed by two 30s immersion in distilled water. Tissues were dissected in Ringer solution 172 

(Sodium Chloride 394 mM, Potassium Chloride 2 mM, Calcium Chloride 2 mM, Sodium 173 

Bicarbonate 2 mM) and deposited by specific tissues pools of 5 on TRIzol reagent 174 

(Invitrogen) to extract RNA according to the manufacturer’s protocol after a cell 175 

disintegration using a Vibra Cell 75,185 sonicator (amplitude of 30%). Total RNA was 176 
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quantified by NanoDrop technology and was stored at -80°C until use. Reverse transcriptions 177 

(RT) were made from 500ng of RNA previously extracted and using the kit SuperScriptTM IV 178 

Reverse Transcriptase (Thermo Fisher Scientific) according to the supplier’s instructions. 179 

Primers were designed using the identified gene: primer TERT_F: 5’-180 

AGGGAAAACGATGCACAACC-3’ and primer TERT_R: 5’-181 

GTTCGCCAAATGTTCGCAAC- 3’ (see Supplementary material 1). Quantitative RT-PCR 182 

was performed using0.6 μl of each primer (10 μM), 2.4 μl of nuclease-free water and 1.5 μl of 183 

cDNA template and the LightCycler LC480 system (Roche) with the following program:10 184 

min at 95 °C, 45 cycles of 10 s at 95 °C, 10 s at 60 °C, and 20 s at 72 °C. Expression levels of 185 

target genes were normalized based on the expression level of two reference genes previously 186 

established: the Ribosomal Protein L8 (RbL8) and the Elongation Factor 2 (EF2) (Chevalier 187 

et al., 2011). 188 

 189 

Statistics 190 

All statistical analyses were performed using the R software (R. Core Team, 191 

2016).The β-galactosidase activity was analyzed with linear mixed effect models using the 192 

package lme4 (Bates et al., 2014). As two technical replicates were measured for each pool, 193 

the model including the pools fitted as a random effect, age and sex and their two-way 194 

interaction as fixed factors. 195 
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Concerning the immune parameters, linear models with Gaussian distribution were 196 

fitted to analyze variation in the cell size and viability. For the cell density, a linear model of 197 

the cell number (log-transformed, (Ives & Freckleton Robert, 2015)) was fitted. 198 

The level of TERT expression according to age in the two different tissues were 199 

compared by a Kruskal–Wallis rank sum test in combination with Nemenyi’s post hoc 200 

multiple comparison test with the Tuckey correction using R package PMCMR. 201 

 202 

3. Results 203 

β-galactosidase activity 204 

The β-galactosidase activity was higher in old (i.e. 2-years-old) than in young (i.e. 6-205 

months-old) individuals (χ2
1=6.15, p=0.013, Figure 1). We also detected a higher β-206 

galactosidase activity in females than in males (χ2
1=7.26, p=0.007, Figure 1).  207 

The thick line depicts the median, the box the interquartile range, and the whisker are bounded to the most 208 

extreme data point within 1.5 the interquartile range. The outliers outside this range are displayed as open 209 

circles. N= 24 pools of 5 individuals. * denotes p<0.05 210 

 211 

 212 
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 213 

Figure 1: β-galactosidase activity according to age and sex in A. vulgare (F=females, M=males) 214 

 215 

Immune cells parameters 216 

Cell size was larger in 3-years-old than in 1-year-old individuals (F1,58=8.54, p=0.005, Figure 217 

2A). Conversely, the cell density was higher in 1-year-old than in 3-years-old individuals 218 

(F1,58 =4.33, p=0.01, Figure 2B). Concerning the immune cell viability, a statistically 219 

significant interaction occurred between age and sex, with a relatively lower immune cell 220 

viability in 3-years-old females (F3,56=6.85, p=0.01, Figure 2C). No sex effect was detected on 221 

cell size (F2,57=0.76, p=0.38, Figure 2A) or cell density (F2,57=0.32, p =0.57, Figure 2B).  222 
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 223 

 224 

Figure 2: Immune cell size (A), density (B) and viability (C) according to age and sex in A. vulgare 225 

(F=females, M=males) 226 

Thethick line depicts the median, the box the interquartile range, and the whisker are bounded to the most 227 

extreme data point within 1.5 the interquartile range. The outliers outside this range are displayed as open 228 

circles.N= 60 individuals: 15 1-year-old females, 15 1-year-old males, 15 3-years-old females and 15 3-years-old 229 

males. * denotes p<0.05 and ** denotes p<0.01 230 
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 231 

TERT gene expression 232 

The TERT gene expression decreased with increasing age in nerve cords (χ2
3=23.30, 233 

p<0.001, Figure 3A). More precisely, the TERT gene expression was higher in 4-months-old 234 

individuals compared to 2-years-old and 3-years-old individuals (p=0.001 in both cases) and 235 

in 1-year-old individuals compared to 3-years-old individuals (p=0.038), without any 236 

detectable sex effect (χ2
1=0.14, p=0.70, Figure 3A). In gonads, the TERT gene expression 237 

was much higher in females (χ2
1=17.81, p<0.001, Figure 3B) and tended to decrease with 238 

increasing age (χ2
3=7.5, p=0.057, Figure 3B) as the TERT gene expression tended to be 239 

higher in 4-months-old females compared to 3-years-old females (p=0.054). In males, a 240 

general tendency was also observed (χ2
1=7.34, p=0.061, Figure 3B), the TERT gene 241 

expression tending to be higher in 2-years-old individuals compared to 1-year-old and 3-242 

years-old individuals (p=0.14 and p=0.12, respectively, Figure 3B).  243 

 244 
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 245 

Figure 3: Relative expression level of TERT in (A) nerve cords and (B) in gonads in A. vulgare (F=females, 246 

M=males.  247 

Expression of each gene was normalized based on the expression of Ribosomal Protein L8 (RbL8) and Elongation 248 

Factor 2 (EF2) as reference genes. The thick line depicts the median, the box the interquartile range, and the whisker 249 

are bounded to the most extreme data point within 1.5 the interquartile range. N= 176 individuals: 284-months-old 250 

females, 28 4-months-old males, 20 1-year-old females, 20 1-year-old males, 20 2-years-old females, 20 2-years-old 251 

males, 20 3-years-old females, 20 3-years-old males. . denotes p<0.10, ** denotes p<0.01 252 

 253 

4. Discussion 254 

In this study, we tested several effective physiological biomarkers of vertebrate 255 

senescence to assess whether they could also be used in invertebrates such as the common 256 

woodlouse. Immune cells showed an increase in their size and a decrease in their density and 257 

on 

er 

ld 

ld 
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viability with increasing age. In nerve cords, the activity of the β-galactosidase enzyme 258 

increased, whereas the TERT gene expression decreased with increasing age. These results 259 

support the presence of increasing cellular senescence in A. vulgare with chronological age. In 260 

contrast, in the gonads, the TERT gene expression was too low in males and was not 261 

sufficiently variable between sexes to provide information on the cellular senescence status in 262 

this tissue. 263 

Our study is in line with previous studies that have already revealed the possibility of 264 

using vertebrate biomarkers in invertebrates (Hsieh & Hsu, 2011; Park et al., 2011; 265 

Schumpert et al., 2015). By testing a set of different physiological biomarkers of vertebrate 266 

senescence, often studied independently, our study supports both ideas that routinely used 267 

biomarkers in vertebrates can be adapted in invertebrates and that the senescence process is 268 

quasi-ubiquitous in the living world and can be expressed in a similar way in very different 269 

organisms. 270 

Previous studies have shown that the probabilities to survive decrease with increasing 271 

age in A. vulgare (Paris & Pitelka, 1962). The cellular damages accumulated during the 272 

animal's life could be the cause of cell senescence and therefore the driving force behind 273 

actuarial senescence. (Harman, 1956; Barja, 2000; Barja & Herrero, 2000; Finkel & 274 

Holbrook, 2000). In A. vulgare, the 2- and 3-years-old individuals could have therefore 275 

accumulated more cellular damages during their lifetime, leading to the cellular senescence 276 

we report. 277 
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Our study also revealed a strong difference between sexes on the response of 278 

biomarkers to age changes. At a given age, females display higher β-galactosidase activity 279 

and lower immune cell viability than males. Between-sex differences in lifespan have been 280 

reported in A. vulgare with a longer lifespan in males than in females (Geiser, 1934; Paris & 281 

Pitelka, 1962). Exact differences in actuarial senescence patterns (i.e. age-specific changes in 282 

survival probabilities) remain to be quantified in A. vulgare but such differences are quite 283 

common both in vertebrates and invertebrates (Tidière et al., 2015; Marais et al., 2018). One 284 

of the main theory proposed to explain sex differences in longevity or senescence patterns 285 

relies on different resource allocation strategies between sexes (Vinogradov, 1998; 286 

Bonduriansky et al., 2008).The shorter lifespan in females A. vulgare, that allocate more 287 

energy to reproduction than males (Paris & Pitelka, 1962) because they carry their offspring 288 

in their marsupium during one month giving nutrients and protection, supports a role of 289 

differential sex allocation. 290 

 Sex differences in resource allocation strategies could also be driven by environmental 291 

conditions (Shertzer & Ellner, 2002). Our physiological biomarkers of vertebrate senescence 292 

revealed sex differences, and as supported in Depeux et al., 2019, they could constitute useful 293 

tools to identify other factors involved in variations in senescence patterns, such as 294 

environmental stressors. Moreover, if these biomarkers seem to predict better the 295 

physiological age than chronological age notably in terms of survival and reproduction, they 296 
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could correspond to biomarkers of senescence in woodlouse (Baker & Sprott, 1988; Simm et 297 

al., 2008; Sprott, 2010). 298 

 Our present study demonstrated that the physiological biomarkers of vertebrate 299 

senescence respond to age changes in the common woodlouse, a new invertebrate model of 300 

aging. These parameters that predict the chronological age of woodlouse individuals might 301 

offer reliable biomarkers, especially if their measurements are related to both reproductive 302 

and survival prospects more than to the chronological age of individuals. In this context, and 303 

more broadly in the study of senescence and of the factors involved in its diversity, the 304 

woodlouse model, which has physiological similarities with other invertebrates, could be a 305 

model of choice to study sex-specific actuarial and cellular senescence. 306 
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