
HAL Id: hal-02394619
https://hal.inria.fr/hal-02394619

Submitted on 4 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Discontinued Privacy: Personal Data Leaks in Apple
Bluetooth-Low-Energy Continuity Protocols

Guillaume Celosia, Mathieu Cunche

To cite this version:
Guillaume Celosia, Mathieu Cunche. Discontinued Privacy: Personal Data Leaks in Apple Bluetooth-
Low-Energy Continuity Protocols. Proceedings on Privacy Enhancing Technologies, De Gruyter Open,
2020, 2020, pp.26 - 46. �10.2478/popets-2020-0003�. �hal-02394619�

https://hal.inria.fr/hal-02394619
https://hal.archives-ouvertes.fr

Proceedings on Privacy Enhancing Technologies ; 2020 (1):26–46

Guillaume Celosia* and Mathieu Cunche

Discontinued Privacy: Personal Data Leaks in
Apple Bluetooth-Low-Energy Continuity
Protocols
Abstract: Apple Continuity protocols are the under-
lying network component of Apple Continuity services
which allow seamless nearby applications such as activ-
ity and file transfer, device pairing and sharing a net-
work connection. Those protocols rely on Bluetooth Low
Energy (BLE) to exchange information between devices:
Apple Continuity messages are embedded in the pay-
load of BLE advertisement packets that are periodically
broadcasted by devices. Recently, Martin et al. identi-
fied [1] a number of privacy issues associated with Apple
Continuity protocols; we show that this was just the tip
of the iceberg and that Apple Continuity protocols leak
a wide range of personal information.
In this work, we present a thorough reverse engineering
of Apple Continuity protocols that we use to uncover a
collection of privacy leaks. We introduce new artifacts,
including identifiers, counters and battery levels, that
can be used for passive tracking, and describe a novel
active tracking attack based on Handoff messages. Be-
yond tracking issues, we shed light on severe privacy
flaws. First, in addition to the trivial exposure of device
characteristics and status, we found that HomeKit ac-
cessories betray human activities in a smarthome. Then,
we demonstrate that AirDrop and Nearby Action pro-
tocols can be leveraged by passive observers to recover
e-mail addresses and phone numbers of users. Finally,
we exploit passive observations on the advertising traffic
to infer Siri voice commands of a user.

Keywords: Bluetooth Low Energy; Privacy; Tracking;
Activity inference; Inventory attacks; Perceptual hash-
ing; Guesswork; Protocol.

DOI 10.2478/popets-2020-0003
Received 2019-05-31; revised 2019-09-15; accepted 2019-09-16.

*Corresponding Author: Guillaume Celosia: Univ Lyon,
INSA Lyon, Inria, CITI,
F-69621 Villeurbanne, France,
E-mail: guillaume.celosia@insa-lyon.fr
Mathieu Cunche: Univ Lyon, INSA Lyon, Inria, CITI,
F-69621 Villeurbanne, France,
E-mail: mathieu.cunche@insa-lyon.fr

1 Introduction
Smart devices interacting with each other are bring-
ing new types of applications that simplify configura-
tion procedures and enhance users experience. Those
new applications include sending a file to a nearby de-
vice, transferring an activity to another device, network
connection sharing, etc. Major vendors have developed
protocols to enable those features: Google Nearby [2],
Microsoft Connected Devices Platform (CDP) [3] and
protocols used by Apple Continuity [4]. The family of
protocols developed by Apple, called Apple Continu-
ity protocols, can be found in all Apple products but
also in devices from third-party companies1. Thus, Ap-
ple Continuity protocols are embedded in more than
one billion active devices [7], including smartphones,
laptops, earphones, smartwatches and smarthome appli-
ances. Within those devices, Apple Continuity proto-
cols enable a range of services such as activity transfer,
remote printing and smarthome monitoring.

Apple Continuity protocols rely on Bluetooth Low
Energy (BLE) for the transport of information over the
air: messages of continuity protocols are carried by BLE
advertisement packets that are broadcasted and thus
made available to all nearby devices.

Wireless communications functionalities of smart
devices can represent privacy threats for users. In par-
ticular, Wi-Fi and Bluetooth/BLE signals can be used
for users tracking [8, 9] and to infer other private at-
tributes [10–12]. To remedy to the tracking issue, the
Bluetooth Core Specification version 4.0 introduced the
LE Privacy feature [13, Vol 3, Part C, sec. 10.7] that
defines the use of temporary and random link layer iden-
tifiers. Several works [14, 15] have highlighted privacy is-
sues associated with BLE showing that devices can still
be tracked despite LE Privacy provisions. Furthermore,
several serious issues have been recently discovered [1]
in Apple Continuity protocols, allowing an attacker to
track a device based on passive and active attacks.

1 Apple certified vendors [5] and HomeKit accessories manufac-
turers [6].

Discontinued Privacy: Leaks in Apple BLE Continuity Protocols 27

In this paper, we pursue on the path started by Mar-
tin et al. [1] and present a collection of new privacy is-
sues in Apple Continuity protocols. Based on a detailed
reverse engineering of Apple Continuity protocols, we
demonstrate how information exposed in cleartext in
BLE advertisement packets can be used for tracking
but also to reveal personal information and users activ-
ities. Our contributions are outlined as follows:
– We present an extensive reverse engineering of Ap-

ple Continuity protocols along with the format of
corresponding messages (Section 3);

– We identify new fields of Apple Continuity mes-
sages leverageable for passive tracking (Section 4);

– We introduce a novel active attack that can be used
to track a user and to link devices belonging to the
same iCloud account (Section 5);

– We find that several fields expose characteristics of
the device (model, OS version, color, etc.) and infor-
mation on the device status that could be leveraged
to infer the ongoing activity (Section 6);

– We show that messages broadcasted by HomeKit
accessories include a Global State Number (GSN)
that leaks the activity in a smarthome (Section 7);

– We discover that AirDrop and Nearby Action mes-
sages include hashed e-mail addresses and phone
numbers, and we demonstrate how they can be re-
covered through a guesswork attack (Section 8);

– We found that Siri messages include a perceptual
hash of voice commands and demonstrate how it
can be exploited to infer a command (Section 9);

– We provide a discussion on the impact of the dis-
covered attacks (Section 10);

– We discuss potential solutions to remedy to the
identified issues (Section 11).

2 Background

2.1 BLE protocol

BLE is a 2.4 GHz ISM band radio communication stan-
dard that has been introduced in 2010 as part of the
Bluetooth Core Specification version 4.0 [13, Vol 6].
BLE operates on 40 physical channels: 3 of those chan-
nels are dedicated to the discovery mechanism called
advertisement while the 37 remaining channels are used
for data transmissions.

The advertisement discovery mechanism allows
BLE devices to advertise their presence and character-
istics to nearby devices. It relies on the broadcasting
of advertisement packets on the 3 advertisement chan-

nels of BLE. An advertisement packet is composed of
a header and a payload. The payload contains an ad-
vertising device address and up to 31 bytes of data,
organized in Advertisement Data (AD) structures that
carry information about the device. An AD structure is
composed of a 1-byte field indicating the length of the
AD (excluding itself), followed by a 1-byte field spec-
ifying the type2 of the AD and finally, a sequence of
up to 29 bytes of data (see Fig. 1). One AD struc-
ture type, called Manufacturer Specific Data (code
0xFF), is dedicated to the transport of data for custom
applications defined by the manufacturer.

2.2 BLE privacy

While advertising, BLE devices are identified by a Blue-
tooth device address, a 48-bit identifier found within
the Advertising Address (AdvA) field of the advertising
payload. As part of the LE Privacy feature, BLE has
introduced random addresses in addition to the glob-
ally unique MAC address [16]. Thus, there are 4 types
of device addresses in BLE:
Public device address: The address uniquely allo-
cated to the device by the manufacturer in accordance
to the IEEE MAC address specifications [17, sec. 8.2].
Random Static device address: A randomly gener-
ated address that can be renewed after each power cycle
and that shall not change during the use of the device.
Random Non-resolvable device address: A ran-
domly generated address that can be renewed at any
time.
Random Resolvable device address: An address
generated using a random value and an Identity Reso-
lution Key (IRK), that can only be resolved by devices
knowing the IRK.

Furthermore, the Bluetooth Core Specification [18,
Vol 3, Part C, App. A] recommends to renew Random
Non-resolvable and Random Resolvable addresses at
most every 15 minutes.

2.3 Continuity protocols

Continuity protocols are network mechanisms used to
enable short range communications for services running
on mobile devices and connected appliances. They con-
stitute the network element of Apple Continuity ser-

2 https://www.bluetooth.com/specifications/assigned-
numbers/generic-access-profile

https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile
https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile

Discontinued Privacy: Leaks in Apple BLE Continuity Protocols 28

vices [4], and similar protocols have been developed
by major vendors: Google Nearby [2] and Microsoft
CDP [3]. Typical continuity services include activity
transfer, multimedia content streaming, file sharing, de-
vice pairing, monitoring and control of connected home
appliances to name a few.

Continuity protocols typically rely on wireless tech-
nologies such as Bluetooth/BLE and Wi-Fi to carry in-
formation between devices. As they are directly used
by applications, such protocols can be seen as part of
the Application Layer of the OSI model. However, they
sometimes include features of other layers such as the
Session and Transport Layers (sequence number and re-
connection). Because they only involve device-to-device
communications, the Network Layer is limited to a bare
minimum. Both the Data Link and Physical Layer are
handled by the underlying wireless protocol (e.g. Blue-
tooth, BLE or Wi-Fi).

3 Reverse engineering of Apple
Continuity protocols

3.1 Methodology

The analysis presented in this paper required an in-
depth understanding of Apple Continuity protocols for
which most specifications are not public. Hence, we had
to rely on additional sources of information namely BLE
traffic traces, outputs of Apple debugging tools and dis-
assembled binaries.

Although limited in details and quantity, there exist
some official documents about Apple Continuity pro-
tocols and associated services. Such documents include
the iOS security guide [19] and the HomeKit Accessory
Protocol (HAP) specifications [20].

As Apple Continuity messages are embedded in
BLE advertisement packets, capture and generation of
those packets were at the core of our study. Capture
and generation of advertisement packets were respec-
tively done using a sniffer based on the bluepy3 python
library and a bash script based on hcitool4. In both
cases, we used a CSR v4.0 Bluetooth USB dongle as
transceiver. In order to isolate signals from a device, we
placed the monitoring system next to it and we relied on

3 https://ianharvey.github.io/bluepy-doc/scanner.html
4 https://github.com/pauloborges/bluez/blob/master/tools/
hcitool.c

the Received Signal Strength Indicator (RSSI) to filter
out packets coming from other devices.

All the tests were performed in our laboratory
against Apple devices owned by the authors and their
institutions. Those tests involved a range of Apple de-
vices including iPhone smartphones, iPad tablets, Air-
Pods earphones, MacBook laptops, Apple Watch smart-
watches that were running across different versions of
Apple iOS, macOS and watchOS operating systems. We
considered products from partner companies too that
are compatible with the Apple ecosystem such as the
Eve Motion sensor and the Osram Smart+ lightbulb.

We also relied on debugging tools provided by
Apple, PacketLogger and PacketDecoder. Those tools,
available on the Apple Developer5 website, provide in-
formation on the content of received BLE frames, as
well as on steps in the corresponding protocol.

Finally, we had recourse to disassembling to gain
additional knowledge on Apple Continuity protocols.
We used the Hopper6 software to disassemble several
macOS binaries such as PacketLogger, PacketDecoder,
CoreSpeech, HomeKit Accessory Simulator and shar-
ingd. Based on the disassembled codes, we were able to
identify the precise format of continuity messages, and
the signification of some codes (device model, activity
level, action type, etc.). We were also able to analyze
the implementation of some functionalities such as the
perceptual hash of Siri voice commands (see Section 9).

3.2 General features of Apple
Continuity messages

Apple Continuity protocols use the Manufacturer
Specific Data AD structure of BLE advertisement
packets to transmit data to nearby devices. This AD
starts with 2 bytes, indicating the company identifier
of Apple (code 0x004C), followed by one or several
Apple Continuity messages accounting for up to 27
bytes. Those Apple Continuity messages follow a Type-
Length-Value (TLV) format outlined in Fig. 1 (Type and
Length are encoded on one byte each). We have iden-
tified a total of 12 different types of Apple Continu-
ity messages (see Table 3).

Note that, for a given device, the Apple Conti-
nuity messages included in BLE advertisement pack-
ets can vary over time depending on its status and

5 https://developer.apple.com/
6 https://www.hopperapp.com/

https://ianharvey.github.io/bluepy-doc/scanner.html
https://github.com/pauloborges/bluez/blob/master/tools/hcitool.c
https://github.com/pauloborges/bluez/blob/master/tools/hcitool.c
https://developer.apple.com/
https://www.hopperapp.com/

Discontinued Privacy: Leaks in Apple BLE Continuity Protocols 29

AdvA FlagsAD
(optional)

Apple Manufacturer
Specific DataAD

MSB LSB

Header

Payload

2 bytes
Type Length Data
1 byte 1 byte Length bytes

0xFF 0x004C CM0
1 byte

CM1 CMnLength
1 byte

Fig. 1. Structure of a BLE advertisement packet used to carry
data of Apple Continuity protocols. The data are stored in a
Manufacturer Specific Data AD structure (0xFF) which starts
with the company identifier of Apple (0x004C), followed by one
or several continuity messages (CM) presented as a Type-Length-
Value (TLV) format. Flags is an optional AD structure that is not
specific to Apple Continuity protocols.

activity. For instance, advertisement packets generated
by an iPhone will always include a Nearby Info message,
and will occasionally include a Handoff message when a
compatible application is running.

3.2.1 Content protection

The Apple Continuity messages are never encrypted
as a whole and their content is thus exposed in clear
as part of advertisement packets. However, Proximity
Pairing and Handoff messages include an encrypted pay-
load (through AES-128 and 256 in ECB mode). Other
elements of data are not transmitted in clear but are
hashed using SHA-256 then truncated. This is the case
of Wi-Fi SSIDs, e-mail addresses and phone numbers
found in AirDrop [19, p. 45] and some Nearby Ac-
tion messages (see Section 8). Finally, Handoff, Nearby
Action and Nearby Info messages are authenticated
through an Auth Tag that is computed using AES-256
in GCM mode [19, p. 42].

3.2.2 Use of random device address

We found that, in most cases, advertisement packets in-
cluding Apple Continuity messages are using Random
Non-resolvable or Random Resolvable addresses, and
that the Bluetooth Core Specification recommendation
on the maximum lifetime of 15 minutes is enforced.

However, we identified several exceptions: AirPrint
and AirPlay messages are using Public addresses, thus
exposing the device MAC address; AirDrop and "Hey
Siri" messages use a Random Non-resolvable device ad-
dress that never changes until the user turns off then on
the Bluetooth interface of his device.

0x03 Length Address
Type

1 byte 1 byte 1 byte LSB

MSB
Security

Type
QID or

TCP Port

IPv4 or IPv6
Address

Measured
Power

1 byte 1 byte 2 bytes

16 bytes 1 byte

Resource
Path Type

Fig. 2. Format of the AirPrint message.

0x05 Length Version Hashes
1 byte 1 byte 1 byte

LSBMSB

Hash0 Hash1 Hash2
2 bytes 2 bytes 2 bytes

Hash3
2 bytes

0x00
8 bytes

0x00 1 byte

Fig. 3. Format of the AirDrop message.

3.3 Apple Continuity protocols

In this section, we give an overview of Apple Continu-
ity messages found in BLE advertisement packets. For
each message type, we present the associated service,
the data format as well as the basics of the correspond-
ing protocol (see Table 3 for a summary of the Apple
Continuity protocol messages).
AirPrint
AirPrint is a feature included in Apple devices to dis-
cover compatible7 printers and print documents via a
wireless network. AirPrint messages are transmitted
each time the user tries to print a document through
AirPrint. Those messages (see Fig. 2) include fields de-
scribing the remote printer, including its complete IP
address (IPv4 or IPv6) and port that can be leveraged
as a first step toward a more elaborated attack [22].
AirDrop
AirDrop is a service which enables the transfer of files
between Apple devices over Wi-Fi and Bluetooth. Air-
Drop messages are transmitted each time the user at-
tempts an AirDrop transfer. Those messages (see Fig. 3)
are composed of several 2-byte long fields containing
hashed identifiers. Those hashes are the 16 most sig-
nificant bits (MSB) of the SHA-256 digests of e-mail
addresses and phone numbers configured in the user’s
iCloud account (see Section 8).
HomeKit
HomeKit is a framework for the monitoring and con-
trol of connected home appliances supporting the Home-
Kit Accessory Protocol (HAP) [20]. HomeKit messages
are constantly transmitted by powered HomeKit devices

7 This feature is built in most popular printer models, such as
the ones listed on the Apple website [21].

Discontinued Privacy: Leaks in Apple BLE Continuity Protocols 30

0x06 Adv. interval
& Length

1 byte 1 byte LSB

MSB
Status
Flags

1 byte

Device ID Category
6 bytes 2 bytes

Global State
Number

Configuration
Number

Compatible
Version

2 bytes

1 byte 1 byte

Fig. 4. Format of the HomeKit message.

0x07 Length
1 byte 1 byte LSB

MSB

0x01 Device
Model UTP
2 bytes1 byte 1 byte

Battery
Indication1

Battery
Indication2

Lid Open
Count

Device
Color

1 byte 1 byte

1 byte 1 byte

Encrypted
Payload0x00

1 byte 16 bytes

Ca
se

 C
ha

rg
ing

Ri
gh

t C
ha

rg
ing

Le
ft

Ch
ar

gin
g

b7 b6 b5 b4 b3 b2 b1 b0

Battery
Level3

b7 b6 b5 b4 b3 b2 b1 b0

Battery
Level2

Battery
Level1

Fig. 5. Format of the Proximity Pairing message.

and include fields (see Fig. 4) identifying the device and
its category, as well as a Global State Number (GSN)
that is incremented each time the device state changes.
Proximity Pairing
Proximity Pairing is a feature to facilitate the pairing of
audio devices with an iPhone or an iPad [23]. Proxim-
ity Pairing messages are constantly transmitted by ac-
tive Apple audio devices (earphones and headphones).
Those messages (see Fig. 5) include an encrypted pay-
load concatenated to fields describing the device at-
tributes (model and color), its position (in ear/case) via
the UTP field as well as its current status: battery level,
charging status and lid open counter8.
"Hey Siri"
Siri is the Apple virtual assistant that uses voice com-
mands issued by a user to answer questions and perform
actions. "Hey Siri" messages are broadcasted each time
the user submits a command via voice activation. Those
messages (see Fig. 6) include fields associated with the
expressed Siri voice command: a Perceptual Hash (see
Section 9) and indicators of Signal-to-Noise Ratio
(SNR) and Confidence. Those messages also include a
field describing the Device Class.
AirPlay
AirPlay allows wireless streaming of multimedia con-
tent between compatible devices. AirPlay messages are

8 A similar 1-byte lid close counter is suspected to be also in-
cluded and used the same way the lid open counter is used.

0x08 Length
1 byte 1 byte

Perceptual
Hash SNR Confidence Device

Class
Random

Byte
2 bytes 1 byte1 byte 2 bytes 1 byte

LSBMSB

Fig. 6. Format of the "Hey Siri" message.

0x09 Length
1 byte 1 byte

Flags Config
Seed

IPv4
Address

1 byte 4 bytes1 byte

LSBMSB

Fig. 7. Format of the AirPlay message.

transmitted each time the user tries to initiate the
streaming of a content via AirPlay. Similarly to Air-
Print, AirPlay messages (see Fig. 7) include the com-
plete IP address of the AirPlay target in cleartext that
could be leveraged by an attacker in the context of net-
work intelligence gathering [24].
Magic Switch
The Magic Switch protocol is undocumented but ap-
pears to be related to the watchOS operating system.
As observed by [1], only Watches send those messages.
Magic Switch messages are transmitted when the Watch
has lost the Bluetooth connection to its paired iPhone
and when its screen is on. Those messages (see Fig. 8)
include a 2-byte Data field that can expose the user to
tracking (see Section 4) followed by a Confidence on
Wrist field that appears to be an indicator that the
watch is worn (see Table 9 in Appendix A).
Handoff
Apple Handoff [25] allows activities to be transferred
between devices associated with the same iCloud ac-
count. Handoff messages are transmitted each time the
user interacts – i.e. opens, runs or closes – with a
Handoff-enabled application [26] (Mail, Safari, Maps,
Contact, etc.). Those messages (see Fig. 9) include
an Initialization Vector (IV), a payload encrypted
with AES-256 in ECB mode and an Auth Tag generated
with AES-256 in GCM mode [19, p. 42]. As reported
by [1], we observed that the IV is not random and is
incremented every time the payload changes.
Instant Hotspot
Instant Hotspot is a feature to share the cellular connec-
tivity of an iPhone or an iPad over Wi-Fi with nearby
devices associated with the same iCloud account. In-

0x0B Length
1 byte 1 byte

Confidence
on Wrist

1 byte

LSBMSB

Data
2 bytes

Fig. 8. Format of the Magic Switch message.

Discontinued Privacy: Leaks in Apple BLE Continuity Protocols 31

0x0C Length
1 byte 1 byte

Encrypted
Payload
10 bytes

LSBMSB

Version IV AES-GCM
Auth Tag

1 byte 2 bytes 1 byte

Fig. 9. Format of the Handoff message.

0x0D Length
1 byte 1 byte

LSBMSB

Identifier
4 bytes

Fig. 10. Format of the Tethering Target Presence message (In-
stant Hotspot).

stant Hotspot relies on two types of messages: Tethering
Target Presence and Tethering Source Presence.

Tethering Target Presence messages are transmit-
ted each time the user does a Wi-Fi scan to discover
surrounding Wi-Fi networks. In practice, a scan is per-
formed when the user opens or navigates in the Wi-
Fi and network settings menu. Those messages (see
Fig. 10) include a 4-byte Identifier field that is gener-
ated from a Destination Signaling Identifier (DSID) tied
to the iCloud account [19, p. 45]. As observed by [1], the
DSID is rotated only once every 24 hours raising track-
ing concerns (see Section 4).

Tethering Source Presence messages are transmit-
ted by devices capable of sharing a cellular connection in
response to Tethering Target Presence messages coming
from devices associated with the same iCloud account.
Those messages (see Fig. 11) include fields represent-
ing the current state of the device: Battery Level, na-
ture of cellular connection (Network Type) and cellular
Signal Strength (as reported by [1]).
Nearby
Although it is not documented, the Nearby protocol ap-
pears to be used to inform nearby devices about the
presence and state of a device. This protocol uses two
types of messages: Nearby Action and Nearby Info.

Nearby Action messages are transmitted each time
the user takes an action covered by the Nearby protocol
such as setting up a speaker, sharing a Wi-Fi password
or answering a call (see Table 11 in Appendix A for an
extended list of Nearby Action types). Those messages
include a field describing the Action Type as well as a

0x0E Length
1 byte 1 byte

LSBMSB

Version
1 byte

Flags Battery
Level

Signal
Strength

Network
Type

1 byte 2 bytes 1 byte 1 byte

Fig. 11. Format of the Tethering Source Presence message (In-
stant Hotspot).

0x0F Length
1 byte 1 byte

LSBMSB
Action
Flags

Action Type
(0x09)

Auth
Tag

Action
Parameters

1 byte

3 bytes

1 byte
Device Class &

Model
1 byte 1 byte 1 byte

Device
Color

OS
Version

Fig. 12. Format of the Nearby Action (iOS Setup) message.

0x0F Length
1 byte 1 byte

LSBMSB
Action
Flags

Action Type
(0x08)

Auth
Tag

Action
Parameters

1 byte

3 bytes

1 byte
Hash0
3 bytes

Hash1
3 bytes

Hash2
3 bytes

Hash3
3 bytes

Fig. 13. Format of the Nearby Action (Wi-Fi Password) message.

set of Action Parameters. In the cases of the iOS Setup
(see Fig. 12) and Wi-Fi Password (see Fig. 13) actions,
parameters include characteristics of the device such as
its class, model, color and OS version but also hashed
e-mail addresses and phone numbers of users configured
into their iCloud accounts (see Section 8).

Nearby Info messages are continuously transmitted
by iPhones, iPads, MacBooks and Watches regardless
of the device status (locked or active). Those messages
(see Fig. 14) include an Auth Tag as well as an Activity
Level field representing the current state of the device.

4 Passive tracking
The use of random identifiers is a countermeasure
against tracking. However, the content of frames can be
used to fingerprint a device or to link distinct addresses
of a device [8, 27]. This type of issue has been recently
demonstrated [1, 14, 15] with BLE advertisement pack-
ets which contain static identifiers and counters. In this
section, we complement previous works by presenting a
number of new artifacts contained in Apple Continu-
ity messages that can be leveraged for passive tracking.

4.1 Identifiers and counters

Public MAC address: AirPrint and AirPlay messages
are transmitted by devices using their public MAC ad-

0x10 Length
1 byte 1 byte

LSBMSB

Activity Level
1 byte

Information Auth Tag
1 byte 3 bytes

Fig. 14. Format of the Nearby Info message.

Discontinued Privacy: Leaks in Apple BLE Continuity Protocols 32

dresses. Similarly, we observed that a MacBook con-
tinuing an activity via Handoff broadcasts Nearby Info
messages with its public MAC address.
Extended lifetime of Random Resolvable ad-
dresses: When a device is in power saving mode, it
can keep the same Random Resolvable address for
a duration that exceeds the Bluetooth Core Specifica-
tion recommended maximum duration of 15 minutes.
Some Random Resolvable addresses that carry Nearby
Info messages have been observed for more than 4 days.
Stable Random Non-resolvable addresses: Adver-
tisement packets carrying AirDrop and "Hey Siri" mes-
sages use Random Non-resolvable addresses that are
not changed over time. We observed the same values for
more than 7 days.
Bad synchronization in pseudonym changes: As
reported in [1, 14], we observed that the change of the
Auth Tag in Nearby Info messages is not completely syn-
chronized with the change of the device address: for a
short duration after the address change, the old Auth
Tag is used with the new device address.
Stable identifier in AirDrop and Nearby Action
(Wi-Fi Password) messages: AirDrop and Nearby
Action (Wi-Fi Password) messages include hashed e-
mail addresses and phone numbers9 that constitute sta-
ble identifiers.
Stable identifier in Tethering Target Presence
messages: Tethering Target Presence messages carry a
4-byte long Identifier tied to the iCloud account that
is rotated only once every 24 hours and thus constitutes
a stable identifier.
Stable data in Magic Switch messages: The 2-byte
long Data field found in Magic Switch messages appears
to be stable over time. We observed that such a field
can remain unchanged during more than 30 minutes.
Non-reset IV: The IV of Handoff messages is not reset
when the random device address changes and thus can
be leveraged to link consecutive addresses.

4.2 AirPods battery levels and Lid Open
Count

Proximity Pairing messages broadcasted by AirPods ex-
pose information about battery levels and Lid Open

9 As reported by [1], the Hash3 field of Nearby Action (Wi-Fi)
Password messages contains the first 3 bytes of the SHA-256
hash of the SSID the client device is attempting to join.

Count (see Section 3.3) that could be exploited for track-
ing [28] a set of AirPods. Those messages include three
battery level indicators (one for each earphone and one
for the case) which are presented with a resolution of 10
levels. The messages also include a charging status, as
well as a Lid Open Count field that is a 1-byte counter
incremented each time the case lid is opened. Those in-
formation are only broadcasted when the AirPods are
outside the case and the battery level of the case is only
exposed when the lid is open.

Proximity Pairing messages broadcasted by a set of
AirPods have been recorded during a day: the AirPods
were used intermittently and put back in their case af-
ter each usage session. Fig. 15 presents the evolution
of the artifacts exposed by the set of AirPods during
this day. Throughout the day, the battery level of the
case decreases and the Lid Open Count increases. Bat-
tery levels of both AirPods earphones decrease while in
use and are brought back to 100% by being stored in
the case. Furthermore, it appears that the battery level
is quite identical for both earphones.

Alone, the Lid Open Count holds a potential for
tracking: it is a counter taking 16 values which can be
used to identify AirPods during a session of use (since
it is stable) and between two sessions (it is incremented
by 1). During a session, the battery levels of the ear-
phones take one of 10 values that evolves at a slower
rate than the address change. Together, the Lid Open
Count and the battery level of earphones can take a total
of 16× 10 = 160 different values.

Furthermore, the global energy of the system could
be used to fingerprint the system. By modeling the en-
ergy transfer between the case and the AirPods, it would
be possible to create a global energy fingerprint that
could be leveraged to track a set of AirPods between
usage sessions. This possibility is left for future work.

5 Active tracking/linking
Some Apple Continuity protocols are interactive and, as
such, the reception of a message may trigger a reaction
under the form of a new message emission. This mech-
anism can be used to mount active tracking attacks in
which the attacker will replay messages to force a device
to reveal its presence and identity.

In most cases, a device will only react to messages
coming from a known source: a device it has been pre-
viously paired with or a device belonging to the same

Discontinued Privacy: Leaks in Apple BLE Continuity Protocols 33

idle
in	use

4
56
7
89

10
111213
506070
8090100

07
:00

09
:50

11
:00

11
:30

12
:30

14
:00

17
:00

19
:50

22
:00

23
:30

Lid
	O

pe
n	C

nt
				

	B
at

te
ry

	lv
l	(%

)

Time

Left Right Case

Addr.
change

Fig. 15. Evolution of AirPods battery levels and Lid Open Count
from Proximity Pairing messages. Different device addresses are
represented by grey/white areas. Those data represent a day dur-
ing which AirPods are used intermittently and the case is never
charged. Battery levels and Lid Open Count remain stable during
periods longer than the lifetime of the random device addresses.

iCloud account. This feature implies that some messages
will only trigger a reaction from specific devices.

This kind of replay attack against an Apple Con-
tinuity protocol was first introduced by Martin et al.
who showed [1] that replaying Tethering Target Pres-
ence messages will trigger a reaction from a source as-
sociated with the same iCloud account. Due to the ro-
tating DSID, a Tethering Target Presence message can
only be replayed for at most 24 hours.

5.1 Replay of corrupted Handoff messages

We discovered a new replay attack based on Handoff
messages that are used to enable activity transfer be-
tween devices (see Section 3.3).

Handoff messages are far more common than In-
stant Hotspot ones and, in the Handoff protocol, source
and destination roles can be endorsed by iPhones, iPads,
MacBooks and Watches. The Handoff replay attack can
thus target a wider range of devices than the Instant
Hotspot one.

The attack relies on resynchronization mechanism
in which a device initiates a new synchronization pro-
cedure through a connection request when it receives a
corrupted Handoff message: an authentication tag in-
consistent with the payload and the IV, or an IV not
greater than the last one received. This behavior is im-
plemented in the sharingd binary and we have confirmed
it on our devices (see Table 1).

Connection request

Handoff	(0x0C)	with	IV=0xE15A

Device BDevice A

Handoff	with	IV=0xE25A

Handoff	with	IV=0x0000
Attacker

Handoff	with	IV=0xE35A

Fig. 16. Replay of Handoff messages with a bad IV. By replaying
a Handoff message including an IV less than the last one received
(0xE35A), the attacker forces Device B to initiate a new synchro-
nization procedure with Device A triggering a connection request.

This mechanism can be leveraged as follows: 1) the
attacker captures a Handoff message emitted by a De-
vice A, 2) the attacker later replays this message with
a modified IV field (for instance, by setting it to zero)
then 3) a second Device B (associated with the same
iCloud account) will respond to this message by initi-
ating a connection thus revealing its presence and its
current device address (see Fig. 16). Using this attack,
the attacker is able to detect the presence and the cur-
rent address of any Handoff-compatible device in range
associated with the same iCloud account.

In principle, our Handoff-based replay attack is sim-
ilar to the Instant Hotspot replay attack introduced
by Martin et al. in [1]. However, because our attack
relies on Handoff messages rather than Instant Host-
pot ones, it is far easier to exploit. First, Handoff mes-
sages are emitted whenever the user interacts with one
of the several compatible applications; whereas Instant
Hotspot messages are only sent when a device searches
for Wi-Fi connectivity. Second, Handoff messages affect
a much wider range of devices than Instant Hotspot
ones: the source of Instant Hotspot message is neces-
sarily an iPhone, an iPad or a MacBook; and the des-
tination can only be a device with cellular connectivity,
e.g. an iPhone or an iPad. On the other hand, Handoff
messages are emitted by all types of Apple devices (ex-
cluding AirPods) and thus can be received by all types
of devices with the exception of AirPods.

5.2 Experimental evaluation of replay
attacks

We evaluated the success of both Handoff and Instant
Hotspot [1] replay attacks on a set of Apple devices.
Each device was first linked to an iCloud account. We
then captured a message (Handoff or Instant Hotspot)

Discontinued Privacy: Leaks in Apple BLE Continuity Protocols 34

emitted by a secondary device associated to the same
iCloud account. The message was replayed in proximity
of the evaluated device and we monitored the wireless
channel for a response. Results of this evaluation are
presented in Table 1. We can observe that the Handoff-
based attack affects all devices with the exception of the
AirPods, while the Instant Hotspot attack only affects
devices capable of sharing cellular connectivity such as
iPhones and Cellular capable iPads [29].

5.3 Device linking

In addition to tracking, those replay attacks can be
leveraged to link devices associated with the same
iCloud account and thus belonging to the same user.
Indeed, both Instant Hotspot and Handoff replay at-
tacks trigger a reaction from other devices associated
with the same iCloud account. An attacker having cap-
tured messages emitted by a particular device can then
replay those messages later in order to detect and iden-
tify other devices belonging to the same user.

As each device potentially exposes different types
of information, device linking increases the amount of
information that can be gathered on an individual. Fur-
thermore, device linking could be exploited to identify
points of interest of the user by detecting devices that
were left at home or at the office.

6 Exposed device status and
characteristics

Some Apple Continuity messages include fields provid-
ing information on the status of a device (idle, screen on,
playing video, etc.) or its characteristics. The following
characteristics can be found in continuity messages:
Class and category are exposed by the Category field
of HomeKit messages (see Table 4) and the Device
Class of "Hey Siri" and Nearby Action messages (see
Table 8 and Table 12).
Model is exposed by the Device Model fields of Prox-
imity Pairing and Nearby Action messages (see Table 5
and Table 13).
Color is exposed by the Device Color field of Prox-
imity Pairing and Nearby Action messages (see Table 7
and Table 14).
OS version is exposed by the OS Version field of
Nearby Action messages (see Table 15).

Furthermore, the message type can be leveraged
to fingerprint the device. For instance, Proximity Pair-
ing are only emitted by earphones and headsets, while
Magic Switch messages are only emitted by watches.

Similarly, elements describing the state of the device
can be found in continuity messages:
Position (in ear/case) of the AirPods is exposed by the
UTP field of Proximity Pairing messages (see Table 6).
Activity of the device is exposed by the Activity
Level field of Nearby Info messages (see Table 16) and
by the types of broadcasted continuity messages (e.g.
AirPlay messages betray multimedia content streaming,
AirPrint messages are involved in printing tasks, etc.).
State changes are exposed by the Lid Open Count
field of Proximity Pairing and Global State Number
field of HomeKit messages.
Cellular connectivity is exposed by the Network
Type (see Table 10) and Signal Strength fields of Teth-
ering Source Presence (Instant Hotspot) messages.
Battery status is exposed by the Battery Indication
fields of Proximity Pairing messages and the Battery
Level field of Tethering Source Presence (Instant
Hotspot) messages.

6.1 Applications

Inventory attacks: The information provided on the
nature of the device can be used in inventory attacks [30]
where the attacker leverages the list of owned devices to
infer information on a subject such as wealth or medical
condition. To the best of our knowledge, Apple Con-
tinuity protocols are not yet included in medical de-
vices. However, the ownership of Apple devices has been
shown [31] to be a reliable indicator of wealth.
Visual identification: Physical characteristics of the
device such as color, model and class can be used for vi-
sual identification. It could serve to establish a link [32]
between a visual identity (a person holding a device)
and its radio identity (the device address found in BLE
advertisement packets).
Event correlation: By exposing status changes in real-
time, it is possible to correlate the identity of a device
with some triggered events: sending a message to an e-
mail address will trigger a state change associated with
a device address.
Activity monitoring: Exposure of a detailed descrip-
tion of device status has the potential for exposing in
real-time the activity of a user on its device but also

Discontinued Privacy: Leaks in Apple BLE Continuity Protocols 35

Table 1. Experimental evaluation of replay attacks based on Handoff and Instant Hotspot messages against different Apple devices.

Apple device Model OS version Vulnerable to...
...corrupted Handoff messages ...Instant Hotspot messages

AirPods (2nd generation) A1602, A2031/2 1A691
iPad (5th generation)* A1822 iOS 12.3.1 3

iPad Mini 3* A1599 iOS 11.4 3

iPhone 6 A1586 iOS 11.4.1 3 3

iPhone 8 A1905 iOS 12.4 3 3

MacBook Air (13", 2014) A1466 macOS 10.12.3 3

MacBook Pro (13", 2015) A1502 macOS 10.13.6 3

Watch Series 2 A1757 watchOS 5.0.1 3

Watch Series 3 A1858 watchOS 5.1.3 3

* Only supports Wi-Fi (i.e. not Cellular capable).

in its smart environment (see Section 7). This informa-
tion could be leveraged to learn the habits of users or
to implement activity-based advertising systems [33].

7 Leaking smarthome activity
HomeKit messages emitted by appliances contain infor-
mation that can be leveraged to infer the activity in
a smarthome. Those messages include a Global State
Number (GSN) that is used to keep track of device state
changes [20, sec. 7.4.6.3] and that is incremented each
time the state is modified.

For a number of smarthome devices, a state change
is the consequence of a user command or a reaction to an
environment modification induced by the user. There-
fore, the change of state in smarthome appliances can be
an indicator of the presence and activity of a user [34].

We illustrate this inference of activity through an
experiment conducted in our lab. We considered two
HomeKit accessories that transmit HomeKit messages
over BLE: a motion sensor (Eve Motion) and a lightbulb
(Osram Smart+). The devices were installed in the of-
fice of one of the authors and the HomeKit messages
transmitted over BLE were recorded by a sniffing de-
vice. The GSN was extracted from the captured BLE
frames and translated into a temporal sequence of state
changes for each device. The corresponding traces are
shown in Fig. 17, in parallel with the time of presence
and activity of the occupant.

It is possible to leverage the GSN to get insight on
the activity in the office. First, any movement in the field
of the motion sensor will induce a change of GSN, thus
revealing activity and presence in the room. Similarly,
turning on or off the lightbulb will be reflected by a

06
:40

09
:55

11
:00

12
:20

14
:00

15
:15

16
:50

18
:05

09
:55

11
:30

13
:30

14
:50

16
:30

18
:15

jan
ito

r	c
lea

nin
g	t

he
	of

fic
e

arr
ive

	at
	th

e	o
ffic

e

rea
din

g	g
rou

p	t
im

e

lun
ch

	br
ea

k
co

me
	ba

ck	
fro

m	
lun

ch

co
ffe

e	b
rea

k
lea

ve
	th

e	o
ffic

e

co
-w

ork
er	

lea
vin

g	t
he

	of
fic

e

arr
ive

	at
	th

e	o
ffic

e

lun
ch

	br
ea

k
co

me
	ba

ck	
fro

m	
lun

ch

dis
cu

ssi
on

s	w
/	s

up
erv

iso
r

co
ffe

e	b
rea

k
lea

ve
	th

e	o
ffic

e

Day	1	(17/04/2019)												...												Day	2	(18/04/2019)

Motion	sensor Lightbulb

At	the
office

Away

Fig. 17. Representation of the GSN changes extracted from
HomeKit messages during two days. For both the motion sen-
sor and lightbulb, GSN changes can be leveraged as an indicator
of the presence and activity of a user.

change of GSN. Note that, manually turning on/off the
light using a physical switch also triggers a GSN change.

As shown on Fig. 17, GSN of the motion sensor
is a good indicator of presence in the office, while the
data provided by the lightbulb reveal the boundaries
of the office work activity. This attack does not allow
the direct inference of a specific activity, rather, it ex-
poses a coarse grain information: moving in the room,
turning off a light. HomeKit messages are broadcasted
by various types of devices including thermostat, door
sensor and air quality monitor (see Table 4). Applying
this attack to the whole range of HomeKit-enabled de-
vices has the potential to reveal detailed information on
smarthome activities [34].

Discontinued Privacy: Leaks in Apple BLE Continuity Protocols 36

SHA-256
username@domain.net

+33123456789
0x93DB690D...9C40

0x93DB 0x93DB69
AirDrop hash

(16 bits)
Nearby Action hash

(24 bits)

Fig. 18. Description of the process used to compute hashed iden-
tifiers found in AirDrop and Nearby Action messages. The iden-
tifier (an e-mail address or a phone number) is first hashed with
SHA-256 then truncated to keep only the 16 and 24 MSB respec-
tively for AirDrop and Nearby Action.

8 Leaked e-mail addresses and
phone numbers

AirDrop and Nearby Action messages can include
hashed identifiers such as e-mail addresses, phone num-
bers and SSIDs (see Section 3.3). Although those iden-
tifiers are not directly exposed, their values can be re-
covered through guesswork attacks [35, 36].

By analyzing the sharingd binary, we found that
the identifiers are hashed using the SHA-256 function
(without any salt) and are then truncated to 16 or 24
bits respectively for AirDrop and Nearby Action mes-
sages (see Fig. 18).

We confirmed the previous information through ex-
periments with a device linked to an iCloud account on
which two e-mail addresses and one phone number were
configured. After triggering the transmission of AirDrop
and Nearby Action messages, corresponding hashes were
extracted from captured messages. Those hashes were
matching with the 16 (respectively 24) MSB of the SHA-
256 digests of the identifiers.

8.1 Recovering hashed identifiers

As a cryptographic hash function, SHA-256 is resistant
to pre-image attacks. In other words, given a digest d,
finding x such that SHA-256(x) = d is computationally
infeasible. However, when the set from which the values
are drawn is small enough, re-identification through a
brute force attack may become practical. Brute force
attack for re-identification is also called guesswork and
has been successfully employed against hashed e-mails
and other digital identifiers [35–37].

Let us consider a hash function h(.) that produces
digests of length l and a digest d that has been obtained
by hashing the value x̄, i.e. h(x̄) = d. The objective of
the guesswork is to find all the pre-images of d in a
set S of possible values. A guesswork attack will pro-

ceed by hashing all the elements in S and returning
any element s ∈ S such that h(s) = d. In our case,
h(.) = MSBk(SHA-256(.)), where MSBk(.) represents
the function returning the k MSB of the input.

The cost in term of time of the guesswork can simply
be expressed as: c = m/z, where m is the size of S (the
number of element to be tested) and z is the hashing
speed of the attacker.

Another parameter to consider is the potential false
positives returned by the guesswork: value x such as
h(x) = d but x 6= x̄. Indeed, m, the size of the set
S, is potentially larger than the number of hash values
n; thus it is likely that a given hash can have several
pre-images in the set S. This case where m > n falls
under the many-to-one model described in [36], and the
average number of elements of S matching a given digest
is r = m/n. In the general case, and assuming that the
identifier used to produce the hash is included in the set
(x̄ ∈ S), the average number of identifiers returned by
the guesswork [36] is the following:

r =

{
m/n if m > n

1 otherwise

Since the attacker is only interested in the value x̄,
the identifier associated with the iCloud account, the
number r should be kept as small as possible.

8.1.1 A posteriori confirmation

In the case where the guesswork returns several iden-
tifiers, the attacker will need additional information to
narrow down the one used by the iCloud account. One
possible approach to perform this confirmation is to ex-
ploit the device status information leaked by Nearby
Info messages through an event correlation attack (see
Section 6.1). The attacker can send messages to each
identifier while monitoring for a device that goes from
idle (code 0x03) to active (code 0x07). The attacker can
also rely on visual observations: the target will pick up
the phone or read the message.

8.2 Identifier sets for the guesswork

The guesswork attack requires a set of elements, S, that
will be tested against a hashed value. As previously dis-
cussed, the size of this set will have an impact on effi-
ciency of the guesswork (cost and number of false pos-
itives). Thus, the set S should be as small as possible.

Discontinued Privacy: Leaks in Apple BLE Continuity Protocols 37

Below, we discuss the potential approaches available to
the attacker to build such a set of identifiers.

8.2.1 Phone numbers

Phone numbers follow a general format that corresponds
to 8.11×1014 possible values [37]. This space can be sig-
nificantly reduced if the attacker has additional informa-
tion on the target such as the region in which the phone
number is registered. This set can be further reduced
by selecting a subdivision of the geographical regions or
number ranges corresponding to specific operators. In
particular, the attacker could focus on phone numbers of
mobile operators as iCloud are usually configured with
a mobile phone number. A resourceful attacker can also
have access to a database of all registered phone num-
bers in a region.

In order to evaluate a potential attack, we consid-
ered several sets that an attacker could use: 1) all pos-
sible values following the number format of a region, 2)
all possible values following the mobile number format
of a region and 3) all registered mobile/landline num-
bers in the region. In the following, we selected France
as region.

8.2.2 E-mail addresses

E-mail addresses can be up to 307 characters10 long [36]
corresponding to 21666 different values. Thus, it is not
realistic to envision an exhaustive search over all the
possible values, and the attacker will have to rely on
dictionary of practical size for the attack. To build such
a dictionary, an attacker could either obtain a list of ex-
isting e-mails or try to generate e-mail addresses by as-
sembling names and domains. For the sake of simplicity,
we will focus on the first case (list of existing e-mails),
and point the interested readers to existing works on
synthesis of e-mail addresses and identifiers [36].

We considered several lists that could be used by an
attacker: 1) all existing e-mail addresses worldwide, 2)
addresses found in leaked database [38], 3) addresses of
Gmail users, 4) addresses of university department and
5) addresses of PETS 2017 participants.

10 54 characters for the username and 253 characters for the
domain.

8.3 Simulation results

The outcome of the hypothetical attacks for different
sets of phone numbers and e-mail addresses are sum-
marized in Table 2. We assumed that the attacker is
able to test identifiers at the rate of 2000kH/s11

The attack cost appears to be reasonable and prac-
tical in every cases, as the worst-case scenario (all the
existing e-mail addresses) can be tested within an hour.

The number of matching values ranges from 1 up to
several thousands and depends on the size of the digest.
For a 16-bit long digest of AirDrop, the list of values
returned by the attack can contain several thousands of
identifiers. However, with the 24 bits of the Nearby Ac-
tion, the set is much smaller and can be, in some cases,
reduced to a single element. When the set of potential
value is small enough (several thousands of identifiers)
the hashed identifier can be recovered without ambigu-
ity in a matter of seconds.

9 Voice Assistant commands
When receiving voice commands, a Siri-enabled device
will emit "Hey Siri" messages (see Section 3.3) including
a digest of the command under the form of a perceptual
hash. In the following, we discuss how this data can be
leveraged to gain knowledge on spoken commands.

9.1 Perceptual hash

Commonly used for content identification [39], percep-
tual hashing is a technique to compute the digest of
signal such as an image or a sound. A key property of
perceptual hashing is that two perceptually similar sig-
nals x ∼ x′ should produce digests at a close distance,
d(h(x), h(x′)) < ε, where ε is a threshold representing
the robustness of the hashing algorithm [40].

For audio signals, one state of the art technique is
the Philips Robust Hash (PRH) [39]. This algorithm
produces a 32-bit long digest of an audio signal and
works as follows. The signal is decomposed in overlap-
ping frames and the following process is applied to each
frame: switching to the frequency domain using a Fast
Fourier Transform (FFT), decomposition of the signal

11 This hashing speed has been observed using hashcat (v5.1.0-
951-g6caa786) in straight (dictionary) attack mode running on
an Intel® Core™ i7-5600U CPU @ 2.60 GHz.

Discontinued Privacy: Leaks in Apple BLE Continuity Protocols 38

Table 2. Evaluation of hypothetical guesswork attacks on hashed phone numbers and e-mail addresses. For each set of identifiers, the
corresponding size is used to evaluate the cost of the attack and the average number of values that will be returned as matching the
digest (assuming the set includes the original identifier). Hashing speed of the attacker is assumed to be 2000kH/s.

Set type Set description Set size Guesswork time Avg. # of matching identifiers
16 bits (AirDrop) 24 bits (Nearby Action)

Phone numbers

France 109 500s 15259 60
France, mobile 2 × 108 100s 3052 12
France, registered mobile 74.8 × 106 37s 1141 4
France, registered landline 38.4 × 106 19s 586 2

E-mail addresses

All existing addresses 4.7 × 109 1h 71716 280
Leaked database [38] 773 × 106 387 s 11795 46
Gmail users 1.5 × 109 750 s 22888 89
University Dept. 7000 < 1 1 1
PETS 2017 participants 240 < 1 s 1 1

into 33 non-overlapping bands and computation of the
energy in each band. It then generates a 32-bit digest in
which the bits depend on the energy variation between
consecutive bands and frames. Interested readers can re-
fer to [39] for a detailed presentation of the algorithm.

9.2 Observations on Siri’s perceptual hash

The perceptual hash included in "Hey Siri" messages
is 16-bit long, so twice as short as the output of the
standard PRH algorithm. By analyzing the CoreSpeech
binary, we identified the function in charge of comput-
ing the perceptual hash. This function, called pHash(.),
takes as input an audio signal and returns a 16-bit inte-
ger. We were unable to fully reverse engineer the func-
tion, however we were able to identify several character-
istics: it uses a FFT, it computes energy in the frequency
domain and bits of the hashes are computed based on
the differences between consecutive elements of a buffer.
All those features suggest that this code implements a
variant of the PRH algorithm.

We analyzed the stability of the hashes among dif-
ferent users using an experiment involving two male
users. We found that the same commands produce sig-
nificantly different hashes when spoken by two differ-
ent users (see Table 17 in Appendix A). This suggests
that the perceptual hash depends both on the command
and the user. In fact, it seems that features such as the
speaking speed, voice tone as well as the pronunciation
have an impact on the generated digest.

9.3 Exploiting Siri’s perceptual hash

As noted by Knospe [40], the compactness of the digest
prevents the reconstruction of the original audio signal.
However, because it is a robust and identifying repre-
sentation of an audio signal, the digest could still reveal
information about the voice command. In the following,
we show how perceptual hashes can be leveraged by a
passive attacker to infer commands spoken by the user.

9.3.1 Dictionary attack on perceptual hashes

Perceptual hashing implies that a given command
should produce the same output modulo some small
variations. Therefore, knowing the digest of a given com-
mand, it would be possible for an attacker to infer the
command issued to the voice assistant.

We assume that the attacker has captured a per-
ceptual hash ȳ that has been produced when the tar-
get spoke the command x̄ to the voice assistant, i.e.
ȳ = h(x̄). The aim of the attacker is to identify the
command x̄ based on the captured hash ȳ. We further
assume that the attacker has a dictionary that con-
tains a list of commands and their corresponding di-
gest: D = {(xi, yi)}0≤i<n, where yi is the digest of the
command xi and n is the size of the dictionary.

Using the dictionary D, the attacker can perform a
custom dictionary attack by finding the command xk ∈
D such that yk = h(xk), and yk is close enough to ȳ:
k = Argmin(d(yi, ȳ))0≤i<n and d(yk, ȳ) ≤ ε. This attack
proceeds as described in Algorithm 1. It takes as input
the intercepted hash and the dictionary, and returns a
command of the dictionary or nothing if it has not found
a close enough hash.

Discontinued Privacy: Leaks in Apple BLE Continuity Protocols 39

Input: D = {(xi, yi)}0≤i<n, ȳ, ε

Output: x′ such that y′ = D(x′) and
y′ = Argmin(d(y, ȳ))y∈D and
d(y′, ȳ) < ε

x′ = ∅; r = +∞;
for (x, y) ∈ D do

if d(y, ȳ) <= ε then
if d(y, ȳ) < r then

x′ = x;
r = d(y, ȳ);

end
end

end
Algorithm 1: Dictionary attack on perceptual
hashes.

9.3.2 Building a dictionary of commands and digests

The attack requires that the attacker holds a dictionary
of commands and hashes. Such a dictionary could be
created during a learning phase prior to the attack. Dur-
ing this phase, the attacker is both able to capture voice
commands and perceptual hashes, for instance by being
physically present in the same room. Another approach
could be to monitor BLE traffic and to correlate per-
ceptual hashes with observable events such as network
traffic and state changes of smarthome appliances.

We considered the possibility of using a voice syn-
thesizer to build this dictionary. However, as noted in
Section 9.2, the values of the perceptual hashes depend
on the speaker. Thus, it is not possible to build a univer-
sal dictionary. This issue could be tackled with the help
of machine learning to mimic the voice of the target [41].
We leave this direction for future work.

9.3.3 Evaluation

We evaluated the performance of the dictionary attack
using an experiment with the Siri assistant. A dictio-
nary, A, of 100 commands (see Table 19 in Appendix A)
was built based on a list of common Siri commands [42].
Each command was then spoken to the device and the
corresponding perceptual hash was recorded.

We then played a second set B of commands com-
posed of two sets: B1 including 50 commands from the
dictionary A, and B2 including 50 commands not in the
dictionary A (see Table 19 in Appendix A). Based on
the corresponding hashes, we ran the dictionary attack
for various values of the threshold ε.

	0.4

	0.5

	0.6

	0.7

	0.8

	0.9

	1

	0.4 	0.5 	0.6 	0.7 	0.8 	0.9 	1

Ɛ=0,	RCL=52%,	PRC=67%

Ɛ=4,	RCL=96%,	PRC=48%

Pr
ec
isi
on

Recall

Fig. 19. Performance evaluation of the dictionary attack on
perceptual hashes. The precision and recall are presented as a
parametric curve computed using the threshold ε. The distance
threshold ε covers the interval [0; 4].

We measured how successful the attack was by its
precision and recall [43]. The precision is defined as the
proportion of correctly matched commands among all
matched commands, and the recall is defined as the
proportion of correctly matched commands among B1.
Fig. 19 presents the precision and recall of the dictio-
nary attack. A precision as high as 67% with a recall
of 52% can be obtained for a threshold of ε = 0, cor-
responding to an exact match of the perceptual hashes.
Relaxing this constraint by taking larger values of ε will
lead to higher recall at the cost of a precision reduction.

Due to the small size of this dictionary, the per-
formance presented above is likely to be overestimated.
Indeed, if the size of the dictionary increases, the dis-
tance between hashes will diminish and increase the
probability of collision. There is an upper bound12 for
the number of distinguishable commands: 216−2.ε. For
ε = 2, the number of distinguishable commands is at
most 212 = 4096.

10 Impact of the attacks
In this section, we discuss the impact of the presented
attacks on user privacy. A first element to consider is the
feasibility of the attacks regarding to the range. In fact,
BLE was designed to provide a range of up to 100 meters
in outdoor environments [44], but it is usually shorter in

12 Hashes can be seen as words of a code of length 16 with cor-
rection capacity ε. Thus, the number of distinguishable hashes
is the dimension of the code k. From the Singleton bound and
the definition of minimal distance: k ≤ 16 − 2.ε

Discontinued Privacy: Leaks in Apple BLE Continuity Protocols 40

practice. We measured the BLE range of several Apple
devices and found that they can all be received at least
to 61 and 38 meters respectively in outdoor and indoor
environments (see Table 18). This means that our at-
tacks can be performed from a significant distance like
from the other side of the street or from another room.

A second element to consider is the context in which
the attack can be performed, as some messages may only
be available in certain conditions. For instance, Nearby
Info messages are continuously available thus constantly
exposing the user to the corresponding tracking threat.
On the other hand, AirDrop messages, that can be har-
vested for identifiers, are only available upon a file trans-
fer. Table 3 summarizes the context in which the mes-
sages are broadcasted along with corresponding threats.

Most of those attacks are straightforward to imple-
ment provided the aforementioned conditions are met.
However, hashed identifier and voice command recovery
may be more complex to implement. They both require
prior knowledge under the form of a dictionary and the
voice command attack can be negatively impacted by
speech variations.

A last aspect to consider is the privacy risk [45]
associated with the elements of information obtained
by a potential attacker. Through activity inference and
tracking, users may be affected by stalking, surveillance
and burglary. E-mail addresses and phone numbers may
expose the user to spear-phishing and malicious account
recovery. Finally, most information elements could be
leveraged to profile the user as they reveal identifiers,
activities, whereabouts and owned devices.

11 Recommendations
This section presents a set of recommendations for the
design and implementation of continuity protocols, that
complements the ones introduced in [1] and [14].
Encryption and content minimization of conti-
nuity messages: When possible – e.g. when devices
are associated with the same iCloud account and thus
share cryptographic keys, or when such keys are ex-
changed during a pairing procedure between two de-
vices – content of Apple Continuity messages should
be encrypted14. In case the data cannot be encrypted,
the content exposed in cleartext should be kept to a

14 This is the approach followed by Microsoft within the CDP
protocol [3, sec. 2.2.2.2.3].

bare minimum. For instance, by avoiding the exposure
of device status and characteristics.
Timestamps: Timestamping Apple Continuity mes-
sages is a simple countermeasure that could be included
to defeat replay attacks (see Section 5). Most devices
have a local clock and messages already include authen-
tication tags. Including a timestamp with a coarse gran-
ularity (seconds or minutes) would be enough to prevent
long term tracking while avoiding to expose users to
clock-based fingerprinting [46].
Synchronization between continuity protocols
and device address changes: Identifiers, counters
and payloads included in continuity messages can ex-
pose users to tracking (see Section 4) if they are not
rotated exactly at the same time as the BLE device
address. The rotation of the address and the content of
Apple Continuity messages should be carefully synchro-
nized. Note that, the BLE device address and continu-
ity protocols do not belong to the same network layer,
which could make the synchronization challenging from
a technical point of view.

12 Related work
Several works have analyzed the pitfalls of device ad-
dress randomization in Wi-Fi [8, 27] and BLE [1, 14, 15].
The payload of advertisement packets can include static
identifiers that can be trivially used for tracking. Simi-
larly, predictable fields and temporary identifiers found
in those frames can be used to link two consecutive
pseudonyms [8, 14, 15, 27]. We show that analogous pit-
falls affect the payload of Apple Continuity protocols.

The recent work [1] by Martin et al. is close to ours,
as it demonstrates several privacy issues with Apple
Continuity protocols. Nevertheless, we reveal additional
issues not identified by Martin et al.. First we extend
the replay attack of Martin et al. and present a variant
that can be used in a larger number of cases. Then, we
identify additional artifacts that can be exploited for
tracking and fingerprinting; in particular, battery levels
and counter broadcasted by AirPods. We demonstrate
an attack exposing smarthome activity. We show that,
in addition to the SSID, continuity messages can also
include e-mail addresses and phone numbers. Finally,
we discover that Siri commands could leak over BLE.

Another undocumented protocol of Apple, the Ap-
ple Wireless Direct Link (AWDL) has been reverse en-
gineered by Stute et al. [47] who independently discov-
ered the hashed identifiers in AirDrop messages, but

Discontinued Privacy: Leaks in Apple BLE Continuity Protocols 41

Table 3. Summary of Apple Continuity messages (CM) with their conditions of emission and their associated privacy threats.

Apple CM type Code Message emission Privacy threats
Activity inference Device attributes Tracking User info

AirPrint 0x03 On user action 3 3

AirDrop 0x05 On user action 3 3 3

HomeKit 0x06 Constantly 3 3

Proximity Pairing 0x07 Constantly 3 3

"Hey Siri" 0x08 On user action 3

AirPlay 0x09 On user action 3 3

Magic Switch 0x0B On user physical13 action 3 3

Handoff 0x0C On user action 3

Instant Hotspot
Tethering Target Presence 0x0D On user action 3 3

Tethering Source Presence 0x0E Reaction to Target Presence 3 3

Nearby
Nearby Action 0x0F On user action 3 3 3 3

Nearby Info 0x10 Constantly 3 3

14 The Watch loses the Bluetooth connection to its paired iPhone and its screen is on.

not those that we found in Nearby Action messages.
Furthermore, their work does not consider the recovery
of those identifiers; rather, it focuses on the exploita-
tion for illegitimate activation of AirDrop mechanism
on nearby phones. The same way, Google Nearby, a con-
tinuity protocol of Google, has been reverse engineered
and analyzed [48] to reveal a number of security flaws.

Network traffic generated by connected devices has
been leveraged to reveal the activity of users. In [12], au-
thors showed how the BLE traffic from a fitness tracker
can leak the physical activity of the wearer. An ac-
tive attack to infer state changes of a Bluetooth device
is demonstrated in [49]. Inference of human activities
based on connected devices and smarthome traffic has
been demonstrated by several works [34, 50, 51]. As op-
posed to those works, we do not rely on an analysis of
the traffic features as the information are readily avail-
able in cleartext to a passive attacker.

13 Conclusion
We presented a collection of privacy issues in the Ap-
ple Continuity protocols. Those issues range from mild
leakages, such as the exposure of device model, to seri-
ous leakages such as the exposure of personal identifiers
like e-mail addresses and phone numbers. Furthermore,
we show that including those messages in advertisement
packets undermines anti-tracking provisions of the BLE
standard. To make matter worst, most of those issues
can be exploited by a passive attacker.

Several severe security and privacy flaws have been
recently exposed in Google [48] and Apple [1, 47] con-
tinuity protocols. In all cases, the specifications were
not public and the authors had to rely on reverse engi-
neering to understand the system prior to identify the
flaws. This is yet another demonstration that security
by obscurity does not work. This also shows that even
companies with extended resources and dedicated secu-
rity/privacy teams cannot only rely on internal scrutiny
of their systems to avoid such issues.

We believe that those technologies could benefit a
joint standardization effort with security researchers in
order to specify dedicated protocols, or at least to set
up guidelines for the design and implementation.

Responsible disclosure
The vulnerabilities identified were reported to Apple,
Osram and Eve on May 29th, 2019.

Acknowledgements
This work was supported by the INSA Lyon - SPIE
ICS IoT chair and the H2020 SPARTA Cybersecurity
Competence Network project. The authors would like to
thank the reviewers for their careful, constructive and
insightful comments towards improving this paper.

Discontinued Privacy: Leaks in Apple BLE Continuity Protocols 42

References
[1] Jeremy Martin, Douglas Alpuche, Kristina Bodeman, La-

mont Brown, Ellis Fenske, Lucas Foppe, Travis Mayberry,
Erik Rye, Brandon Sipes, and Sam Teplov. Handoff All
Your Privacy – A Review of Apple’s Bluetooth Low Energy
Continuity Protocol. Proceedings on Privacy Enhancing
Technologies, 2019(4):34–53, 2019.

[2] Google. Nearby. URL https://developers.google.com/
nearby/. Accessed: 2019-05-25.

[3] Microsoft. Microsoft Connected Devices Platform Protocol
Version 3. 2019. URL https://docs.microsoft.com/en-
us/openspecs/windows_protocols/ms-cdp/f5a15c56-ac3a-
48f9-8c51-07b2eadbe9b4. Accessed: 2019-05-25.

[4] Apple. All your devices. One seamless experience. . URL
https://www.apple.com/macos/continuity/. Accessed:
2019-05-25.

[5] Apple. MFi Program. . URL https://developer.apple.com/
programs/mfi/. Accessed: 2019-05-25.

[6] Apple. Home accessories. The list keeps getting smarter.
. URL https://www.apple.com/ios/home/accessories/.
Accessed: 2019-05-25.

[7] Apple. Apple Reports Record First Quarter Results. 2016.
URL https://www.apple.com/newsroom/2016/01/26Apple-
Reports-Record-First-Quarter-Results/. Accessed: 2019-05-
25.

[8] Mathy Vanhoef, Celestin Matte, Mathieu Cunche,
Leonardo S. Cardoso, and Frank Piessens. Why MAC Ad-
dress Randomization is Not Enough: An Analysis of Wi-Fi
Network Discovery Mechanisms. In Proceedings of the
11th ACM on Asia Conference on Computer and Commu-
nications Security, ASIA CCS ’16, pages 413–424, New
York, NY, USA, 2016. ACM. ISBN 978-1-4503-4233-9.
10.1145/2897845.2897883.

[9] Taher Issoufaly and Pierre Ugo Tournoux. BLEB: Blue-
tooth Low Energy Botnet for large scale individual tracking.
In 2017 1st International Conference on Next Generation
Computing Applications (NextComp), pages 115–120. IEEE,
2017.

[10] Ben Greenstein, Ramakrishna Gummadi, Jeffrey Pang,
Mike Y Chen, Tadayoshi Kohno, Srinivasan Seshan, and
David Wetherall. Can Ferris Bueller Still Have His Day Off?
Protecting Privacy in the Wireless Era. In HotOS, 2007.

[11] Mathieu Cunche, Mohamed-Ali Kaafar, and Roksana Boreli.
Linking wireless devices using information contained in Wi-Fi
probe requests. Pervasive and Mobile Computing, 11:56–69,
April 2014. ISSN 1574-1192. 10.1016/j.pmcj.2013.04.001.

[12] Aveek K Das, Parth H Pathak, Chen-Nee Chuah, and Pras-
ant Mohapatra. Uncovering Privacy Leakage in BLE Net-
work Traffic of Wearable Fitness Trackers. In Proceedings
of the 17th International Workshop on Mobile Computing
Systems and Applications, pages 99–104. ACM, 2016.

[13] Bluetooth SIG. Bluetooth Core Specification v4.0. 2010.
URL https://www.bluetooth.org/docman/handlers/
downloaddoc.ashx?doc_id=456433. Accessed: 2019-05-25.

[14] Johannes K Becker, David Li, and David Starobinski. Track-
ing Anonymized Bluetooth Devices. Proceedings on Privacy
Enhancing Technologies, 2019(3):50–65, 2019.

[15] Guillaume Celosia and Mathieu Cunche. Saving Private
Addresses: An Analysis of Privacy Issues in the Bluetooth-
Low-Energy Advertising Mechanism. In Proceedings of the
16th EAI International Conference on Mobile and Ubiquitous
Systems: Computing, Networking and Services. ACM, 2019.

[16] Martin Woolley. Bluetooth Technology Protecting Your
Privacy. 2015. URL https://www.bluetooth.com/blog/
bluetooth-technology-protecting-your-privacy/. Accessed:
2019-05-25.

[17] IEEE Standard for Local and Metropolitan Area Net-
works: Overview and Architecture. IEEE Std 802-2014
(Revision to IEEE Std 802-2001), pages 1–74, June 2014.
10.1109/IEEESTD.2014.6847097.

[18] Bluetooth SIG. Bluetooth Core Specification v5.1. 2019.
URL https://www.bluetooth.org/docman/handlers/
downloaddoc.ashx?doc_id=457080. Accessed: 2019-05-25.

[19] Apple. iOS Security - iOS 12.3. 2019. URL https://www.
apple.com/business/site/docs/iOS_Security_Guide.pdf.
Accessed: 2019-05-25.

[20] Apple. HomeKit Accessory Protocol Specification (Non-
Commercial Version) - Release R2. 2019. URL https://
developer.apple.com//homekit/specification/. Accessed:
2019-08-20.

[21] Apple. About AirPrint. 2019. URL https://support.apple.
com/en-us/HT201311. Accessed: 2019-05-25.

[22] Ang Cui, Michael Costello, and Salvatore Stolfo. When
Firmware Modifications Attack: A Case Study of Embedded
Exploitation. 2013.

[23] Apple. Connect and use your AirPods. 2019. URL https:
//support.apple.com/en-us/HT207010. Accessed: 2019-05-
25.

[24] Dorene Kewley, Russ Fink, John Lowry, and Mike Dean. Dy-
namic approaches to thwart adversary intelligence gathering.
In Proceedings DARPA Information Survivability Conference
and Exposition II. DISCEX’01, volume 1, pages 176–185.
IEEE, 2001.

[25] Apple. Handoff. . URL https://developer.apple.com/
handoff/. Accessed: 2019-05-25.

[26] Apple. Use Handoff to continue a task on your other
devices. 2019. URL https://support.apple.com/en-
us/HT209455. Accessed: 2019-05-25.

[27] Jeremy Martin, Travis Mayberry, Collin Donahue, Lucas
Foppe, Lamont Brown, Chadwick Riggins, Erik C Rye, and
Dane Brown. A Study of MAC Address Randomization in
Mobile Devices and When It Fails. Proceedings on Privacy
Enhancing Technologies, 2017(4):365–383, 2017.

[28] Lukasz Olejnik, Gunes Acar, Claude Castelluccia, and Clau-
dia Diaz. The leaking battery. In Data Privacy Management,
and Security Assurance, pages 254–263. Springer, 2015.

[29] Apple. Use Instant Hotspot to connect to your Personal
Hotspot without entering a password. 2019. URL https:
//support.apple.com/en-us/HT209459. Accessed: 2019-08-
20.

[30] Kassem Fawaz, Kyu-Han Kim, and Kang G Shin. Protecting
Privacy of BLE Device Users. In USENIX Security Sympo-
sium, pages 1205–1221, 2016.

[31] Marianne Bertrand and Emir Kamenica. Coming Apart? Cul-
tural Distances in the United States Over Time. Technical
report, National Bureau of Economic Research, 2018.

https://developers.google.com/nearby/
https://developers.google.com/nearby/
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-cdp/f5a15c56-ac3a-48f9-8c51-07b2eadbe9b4
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-cdp/f5a15c56-ac3a-48f9-8c51-07b2eadbe9b4
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-cdp/f5a15c56-ac3a-48f9-8c51-07b2eadbe9b4
https://www.apple.com/macos/continuity/
https://developer.apple.com/programs/mfi/
https://developer.apple.com/programs/mfi/
https://www.apple.com/ios/home/accessories/
https://www.apple.com/newsroom/2016/01/26Apple-Reports-Record-First-Quarter-Results/
https://www.apple.com/newsroom/2016/01/26Apple-Reports-Record-First-Quarter-Results/
https://doi.org/10.1145/2897845.2897883
https://doi.org/10.1016/j.pmcj.2013.04.001
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=456433
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=456433
https://www.bluetooth.com/blog/bluetooth-technology-protecting-your-privacy/
https://www.bluetooth.com/blog/bluetooth-technology-protecting-your-privacy/
https://doi.org/10.1109/IEEESTD.2014.6847097
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=457080
https://www.bluetooth.org/docman/handlers/downloaddoc.ashx?doc_id=457080
https://www.apple.com/business/site/docs/iOS_Security_Guide.pdf
https://www.apple.com/business/site/docs/iOS_Security_Guide.pdf
https://developer.apple.com//homekit/specification/
https://developer.apple.com//homekit/specification/
https://support.apple.com/en-us/HT201311
https://support.apple.com/en-us/HT201311
https://support.apple.com/en-us/HT207010
https://support.apple.com/en-us/HT207010
https://developer.apple.com/handoff/
https://developer.apple.com/handoff/
https://support.apple.com/en-us/HT209455
https://support.apple.com/en-us/HT209455
https://support.apple.com/en-us/HT209459
https://support.apple.com/en-us/HT209459

Discontinued Privacy: Leaks in Apple BLE Continuity Protocols 43

[32] Le T Nguyen, Yu Seung Kim, Patrick Tague, and Joy
Zhang. IdentityLink: User-Device Linking through Visual
and RF-Signal Cues. In Proceedings of the 2014 ACM In-
ternational Joint Conference on Pervasive and Ubiquitous
Computing, pages 529–539. ACM, 2014.

[33] Matthias C Sala, Kurt Partridge, Linda Jacobson, et al.
An Exploration into Activity-Informed Physical Advertising
Using PEST. In International Conference on Pervasive Com-
puting, pages 73–90. Springer, 2007.

[34] Bogdan Copos, Karl Levitt, Matt Bishop, and Jeff Rowe. Is
Anybody Home? Inferring Activity From Smart Home Net-
work Traffic. In 2016 IEEE Security and Privacy Workshops
(SPW), pages 245–251. IEEE, 2016.

[35] Joseph Bonneau. The Science of Guessing: Analyzing an
Anonymized Corpus of 70 Million Passwords. In 2012 IEEE
Symposium on Security and Privacy, pages 538–552. IEEE,
2012.

[36] Levent Demir, Amrit Kumar, Mathieu Cunche, and Cedric
Lauradoux. The Pitfalls of Hashing for Privacy. IEEE Com-
munications Surveys & Tutorials, 20(1):551–565, 2018.

[37] Matthias Marx, Ephraim Zimmer, Tobias Mueller, Maximil-
ian Blochberger, and Hannes Federrath. Hashing of person-
ally identifiable information is not sufficient. SICHERHEIT
2018, 2018.

[38] Troy Hunt. The 773 Million Record "Collection #1" Data
Breach. 2019. URL https://www.troyhunt.com/the-773-
million-record-collection-1-data-reach/. Accessed: 2019-05-
25.

[39] Jaap Haitsma and Ton Kalker. A Highly Robust Audio
Fingerprinting System. In Ismir, volume 2002, pages 107–
115, 2002.

[40] Heiko Knospe. Privacy-enhanced perceptual hashing of
audio data. In 2013 International Conference on Security
and Cryptography (SECRYPT), pages 1–6. IEEE, 2013.

[41] Gopala Krishna Anumanchipalli, Kishore Prahallad, and
Alan W Black. Festvox: Tools for Creation and Analyses of
Large Speech Corpora. In Workshop on Very Large Scale
Phonetics Research, UPenn, Philadelphia, page 70, 2011.

[42] Sparhandy. Siri commands - endless functions of your virtual
assistant. URL https://www.sparhandy.de/apple/info/siri-
commands/. Accessed: 2019-05-25.

[43] Hao Fu, Aston Zhang, and Xing Xie. Effective Social Graph
Deanonymization Based on Graph Structure and Descriptive
Information. ACM Transactions on Intelligent Systems and
Technology (TIST), 6(4):49, 2015.

[44] Jon Gunnar Sponas. Things You Should Know About Blue-
tooth Range. 2018. URL https://blog.nordicsemi.com/
getconnected/things-you-should-know-about-bluetooth-
range. Accessed: 2019-08-20.

[45] Nina Gerber, Benjamin Reinheimer, and Melanie Volkamer.
Investigating People’s Privacy Risk Perception. Proceedings
on Privacy Enhancing Technologies, 2019(3):267–288, 2019.

[46] Chrisil Arackaparambil, Sergey Bratus, Anna Shubina, and
David Kotz. On the Reliability of Wireless Fingerprinting
using Clock Skews. In Proceedings of the third ACM con-
ference on Wireless network security, pages 169–174. ACM,
2010.

[47] Milan Stute, Sashank Narain, Alex Mariotto, Alexan-
der Heinrich, David Kreitschmann, Guevara Noubir, and
Matthias Hollick. A Billion Open Interfaces for Eve and Mal-

lory: MitM, DoS, and Tracking Attacks on iOS and macOS
Through Apple Wireless Direct Link. page 18, 2019.

[48] Daniele Antonioli, Nils Ole Tippenhauer, and Kasper Ras-
mussen. Nearby Threats: Reversing, Analyzing, and At-
tacking Google’s’ Nearby Connections’ on Android. In Pro-
ceedings of the Network and Distributed System Security
Symposium (NDSS), February 2019.

[49] Guillaume Celosia and Mathieu Cunche. Detecting smart-
phone state changes through a Bluetooth based timing
attack. In Proceedings of the 11th ACM Conference on
Security & Privacy in Wireless and Mobile Networks, pages
154–159. ACM, 2018.

[50] Noah Apthorpe, Dillon Reisman, Srikanth Sundaresan,
Arvind Narayanan, and Nick Feamster. Spying on the Smart
Home: Privacy Attacks and Defenses on Encrypted IoT Traf-
fic. 2017.

[51] Sandra Siby, Rajib Ranjan Maiti, and Nils Tippenhauer.
IoTScanner: Detecting and Classifying Privacy Threats in
IoT Neighborhoods. arXiv preprint arXiv:1701.05007, 2017.

https://www.troyhunt.com/the-773-million-record-collection-1-data-reach/
https://www.troyhunt.com/the-773-million-record-collection-1-data-reach/
https://www.sparhandy.de/apple/info/siri-commands/
https://www.sparhandy.de/apple/info/siri-commands/
https://blog.nordicsemi.com/getconnected/things-you-should-know-about-bluetooth-range
https://blog.nordicsemi.com/getconnected/things-you-should-know-about-bluetooth-range
https://blog.nordicsemi.com/getconnected/things-you-should-know-about-bluetooth-range

Discontinued Privacy: Leaks in Apple BLE Continuity Protocols 44

A Appendix

Table 4. Extended list of HomeKit Category codes.

Category code Description
0x0000 Unknown
0x0100 Other
0x0200 Bridge
0x0300 Fan
0x0400 Garage Door Opener
0x0500 Lightbulb
0x0600 Door Lock
0x0700 Outlet
0x0800 Switch
0x0900 Thermostat
0x0A00 Sensor
0x0B00 Security System
0x0C00 Door
0x0D00 Window
0x0E00 Window Covering
0x0F00 Programmable Switch
0x1000 Range Extender
0x1100 IP Camera
0x1200 Video Doorbell
0x1300 Air Purifier
0x1400 Heater
0x1500 Air Conditioner
0x1600 Humidifier
0x1700 Dehumidifier
0x1C00 Sprinklers
0x1D00 Faucets
0x1E00 Shower Systems

Table 5. Extended list of Proximity Pairing Device Model codes.

Device Model code Description
0x0220 AirPods
0x0320 Powerbeats3
0x0520 BeatsX
0x0620 Beats Solo3

Table 6. Extended list of Proximity Pairing UTP codes.

UTP code Description
0x01 In Ear
0x02 In Case
0x03 Airplane

Table 7. Extended list of Proximity Pairing Device Color codes.

Device Color code Description
0x00 White
0x01 Black
0x02 Red
0x03 Blue
0x04 Pink
0x05 Gray
0x06 Silver
0x07 Gold
0x08 Rose Gold
0x09 Space Gray
0x0A Dark Blue
0x0B Light Blue
0x0C Yellow

Table 8. Extended list of "Hey Siri" Device Class codes.

Device Class code Description
0x0002 iPhone
0x0003 iPad
0x0009 MacBook
0x000A Watch

Table 9. Extended list of Magic Switch Confidence on Wrist
codes.

Confidence on Wrist code Description
0x03 Not on wrist
0x1F Wrist detection disabled
0x3F On wrist

Table 10. Extended list of Tethering Source Presence Network
Type codes (as reported by [1]).

Network Type code Description
0x01 1xRTT
0x02 GPRS
0x03 EDGE
0x04 3G (EV-DO)
0x05 3G
0x06 4G
0x07 LTE

Discontinued Privacy: Leaks in Apple BLE Continuity Protocols 45

Table 11. Extended list of Nearby Action Action Type codes.

Action Type code Description
0x01 Apple TV Tap-To-Setup
0x04 Mobile Backup
0x05 Watch Setup
0x06 Apple TV Pair
0x07 Internet Relay
0x08 Wi-Fi Password
0x09 iOS Setup
0x0A Repair
0x0B Speaker Setup
0x0C Apple Pay
0x0D Whole Home Audio Setup
0x0E Developer Tools Pairing Request
0x0F Answered Call
0x10 Ended Call
0x11 DD Ping
0x12 DD Pong
0x13 Remote Auto Fill
0x14 Companion Link Prox
0x15 Remote Management
0x16 Remote Auto Fill Pong
0x17 Remote Display

Table 12. Extended list of Nearby Action Device Class codes.

Device Class code Description
0x2 iPhone
0x4 iPod
0x6 iPad
0x8 Audio accessory (HomePod)
0xA Mac
0xC AppleTV
0xE Watch

Table 13. Extended list of Nearby Action Device Model codes.

Device Model code Description
0x1 D22ish
0x2 SEish
0x3 JEXXish

Table 14. Extended list of Nearby Action Device Color codes.

Device Color code Description
0x00 Unknown
0x01 Black
0x02 White
0x03 Red
0x04 Silver
0x05 Pink
0x06 Blue
0x07 Yellow
0x08 Gold
0x09 Sparrow

Table 15. Extended list of Nearby Action OS Version codes.

OS Version code Description
0x09 Version 9
0x0A Version 10

Table 16. Extended list of Nearby Info Activity Level codes.

Activity Level code Description
0x00 Activity level is not known
0x01 Activity reporting is disabled
0x03 User is idle
0x05 Audio is playing with the screen off
0x07 Screen is on
0x09 Screen on and video playing
0x0A Watch is on wrist and unlocked
0x0B Recent user interaction
0x0D User is driving a vehicle
0x0E Phone call or Facetime*

* As reported by [1].

Table 17. Perceptual hashes (pHash) obtained from commands
issued by two male users. Hamming distances are computed be-
tween pHash of UserA and UserB considered as binary values
(sequences of bits).

Command pHash Hamming
UserA UserB dist.

Call Mark. 0xEFF0 0xB608 9
Call Bob. 0xFDF0 0xAF08 8
Play some music. 0x9F82 0x9547 6
Search the web for ’privacy’. 0x39EF 0xFE81 10
Send a message to Mark. 0x1438 0xB3B4 8
Send a message to Bob. 0x10B0 0xB31C 8
Set a timer for 3 minutes. 0xB680 0x181F 11

Discontinued Privacy: Leaks in Apple BLE Continuity Protocols 46

Table 18. Experimental evaluation of the range of Apple Conti-
nuity BLE messages leveraging various Apple devices in different
environment settings.

Apple device
Range (in meters)

Indoor (#walls*) Outdoor0 1 2 3
AirPods (2nd generation) 49 45 41 39 61Model: A1602, A2031/2
iPad (5th generation) 51 49 44 41 63Model: A1822
iPad Mini 3 50 48 44 42 62Model:A1599
iPhone 6 50 46 43 38 62Model: A1586
iPhone 8 51 49 46 42 65Model: A1905
MacBook Air (13", 2014) 52 50 47 45 65Model: A1466
MacBook Pro (13", 2015) 52 51 49 47 67Model: A1502
Watch Series 2 50 47 45 42 61Model: A1757
Watch Series 3 51 49 46 43 62Model: A1858

* Walls are constituted of plasterboard and are about 15
centimeters thick.

Table 19. Complete list of Siri commands used for the dictionary
attack on perceptual hashes.

Co
m
m
an
ds

of
di
ct
io
na
rie

s
A

an
d

B
1
(c
om

m
an
ds

of
B

1
ar
e
in

bo
ld
).

Activate Do Not Disturb.; Add ’tomatoes’ to the grocery list.; Add a
reminder.; Alarm in 5 hours.; Alice is my mother.; Best comedy movies
?; Best horror movies ?; Bob is my brother.; Call 408 555 1212.; Call
Bob.; Call Mark.; Call me sweetheart.; Call the nearest restaurant.;
Can you recommend a movie ?; Cancel my event with Mark.; Decrease
brightness.; FaceTime Audio call to Alice.; Find number of dad.; How
are the markets doing ?; How big is the biggest elephant ?; How far
away is Mars ?; How far away is Tokyo ?.; How humid is it in Paris
?; How long do cats live ?; How many calories in an apple ?; How
many days until Christmas ?; How many teeth does a cat have ?;
How old is Madonna ?; How old is Peter ?; How tall is Paris Hilton
?; Increase brightness.; Inform my husband when I’m back home.;
Inform my wife when I leave my home.; Is mom at home ?; Learn to
pronounce my name.; Listen to Alicia Keys.; Locate my father.; Note:
’Susan will be late tonight’.; Open Instagram.; Open Spotify.; Play
some music.; Play the rest of this album.; Read my new messages.;
Remind me today: call Kevin.; Search Google for pictures of Thor.;
Search the web for ’computer’.; Search the web for ’privacy’.; Send
a message to Bob.; Send a message to Mark.; Send an e-mail to
Susan.; Set a timer for 3 minutes.; Show all my photos.; Show me
best family movies.; Show me my notes.; Show me my photos from
London.; Show me my photos of last week.; Show me new e-mail from
Peter.; Show me the latest tweets.; Show me the nearest cinema.;
Show me tweets from Peter.; Show me videos of Avengers.; Show
my favorite photos.; Show my selfies.; Square root of 49 ?; Susan is
my sister.; Take a video.; Take me home.; Turn on Night Mode.;
Turn on Wi-Fi.; What day is in 5 days ?; What day was 2 days ago
?; What did Dow close at today ?; What did Nikkei close at today
?; What is my altitude ?; What is the time zone in Miami ?; What
time is it ?; What’s 7 plus 2 ?; What’s Kevin’s address ?; What’s
the capital of France ?; What’s the date ?; What’s the definition of
’robot’ ?; What’s the Nasdaq today ?; What’s the Nikkei price ?;
What’s the temperature outside ?; What’s the temperature tonight ?;
What’s this song ?; When am I meeting with Alice ?; When do I meet
Bob ?; When is my next appointment ?; When is the sunrise ?; When
is the sunset ?; When is the Super Bowl ?; Where died Bob Marley
?; Where is my iPhone ?; Where is my next appointment ?; Where
lives Susan ?; Which movies are with Tom Hanks ?; Who does this
smartphone belong to ?; Who is Sean Connery married to ?; Who
sings this ?

Co
m
m
an
ds

of
di
ct
io
na
ry

B
2
.

Andrew is my boyfriend.; Any new e-mail from Kevin ?; Call Abraham
on speakerphone.; Call me a cab.; Call me king.; Cancel my event
with Alice.; Compare Nikkei with Dow.; Deactivate Do Not Disturb.;
Delete all alarms.; Delete the reminder ’project’.; Find some movie
theaters near my home.; Flip a coin.; How many bones does a dog
have ?; How many days until the birthday of dad ?; How many days
until year 2020 ?; How small is the smallest dog ?; In which city lives
Peter ?; Is ’Airplane mode’ enabled ?; Navigate to Susan by car.;
Open Facebook.; Open mail.; Open settings.; Pause the timer.; Play
me my latest voicemail.; Play the Titanic soundtrack.; Play the trailer
for ’Pearl Harbor’.; Play this song from the beginning.; Play top 10
songs from Aya Nakamura.; Read Calendar.; Runtime of Titanic ?;
Search Wikipedia for ’dog’.; Show me my photos from Lisbon.; Show
me my photos of yesterday.; Show me pictures of Hulk.; Show me the
appointments for next month.; Show me the traffic.; Tell me a story.;
Text Susan: ’I will be late’; Translate ’cat’ from English in Russian.;
Turn on Cellular Data.; What is the time at home ?; What’s the current
dew point ?; What’s the Nasdaq price ?; What’s the pressure outside
?; What’s the visibility outside ?; When died Freddie Mercury ?; When
is Kevin’s birthday ?; Where is my MacBook ?; Where is the office of
Sean ?; Which songs are from Imagine Dragons ?

	Discontinued Privacy: Personal Data Leaks in Apple Bluetooth-Low-Energy Continuity Protocols
	1 Introduction
	2 Background
	2.1 BLE protocol
	2.2 BLE privacy
	2.3 Continuity protocols

	3 Reverse engineering of Apple Continuity protocols
	3.1 Methodology
	3.2 General features of Apple Continuity messages
	3.2.1 Content protection
	3.2.2 Use of random device address

	3.3 Apple Continuity protocols

	4 Passive tracking
	4.1 Identifiers and counters
	4.2 AirPods battery levels and Lid Open Count

	5 Active tracking/linking
	5.1 Replay of corrupted Handoff messages
	5.2 Experimental evaluation of replay attacks
	5.3 Device linking

	6 Exposed device status and characteristics
	6.1 Applications

	7 Leaking smarthome activity
	8 Leaked e-mail addresses and phone numbers
	8.1 Recovering hashed identifiers
	8.1.1 A posteriori confirmation

	8.2 Identifier sets for the guesswork
	8.2.1 Phone numbers
	8.2.2 E-mail addresses

	8.3 Simulation results

	9 Voice Assistant commands
	9.1 Perceptual hash
	9.2 Observations on Siri's perceptual hash
	9.3 Exploiting Siri's perceptual hash
	9.3.1 Dictionary attack on perceptual hashes
	9.3.2 Building a dictionary of commands and digests
	9.3.3 Evaluation

	10 Impact of the attacks
	11 Recommendations
	12 Related work
	13 Conclusion
	A Appendix

