
HAL Id: hal-02394588
https://hal.inria.fr/hal-02394588

Submitted on 4 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reflections on Bernhard Steffen’s Physics of Software
Tools

Hubert Garavel, Radu Mateescu

To cite this version:
Hubert Garavel, Radu Mateescu. Reflections on Bernhard Steffen’s Physics of Software Tools. Mod-
els, Mindsets, Meta: The What, the How, and the Why Not?, Springer Verlag, pp.186-207, 2019,
�10.1007/978-3-030-22348-9_12�. �hal-02394588�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/266877357?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-02394588
https://hal.archives-ouvertes.fr


Reflections on Bernhard Steffen’s

Physics of Software Tools

Hubert Garavel and Radu Mateescu

Univ. Grenoble Alpes, Inria, Cnrs, Lig, 38000 Grenoble, France
E-mail: {hubert.garavel,radu.mateescu}@inria.fr

Abstract

Many software tools have been developed to implement the concepts of
formal methods, sometimes with great success, but also with an impressive
tool mortality and an apparent dispersion of efforts. There has been little
analysis so far of such tool development as a whole, in order to make it more
coherent, efficient, and useful to the society. Recently, however, Bernhard
Steffen published a paper entitled “The Physics of Software Tools: SWOT
Analysis and Vision” that precisely proposes such a global vision. We highlight
the key ideas of this paper and review them in light of our own experience
in designing and implementing the CADP toolbox for the specification and
analysis of concurrent systems.

Keywords: CADP; computer science; epistemology; exchange plat-
form; formal method; formal verification; knowledge exchange; model
checking; SaaS; software as a service; software competition; validation;
verification

1 Introduction

The present article was written in honour of Bernhard Steffen and included in
a collective Festschrift book offered to him at the occasion of his 60th birthday,
in addition to another Festschrift article [18], jointly dedicated to Susanne Graf
and Bernhard Steffen.

In a recent position statement entitled The Physics of Software Tools: SWOT
Analysis and Vision [49], Bernhard Steffen analyzes the current situation of
software tools implementing the concepts of formal methods and suggests di-
rections for organizing the development of these tools in a more coherent and
efficient way. This analysis is rooted in Bernhard Steffen’s double experience in
developing software tools (including ETI [50, 7], jETI [35], LearnLib [44, 42, 24]
and CINCO [43]) and managing the research community in formal methods (no-

1



H. Garavel and R. Mateescu Reflections on Bernhard Steffen’s Physics of Software Tools

tably with the launch of the TACAS conference1, of the STTT journal2, and
the RERS challenge3). The position statement [49] is written in a lively style,
enriched with insightful anecdotes. Despite its seemingly simple form, it puts
forward many diverse ideas that freely spring from all parts of the text.

We believe that global debates on the present and future of formal methods are
essential, and Bernhard Steffen’s position statement is a most welcome contri-
bution in this respect. The present article exposes the key ideas of this position
statement in an orderly way, each idea being first illustrated with citations from
[49] (written in italics), then commented and discussed by us, with examples
borrowed from process calculi and model checking, based on our own experience
in designing and implementing the CADP toolbox [17] for the specification and
analysis of concurrent systems.

The present article is organized as follows. Section 2 gives an overview of the
current status of software tools that implement the concepts of formal methods
and summarizes the main difficulties often faced by the users of these tools.
Section 3 analyzes some human factors that can be seen as subjective causes of
these difficulties. Section 4 proposes remedies and action points that could be
taken, both at the individual level of each tool developer and at the collective
level of the research community as a whole, to improve the situation. Finally,
Section 5 makes concluding remarks.

2 Current status and difficulties

In [49], the current landscape of software tools is characterized by eight ideas.

Definition of formal tools.

“We focus our attention here on formal methods-based software tools like as they
are addressed by STTT. — the software tools that are meant to help controlling
the way software is developed — a means for supporting the design, construction,
and analysis of (large-scale) systems”

The analysis of Bernhard Steffen does not consider all kinds of software on Earth
but, more concretely, the particular class of software tools intended to assist the
design of software and software-intensive systems. As examples of such tools, he
cites static analyzers, model checkers, theorem provers, SAT and SMT solvers,
automata learning tools, model-based test generation tools, etc. Such tools are
also referred to as “formal-methods based tools”, but specific terminology (e.g.,
“software development tools”, “meta software tools”, or “higher-order software”)
would be possible. In the remainder of this article, we will call “formal tools”
those software tools addressed by Bernhard Steffen, even if some of them imple-
1 http://tacas.info
2 http://sttt.cs.uni-dortmund.de
3 http://rers-challenge.org

2

http://tacas.info
http://sttt.cs.uni-dortmund.de
http://rers-challenge.org


H. Garavel and R. Mateescu Reflections on Bernhard Steffen’s Physics of Software Tools

ment learning techniques, which are not fully predictable from a formal point of
view.

Formal tools are successful.

“Formal methods-based tools had a lot of success stories in recent years. — The
success of these tools is due to many factors, whereby Moore’s law can be regarded
as a general enabler. — Many solutions are impressive for very particular cases,
and we have seen many publications about such success stories.”

As examples of formal methods for which successful tools have been developed,
Bernhard Steffen mentions: static analysis, symbolic execution, model checking,
statistical model checking, SAT and SMT solvers, systems synthesis, automata
learning, and model-based testing. A complementary list can be found in [14,
Sect. 1.3.4], which provides a list of 30 success stories in formal methods, one
per year between 1982 and 2011. Certain formal tools are indeed successful,
considering, e.g., the list of 190+ case studies tackled using the CADP toolbox4.

However, the global picture is more contrasted, as the success of formal methods
in some application domains does not mean a uniform acceptance of these meth-
ods in all branches of computer science and software design activities. One starts
seeing mathematical theories that are formally checked using proof assistants,
but, on the other hand, most of the distributed algorithms published so far are
neither formally specified nor verified beyond simple testing. A few companies
use formal methods when it is required by safety regulations (e.g., avionics, rail-
ways, etc.) or when design errors not caught by conventional validation are too
expensive to patch after release (e.g., hardware design), but most companies
do not use formal methods, certifying the design process rather than the final
product and relying instead on agile methodologies and testing techniques that
give little assurance as the complexity of software increases.

As a consequence, one faces a massive problem with software quality, resulting in
abnormally high numbers of failures and security breaches. Although end-users
might develop tolerance for quality degradation, the ever-growing dependency
of modern societies on improper software is worrying. It is fair to admit that,
so far, formal methods did not handle this issue satisfactorily.

Formal tools are complex.

“The complexity of software systems, even though man made, often crosses the
border of what can be fully controlled and reasoned about via mathematical rea-
soning. — These tools have become so complex and so special that they are no
longer just a means for supporting the development of reliable systems, but an
object of study in their own right. — Software tools [...] become so complex
that each of them turns into a reality of their own, with its own ‘physics’, that
4 http://cadp.inria.fr/case-studies

3

http://cadp.inria.fr/case-studies


H. Garavel and R. Mateescu Reflections on Bernhard Steffen’s Physics of Software Tools

needs to be studied in its own right. — The complexity of the individual tools
has grown so enormously that tool developers risk to devote their entire intuition
to their specific ‘tool world’.”

Software projects are among the most involved creations of human mind. This
is especially true of formal tools, which, even though they do not have a huge
volume of code5, contain highly complex algorithms that have been difficult to
design and are still difficult to understand and make evolve. Such difficulty
often arises from the fact that these tools try to provide partial solutions to
generally undecidable problems, or implement computationally-expensive algo-
rithms as efficiently as possible to make them affordable in practice. Recently,
a new dimension of complexity has appeared with the introduction of learn-
ing techniques, the correctness of which is validated empirically but difficult to
demonstrate formally (see, e.g., [45]).

The traditional concerns about the so-called “software crisis” are still there, and
even more relevant for formal tools. The development of usable tools required the
efforts of many high-profile scientists, continuously working for several decades.
For instance, the early steps of theorem proving can be traced back to the 1960s
(see, e.g., [32]), and the first verification tools based on state-space exploration
for concurrent systems appeared in the 1970s [52] [46]. As time passed, the
amount of knowledge accumulated in mainstream formal tools has grown so
largely that it would be difficult, today, to design a new theorem prover or model
checker from scratch. We thus agree with Bernhard Steffen that such tools are
worth being studied in their own right: they are a valuable technical heritage
that should be preserved and studied (as carefully as, e.g., operating systems
and network protocols) in order to remain available for the next generations.

Formal tools are fragmented.

“The landscape of software tools considered here is extremely heterogeneous
and fragmented. — More and more impressive individual tool landscapes have
evolved, exploiting parallelization, sometimes even the structure of GPUs, while
also comprising numerous dedicated heuristics either directly implemented in
their special individual algorithms or imported through powerful SAT and SMT
solvers, and more recently the integration of machine-learning technology. Thus
the situation became even more diverse.”

Heterogeneity and fragmentation are indeed present and have multiple causes.
At the top level is the existence of three main approaches to verification: static
analysis, theorem proving, and model checking, which rely upon very different
principles, although they may overlap in concrete applications. Then, each of
these main approaches is itself fragmented into many, often incompatible vari-
ants. Considering only, as an example, the landscape of model checkers for
concurrent systems, heterogeneity comes from the modelling formalisms (e.g.,
message-passing vs shared-memory models, automata vs Petri nets vs process
5 We believe that most formal tools are less than one million lines of code.

4



H. Garavel and R. Mateescu Reflections on Bernhard Steffen’s Physics of Software Tools

calculi, timed vs untimed, etc.), from the logical property formalisms (e.g., state-
based vs action-based models, linear-time vs branching-time properties, tempo-
ral logics vs µ-calculus, etc.), from the verification algorithms used (e.g., explicit-
state vs symbolic model checking), and from the implementation techniques used
(e.g., C/C++ vs Java vs OCaml, Unix vs Windows, mono-core vs multi-cores
vs clusters vs GPUs, etc.). An individual tool developer or even a large research
team cannot feasibly explore all these aspects simultaneously: choices must be
made that select certain aspects and restrict others, leading to “specialized”
formal tools that may indeed not interoperate well with other tools designed to
address similar or related problems. Another impressive example of fragmen-
tation is the large collection of tools dealing with quantitative verification of
automata-based models: for this setting, known as the “quantitative automata
zoo” [23], not less than 74 formal tools have been developed in academia6.

Formal tools are difficult to learn.

“The adoption of tools is very cumbersome. Thus users, having become ac-
quainted with one tool, are typically reluctant to change, [...] a phenomenon
hindering innovation. — Many formal methods tools are very hard to use and
therefore scare users away, and only very few users master more than one of the
more complex tools.”

There are several reasons hindering the adoption of formal tools. Perhaps, the
main reason is that these tools rely upon complex mathematical theories that, in
many cases, must be assimilated by users to fully exploit the tool capabilities [11].
A second reason is that, in the fragmented landscape of formal tools, there is
almost no standard language for describing models and properties: each tool
has its own input languages, different from those of other tools providing similar
functionality. A third reason is that, more often than not, these languages
closely reflect the particular algorithms implemented in the tool, the limitations
of these algorithms, and the personal preferences of tool developers; for many
users, these languages are felt as intricate notations, too far from the classical
background of computer programmers and system designers. Finally, one should
also mention tools implementing a wealth of algorithms on equal footing, forcing
users to learn and try dozens of options to determine which ones are useful for
solving a given problem.

The applicability of formal tools is hard to estimate.

“It is often difficult to judge whether a certain tool would fit a given purpose, even
if it is specifically designed for the intended programming language. Judging how
easy it would be to adapt a certain tool to some purpose is typically even much
more difficult due to feature interaction effects: How does a certain new kind
of analysis interfere with the current analyses, optimizations, representations,
6 http://cadp.inria.fr/resources/zoo

5

http://cadp.inria.fr/resources/zoo


H. Garavel and R. Mateescu Reflections on Bernhard Steffen’s Physics of Software Tools

approximations, and transformations? This question is so difficult that often
even the core developers of a tool are unable to answer it or even radically fail in
assessing their tool’s profile. — Prospective users therefore have a hard time to
orient themselves in the current tool landscape, and even experts typically only
have very partial knowledge.”

The aforementioned fragmentation, which makes the tool landscape vast and
densely populated, is the first reason for the situation accurately described by
Bernhard Steffen. Another cause is the lack of standardized criteria for charac-
terizing the functionality and scope of formal tools. In the 80s and early 90s,
there was a naive expectation that formal methods would spread everywhere
and solve most issues of software development; practitioners then discovered
that the applicability of formal methods was much more limited than stated
by their proponents, and this disillusion blocked for years the dissemination of
formal methods in many industries. Today, many formal tools come with a cat-
alog of demo examples; however, such catalogs are often limited to a handful
of relatively small examples that have been successfully tackled. To better de-
termine the applicability of formal tools, one would need larger collections of
industrial-size models in open source, together with usage metadata, such as the
time and cost spent in these models; one would also need reports about prob-
lems and failures using particular tools. Because such information is scarcely
available, the prevailing way to know about the applicability of a formal tool
is to acquire self-experience with this tool, which is long, expensive, and not
necessarily compatible with most industrial agendas.

The performance of formal tools is hard to predict.

“The true effects of combining methodologies as diverse as classical static anal-
ysis, model checking, SAT and SMT solving, and dynamic methods like simula-
tion, runtime verification, testing, and learning, with their dedicated means of
optimizations in terms of, e.g., BDD coding, parallelization, and various forms
of abstraction and reduction, are very dependent on the particular tools and typi-
cally hardly predictable. — The BDD encoding of Boolean functions [...] showed
impressive practical results, but may also perform extremely poorly, and we are
still far from understanding when it performs well. Imagine in comparison how
difficult it must be to predict the performance of today’s software tools.”

The performance of formal tools is also crucial for their applicability, as a formal
tool that is theoretically sound and suitable for certain problems may be useless
if it delivers poor performance in practice. The difficulty to predict the perfor-
mance of formal tools arises, on the one hand, from the lack of predictability
of the basic engines (Bernhard Steffen mentions BDDs, but the same holds for
SAT, SMT, BES7, or PBES8 solvers), and, on the other hand, from the lack of
compositionality (there are few theoretical results enabling one to infer the per-

7 Boolean equation systems [33]
8 Parameterized Boolean equation systems [38] [22]

6



H. Garavel and R. Mateescu Reflections on Bernhard Steffen’s Physics of Software Tools

formance of a composed system from that of its components). Also, the quality
of tool implementation should also be taken into account, as programming skills
sometimes make a significant difference.

Formal tools are hard to analyze objectively.

“Peculiarities of tools may have a major impact on the evaluation process, and
[...] tool-based observations may well be dominated by special implementation ef-
fects. — It is sometimes hard to distinguish which of the presented results about
the applied technology can be generalized, and which are merely a view through
the glasses of a particular implementation. — Experimental investigations [...]
provide interesting indications about the applied technology, but typically fail to
provide sufficient evidence to transfer results to other settings and tools. More-
over, implementation-specific details often dominate the observed effects which
thereby become invalid for drawing conceptual conclusions. — Working with a
particular such analysis tool forces one to live in its dedicated artificial world
with its own ‘physics’. The tools’ ecosystems may impose quite a strong bias
when trying to observe the power of analysis technologies via case studies, even
to the point that the observed effects are dominated by tool-imposed implementa-
tion details. Do [the observations] reflect the object of study, or are they imposed
by the particularities of the used tool? Like in the case of physics, this may make
the difference between a cause to rethink the entire conceptual framework (i.e.,
change the established laws), or just a hint towards a side-effect of a particu-
lar implementation detail of (or even an error in) the tool (i.e., a flaw in the
experimental setup).”.

The concern that experimental observations may be biased by tool-specific as-
pects is a driving idea expressed many times in Bernhard Steffen’s paper. Three
potential risks are pointed out: over-interpretation of the obtained results, cor-
ruption of scientific knowledge (“biases [...] may enter corresponding publica-
tions without being noticed”), and misleading impact on scientists (“[it] may end
up steering research agendas in wrong directions”).

Although such dangers exist, we believe that they should not be exaggerated,
as the well-established scientific approach provides effective countermeasures. It
is indeed true that a poor programmer may disqualify a valuable algorithm for
some time, but if the algorithm sounds interesting, other scientists will try to
implement it and come up with different experimental results. Also, publications
containing invalid observations or conclusions have always been part of science,
but sooner or later, if the topic is still of interest, they are detected and corrected
(see, e.g., [21] vs [51] on the comparative assessment of term rewrite engines).

Finally, we observe that individual and collective research agendas are not exclu-
sively based on experimental results published in scientific literature; many other
factors play a role: public funding policies, marketing plans from private com-
panies, research agendas of other research institutions and countries, etc. There
is also an intellectual inertia factor: conformance with mainstream approaches

7



H. Garavel and R. Mateescu Reflections on Bernhard Steffen’s Physics of Software Tools

(usually, those with the largest number of publications) and adherence to influen-
tial scientists (skillfully mixing objective facts and subjective preferences) often
play a greater role than the cold examination of experimental results. We give
here three examples, all taken from the model-checking world: (i) state-based
approaches are still predominating, although action-based approaches have bet-
ter theoretical properties (abstraction, composition, etc.) and are easier to store
and exchange as computer files; (ii) linear-time temporal logics, despite the ex-
ponential complexity of their algorithms, are often preferred to branching-time
temporal logics, whose algorithms have linear complexity; (iii) symbolic model
checking was claimed to definitely outperform explicit-state model checking, but
recent experiments [29, Sect. 4.3] show that it is not the case.

3 Analysis of human factors

Having discussed the objective causes for the complexity and fragmentation of
formal tools, Bernhard Steffen also considers subjective causes related to human
behaviour, especially two of them, which we now review in the present section.

Academia seeks for novelty rather than consolidation.

“People prefer to strive for something new and, in contrast to, e.g., physics,
there is no established culture of control and consolidation.”

This statement can be understood in two ways. Bernhard Steffen issued it to
suggest that, in the formal tool community, scientists do not spend enough effort
to refute misconceptions resulting from a wrong interpretation of observations.
This would require independent scientists to redo published experiments, care-
fully analyzing all assumptions and experimental conditions to make sure that
the stated conclusions are valid. It is true that, usually, experimental results con-
cerning formal tools are heavily scrutinized before publication, and very lightly
after. The main reason why computer science differs from physics in this respect
is that formal tools are living artifacts: by the time one wants to redo the ex-
periments, the tools may have been abandoned9, replaced with newer versions,
or turned into commercial products.

But the above statement about novelty vs consolidation can also be given, we
believe, a more general meaning. In the formal tool community, the standard
practice is, given a new idea, to develop a tool prototype, to experiment it on
a few well-chosen case studies, publish the results, and move on to the next
challenging idea. Quite often, many concrete problems are left unsolved in this
approach, and the tool prototypes quickly developed for proof-of-concept exper-
iments are never maintained any further. As Bernhard Steffen points out, the
need for consolidated tools that could be reused by others does not outweigh the
9 See, e.g., http://cadp.inria.fr/resources/zoo or http://rewriting.loria.fr/systems.

html to observe the impressive mortality of formal tools.

8

http://cadp.inria.fr/resources/zoo
http://rewriting.loria.fr/systems.html
http://rewriting.loria.fr/systems.html


H. Garavel and R. Mateescu Reflections on Bernhard Steffen’s Physics of Software Tools

fascination for novel ideas, driven by the industrial challenges of the digital rev-
olution, whose ultimate goal appears to be the design, for each human activity,
of a computer system capable of performing this activity autonomously. One
thus observes a growing gap between, on the one hand, increasingly complex
theories and formalisms combining paradigms such as concurrency, mobility, cy-
berphysics, uncertainty, autonomy, learning, etc. and, on the other hand, a
fragmented landscape of formal tools that only address one or a few of these
paradigms, only in a partial manner and with major scalability issues. Conse-
quently, a second gap is expanding between, on the one hand, the increasing
ambition and complexity of industrial systems and, on the other hand, the ca-
pabilities of formal tools to analyze such systems. A pessimistic account of this
discrepancy can be found in [48], with the worrying prospect that autonomous
systems require enginers to throw away all established guidelines for produc-
ing safe and secure computing systems, announcing an era where potentially
dangerous machines will be out of control. The role of ethics is often to curb op-
portunities made possible by science; in this case, ethics will face opportunities
that science, at present, cannot master.

Tool developers focus too much on their own tools.

“The main threat to establishing a global tool experimentation and exchange plat-
form is individualism. Individual developers or small teams currently working
on tools typically integrate whatever functionality they consider interesting into
their own dedicated tool landscape rather than investing into a global infrastruc-
ture aiming at making these functionalities available to everybody. This seems
easier, and it currently also generates higher rewards. Experimental results con-
cerning a certain setting or tool are welcome in many conferences, and optimizing
one’s own tool for a certain benchmark is a completely different matter than sys-
tematically establishing conceptually new approaches with a stable and predictive
performance profile.”

To a large extent, these observations are correct. As mentioned already, the
landscape of formal tools is fragmented. If we omit small prototypes with no
follow-through, the remaining larger, mature tools tend to organize themselves
as complete software stacks or platforms, with the goal of providing all the
functionalities that end users can expect. This often leads to the well-known
“silo effect” of software engineering, making it difficult to combine and compare
the functionalities of separate tools.

Apart from the technical reasons for fragmentation exposed in Section 2, Bern-
hard Steffen points out the role of human factors: individualism, academic evalu-
ation criteria, and also the “not-developed-here syndrome” [49, Sect. 5]. It seems
indeed that certain decisions with no objective justification can only be explained
by such subjective factors. For instance, in the early 90s, the concurrency theory
community certainly missed an historical opportunity by not widely adopting
the international standard LOTOS [25], continuing instead to spend resources

9



H. Garavel and R. Mateescu Reflections on Bernhard Steffen’s Physics of Software Tools

on older languages (e.g., CCS and CSP) or even the definition of new ones (e.g.,
PSF and µCRL), and undertaking the development of separate model checkers
for all these languages10; such dispersion of efforts on several languages that
were similar to, but incompatible with LOTOS prevented this community from
reaching the critical mass required for a large industrial acceptance.

There are cases, however, where a duplication of efforts is not a waste of re-
sources, in particular when several tools, developed independently and offering
comparable functionalities, share the same input language. Examples are BDD
packages, SAT solvers, model checkers for Petri nets, etc. In such cases, the
competition between different tool developers leads to faster progress, and the
redundancy provided by independent implementations can be useful for high-
assurance certification purposes.

4 Actions and remedies

Having described the current situation of formal tools and its causes, Bernhard
Steffen suggests directions for improvement. These can be divided into individual
actions, which should locally guide the development of each formal tool, and
collective actions, which should be globally undertaken by the community of
formal tool developers and users.

4.1 Individual actions

Tool developers are the main stakeholders who can improve the current situation.
To this aim, Bernhard Steffen lists three expectations that developers should
fulfill.

Formal tools should be modular.

“Even better would be the possibility to access implemented tool functionality
more selectively — bundling (tool) functionality so that it can easily be used by
others — [and] openly exchanged, thus tearing down the boundaries between the
individual tools — [allowing] cross-tool combinations of individual tool function-
alities. — The need for a more systematic approach to establish the profiles of
tools and methods is obvious. — Even the core developers of a tool [...] radically
fail in assessing their tool’s profile.”

In order to avoid the aforementioned “silo effect”, one should indeed promote the
design of modular tools, divided into software components that can be reused
10 Scientific literature sometimes reflects, many years later, such rivalries from the past: for

instance, the Handbook of Process Algebra [3] cites LOTOS only two times in 1356 pages,
and, in the Handbook of Model Checking, the 47-page chapter on process algebra [9] does
not mention LOTOS nor the CADP tools, although these are the historically first and most
widely used model checkers for process algebra.

10



H. Garavel and R. Mateescu Reflections on Bernhard Steffen’s Physics of Software Tools

separately. These components should have clean interfaces and their function-
alities should be properly documented. Bernhard Steffen does not mention the
need for common formats or converters between formats, but this is implicitly
required for information exchange and tool interoperability. Notice also that
open source and modular design are two orthogonal aspects, the former never
being a substitute for the latter.

We all the more agree with Bernhard Steffen that, since its origins, our CADP
model checking toolbox has been carefully architected around generic software
components providing distinct, well-defined functionalities with documented in-
terfaces for external use. Such building blocks have proven successful for the
rapid construction of new tools: at present, not less than 94 formal tools11 have
been developed by reusing the software components of CADP. For example,
the most recent of these tools is TESTOR [37], which generates conformance
tests on the fly and is almost entirely built using three generic technologies of
CADP: the BCG environment for on-disk storage of labelled transition systems,
the OPEN/CÆSAR environment for on-the-fly exploration of labelled transition
systems, and the CÆSAR SOLVE library for solving Boolean equation systems.

Formal tools should be correct.

“Software tool providers are responsible to establish technology that is trusted.
— Due to the very high complexity of today’s tools, [errors] are deemed to be
quite frequent. In fact, it is still quite rare that validation tools are themselves
developed with the technology they are intended to provide.”

It is a fact that formal tools may contain errors. In the case of the CADP toolbox,
we fix defects in almost every monthly release. Many errors are minor, but some
can be severe and corrupt the verification results12. To avoid such issues, formal
tools should be properly designed according to software engineering principles,
extensively validated, and regularly maintained.

The traditional validation approach consists in thorough testing. This approach,
which is used for the CADP toolbox, requires one to build large collections of test
cases, a problem that will be further addressed in Section 4.2. Such collections
can be used for non-regression testing, for cross-checking different tools, and for
perfoming sanity checks (e.g., checking that any labelled transition system is
bisimilar to itself, etc.). Software competitions (see Section 4.2 below) are also
effective in detecting bugs in formal tools. In any case, the potential presence of
errors should not be an excuse to avoid formal tools, because the more they are
used, the more errors are detected and fixed.

There exist more ambitious approaches, in which formal tools (e.g., a static
analyzer [27] or a Lustre compiler [5]) are themselves formally verified. On the

11 http://cadp.inria.fr/software
12 See, e.g., the TLA+ model checker bug found in 2018, which could prevent reach-

able state spaces from being entirely explored (http://lamport.azurewebsites.net/tla/
toolbox-1-5-5.html).

11

http://cadp.inria.fr/software
http://lamport.azurewebsites.net/tla/toolbox-1-5-5.html
http://lamport.azurewebsites.net/tla/toolbox-1-5-5.html


H. Garavel and R. Mateescu Reflections on Bernhard Steffen’s Physics of Software Tools

long run, this will certainly become the standard approach; in the meantime,
such approaches, because they demand time and effort, can only be applied to
formal tools that are already mature and stable.

Bernhard Steffen goes one step further by suggesting that formal tools could be
“themselves developed with the technology they are intended to provide”. Maybe
this is going too far: there is no reason, for instance, why a BDD package should
be verified using itself, whereas proof techniques for pointer manipulation algo-
rithms are clearly more appropriate. However, we can mention, in the case of
CADP, three examples that sustain Bernhard Steffen’s intuition about “circu-
lar use” of formal tools: (i) The CÆSAR.ADT compiler [12], which translates
LOTOS abstract data types to C, is used to bootstrap itself and to build the
XTL model checker [39], both tools being mostly written using LOTOS ab-
stract data types; (ii) Similarly, the LNT language [19], as implemented by the
TRAIAN compiler, serves as a basis for implementing the LNT2LOTOS trans-
lator for LNT, as well as a dozen of compilers/translators for other languages
[16]; (iii) The DLC compiler [10], which translates LNT concurrent descriptions
with multiway rendezvous [20] into distributed POSIX processes communicating
using TCP sockets, enables formal validation, as its inputs and outputs, both
expressed in LNT, can be compared against each other modulo safety equiva-
lence.

Formal tools should be user-friendly.

“Software tool providers are responsible to establish technology that is trusted
and accepted, and eventually widely used. This does not only comprise correct-
ness but also usability of the tools, a feature often underestimated and therefore
a weakness of many tools. — Many tools offer so many options that users have
a hard time dealing with the standard features. — The ultimate success of these
technologies is when they turn into commodity and are used without the users
actually being aware of them. — Many techniques are embedded into devel-
opment environments (IDEs), typically in such a way that users do not really
recognize them — [and get] fast feedback that can be understood without knowing
the underlying technology.”

We already echoed Bernhard Steffen’s concern that formal tools are hard to
learn (see Section 2 above). This problem can be addressed in, at least, three
complementary ways.

A first way, mentioned by Bernhard Steffen, consists in making the use of formal
techniques transparent, by hiding their complexity from the end users. This is
the old concept of “lightweight” [26], “invisible” or “disappearing” [47] formal
methods. Static analysis, for instance, is a particularly successful technique in
this respect. Unfortunately, such simplified approaches cannot cover all user
needs.

A second way, also evoked by Bernhard Steffen, consists in reducing the ex-
cessive number of options offered by some tools. A wealth of options can be

12



H. Garavel and R. Mateescu Reflections on Bernhard Steffen’s Physics of Software Tools

useful to expert users for finely tuning the performance of formal analyses, by
exploiting the particularities of the problem under investigation. The aforemen-
tioned recommendation of making formal tools modular also contributes to the
growth in the number of components, and of options for these components. For
most users, however, the existence of many options is a problem in itself, possi-
bly leading to a combinatorial explosion in the number of option combinations.
To enhance the user-friendliness of formal tools, it is thus important to reduce
the set of options by systematically applying Occam’s razor principle13, and to
properly identify the default options, which should be the most effective ones
on the largest number of problems. The quest for simplicity must also concern
graphical user interfaces and high-level scripting languages (such as the SVL
language [15] of CADP), which abstract away many low-level details from the
users.

A third way consists in curbing the complexity of the languages used by formal
tools, e.g., the languages used to describe the system under study, to express the
properties to be verified, to specify strategies and tactics for achieving formal
proofs, etc. Most of these languages have a steep learning curve and tricky
semantic details that require time to be fully understood. We observe two long-
term trends to address this problem: (i) There are attempts to get rid of such
“abstract” languages, by replacing them with the more “concrete” languages
actually used by implementers; this is the case, for instance, of static analysis and
software model checking, which bypass high-level formal specification languages
to directly operate on lower-level, possibly ambiguous, programming languages;
(ii) Alternative approaches, still keeping formal specification languages, strive
to make them as user-friendly as possible, especially by replacing mathematical
formalism with simpler notations more acceptable by industry engineers; for
instance, in the realm of model checking, “pattern libraries”14 provide catalogs
of usual properties, thus alleviating the use of full-fledge temporal logic formulas;
similarly, the LNT language [19], which supersedes old-fashioned process calculi
such as ACP, CCS, and CSP [9], has an intuitive syntax inspired from functional-
and imperative-programming languages that makes this language significantly
easier [40] and accessible to engineers without formal methods background [6].

4.2 Collective actions

Individual actions, although desirable, cannot be sufficient, and Bernhard Stef-
fen also considers collective actions to be undertaken, at a larger level, by the
scientific community interested in formal tools, encompassing both tool devel-
opers and tool users. We hereafter review these collective actions, whose main
goal is to fight the fragmentation issue, which Bernhard Steffen calls “tool indi-
vidualism”.
13 This makes it also easier to check the correctness of formal tools.
14 See, e.g., http://patterns.projects.cs.ksu.edu, http://cadp.inria.fr/resources/

evaluator/actl.html, and http://cadp.inria.fr/resources/evaluator/rafmc.html.

13

http://patterns.projects.cs.ksu.edu
http://cadp.inria.fr/resources/evaluator/actl.html
http://cadp.inria.fr/resources/evaluator/actl.html
http://cadp.inria.fr/resources/evaluator/rafmc.html


H. Garavel and R. Mateescu Reflections on Bernhard Steffen’s Physics of Software Tools

Tool and benchmark repositories.

“What is required for a true success is to establish a corresponding open source
community which contributes to the tool and benchmark repositories — making
existing tools and benchmarks adequately available to the public — establishing
a truly global and open repository.”

These are three distinct ideas that need to be considered separately. We an-
alyze each of them in turn, taking into account the lessons to be learnt from
(at least) four initiatives targeting these stated goals, namely: the original ETI
(Electronic Tool Integration) [50, 7] launched in the 90s by Bernhard Steffen
and colleagues, the jETI [35] followup project15 launched in the mid-2000s, the
VSR (Verified Software Repository) [4, 1] project, well-specified but not fully im-
plemented16, and the CPS-VO (Cyber-Physical Systems Virtual Organization)
project17 launched in the early 2010s, the only one running and available today.

First, the wish for a global repository containing all formal tools raises
cost/benefit and feasibility questions. Today, there is no major problem in
downloading a formal tool from the Web site of its developers and installing
this tool on one’s local machine; thus, the added value of such a repository could
be: (i) to provide an exhaustive catalog of formal tools and (ii) to deliver SaaS
(Software as a Service) by enabling the remote execution of formal tools not
installed on one’s local machine. Point (i) takes significant time, as we learnt it
ourselves when building a catalog of formal tools for quantitative verification18;
moreover, catalogs need to be updated regularly, as new tools appear and old
tools disappear. Point (ii) takes time and money, since providing such a ser-
vice to everyone has a cost, not only in acquisition of hardware servers or cloud
computing resources, but also in daily maintenance, to keep track of the lat-
est versions of each tool, to ensure interoperability between ever-changing tools,
and to carefully address security issues. This is confirmed by Bernhard Steffen:
“The ETI initiative failed, for two main reasons: the manual integration effort
at the ETI site in Dortmund exceeded our expectations, [and] tool providers were
(correctly) worried that ETI would not be able to keep up with upgrades and new
versions”; therefore, the revised jETI platform adopted an alternative approach,
by remotely coordinating formal tools hosted and maintained at their developers’
sites.

Second, the requirement for open source seems to contradict the wish for a
truly global repository, since prominent commercial tools used in industry to
design real systems (e.g., development tools for synchronous languages, static
analyzers, hardware verification tools, etc.) are not open source and would be
thus excluded from the repository. Moreover, the open source requirement (even
combined with free software) does not solve the fragmentation issue: GitHub,
15 http://eti.cs.uni-dortmund.de
16 http://vsr.sourceforge.net
17 http://cps-vo.org
18 http://cadp.inria.fr/resources/zoo

14

http://eti.cs.uni-dortmund.de
http://vsr.sourceforge.net
http://cps-vo.org
http://cadp.inria.fr/resources/zoo


H. Garavel and R. Mateescu Reflections on Bernhard Steffen’s Physics of Software Tools

for instance, hosts many dead formal tool prototypes, all in open source with
free licenses. Finally, this requirement would make it harder to find a proper
business model for running the repository: users might accept being charged a
fee for remotely executing commercial tools, but may be reluctant to pay for
merely using free software. It is worth noticing that the CPS-VO repository has
a more flexible policy19 allowing various degrees of tool integration.

Third, having a global benchmark repository would be certainly helpful to the
research community, since it would provide a central point where all (or most)
formal models designed in the world could be obtained. Such benchmarks are
useful to ensure that experiments can be reproduced, to test formal tools and
evaluate their performance, and, for high-level models readable by humans, to
teach users how formal tools should be employed. At present, many collections
of such benchmarks are available, from multiple sources: (i) Almost every ma-
jor formal tool comes with a library of demo examples20, usually encoded in
the particular input format(s) required by this tool; (ii) Software competitions
tend to accumulate, year after year, many models for benchmarking purpose21;
(iii) There also exist independent collections of benchmarks, such as the VLTS
(Very Large Transition Systems)22 collection developed by CWI and INRIA;
(iv) Many articles in scientific conferences and journals report about industrial
case studies tackled using formal tools, but it is very rare to find the complete
models mentioned in these publications, excepted in dedicated venues, such as
the MARS (Modelling and Analysis of Real Systems) workshops that manages
a public repository of formal models23 in parallel to its workshop proceedings.
Because these collections of benchmarks are heterogeneous and distributed at
many places, it would be indeed desirable to access them from a central point;
this would also provide an incentive for exchanging all the benchmarks that, at
the moment, are not shared, such as the test cases written for a specific tool and
the test cases captured by formal tools running as Web applications.

Let us finally suggest that a global benchmark repository could also record,
whenever possible, economical information (such as time spent, cost, manpower,
return on investment, etc.) about case studies done using formal tools.

Artifact evaluations.

“Recent requirements to make tools available (open source) and the newly es-
tablished trend to establish artifact evaluations [...] are welcome measures to
address th[e tool individualism] threat. They naturally impose a certain level of
usability and maturity, as reviewers (and other users) start to repeat the exper-
iments and to play with variations of the considered scenarios. In the longer
19 http://cps-vo.org/group/tools
20 See for instance http://cadp.inria.fr/demos in the case of the CADP toolbox.
21 See http://mcc.lip6.fr/models.php in the case of the Model Checking Contest.
22 http://cadp.inria.fr/resources/vlts
23 http://www.mars-workshop.org/repository.html

15

http://cps-vo.org/group/tools
http://cadp.inria.fr/demos
http://mcc.lip6.fr/models.php
http://cadp.inria.fr/resources/vlts
http://www.mars-workshop.org/repository.html


H. Garavel and R. Mateescu Reflections on Bernhard Steffen’s Physics of Software Tools

term this should lead to a maturity level.”

An increasing number of software conferences have indeed set up artifact evalua-
tion committees to evaluate software tools and deliver verified artifact certificates
[30]. Such initiatives increase the reproducibility of experimental results. How-
ever, we disagree with Bernhard Steffen on two points: (i) Artifact evaluations
do not fight tool individualism, they fight improper claims about the capabilities
of software tools, i.e., cheating and overselling; (ii) Open source and artifact eval-
uations are two different notions; open source is not always required for artifact
evaluations24.

Tool competitions.

“Experimental investigations, today [are] often supported by diverse and frequent
tool challenges. — Even tool competitions and challenges, certainly events in-
tended to support knowledge exchange and establishing global tool knowledge,
nevertheless reinforce [tool individualism]. Of course, the more direct compari-
son of different tools that they impose supports tool development as a whole, but
winners are typically associated with individual tools, most frequently operated
by their developers.”

Software competitions, together with studies that systematically evaluate various
formal tools on the same set of problems (e.g., [41, 40] for a comparison of
model checkers or [21] for a performance assessment of term rewrite engines)
primarily aim at benchmarking the capability and performance of formal tools.
Software competitions and such comparative studies also have three additional
merits: (i) They increase tool interoperability, either with the design of common
formats or interfaces that each tool has to support, or with the development of
translators between the various input languages accepted by the tools; (ii) They
are nowadays the main setting in which large collections of diverse, complex
benchmarks are being produced; (iii) They reveal bugs in formal tools and impose
the correction of these bugs25. We therefore believe that the credits given to
competition winners and the potential reinforcement of tool individualism are a
low price to pay for the high benefits of software competitions.

Collaborative projects.

“The situation became even more diverse, despite all the efforts aiming at ex-
change like various tool competitions and overarching projects.”

Collaborative projects, such as those supervised by national or European re-
search funding agencies, allocate resources to scientists and encourage their co-
24 http://www.artifact-eval.org/guidelines.html
25 For instance, the average confidence rate of all tools participating in the Model Checking

Contest increases every year: 89.65% in 2015, 94.20% in 2016, and 97.34% in 2017 [29,
Sect. 4.2].

16

http://www.artifact-eval.org/guidelines.html


H. Garavel and R. Mateescu Reflections on Bernhard Steffen’s Physics of Software Tools

operation with industry. So far, collaborative projects failed to prevent the frag-
mentation issue for formal tools, even though, from time to time, some projects
enabled the development of interconnections between different tools.

Most collaborative projects have two characteristics: they fund short-term activ-
ities (usually, 3–5 years) and they ask for groundbreaking research results. This
does not fit well with the situation of formal tools, which require longer-term
efforts for significant progress. Indeed, the mainstream formal tools available
today have taken decades to produce, and their efficiency does not only lie in
major scientific breakthroughs, but also in hundreds or thousands of minor en-
hancements, the accumulation of which really makes a difference. Also, global
repositories, such as the aforementioned ETI/jETI and CPS-VO, are long-term
platforms that are out of scope for most project calls.

All in one, the outcome of collaborative projects is often limited. In general,
these projects help to undertake the development of new formal tools but fail to
consolidate them on the long run, unless perhaps for those tools whose technical
leaders show outstanding communication skills.

Relaunching the ETI/jETI exchange platform.

“This is an ideal situation to re-launch the ETI initiative. — With today’s
Internet infrastructure and technology, which fosters truly service-oriented ap-
proaches, [ETI’s] ambitions are now more than realistic, yet still require a con-
certed community effort to align and integrate the employed technologies as well
as their means of communication and exchange in order to leverage the individ-
ual strengths. The ETI initiative could be an exciting corresponding challenge
and opportunity for the tool community to support synergies, help to pinpoint
tool/technology profiles, and ease the exchange of knowledge and benchmarks in
a tangible way. — In a first step, the new ETI could be built just by making ex-
isting tools and benchmarks adequately available to the public and exploiting the
ETI’s mediator technology to support cross tool combination. In a further step,
ETI itself could turn into a domain-specific open source IDE for tool develop-
ment which directly supports the development of tool functionalities in a fashion
suitable to be openly exchanged, thus tearing down the boundaries between the
individual tools and establishing a truly global and open repository.”

When ETI was launched in 1997, it was a novel, exciting concept and CADP,
thanks to its modular architecture and well-defined interfaces, was one of the
very first tools to be integrated in ETI [50, 8, 34, 36].

Today, the situation is different. There have been already two attempts at
implementing the ETI idea; yet, as Bernhard Steffen points out: “the ETI idea
has still not turned into reality”. Could a third attempt succeed better than the
two former ones? We have no definite answer, but we can mention several risk
factors to be considered.

Twenty years after its inception, a new ETI would now face fierce competitors

17



H. Garavel and R. Mateescu Reflections on Bernhard Steffen’s Physics of Software Tools

for most of its features, e.g., CPS-VO, which is a close approximation of what
a reloaded ETI could be, GitHub, which offers a worldwide repository of open
source software, Figshare26, which hosts benchmarks and research outputs of
many academic institutions, Eclipse27, which is the reference platform for open
source IDEs, etc. We already evoked the difficulties to get funding for academic
collaborative platforms running over a long period of time, and the eventuality
that such funding might be even harder to obtain in a strict open-source context.

The relevance of Web technologies for interconnecting formal tools can also
be questioned. From our experience in model checking, we know how much
performance matters when dealing with huge state spaces and repeating ba-
sic operations over billions of states and transitions. To this aim, we designed
specific cross-tool technologies, such as the BCG file format, in which every
bit is optimized, and the OPEN/CÆSAR framework [13], in which all memory
allocations are carefully controlled. In comparison, for the same tasks, Web
protocols and services, although they support secure communications between
remote machines owned by different users, would be considerably slower and
resource-consuming.

Division of labour.

“We envision tool developers that, rather than spending significant time to inte-
grate their ideas into their own complex tool infrastructure, concentrate on their
specific expertise and directly contribute to the repository for open exchange and
experimentation. This would allow a clear division of labour, where the de-
velopers of tool functionality profit from the providers of benchmarks and the
maintainers of the ETI infrastructure for open exchange, and vice versa.”

From an economical perspective, the division of work proposed by Bernhard
Steffen sounds rational, as it suggests that each actor will focus on the reduced
number of tasks for which he is the most competent and productive.

Yet, a relaunched ETI would require tool developers to abandon some of the
technologies they designed and/or are familiar with (e.g., user interfaces, file
formats, etc.), and to adapt their formal tools, so as to use instead other tech-
nologies selected and prescribed by the maintainers of the ETI infrastructure.
This is a difficult point, as history shows that generic cross-tool technologies
(such as CASE tools, software buses, coordination languages, etc.) are not eas-
ily accepted by tool developers unless they see tangible benefits in doing so.

First, this raises the question of what would be the concrete incentives for de-
velopers to forget about tool individualism and to adhere to the discipline of the
new ETI platform. The traditional incentive, i.e., financial rewards for producing
quality software components (e.g., software-as-a-service in cloud computing or
application stores for smartphones) is ruled out by the stated open-source policy.

26 http://figshare.com
27 http://www.eclipse.org

18

http://figshare.com
http://www.eclipse.org


H. Garavel and R. Mateescu Reflections on Bernhard Steffen’s Physics of Software Tools

An alternative incentive relies in the scientists’ sense of collective purpose, but
it is unsure whether calls to rationality and goodwill are enough to convince the
best developers to renounce their design freedom. Another incentive mentioned
by Bernhard Steffen is that developers would get access to numerous benchmarks
through ETI, but this would only work if benchmark providers make the effort
of depositing their data in ETI, and would work better if such benchmarks are
exclusively available via ETI.

Second, because the new ETI intends to become a truly global, centralized plat-
form and substitute itself to existing parts (e.g., user interfaces) of many formal
tools, one cannot exclude the eventuality of ETI becoming a single point of fail-
ure. In order to integrate very diverse formal tools, the architects of the new
ETI should either design common formats and interfaces, or make open calls
for such technologies and select the best candidates; these are difficult decisions,
with a strong impact on the complexity and performance of the entire platform
and its attractiveness for tool developers. Moreover, such decisions are likely
to trigger lengthy discussions, or even conflicts, about technical choices; this
can only be solved by adopting proper rules and arbitration procedures, at the
risk of turning the project into a bureaucratic entity generating frustration and
disinterest for some tool developers. Thus, the success of the ETI platform will
also crucially depend on the skills of its administrators.

Finally, we would like to advocate for tool individualism, which is sharply, per-
haps excessively, criticized by Bernhard Steffen. Quite often, tool individualism
leads to a dispersion of efforts, but it can also have a positive role: some major
tool sets (e.g., CADP, LTSmin [28], PRISM [31], UPPAAL [2], etc.) make real
efforts to combine multiple scientific advances into a coherent framework. Even
if these tool sets do not fully implement the ETI concept of central repository,
they are nevertheless partial, yet valuable integration and exchange platforms.

5 Conclusion

The needs for safe and secure computer systems are still far from being satis-
fied, and made even more elusive by the recent trends towards intelligent and
autonomous systems. Formal methods can address parts of the problem, but the
current situation of software tools implementing formal methods is all but opti-
mal, with a fragmented landscape that prevents one from inferring fundamental
knowledge from experimental results.

While many scientists focus their research on particular technical problems,
Bernhard Steffen is one of the rare voices calling for a global awareness. In
a recent, dense paper [49], he accurately analyzes the status of formal tools and
proposes remedy actions. Because we believe that his vision deserves considera-
tion, the present article highlighted the key ideas of [49] and discussed them in
detail, based on our experience in formal verification and model checking. The
topic is far from being exhausted, and we expect that other developers of for-

19



H. Garavel and R. Mateescu Reflections on Bernhard Steffen’s Physics of Software Tools

mal tools will participate in the debate, bringing complementary opinions and
expertise.

So far, research in formal methods has produced a wealth of approaches, method-
ologies, and algorithms. It might be that most low-hanging fruits have been
picked, and that the scientific agenda for the next decades could be different,
with the emphasis not so much on further discovering new results than revisiting
the foundations to blend all existing results into coherent theories and tools.

Acknowledgements

We are grateful to Lian Apostol and Wendelin Serwe, who proofread this manuscript,

and to the anonymous reviewers for their helpful comments and suggestions.

References

[1] Alvaro E. Arenas, Juan Bicarregui, and Tiziana Margaria. The FMICS
View on the Verified Software Repository. Journal of Integrated Design
and Process Science (IDPT), 10(4):47–54, 2006.

[2] Gerd Behrmann, Alexandre David, Kim Guldstrand Larsen, Paul Petters-
son, and Wang Yi. Developing UPPAAL over 15 Years. Software Practice
and Experience, 41(2):133–142, 2011.

[3] Jan A. Bergstra, Alban Ponse, and Scott A. Smolka, editors. Handbook of
Process Algebra. Elsevier, 2001.

[4] Juan Bicarregui, C. A. R. Hoare, and J. C. P. Woodcock. The Verified Soft-
ware Repository: A Step Towards the Verifying compiler. Formal Aspects
of Computing, 18(2):143–151, 2006.

[5] Timothy Bourke, Lélio Brun, Pierre-Evariste Dagand, Xavier Leroy, Marc
Pouzet, and Lionel Rieg. A Formally Verified Compiler for Lustre. In Albert
Cohen and Martin T. Vechev, editors, Proceedings of the 38th ACM SIG-
PLAN Conference on Programming Language Design and Implementation
(PLDI’17), Barcelona, Spain, pages 586–601. ACM, June 2017.

[6] Aymane Bouzafour, Marc Renaudin, Hubert Garavel, Radu Mateescu, and
Wendelin Serwe. Model-checking Synthesizable SystemVerilog Descriptions
of Asynchronous Circuits. In Milos Krstic and Ian W. Jones, editors, Pro-
ceedings of the 24th IEEE International Symposium on Asynchronous Cir-
cuits and Systems (ASYNC’18), Vienna, Austria, pages 34–42. IEEE, May
2018.

[7] Volker Braun, Jürgen Kreileder, Tiziana Margaria, and Bernhard Steffen.
The ETI Online Service in Action. In Rance Cleaveland, editor, Proceed-

20



H. Garavel and R. Mateescu Reflections on Bernhard Steffen’s Physics of Software Tools

ings of the 5th International Conference on Tools and Algorithms for Con-
struction and Analysis of Systems (TACAS’99), Amsterdam, The Nether-
lands, volume 1579 of Lecture Notes in Computer Science, pages 439–443.
Springer, 1999.

[8] Volker Braun, Tiziana Margaria, and Carsten Weise. Integrating Tools in
the ETI Platform. Springer International Journal on Software Tools for
Technology Transfer (STTT), 1–2(1):31–48, December 1997.

[9] Rance Cleaveland, A. W. Roscoe, and Scott A. Smolka. Process Algebra
and Model Checking. In Edmund M. Clarke, Thomas A. Henzinger, Helmut
Veith, and Roderick Bloem, editors, Handbook of Model Checking, pages
1149–1195. Springer, 2018.

[10] Hugues Evrard and Frédéric Lang. Automatic Distributed Code Generation
from Formal Models of Asynchronous Processes Interacting by Multiway
Rendezvous. Journal of Logical and Algebraic Methods in Programming,
88:121–153, 2017.

[11] Kate Finney. Mathematical Notation in Formal Specification: Too Difficult
for the Masses? IEEE Transactions on Software Engineering, 22(2):158–
159, 1996.

[12] Hubert Garavel. Compilation of LOTOS Abstract Data Types. In Son T.
Vuong, editor, Proceedings of the 2nd International Conference on Formal
Description Techniques FORTE’89 (Vancouver B.C., Canada), pages 147–
162. North-Holland, December 1989.

[13] Hubert Garavel. OPEN/CÆSAR: An Open Software Architecture for Ver-
ification, Simulation, and Testing. In Bernhard Steffen, editor, Proceedings
of the 4th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS’98), Lisbon, Portugal, volume
1384 of Lecture Notes in Computer Science, pages 68–84. Springer, March
1998. Full version available as INRIA Research Report RR-3352.

[14] Hubert Garavel and Susanne Graf. Formal Methods for Safe and Secure
Computers Systems. BSI Study 875, Bundesamt für Sicherheit in der In-
formationstechnik, Bonn, Germany, December 2013.

[15] Hubert Garavel and Frédéric Lang. SVL: a Scripting Language for Composi-
tional Verification. In Myungchul Kim, Byoungmoon Chin, Sungwon Kang,
and Danhyung Lee, editors, Proceedings of the 21st IFIP WG 6.1 Inter-
national Conference on Formal Techniques for Networked and Distributed
Systems (FORTE’01), Cheju Island, Korea, pages 377–392. Kluwer Aca-
demic Publishers, August 2001. Full version available as INRIA Research
Report RR-4223.

[16] Hubert Garavel, Frédéric Lang, and Radu Mateescu. Compiler Construc-
tion using LOTOS NT. In R. Nigel Horspool, editor, Proceedings of the

21



H. Garavel and R. Mateescu Reflections on Bernhard Steffen’s Physics of Software Tools

11th International Conference on Compiler Construction (CC’02), Greno-
ble, France, volume 2304 of Lecture Notes in Computer Science, pages 9–13.
Springer, April 2002.

[17] Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe.
CADP 2011: A Toolbox for the Construction and Analysis of Distributed
Processes. Springer International Journal on Software Tools for Technology
Transfer (STTT), 15(2):89–107, April 2013.

[18] Hubert Garavel, Frédéric Lang, and Laurent Mounier. Compositional Ver-
ification in Action. In Falk Howar and Jiri Barnat, editors, Proceedings of
the 23rd International Conference on Formal Methods for Industrial Criti-
cal Systems (FMICS’18), Maynooth, Ireland – Essays Dedicated to Susanne
Graf at the Occasion of Her 60th Birthday, volume 11119 of Lecture Notes
in Computer Science, pages 189–210. Springer, September 2018.

[19] Hubert Garavel, Frédéric Lang, and Wendelin Serwe. From LOTOS to
LNT. In Joost-Pieter Katoen, Rom Langerak, and Arend Rensink, editors,
ModelEd, TestEd, TrustEd – Essays Dedicated to Ed Brinksma on the Oc-
casion of His 60th Birthday, volume 10500 of Lecture Notes in Computer
Science, pages 3–26. Springer, October 2017.

[20] Hubert Garavel and Wendelin Serwe. The Unheralded Value of the Mul-
tiway Rendezvous: Illustration with the Production Cell Benchmark. In
Holger Hermanns and Peter Höfner, editors, Proceedings of the 2nd Work-
shop on Models for Formal Analysis of Real Systems (MARS’17), Uppsala,
Sweden, volume 244 of Electronic Proceedings in Theoretical Computer Sci-
ence, pages 230–270, April 2017.

[21] Hubert Garavel, Mohammad-Ali Tabikh, and Imad-Seddik Arrada. Bench-
marking Implementations of Term Rewriting and Pattern Matching in Al-
gebraic, Functional, and Object-Oriented Languages – The 4th Rewrite
Engines Competition. In Vlad Rusu, editor, Proceedings of the 12th Inter-
national Workshop on Rewriting Logic and its Applications (WRLA’18),
Thessaloniki, Greece, volume 11152 of Lecture Notes in Computer Science,
pages 1–25. Springer, April 2018.

[22] Jan Friso Groote and Tim A. C. Willemse. Parameterised Boolean Equation
Systems. Theoretical Computer Science, 343:332–369, 2005.

[23] Arnd Hartmanns and Holger Hermanns. In the Quantitative Automata
Zoo. Science of Computer Programming, 112:3–23, 2015.

[24] Malte Isberner, Falk Howar, and Bernhard Steffen. The Open-Source Learn-
Lib – A Framework for Active Automata Learning. In Daniel Kroening and
Corina S. Pasareanu, editors, Proceedings (Part I) of the 27th International
Conference on Computer Aided Verification (CAV’15), San Francisco, CA,
USA, volume 9206 of Lecture Notes in Computer Science, pages 487–495.
Springer, July 2015.

22



H. Garavel and R. Mateescu Reflections on Bernhard Steffen’s Physics of Software Tools

[25] ISO/IEC. LOTOS – A Formal Description Technique Based on the Tem-
poral Ordering of Observational Behaviour. International Standard 8807,
International Organization for Standardization – Information Processing
Systems – Open Systems Interconnection, Geneva, September 1989.

[26] Daniel Jackson and Jeannette Wing. Lightweight Formal Methods. IEEE
Computer, pages 21–22, April 1996.

[27] Jacques-Henri Jourdan, Vincent Laporte, Sandrine Blazy, Xavier Leroy,
and David Pichardie. A Formally-Verified C Static Analyzer. In Sriram K.
Rajamani and David Walker, editors, Proceedings of the 42nd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’15), Mumbai, India, pages 247–259. ACM, January 2015.

[28] Gijs Kant, Alfons Laarman, Jeroen Meijer, Jaco van de Pol, Stefan Blom,
and Tom van Dijk. LTSmin: High-Performance Language-Independent
Model Checking. In Christel Baier and Cesare Tinelli, editors, Proceed-
ings of the 21st International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’15), London, UK, volume
9035 of Lecture Notes in Computer Science, pages 692–707. Springer, April
2015.

[29] Fabrice Kordon, Hubert Garavel, Lom Messan Hillah, Emmanuel Paviot-
Adet, Löıg Jezequel, Francis Hulin-Hubard, Elvio Amparore, Marco Bec-
cuti, Bernard Berthomieu, Hugues Evrard, Peter G. Jensen, Didier Le Bot-
lan, Torsten Liebke, Jeroen Meijer, Jǐŕı Srba, Yann Thierry-Mieg, Jaco
van de Pol, and Karsten Wolf. MCC’2017 – The Seventh Model Checking
Contest. Transactions on Petri Nets and Other Models of Concurrency,
XIII:181–209, 2018.

[30] Shriram Krishnamurthi. Artifact Evaluation for Software Conferences. SIG-
PLAN Notices, 48(4S):17–21, April 2013.

[31] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0:
Verification of Probabilistic Real-Time Systems. In Ganesh Gopalakrishnan
and Shaz Qadeer, editors, Proceedings of the 23rd International Conference
on Computer Aided Verification (CAV’11), Snowbird, UT, USA, volume
6806 of Lecture Notes in Computer Science, pages 585–591. Springer, July
2011.

[32] Donald W. Loveland. Automated Theorem Proving: A Quarter Century
Review. In W. W. Bledsoe and D. W. Loveland, editors, Automated The-
orem Proving – After 25 Years, volume 29 of Contemporary Mathematics,
pages 1–45. American Mathematical Society, 1984.

[33] Angelika Mader. Verification of Modal Properties Using Boolean Equation
Systems. VERSAL 8, Bertz Verlag, Berlin, 1997.

23



H. Garavel and R. Mateescu Reflections on Bernhard Steffen’s Physics of Software Tools

[34] Tiziana Margaria, Volker Braun, and Jürgen Kreileder. Interacting with
ETI: a User Session. Springer International Journal on Software Tools for
Technology Transfer (STTT), 1–2(1):49–63, December 1997.

[35] Tiziana Margaria, Ralf Nagel, and Bernhard Steffen. jETI: A Tool for
Remote Tool Integration. In Nicolas Halbwachs and Lenore D. Zuck, ed-
itors, Proceedings of the 11th International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems (TACAS’05), Ed-
inburgh, UK, volume 3440 of Lecture Notes in Computer Science, pages
557–562. Springer, April 2005.

[36] Tiziana Margaria and Bernhard Steffen. LTL Guided Planning: Revis-
iting Automatic Tool Composition in ETI. In Proceedings of the 31st
IEEE/NASA Software Engineering Workshop (SEW’07), Columbia, USA,
pages 214–226. IEEE Computer Society Press, March 2007.

[37] Lina Marsso, Radu Mateescu, and Wendelin Serwe. TESTOR: A Modular
Tool for On-the-Fly Conformance Test Case Generation. In Dirk Beyer
and Marieke Huisman, editors, Proceedings of the 24th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS’18), Thessaloniki, Greece, volume 10806 of Lecture Notes in
Computer Science, pages 211–228. Springer, April 2018.

[38] Radu Mateescu. Local Model-Checking of an Alternation-Free Value-Based
Modal Mu-Calculus. In Annalisa Bossi, Agostino Cortesi, and Francesca
Levi, editors, Proceedings of the 2nd International Workshop on Verifica-
tion, Model Checking and Abstract Interpretation (VMCAI’98), Pisa, Italy.
University Ca’ Foscari of Venice, September 1998.

[39] Radu Mateescu and Hubert Garavel. XTL: A Meta-Language and Tool for
Temporal Logic Model-Checking. In Tiziana Margaria, editor, Proceedings
of the International Workshop on Software Tools for Technology Transfer
(STTT’98), Aalborg, Denmark, pages 33–42. BRICS, July 1998.

[40] Franco Mazzanti and Alessio Ferrari. Ten Diverse Formal Models for a
CBTC Automatic Train Supervision System. In John P. Gallagher, Rob van
Glabbeek, and Wendelin Serwe, editors, Proceedings of the 3rd Workshop
on Models for Formal Analysis of Real Systems and the 6th International
Workshop on Verification and Program Transformation (MARS/VPT’18),
Thessaloniki, Greece, volume 268 of Electronic Proceedings in Theoretical
Computer Science, pages 104–149, April 2018.

[41] Franco Mazzanti, Alessio Ferrari, and Giorgio Oronzo Spagnolo. Towards
Formal Methods Diversity in Railways: An Experience Report with Seven
Frameworks. Springer International Journal on Software Tools for Tech-
nology Transfer (STTT), 20(3):263–288, 2018.

[42] Maik Merten, Bernhard Steffen, Falk Howar, and Tiziana Margaria. Next
Generation LearnLib. In Parosh Aziz Abdulla and K. Rustan M. Leino,

24



H. Garavel and R. Mateescu Reflections on Bernhard Steffen’s Physics of Software Tools

editors, Proceedings of the 17th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’11),
Saarbrücken, Germany, volume 6605 of Lecture Notes in Computer Sci-
ence, pages 220–223. Springer, March 2011.

[43] Stefan Naujokat, Michael Lybecait, Dawid Kopetzki, and Bernhard Stef-
fen. CINCO: A Simplicity-driven Approach to Full Generation of Domain-
specific Graphical Modeling Tools. Springer International Journal on Soft-
ware Tools for Technology Transfer (STTT), 20(3):327–354, 2018.

[44] Harald Raffelt, Bernhard Steffen, Therese Berg, and Tiziana Margaria.
LearnLib: A Framework for Extrapolating Behavioral Models. Springer
International Journal on Software Tools for Technology Transfer (STTT),
11(5):393–407, 2009.

[45] Wenjie Ruan, Xiaowei Huang, and Marta Kwiatkowska. Reachability Anal-
ysis of Deep Neural Networks with Provable Guarantees. In Proceedings
of the 27th International Joint Conference on Artificial Intelligence (IJ-
CAI’18), Stockholm, Sweden, pages 2651–2659, July 2018.

[46] Harry Rudin, Colin H. West, and Pitro Zafiropulo. Automated Protocol
Validation: One Chain of Development. Computer Networks, 2:373–380,
1978.

[47] John Rushby. Disappearing Formal Methods. In Proceedings of the 5th
IEEE International Symposium on High-Assurance Systems Engineering
(HASE’00), Albuquerque, NM, USA, pages 95–96. IEEE Computer Soci-
ety, November 2000.

[48] Joseph Sifakis. System Design in the Era of IoT – Meeting the Autonomy
Challenge. In Simon Bliudze and Saddek Bensalem, editors, Proceedings
of the 1st International Workshop on Methods and Tools for Rigorous Sys-
tem Design (MeTRiD’18), Thessaloniki, Greece, volume 272 of Electronic
Proceedings in Theoretical Computer Science, pages 1–22, April 2018.

[49] Bernhard Steffen. The Physics of Software Tools: SWOT Analysis and
Vision. Springer International Journal on Software Tools for Technology
Transfer (STTT), 19(1):1–7, 2017.

[50] Bernhard Steffen, Tiziana Margaria, and Volker Braun. The Electronic Tool
Integration Platform: Concepts and Design. Springer International Journal
on Software Tools for Technology Transfer (STTT), 1–2(1):9–30, December
1997.

[51] Muck van Weerdenburg. An Account of Implementing Applicative Term
Rewriting. Electronic Notes in Theoretical Computer Science, 174(10):139–
155, 2007.

[52] Colin H. West. General Technique for Communications Protocol Validation.
IBM Journal of Research and Development, 22(4):393–404, July 1978.

25


	Introduction
	Current status and difficulties
	Analysis of human factors
	Actions and remedies
	Individual actions
	Collective actions

	Conclusion

