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Abstract—WireGuard is a free and open source Virtual Private
Network (VPN) that aims to replace IPsec and OpenVPN. It is
based on a new cryptographic protocol derived from the Noise
Protocol Framework. This paper presents the first mechanised
cryptographic proof of the protocol underlying WireGuard, using
the CryptoVerif proof assistant.

We analyse the entire WireGuard protocol as it is, including
transport data messages, in an ACCE-style model. We contribute
proofs for correctness, message secrecy, forward secrecy, mutual
authentication, session uniqueness, and resistance against key
compromise impersonation, identity mis-binding, and replay
attacks. We also discuss the strength of the identity hiding
provided by WireGuard.

Our work also provides novel theoretical contributions that
are reusable beyond WireGuard. First, we extend CryptoVerif to
account for the absence of public key validation in popular Diffie-
Hellman groups like Curve25519, which is used in many modern
protocols including WireGuard. To our knowledge, this is the
first mechanised cryptographic proof for any protocol employing
such a precise model. Second, we prove several indifferentiability
lemmas that are useful to simplify the proofs for sequences of
key derivations.

Index Terms—security protocols, verification, computational
model, VPN

I. INTRODUCTION

The traditional distinction between a secure intranet and
the untrusted Internet is becoming less relevant as more and
more enterprises host internal services on cloud-based servers
distributed across multiple data centres. Sensitive data that used
to travel only between physically proximate machines within
secure buildings is now sent across an unknown number of
network links that may be controlled by malicious entities.

To maintain the security of such distributed intranets, the
most powerful tools at the disposal of system administrators are
Virtual Private Network (VPN) protocols that set up low-level
secure channels between machines, and hence can be used
to transparently protect all the data exchanged between them.
Indeed, all leading cloud providers now offer VPN gateways,
so that enterprises can treat cloud-based servers as if they were
located within their intranet.1

Standards vs. Custom Protocols. Most popular VPN
solutions are based on Internet standards like IPsec [1] and
TLS [2], for several reasons. First, these protocols typically

1https://cloud.google.com/vpn/docs/concepts/overview,
https://docs.aws.amazon.com/vpc/latest/userguide/vpn-connections.html,
https://azure.microsoft.com/en-us/services/vpn-gateway/

have multiple interoperable implementations that are available
on all mainstream operating systems, so the VPN software can
be easily built as a layer on top. Second, standards are designed
to be future-proof by relying on versioning and cryptographic
agility, so that a VPN protocol can easily move from one
protocol version or cryptographic algorithm to another if (say)
a weakness were found on some configuration. Third, published
standards typically have been closely scrutinised by numerous
interested parties, and hence are believed to be less likely to
contain obvious security flaws.

Conversely, using a standard protocol also has its disadvan-
tages. Standardisation takes time, and so a standard protocol
may not use the most modern cryptographic algorithms. On
the contrary, the need for interoperability and backwards
compatibility often force implementations to continue support
for obsolete cryptographic algorithms, leading to cryptanalytic
attacks [3] and software flaws [4]. Over time, standards and
their implementations can grow to an unmanageable size that
can no longer be studied as a whole, allowing logical flaws to
hide in unused corners of the protocol [5].

Consequently, many new secure channel protocols eschew
standardisation in favour of a lean design that uses only modern
cryptography and supports minimal cryptographic agility. The
succinctness of the protocol description aids auditability, and
the lack of optional features reduces complexity. Examples of
this approach are the Signal protocol [6] used in many secure
messaging systems and the Noise protocol framework [7].

WireGuard is a VPN protocol that adopts this design
philosophy [8]. It implements and extends a secure channel
protocol derived from the Noise framework, and it chooses a
small set of modern cryptographic primitives. By making these
choices, WireGuard is able to provide a high-quality VPN in a
few thousand lines of code, and is currently being considered
for adoption within the Linux kernel. The design of WireGuard
is detailed and informally analysed in [8], but a protocol of
such importance deserves a thorough security analysis.

A Need for Mechanised Proofs. Having a succinct, well-
documented description is a good basis for understanding,
auditing, and implementing a custom cryptographic protocol,
but in itself is no guarantee that the protocol is secure. Symbolic
analysis with tools like ProVerif [9] and Tamarin [10] can
help find logical flaws, and WireGuard already has been
analysed using Tamarin [11]. However, symbolic analyses do
not constitute a full cryptographic proof. For example, they

https://cloud.google.com/vpn/docs/concepts/overview
https://docs.aws.amazon.com/vpc/latest/userguide/vpn-connections.html
https://azure.microsoft.com/en-us/services/vpn-gateway/


cannot demonstrate the absence of cryptanalytic attacks on
secure channels and VPNs (e.g. [3].)

Cryptographic proofs provide the highest form of formal
assurance, but writing proofs by hand requires significant
expertise and effort, especially if the proof is to account for the
precise low-level details of a real-world protocol. And as proofs
get larger, the risk of introducing proof errors becomes non-
negligible. All this effort is hard to justify for a custom protocol
which may change as the software evolves. For example, a
manual cryptographic proof for the WireGuard protocol appears
in [12], but this proof would need to be carefully reviewed
and adapted if the WireGuard protocol were to change in any
way or if a variant of WireGuard were to be proposed.

We advocate the use of mechanised provers to build
cryptographic proofs, so that they can be checked for errors,
and can be easily modified to accommodate different variants of
the protocol. In this paper, we rely on the CryptoVerif protocol
verifier [13], [14] to build a proof of WireGuard. CryptoVerif
relies on a computational model of cryptography, and generates
machine-checkable proofs by sequences of games, like those
manually written by cryptographers.

Uncovering Real-World Cryptographic Assumptions. A
mechanised proof also allows the analyst to experiment with a
variety of cryptographic assumptions and discover the precise
set of assumptions that a protocol’s security depends on.

In some cases, a protocol may require an unusual assumption
about a hash function, or a stronger assumption about encryp-
tion than one may have expected, and these cases can provide
a guide to implementers on what concrete cryptographic algo-
rithms should or should not be used to instantiate the protocol.
For example, in our analysis of WireGuard, we find that most
of the standard properties require only standard assumptions
about the underlying authenticated encryption scheme (AEAD)
but identity hiding requires a stronger assumption, which is
satisfied by the specific algorithms used by WireGuard, but
may not be provided by other AEAD constructions.

In other cases, a protocol’s use of a cryptographic primitive
may motivate a new, more precise model of the primitive.
Protocols like WireGuard seek to depend on a small set of
primitives and reuse them in different ways. For example,
WireGuard relies on the Curve25519 elliptic curve Diffie-
Hellman operation for an ephemeral key exchange as well
as for entity authentication. It uses Curve25519 public keys
both as identities and as unique nonces to identify sessions.
To verify that Curve25519 is appropriate for all these usages,
and to prove the absence of attacks such as replays, identity
mis-binding, and key compromise impersonation, we need
to account for the details of the Curve25519 group, rather
than rely on a generic Diffie-Hellman assumption. Hence, we
propose a new model for Curve25519 in CryptoVerif and prove
WireGuard secure against this model.

Contributions. We present the first mechanised proof for
the cryptographic design of the WireGuard VPN, including the
Noise IKpsk2 secure channel protocol it uses. Our analysis
is done on WireGuard v1 as specified in [8]. In addition to
classic key exchange security for IKpsk2, we examine the

identity hiding and denial-of-service protections provided by
WireGuard. We conclude with a discussion of the strengths
and weaknesses of WireGuard, and propose improvements that
would allow for stronger security theorems.

Our work also provides contributions reusable beyond the
proof of WireGuard. To the best of our knowledge, this is the
first mechanised proof for any cryptographic protocol that takes
into account the precise structure of the Curve25519 group.
We also prove a series of indifferentiability results that allow
us to simplify sequences of random oracle calls, and we made
several extensions to CryptoVerif that we mention in the rest
of the paper when we use them. These extensions are included
in CryptoVerif 2.01 available at https://cryptoverif.inria.fr/.

Our models of WireGuard are available at https://cryptoverif.
inria.fr/WireGuard and more details are available in the long
version of the paper [15].

II. WIREGUARD

WireGuard [8] establishes a VPN tunnel between two remote
hosts in order to securely encapsulate all Internet Protocol (IP)
traffic between them. The main design goals of WireGuard are
to be simple, fast, modern, and secure. In order to establish a
tunnel, a system administrator only needs to configure the IP
address and long-term public key for the remote host. With this
information, WireGuard can establish a secure channel, using
a protocol derived from the Noise framework, instantiated with
fast, modern cryptographic primitives like Curve25519 and
BLAKE2. The full WireGuard VPN is implemented in a few
thousand lines of code that can run on multiple platforms, but
for performance, is usually run within the operating system
kernel. In particular, WireGuard is in the process of being
incorporated into the Linux kernel (most likely Linux 4.2/5.0),
as an alternative to IPsec.

In this section, we focus on the cryptographic design
of WireGuard. We begin by describing the secure channel
component, then the extensions WireGuard makes for denial-of-
service and stealthy operation. We end the section by detailing
the concrete cryptographic algorithms used by WireGuard and
the list of informal security goals it seeks to achieve.

A. Secure Channel Protocol: Noise IKpsk2

Noise [7] is a framework for building two-party crypto-
graphic protocols that are secure by construction. Using the
building blocks in this framework, a designer can create a new
protocol that matches a desired subset of security guarantees:
mutual or optional authentication, identity hiding, forward
secrecy, etc. The Noise specification also includes a list of
curated pre-defined protocols, with an informal analysis of their
message-by-message security claims. WireGuard instantiates
one of these protocols, which is called IKpsk2, and extends it
to provide further guarantees needed by VPNs.

The secure channel protocol is depicted in Figure 1a, and
the cryptographic computations are detailed in Figure 1b, using
notations similar to [8]. Before the protocol begins, the initiator
i and the responder r are assumed to have exchanged their
long-term static public keys (Spub

i , Spub
r ). Optionally, they may

https://cryptoverif.inria.fr/
https://cryptoverif.inria.fr/WireGuard
https://cryptoverif.inria.fr/WireGuard


Initiator i Responder r

First(Ii, E
pub
i , Spub

i µ , tsµ,mac1,mac2 = 016)

Second(Ir, Ii, E
pub
r , emptyµ,mac1,mac2 = 016)

↪→ ↪→
TransportData(Ii, N

→
1 , P1µ)

� �
TransportData(Ir, N

←
2 , P2µ)

TransportData(Ii, N
→
3 , P3µ)

· · ·

Figure 1a: WireGuard’s protocol messages.

Initiator i Responder r

First(Ii, . . . ,mac1,mac2 = 016)

CookieReply(Ii,nonce, τ µ)

First(Ii, . . . ,mac1,mac2)

(continues with standard handshake)

- - - - - - - - CookieReply - - - - - - - -

Rr ←$ {0, 1}256 (refresh only every 2 minutes)
τ ← mac(Rr, Ai) with Ai = IPi‖Porti

nonce ←$ {0, 1}192

τµ ← xaenc(hash(labelcookie‖Spub
r ),nonce, τ,mac1)

- - - - - - - - Non-zero mac2 - - - - - - - -

mac2 ← mac(τ,msgβ)

Figure 1c: Cookie mechanism under load.

- - - - - - - - First - - - - - - - - - - - - -

Epub
i : (Epriv

i , Epub
i )←$ keygen()

C0 ← hash(protocol_name)

H0 ← hash(C0‖prologue)
H1 ← hash(H0‖Spub

r )

C1 ← hkdf1(C0, E
pub
i )

H2 ← hash(H1‖Epub
i )

C2‖k1 ← hkdf2(C1, dh(E
priv
i , Spub

r ))

Spub
i µ : Spub

i µ ← aenc(k1, 0, S
pub
i , H2)

H3 ← hash(H2‖Spub
i µ )

C3‖k2 ← hkdf2(C2, dh(S
priv
i , Spub

r ))

tsµ : tsµ ← aenc(k2, 0, timestamp(), H3)

H4 ← hash(H3‖tsµ)
mac1 : mac1 ← mac(hash(labelmac1‖Spub

r ),msgα)

- - - - - - - - Second - - - - - - - - - - - -

Epub
r : (Epriv

r , Epub
r )←$ keygen()

C4 ← hkdf1(C3, E
pub
r )

H5 ← hash(H4‖Epub
r )

C5 ← hkdf1(C4, dh(E
priv
r , Epub

i ))

C6 ← hkdf1(C5, dh(E
priv
r , Spub

i ))

C7‖π‖k3 ← hkdf3(C6, psk)

H6 ← hash(H5‖π)
emptyµ : emptyµ ← aenc(k3, 0, empty, H6)

H7 ← hash(H6‖emptyµ)

mac1 : mac1 ← mac(hash(labelmac1‖Spub
i ),msgα)

- - - - - - - - Key Derivation - - - - - - - -

T→‖T← ← hkdf2(C7, empty)

- - - - - - - - TransportData - - - - - - - - -

P1µ ← aenc(T→, N→1 = 0, P1, empty)

P2µ ← aenc(T←, N←2 = 0, P2, empty)

P3µ ← aenc(T→, N→3 = 1, P3, empty)

Figure 1b: Cryptographic Computations for Protocol Messages.

Figure 1: (a) An overview of WireGuard’s main protocol messages; (b) the cryptographic computations used to create these
messages; they need to be adapted accordingly for the receiving side; and (c) the cookie mechanism used by WireGuard to
protect hosts against Denial-of-Service attacks. We write xµ for a variable containing an encryption of x; xµ is just a variable
identifier. msgα refers to all the bytes of a message up to but not including mac1, msgβ is the same but including mac1.
Session key derivation takes places after the second protocol message, symbolised by ↪→, at which point the initiator can send
messages. The end of the handshake is symbolised by�, after which transport data messages can be sent in both directions. The
cookie mechanism is depicted in one direction, initiator to responder, but can actually be used by either initiator or responder,
whichever is under load.

have also established a pre-shared symmetric key (psk ); if this
key is absent it is set to a key-sized bitstring of zeros.

Message Exchange. The protocol begins when i sends the
first handshake message to r, which includes the following
components:
• Ii: a fresh session identifier, generated by i,
• Epub

i : a fresh ephemeral public key, generated by i,
• Spub

i µ : i’s static public key, encrypted for r,
• tsµ: a timestamp, encrypted with a key that can be

computed only by i and r, and
• mac1,mac2: message authentication codes (see §II-B).

In response, r sends the second handshake message containing:
• Ii: i’s session identifier,
• Ir: a fresh session identifier, generated by r,
• Epub

r : a fresh ephemeral public key, generated by r,
• emptyµ: an empty bytestring encrypted with a key that

can be computed only by i and r, and
• mac1,mac2: message authentication codes (see §II-B).
The encrypted payloads in the two messages serve as

authenticators: by computing the corresponding encryption
key, each party proves that it knows the private key for its
static public key. The encryption key for the second message



also requires knowledge of the optional psk providing an
additional authentication guarantee. The two ephemeral keys
add fresh session-specific key material that can be used to
compute (forward) secret session keys known only to i and r.

At the end of these two messages, i and r derive authenti-
cated encryption keys (T→, T←) that can be used to transport
IP traffic in the two directions. Importantly, i sends the first
transport message, hence confirming the successful completion
of the handshake to r, before r sends it any encrypted traffic.
Each of these transport messages includes:

• Ii or Ir: the recipient’s session identifier,
• N←j or N→j : the current message counter,
• Pj : an IP datagram, encrypted under the traffic key.

Cryptographic Computations. Figure 1b describes how each
of these message components and traffic keys are computed.
As the handshake proceeds, i and r compute a sequence of
transcript hashes (H0, H1, . . . ,H7) that hashes in all the public
data used in the two handshake messages, including:

• protocol_name, prologue: strings identifying the protocol,
• Epub

i , Epub
r : both ephemeral public keys,

• Spub
r , Spub

i µ : both static public keys, but with the initiator’s
key in encrypted form,

• tsµ, emptyµ: both encrypted handshake payloads, and
• π: an identifier derived from the pre-shared key.

These transcript hashes serve as unique identifiers for the
current stage of the session. In particular, no two completed
WireGuard sessions should have the same H7.

Both parties also derive a sequence of chaining keys
(C0, C1, . . . , C7) by mixing in all the key material, including:

• protocol_name, Epub
i , Epub

r ,
• dh(Epriv

i , Spub
r ) = dh(Spriv

r , Epub
i ): the ephemeral-static

Diffie-Hellman shared secret computed using the initiator’s
ephemeral key (named first in ephemeral-static) and the
responder’s static key (named second in ephemeral-static),

• dh(Spriv
i , Spub

r ) = dh(Spriv
r , Spub

i ): the static-static
shared secret,

• dh(Epriv
i , Epub

r ) = dh(Epriv
r , Epub

i ): the ephemeral-
ephemeral shared secret,

• dh(Spriv
i , Epub

r ) = dh(Epriv
r , Spub

i ): the static-ephemeral
shared secret, and

• psk : the (optional) pre-shared key.

The function dh is the elliptic curve scalar multiplication, taking
a private key and a public key as argument, permitting the
computation of a shared secret [16]. In the preceding list,
the initiator uses the first function call, and the responder the
second one, respectively.

The protocol uses all four combinations of static and
ephemeral Diffie-Hellman shared-secret computations to max-
imally protect against the compromise of some of these
keys. The psk also serves as a defensive countermeasure
against quantum adversaries who may be able to break the
Diffie-Hellman construction, but not hkdf. Hence, by using a
frequently updated psk , WireGuard users can protect current
sessions against future quantum adversaries.

Each chaining key is mixed into the next chaining key via
an hkdf key derivation that also outputs encryption keys as
needed. This chain of key derivations outputs two encryption
keys (k1, k2) for the first handshake message, an encryption
key (k3) and a PSK identifier (π) for the second message, and
traffic keys (T←, T→) for all subsequent transport messages.

To encrypt each message, WireGuard uses an authenticated
encryption scheme with associated data (AEAD) that takes a
key, a counter, a plaintext (padded up to the nearest blocksize)
and an optional hash value as associated data. The encryptions
in the handshake messages use the current transcript hash
(H2, H3, H6) as associated data, which guarantees that the
two participants have a consistent session transcript. Transport
messages use an empty string as associated data. The message
counter is initially set to 0 for each AEAD key and incremented
by 1 every time the key is reused.

Relationship with IKpsk2. The secure channel protocol
described above is a direct instantiation of Noise IKpsk2, with
five notable differences. First, WireGuard adds local session
identifiers (Ii, Ir) for the initiator and responder. Second,
WireGuard fixes the payload of the first message to a timestamp,
and the one of the second message to the empty string. Third,
WireGuard stipulates that the first traffic message is sent from
the initiator to the responder. Fourth, WireGuard excludes
zero Diffie-Hellman shared secrets to avoid points of small
order, while Noise recommends not to perform this check.
Fifth, WireGuard adds two message authentication codes to the
handshake messages, to provide stealth and to protect against
DoS, as described in the next section. We also observe that
although this protocol is superficially similar to other popular
Noise protocols like IK (which is used in WhatsApp), there
are important differences between these variants and a proof
for one does not translate to the other.

B. Extensions for Stealth and Denial-of-Service

A VPN protocol operates at a low-level in the networking
stack and hence needs to not only protect against cryptographic
attacks, but also real-world network-level attacks such as denial
of service (DoS). Indeed, a cryptographic protocol like IKpsk2
that needs to perform two expensive Diffie-Hellman operations
before it can authenticate a handshake message is even more
vulnerable to DoS: an adversary can send bogus messages
that tie up computing resources on the recipient. A further
security goal for WireGuard is that its VPN endpoints should
be stealthy, in the sense that it should not be possible for a
network adversary to blindly scan for WireGuard services.

To support stealthy operation, WireGuard endpoints do not
respond to any handshake message unless the sender can prove
that it knows the static public key of the recipient. This proof
is incorporated in the mac1 field included in each handshake
message, which contains a message authentication code (MAC)
computed over the prefix of the current handshake message up
to but not including mac1, using a MAC key derived from the
recipient’s static public key. The recipient verifies this MAC
before processing the message, and stays silent if the MAC
fails. Hence, a network adversary who does not know the



public key cannot detect whether WireGuard is running on a
machine, and at the same time cannot force the recipient to
perform two finally useless Diffie-Hellman operations.

To protect more actively against DoS, WireGuard incorpo-
rates a cookie-based protocol (depicted in Figure 1c) that a host
can use when it is under load. For example, if the responder
suspects it is under a DoS attack, it can refuse to process the
first handshake message and instead send back an initiator-
specific fresh cookie (τ ) that is computed from a frequently
rotated secret key (Rr) (known only to the responder) and
the initiator’s IP address (IPi) and source port (Porti). The
responder encrypts this cookie for the initiator, using a key
derived from the initiator’s static public key, a fresh nonce,
and the mac1 field of the first message as associated data.

The initiator decrypts τ and then retries the handshake by
sending the first message again, but this time with a second
field mac2 that contains a MAC over the full message up to and
including mac1, using τ as the MAC key. After verifying this
MAC, the responder continues with the standard handshake.

However, to obtain τ , an adversary must be able to read
messages on the network path between the initiator and
responder and must also know the initiator’s static key (which
is never sent in the clear by the protocol). And even if
the adversary has both these capabilities, it is required to
perform session specific cryptographic computations for every
handshake message it sends to the responder, significantly
limiting its ability to mount a DoS attack. Hence, this cookie
protocol protects the recipient from brute-force network attacks.

Note that the mac2 field is included in both handshake
messages, and hence can be used in both directions, to protect
both the initiator and responder from DoS attacks.

The two MACs are WireGuard-specific mechanisms which
are not present in IKpsk2. Since they do not use any of the
session keys (or hashes or chaining keys) that are used in
IKpsk2, adding these mechanisms should, in principle, not
affect the security of the secure channel protocol. However,
since the static public keys of the two hosts are used in the
two MACs, we need to carefully study their impact on the
identity-hiding guarantees of IKpsk2.

C. Instantiating the Cryptographic Algorithms

WireGuard uses a small set of cryptographic constructions
and instantiates them with modern algorithms, carefully chosen
to provide strong security as well as high performance:
• dh: all Diffie-Hellman operations use the Curve25519

elliptic curve [16];
• hash: the BLAKE2s hash function [17];
• aenc: authenticated encryption for handshake and traffic

message uses the AEAD scheme ChaCha20Poly1305 [18],
using the message counter as nonce;

• xaenc: cookie encryption uses an extended AEAD con-
struction using XChaCha20Poly1305, which incorpo-
rates a 192-bit random nonce [19] into the standard
ChaCha20Poly1305 construction;

• mac: all MAC operations use the keyed MAC variant of
the BLAKE2s hash function;

• hkdfn: all key derivations use the HKDF construction [20],
using BLAKE2s as the underlying hash function.

The values labelmac1 and labelcookie are distinct constants.

D. Security Goals, Informally

Using the mechanisms described in this section, WireGuard
seeks to provide the following set of strong security guaran-
tees, inheriting the security claims of Noise IKpsk2 [7] and
extending them with the additional DoS and stealth goals of
WireGuard [8]. In the following, we use honest to refer to a
party that follows the protocol specification, and dishonest to
a party that doesn’t, i.e. that is controlled by the adversary.
Most properties are defined to hold within a clean session; we
define this notion formally in Section §V-A.
• Correctness: If an honest initiator and an honest respon-

der complete a WireGuard handshake and the messages
are not altered by an adversary, then the transport data
keys (T→, T←) and the transcript hash H7 are the same
on both hosts.

• Secrecy: If a transport data message P is sent over a
tunnel between two honest hosts, then this message is
kept confidential from the adversary. Furthermore, the
traffic keys for this tunnel are also confidential.

• Forward Secrecy: Secrecy for a session holds even if
both the static private keys (Spriv

i , Spriv
r ) and the pre-

shared key (psk ) become known to the adversary, but only
after the session has been completed and all its traffic
keys and chaining keys are deleted by both parties.
Secrecy also holds even if the static and ephemeral keys
are compromised (e.g. by a quantum adversary), as long
as the pre-shared key is not compromised.

• Mutual Authentication: If an honest initiator (resp.
responder) completed a handshake (ostensibly) with an
honest peer, then that peer must have participated in this
handshake. Moreover, if a host A receives a plaintext
message over a WireGuard tunnel that claims to be from
host B, then B must have (intentionally) sent this message
to A.

• Resistance against Key Compromise Impersonation
(KCI): The recipient of a message can authenticate the
message’s sender even if the recipient’s static key is
compromised.

• Resistance against Identity Mis-Binding: If two honest
parties derive the same traffic keys in some WireGuard
session, then they agree on each other’s identities, even if
one or both of them have been interacting with a dishonest
party or an honest party with compromised keys. This
property is also called resistance against unknown key-
share attacks.

• Resistance against Replay: Any protocol message sent
may be accepted at most once by the recipient.

• Session Uniqueness: There is at most one honest initiator
session and at most one honest responder session for a
given traffic key. Similarly, there is at most one honest
initiator session and at most one honest responder session
for given handshake messages.



• Channel Binding: Two sessions that have the same final
session transcript hash H7 share the same view and the
same session keys.

• Identity Hiding: Just by looking at the messages trans-
mitted over the network, a passive adversary cannot infer
the static keys involved in a session. (However, these
identities are not forward secret: If the responder’s static
key gets compromised, the adversary can later decrypt
the initiator’s static public key that was transmitted in the
first message.)

• DoS Resistance: The adversary cannot have a message
accepted by a recipient under load without having first
made a round trip with that recipient. In practice, this
means that the adversary has to be at the claimed
address. Because we assume that the adversary controls
the network, we cannot prove more than enforcing a round
trip.

The security goals above are stated in terms of completed
WireGuard sessions, with most security guarantees only apply-
ing after the third message, when both initiator and responder
start freely sending and receiving data. In particular, the first
transport data message (i.e. the third message) serves as key
confirmation to the responder, and is needed to prove that the
initiator has control over its ephemeral key. This is why, in
WireGuard, the responder does not send any data until it sees
this third message. In the rest of this paper, we investigate
whether WireGuard achieves the goals set out above.

III. CRYPTOGRAPHIC ASSUMPTIONS

This section presents the assumptions that we make on
the cryptographic primitives used by WireGuard. For most
primitives, the desired assumption is already present in the
library of primitives of CryptoVerif, so we just need to call a
macro to use that assumption. Still, we had to design a new
model for Curve25519, detailed below.

A. Random Oracle Model

We assume that BLAKE2s is a random oracle [21]. This
assumption is justified in [22] using a weak ideal block cipher.

B. IND-CPA and INT-CTXT for AEAD

We assume that the ChaCha20Poly1305 AEAD scheme [18]
is IND-CPA (indistinguishable under chosen plaintext attacks)
and INT-CTXT (ciphertext integrity) [23], provided the same
nonce is never used twice with the same key. IND-CPA means
that the adversary has a negligible probability of distinguishing
encryptions of two distinct messages of the same length that it
has chosen. INT-CTXT means that an adversary with access to
encryption and decryption oracles has a negligible probability of
forging a ciphertext that decrypts successfully and has not been
returned by the encryption oracle. These properties are justified
in [24], assuming ChaCha20 is a PRF (pseudo-random function)
and Poly1305 is an ε-almost-∆-universal hash function. The
latter property is shown to hold in [25].

C. Curve25519 and Gap Diffie-Hellman
WireGuard uses the elliptic curve Curve25519 [16] for Diffie-

Hellman key exchanges. This curve is a group G of order kq
where k = 8 (cofactor) and q is a large prime. The base point g
has prime order q; we denote by Gsub the prime order subgroup
generated by g. In WireGuard and typical implementations of
Curve25519 as specified by RFC 7748 [16], the incoming
public keys are not verified, so they may be any element of
G and may not belong to Gsub , and all exponents are non-
zero multiples of k modulo kq. For each public key X in
G, there are k public keys Y in G such that Xk = Y k and
only one of these public keys is in Gsub . (We write point
multiplication exponentially.) We say that public keys X and
Y such that Xk = Y k are equivalent, because they yield the
same Diffie-Hellman shared secrets: for any exponent z = kz′,
Xz = Xkz′ = Y kz

′
= Y z . Moreover, the public keys may be

0, the neutral element of G and Gsub , and 0x = 0 for all x.
While most proofs of Diffie-Hellman key agreements assume

a prime order group, that assumption is not correct for most
implementations of Curve25519. For instance, the identity mis-
binding issue that we discuss in Section VI would not appear
in a prime order group. Therefore, we need to provide a new
model that takes into account the properties mentioned above.

The main idea of our model is to rely on a Diffie-Hellman
assumption in the prime order subgroup Gsub , and so to work
as much as possible with elements in Gsub . We rewrite the
computations in G into computations in Gsub by first raising the
public keys to the power k, and we rely on standard properties
of prime order groups for Gsub .

In CryptoVerif, we first define the following types:

type G [bounded, large].
type Gsub [bounded, large].
type Z [bounded, large,nonuniform].

The type G represents the group G; it is bounded because it is
represented by bitstrings of bounded length, and large because
collisions between randomly chosen elements in G have a
negligible probability. Similarly, the type Gsub represents the
group Gsub , and the type Z corresponds to non-zero integers
multiple of k modulo kq. When honest participants choose
exponents, they are chosen uniformly in a subset of Z: they are
of the form 2254+8n for n ∈ {0, . . . , 2251−1} and kq > 2255.
Therefore, the distribution for choosing random exponents
inside the whole Z is non-uniform, which is indicated by the
annotation nonuniform.

We define functions:

fun exp(G,Z) : G.
fun mult(Z,Z) : Z.
equation builtin commut(mult).

We have exp(X, y) = Xy, and mult is the product modulo
kq, in Z. Since its two arguments are non-zero multiples of
k, so is its result, and it is in Z. The last line states that the
function mult is commutative. (We could add associativity and
other properties, like existence of inverses, but commutativity
is typically sufficient to prove security of basic Diffie-Hellman



key exchanges. More algebraic properties may be needed to
prove group Diffie-Hellman protocols, for instance. Note that
not modelling these does not restrict the adversary in the
computational model.)

fun pow_k(G) : Gsub .
fun exp_div_k(Gsub , Z) : Gsub .
fun Gsub2G(Gsub) : G [data].
equation forall x : Gsub , x

′ : Gsub ;
(pow_k(Gsub2G(x)) = pow_k(Gsub2G(x′))) = (x = x′).

We have pow_k(X) = Xk, and it is in Gsub for all X in G.
We have exp_div_k(X, y) = Xy/k. This function operates on
Gsub and is convenient since the exponents in Z are always
multiples of k. The function Gsub2G is the identity from Gsub

to G; it is necessary to convert elements of type Gsub to type G.
The annotation data tells CryptoVerif that it is injective. The
last equation says that pow_k is injective when restricted to
the subgroup Gsub , of order q. Indeed, k is prime to q, so it
can be inverted modulo q.

We also define constants:

const zero : G. const zerosub : Gsub .
equation zero = Gsub2G(zerosub).
const g : G. const g_k : Gsub .
equation pow_k(g) = g_k . equation g_k 6= zerosub .

The neutral element is zero as an element of G and zerosub

as an element of Gsub . The base point is g, and g_k = gk.
We also state equations that hold on these functions:

equation forall X : G, y : Z;
exp(X, y) = Gsub2G(exp_div_k(pow_k(X), y)).

(1)

equation forall X : Gsub , y : Z, z : Z;
exp_div_k(pow_k(Gsub2G(exp_div_k(X, y))), z) =
exp_div_k(X,mult(y, z)).

(2)

Equation (1) says that Xy = (Xk)y/k and Equation (2) that
((Xy/k)k)z/k = Xy.z/k. Equation (2) applies in particular
to simplify exp(exp(X, y), z) after applying (1): exp(exp(X,
y), z) = Gsub2G(exp_div_k(pow_k(Gsub2G(exp_div_k(
pow_k(X), y))), z)) = Gsub2G(exp_div_k(pow_k(X),
mult(y, z))). These equations are used by CryptoVerif
as rewrite rules, to rewrite the left-hand side into the
right-hand side. They allow rewriting computations in the
group G into computations that happen in the subgroup
Gsub , after raising the public key to the power k. In
particular, exp(g, y) = Gsub2G(exp_div_k(g_k , y)) and
exp(exp(g, y), z) = Gsub2G(exp_div_k(g_k ,mult(y, z))).

The next equation allows CryptoVerif to simplify equality
tests with the neutral element, which are used by some
protocols, including WireGuard, to exclude that element from
the allowed public keys.

equation forall X : Gsub , y : Z;
(exp_div_k(X, y) = zerosub) = (X = zerosub).

When y ∈ Z, y = ky′ for some y′ not multiple of q, so y′

is invertible modulo q. Therefore, Xy/k = 0 if and only if
Xy′ = 0 if and only if (Xy′)1/y

′
= 01/y

′
, that is, X = 0.

Other properties serve to simplify equalities between Diffie-
Hellman values in Gsub , with the goal of showing that these
equalities are false. When the Diffie-Hellman shared secrets
are passed to a random oracle, these equality tests appear
after using the random oracle assumption: we compare the
arguments of each call to the random oracle with arguments
of previous calls, to know whether the random oracle should
return the result of a previous call.

equation forall X : Gsub , X
′ : Gsub , y : Z;

(exp_div_k(X, y) = exp_div_k(X ′, y)) = (X = X ′).
(3)

equation forall X : Gsub , y : Z, z : Z;
(exp_div_k(X, y) = exp_div_k(X, z)) =
((y = z) ∨ (X = zerosub)).

(4)

collision x
R← Z; forall X : Gsub , Y : Gsub ;

return(exp_div_k(X,x) = Y ) ≈Pcoll1rand(Z)

return((X = zerosub) ∧ (Y = zerosub))
if X independent-of x ∧ Y independent-of x.

(5)

Equation (3) holds because y = ky′ for some y′ invertible
modulo q as shown above. In particular, using (1), injectivity
of Gsub2G , and (3), exp(X, y) = exp(X ′, y) simplifies into
pow_k(X) = pow_k(X ′). In contrast, in a prime order group,
exp(X, y) = exp(X ′, y) implies X = X ′. This is the reason
why, in the identity mis-binding issue of Section VI, we fail to
prove equality of the public keys X = X ′ and can only prove
pow_k(X) = pow_k(X ′).

Equation (4) holds because, when X ∈ Gsub is different
from 0, X is a generator of Gsub , so all elements Xy′ for
y′ ∈ [1, q − 1] are distinct, hence all elements Xy/k as well.

In the collision statement (5), Pcoll1rand(Z) is the prob-
ability that a randomly chosen element x in Z is equal to
an element of Z independent of x. For Curve25519, since
random exponents are chosen uniformly among a set of 2251

elements, Pcoll1rand(Z) = 2−251. Statement (5) means that
the probability of distinguishing exp_div_k(X,x) = Y from
(X = zerosub) ∧ (Y = zerosub) is at most Pcoll1rand(Z) as-
suming X is chosen randomly in Z (x R← Z) and X and Y are
independent of x. Indeed, suppose that exp_div_k(X,x) = Y
differs from (X = zerosub) ∧ (Y = zerosub). If X = 0, then
Xx/k = 0, so both expressions reduce to Y = 0, so they
cannot differ. Therefore, X 6= 0. The second expression is
then false. Moreover, X is a generator of Gsub , so Y = Xy

for some y independent of x. The equality Xx/k = Y = Xy

holds if and only if x/k = y mod q so x = ky mod kq
with ky independent of x, so this happens with probability
Pcoll1rand(Z). So the first expression is true with probability
Pcoll1rand(Z), and the two expressions differ with that prob-
ability. The support for side-conditions in collision statements
is an extension of CryptoVerif that we implemented.

Our model includes a few other properties, detailed and
justified in the long version of the paper. In particular, it
includes properties for simplifying equalities between products
in Z. Such equalities appear for instance after simplification
of equalities exp_div_k(g_k ,mult(x, y)) = exp_div_k(g_k ,
mult(x′, y′)). For instance, we model that mult(x, y) =



mult(x, y′) if and only if y = y′ and that, when x is chosen
randomly in Z and y and z are independent of x, we have
mult(x, y) = z with probability at most Pcoll1rand(Z).

This model is included as a macro in CryptoVerif’s library
of cryptographic primitives, so that it can easily be reused. It
also applies to other curves that have a similar structure, for
instance Curve448, which is also used by the Noise framework,
and by other protocols like TLS 1.3.

We assume that the prime order subgroup Gsub satisfies the
gap Diffie-Hellman (GDH) assumption [26]. This assumption
means that given a generator g, ga, and gb for random a, b, the
adversary has a negligible probability to compute gab, even
when the adversary has access to a decisional Diffie-Hellman
oracle, which tells him given G,X, Y, Z whether there exist
x, y such that X = Gx, Y = Gy , and Z = Gxy . It was already
modelled in CryptoVerif.

In contrast, in their cryptographic proof of WireGuard,
Dowling and Paterson [12] use the PRF-ODH assumption. We
use the GDH and random oracle assumptions instead because
CryptoVerif cannot currently use the PRF-ODH assumption in
scenarios with key compromise. While in principle the PRF-
ODH assumption is weaker, Brendel et al. [27] show that it is
implausible to instantiate the PRF-ODH assumption without a
random oracle, so our assumptions and the one of [12] are in
fact fairly similar.

IV. INDIFFERENTIABILITY OF HASH CHAINS

Before modelling WireGuard, we first present a different,
equally precise, formulation of hash chains that is more
amenable to a mechanised proof in CryptoVerif. Indeed,
WireGuard makes many hash oracle calls to BLAKE2s, and
at each call to a random oracle, CryptoVerif tests whether
the arguments are the same as in any other previous random
oracle call (to return the previous result of the random oracle).
Therefore, using directly BLAKE2s as a random oracle would
introduce a very large number of cases and yield exaggeratedly
large cryptographic games. In order to avoid that, we simplify
the random oracle calls using indifferentiability lemmas. These
lemmas are not specific to WireGuard and can be used to
simplify sequences of random oracle calls in other protocols,
including other Noise protocols and Signal [6]. In the future,
these lemmas may serve as a basis for an indifferentiability
prover inside CryptoVerif, which would simplify random oracle
calls before proving the protocol.

Specifically, WireGuard uses HKDF in a chain of calls to
derive symmetric keys at different stages of the protocol:

C0 ← const C5 ← hkdf1(C4, v4)

C1 ← hkdf1(C0, v0) C6 ← hkdf1(C5, v5)

C2‖k1 ← hkdf2(C1, v1) C7‖π‖k3 ← hkdf3(C6, v6)

C3‖k2 ← hkdf2(C2, v2) T→‖T← ← hkdf2(C7, v7)

C4 ← hkdf1(C3, v3)

We show, using the indifferentiability lemmas of this section,
that hkdfn is indifferentiable from a random oracle, and that
the chain above is indifferentiable from:

k1 ← chain′1(v0, v1)

k2 ← chain′2(v0, v1, v2) (6)

π‖k3‖T→‖T← ← chain′6(v0, v1, v2, v3, v4, v5, v6)

Thus, we obtain a much simpler computation, which we use
in our CryptoVerif model of WireGuard. Previous analyses
of WireGuard did not use such a result because they do not
rely on the random oracle model: [12] relies on the PRF-ODH
assumption, [11] uses the symbolic model.

A. Definition of Indifferentiability

Indifferentiability can be defined as follows. This definition
is an extension of [28] to several independent oracles. We give
an asymptotic definition here. In the long version, we give
explicit probabilities and proofs for all results.

Definition 1 (Indifferentiability). Functions (Fi)1≤i≤n with
oracle access to independent random oracles (Hj)1≤j≤m are
indifferentiable from independent random oracles (H ′i)1≤i≤n
if for each value of the security parameter η, there exists
a simulator S that runs in time P1(η) such that for any
distinguisher D that runs in time P2(η),

|Pr[D(Fi)1≤i≤n,(Hj)1≤j≤m = 1]−Pr[D(H′i)1≤i≤n,S= 1]|≤f(η)

where P1 and P2 are polynomials and f is a negligible function.
The simulator S has oracle access to (H ′i)1≤i≤n.

In the game G0 = D(Fi)1≤i≤n,(Hj)1≤j≤m , the distinguisher
interacts with the real functions Fi and the random oracles
Hj from which the functions Fi are defined. In the game
G1 = D(H′i)1≤i≤n,S , the distinguisher interacts with indepen-
dent random oracles H ′i instead of Fi, and with a simulator S,
which simulates the behaviour of the random oracles Hj using
calls to H ′i . Indifferentiability means that these two games are
indistinguishable. We assume that the output length of each
random oracle depends only on the security parameter.

B. Basic Lemmas

In this section, we show several basic indifferentiability
lemmas, which are not specific to WireGuard.

Lemma 1 ([29, Lemma 2]). If H is a random oracle, then
the functions H1, . . . ,Hn defined as H on disjoint subsets
D1, . . . , Dn of the domain D of H are indifferentiable from
independent random oracles, assuming one can determine in
polynomial time to which subset Di an element belongs.

Lemma 2. The concatenation of two independent random
oracles with the same domain is indifferentiable from a random
oracle.

Lemma 3 ([29, Lemma 3]). The truncation of a random oracle
is indifferentiable from a random oracle.

Lemmas 4 and 5 deal with the composition of two ran-
dom oracle calls in sequence; they have been proved using



CryptoVerif. We extended CryptoVerif to be able to prove
indistinguishability between two games given by the user. With
this extension, CryptoVerif shows the indistinguishability result
between the games G0 and G1 described in Section IV-A,
which implies the indifferentiability result.

Lemma 4. If H1 : S1 → S′1 and H2 : S′1 × S2 → S′2 are
independent random oracles, then H3 defined by H3(x, y) =
H2(H1(x), y) is indifferentiable from a random oracle.

Lemma 5. If H1 : S1 → S′1 and H2 : S′1 × S1 → S′2 are
independent random oracles, then H ′1 = H1 and H ′2 defined by
H ′2(x) = H2(H1(x), x) are indifferentiable from independent
random oracles.

C. Indifferentiability of HKDF

The hkdf key derivation function is defined as follows [20]:

hkdfn(salt , key , info) = k1‖ . . . ‖kn where
prk = hmac(salt , key)

k1 = hmac(prk , info‖i0)

ki+1 = hmac(prk , ki‖info‖i+ i0) for 1 ≤ i < n

where n ≤ 255, and i0 = 0x01 and i are of size 1 byte. In
WireGuard, info is always empty, so we omit it in Section II.

We suppose that hmac is a random oracle, and we show
that hkdfn is indifferentiable from a random oracle, with
the additional assumption that the calls to hmac use disjoint
domains. (We show that this assumption is necessary and give
a full proof of the result in the long version of the paper [15].)
Let S, K, and I be the sets of possible values of salt , key ,
and info respectively, and M the output of hmac.

Lemma 6. If hmac is a random oracle and K ∩ (I‖i0 ∪⋃n−1
i=1 M‖I‖i+ i0) = ∅ then hkdfn with domain S × K × I

is indifferentiable from a random oracle.

This result extends the proof given for hkdf2 in [29,
Lemma 1]. Moreover, our proof is modular and partly made
using CryptoVerif, thanks to the basic lemmas of Section IV-B.

Proof sketch. Since the domains are disjoint, by Lemma 1, the
(n + 1) calls to hmac are indifferentiable from independent
random oracles H0, . . . ,Hn. The constant i + i0 can be
removed from the arguments of Hi+1 since it is fixed for
a given Hi+1. By Lemma 5, the computation of k2 =
H2(H1(prk , info), prk , info) is indifferentiable from a random
oracle k2 = H ′2(prk , info). Applying this reasoning n times,
the computation of ki for 1 ≤ i ≤ n is indifferentiable from
independent random oracles ki = H ′i(prk , info). By Lemma 2,
concatenation of H ′i for 1 ≤ i ≤ n is indifferentiable from a
random oracle H , so hkdfn(salt , key , info) = k1‖ . . . ‖kn =
H(prk , info), where prk = H0(salt , key). By Lemma 4,
we conclude that hkdfn is indifferentiable from a random
oracle.

D. Indifferentiability of a Chain of Random Oracle Calls

In this section, we prove the indifferentiability of a chain of
random oracle calls defined as follows.

Definition 2 (Chain). Let m ≥ 1 be a fixed integer, let C and
Cj with 0 ≤ j ≤ m+ 1 be bitstrings of length l′, let vj with
0 ≤ j ≤ m be bitstrings of arbitrary length, let l be the
length of the output of H(Cj , vj), and let rj with 0 ≤ j ≤ m
be bitstrings of length (l − l′). (l and l′ are functions of the
security parameter.) We define the functions chainn, 0 ≤ n < m
and the function chainm in the following way:

chainn(v0, . . . , vn) =
C0 = const
for j = 0 to n do Cj+1‖rj = H(Cj , vj)
return rn

(7)

chainm(v0, . . . , vm) =
C0 = const
for j = 0 to m do Cj+1‖rj = H(Cj , vj)
return Cm+1‖rm

(8)

The functions chainn, n < m, have an output of length (l− l′),
and the output length of chainm is l.

Lemma 7. If H is a random oracle, then chainn, for n ≤ m,
are indifferentiable from independent random oracles.

We could probably prove this lemma for small values of
m using CryptoVerif, but the generic result requires a manual
proof because CryptoVerif does not support loops.

E. Application to WireGuard

WireGuard employs BLAKE2s [30] both directly as the
function hash and indirectly as hash function in hmac and
thus also in hkdf. The domains of these two uses are disjoint
in WireGuard, as shown by an easy inspection of the length
of the arguments. Then by Lemma 1, we can consider two
independent random oracles, hash for the direct uses and hash′

for the uses via hkdf. Since hash is a random oracle, it is a
fortiori collision-resistant. We use that assumption for hash in
our CryptoVerif proof.

Since hash′ is a random oracle, hmac-hash′ is indiffer-
entiable from a random oracle by [31, Theorem 3]. Using
Lemma 6, hkdfn is indifferentiable from a random oracle.
Since Lemma 7 assumes a chain of calls to the same hkdfn
function, we rewrite the chain of hkdf calls in WireGuard to
use only calls to hkdf3, as 3 is the maximum number of outputs
needed, and discard the unused suffix: by definition of hkdfn,
this yields the same result. By Lemma 7, this computation can
be replaced with:

k1‖_ ← chain1(v0, v1)

k2‖_ ← chain2(v0, v1, v2)

π‖k3 ← chain6(v0, v1, v2, v3, v4, v5, v6)

T→‖T←‖_ ← chain7(v0, v1, v2, v3, v4, v5, v6, v7)

where ‖ concatenates blocks of length the output length
of hmac, _ is an unnamed block, and chaini for i ≤ 7
are independent random oracles. (The result of chaini for
i = 0, 3, 4, 5 is not used.) The output of the random oracles
can be truncated by Lemma 3 to avoid having to discard parts
of the output. Moreover, in WireGuard, v7 = empty , so T→



and T← only depend on v0, . . . , v6, as do π and k3 in the
previous line. By Lemma 2, we concatenate chain6(. . . ) and
chain7(. . . , empty), and thus obtain (6). The long version of
the paper details this proof.

V. MODELLING WIREGUARD

This section presents our model of the WireGuard protocol
in CryptoVerif. We prove security properties for that model in
Section VI.

A. Execution Environment

In our model, we consider two honest entities A and B. In
the initial setup, we generate the static key pairs for these two
entities and publish their public keys, so that the adversary
can use them. After this setup, we run parallel processes that
represent a number of executions of A and B polynomial in
the security parameter.

The entities A and B can play both the initiator and
responder role. These two entities can run WireGuard between
each other, but also with any number of dishonest entities
included in the adversary: for each session, the adversary sends
to the initiator its partner public key, that is, the public key of
the entity with which it should start a session; the adversary
sends to the responder the set of partner public keys that it
accepts messages from.

This setting allows us to prove security for any sessions
between two honest entities, in a system that may contain
any number of (honest or dishonest) other entities. We prove
security for sessions in which A is the initiator and B is the
responder. We do not explicitly prove security for sessions in
which B is the initiator and A is the responder, but the same
security properties hold by symmetry.

The processes for the entities A and B model the entire
protocol, including the first two protocol messages, the key
confirmation message from the initiator, and then a number of
transport data messages polynomial in the security parameter,
in both directions between initiator and responder. The model
also includes random oracles, and we allow the adversary to
call any of the random oracles that we use.

We consider 3 variants of this model:
Variant 1. This variant does not rely at all on the pre-shared

key for proving security, so A and B receive a pre-shared key
chosen by the adversary at the beginning of each execution.
That allows the adversary to model both the absence of a
pre-shared key (by choosing the value 0) or a compromised
pre-shared key of its choice.

We model the dynamic compromise of the private static
key of A (resp. B) by a process that the adversary can call at
any time and that returns the private key of A (resp. B) and
records the compromise by defining a particular variable, so
that it can be tested in the security properties that we consider.

In WireGuard, four Diffie-Hellman operations and the pre-
shared key contribute to the session keys. If the pre-shared
key is not used or compromised, security is based on the four
Diffie-Hellman operations. If one of them cannot be computed
by the adversary, then the session keys are secret. Therefore,

we consider all combinations of compromises but those where
both keys on one side are compromised, that is:

1) A and B’s private static keys may be dynamically
compromised;

2) A’s private static key may be dynamically compromised
and B’s private ephemeral key is compromised (by
sending it to the adversary as soon as it is chosen);

3) B’s private static key may be dynamically compromised
and A’s private ephemeral key is compromised;

4) A and B’s private ephemeral keys are compromised.

We prove most security properties for clean sessions, that
is, intuitively, sessions between honest entities; cleanliness
is the minimal assumption needed to hope for security. A
session of A is clean when either B’s private static key is not
compromised yet and A’s partner public key is equivalent to
B’s static public key, or B’s private static key is compromised
and the public ephemeral key received by A is equivalent to
a non-compromised ephemeral generated by B. B’s session
cleanliness is defined symmetrically. Intuitively, when B’s
private static key is not compromised, A can rely on that
key to authenticate B, so A thinks she talks to B when she
runs a session with B’s public key. We consider a public key
equivalent to B’s public key rather than equal to B’s public
key to strengthen the properties: the authentication property
shown in Section VI then implies that when A successfully
runs a session with a partner public key equivalent to B’s
public key, then these two keys are in fact equal. (We find
an interesting scenario concerning equivalent public keys and
identity mis-binding with variant 3 of our model, we discuss
it in §VI.) When B’s private static key is compromised, A
cannot authenticate B, but we can still prove security when
the ephemeral key received by A has been generated by B.
Like for static keys, when A successfully runs a session with
a received ephemeral equivalent to an ephemeral generated by
B, then these two ephemerals are in fact equal. (Instead of
considering compromised ephemeral keys, we could also have
modelled dishonestly generated ephemeral keys. We expect
that some properties shown in §VI, such as session uniqueness,
would not hold in this case.)

Variant 2. This variant relies exclusively on the pre-shared
key for security. In that variant, we consider all private static
and ephemeral keys as always compromised. We choose a
pre-shared key randomly in the initial setup, and run sessions
between A and B with that pre-shared key. In this model, A’s
partner public key is always B’s public key and symmetrically,
and these sessions between A and B are always considered
clean. The adversary can run A’s and B’s sessions with other
entities since A and B’s private static keys are compromised
and these sessions use a different pre-shared key.

Variant 3. In this variant, all keys are compromised: all
private static and ephemeral keys are always compromised and
the pre-shared key is chosen by the adversary for each session.
This model is useful for proving properties that do not rely
on session cleanliness, that is, properties that hold even for
sessions involving dishonest participants.



With this model, we analyse the whole WireGuard protocol
as it is, tying together the authenticated key exchange and
the transport data phase. A similar approach was chosen by
the creators of the Authenticated and Confidential Channel
Establishment (ACCE) [32] model to analyse TLS. Instead of
reasoning about key indistinguishability, ACCE looks at the
security of the messages exchanged encrypted using the key.
We do the same, for the key confirmation and all subsequent
transport data messages.

In ACCE, the adversary has to choose one clean test session
in which it tries to break security by determining the secret
bit. In all other sessions, it is allowed to reveal the session
keys. In our model, all clean sessions are test sessions, and we
explicitly reveal the session keys in sessions that are not clean.

B. Modelling Tricks

Apart from the HKDF chains where we prove that the way
we model them is indifferentiable from the real protocol in
Section IV, we use the following modelling tricks:

Timestamps. CryptoVerif has no support for time, so instead
of generating the timestamp, we input it from the adversary.
In other words, we delegate the task of timestamp generation
to the adversary. In order to model replay protection for the
first message, the responder stores a global table (that is, a
list) of triples containing the received timestamp, the partner
public key for that session, as well as its own public key.
(This is equivalent to having a distinct table of timestamps
and partner public keys for each responder, represented by its
public key.) The responder rejects the first message when the
triple (received timestamp, partner public key, and responder
public key) is already in the table.

Nonces for the AEAD scheme. The nonces in WireGuard
are computed by incrementing a counter. CryptoVerif has no
support for that, so we receive the desired value of the counter
from the adversary. We guarantee that the same counter is
never used twice in the same session for sending messages by
storing all counters used for sending messages in a table of
pairs (session index, counter), where the session index identifies
the session uniquely: it indicates whether A or B is running,
as initiator or as responder, and contains a unique integer index
for the execution of that entity in that role. This is equivalent
to having a distinct table of counters for each session. The
message is not sent when the adversary provides a counter that
is already in the table. We guarantee that the same counter
is never used twice for receiving messages in the same way,
using a separate table.

MACs. We omit the MACs mac1 and mac2 in our model.
This simplifies the proof but preserves its soundness, since they
can be computed and verified by the adversary: we deliver the
messages without MACs to the adversary, and the adversary
can add the MACs; conversely, the adversary can remove the
MACs before delivering messages to the protocol model. We
let the adversary choose the key Rr that the responder uses
for computing cookies. All other elements needed to compute
the MACs are public: constants and static public keys. We

reintroduce the MACs in a separate model that we use for
proving resistance against DoS.

Importantly, these modelling tricks increase the power of
the adversary: the implementation done in WireGuard is a
particular case of what the adversary can do in our model, in
which the adversary chooses the current time as timestamp,
increases the counter for sending messages at each emission,
accepts incoming counters in a sliding window, and computes
and verifies mac1 and mac2 by itself. As a result, a security
proof in our model remains valid in WireGuard.

VI. VERIFICATION RESULTS

In order to prove authentication properties, we insert
events in our model, to indicate when each message is sent
or received by the protocol. Specifically, we insert events
sent1, sent2, sent_msg_initiator, and sent_msg_responder
just before sending message 1, message 2, and transport
messages on the initiator and responder sides respectively, and
corresponding events rcvd1, rcvd2, rcvd_msg_responder, and
rcvd_msg_initiator when these messages have been received
and successfully decrypted. The event rcvd2 and the events for
transport messages are executed only in clean sessions.

Mutual key and message authentication, resistance
against KCI, resistance against replay from message 2. We
show authentication for all messages starting from the second
protocol message, by proving the following correspondence
properties between events, in the first two variants of our
CryptoVerif model of Section V-A:

inj-event(rcvd2(Spub
r , Epub

i , Spub
i µ , Spub

i , tsµ, ts,

Epub
r , emptyµ, T

→, T←))

⇒ inj-event(sent2(Spub
r , Epub

i , Spub
i µ , Spub

i , tsµ, ts,

Epub
r , emptyµ, T

→, T←)) ,

inj-event(rcvd_msg_responder(

Spub
r , Epub

i , Spub
i µ , Spub

i , tsµ, ts,

Epub
r , emptyµ, T

→, T←, N→, P µ, P ))

⇒ inj-event(sent_msg_initiator(

Spub
r , Epub

i , Spub
i µ , Spub

i , tsµ, ts,

Epub
r , emptyµ, T

→, T←, N→, P µ, P )) ,

We also prove a third query (similar to the second one
above) for transport data messages in the other direction, with
events rcvd_msg_initiator and sent_msg_responder. A proven
correspondence between two injective events (inj-event) means
that each execution of the left-hand event corresponds to a
distinct execution of the right-hand event.

The first query means that, if the initiator session is clean
and the initiator has received the second message, then the
responder sent it, and initiator and responder agree on their
static and ephemeral public keys, session keys, timestamp, and
communicated ciphertexts. This authenticates the responder to
the initiator.

The second and third queries mean that, if the receiver
session is clean and the receiver received a transport packet,



then a sender sent that transport packet, and the receiver
and the sender agree on their static and ephemeral public
keys, session keys, timestamp, sent plaintext, message counter,
and communicated ciphertexts. In particular, for the key
confirmation message, this authenticates the initiator to the
responder. These queries also provide message authentication
for the transport data messages.

All these properties hold when the pre-shared key is not
compromised (variant 2 of Section V-A). They also hold
when neither both Spriv

i and Epriv
i nor both Spriv

r and Epriv
r

are compromised and the receiver session is clean; this is
true, in particular, when the sender’s static private key is not
compromised yet (variant 1 of Section V-A).

The above queries include resistance against replays because
the correspondences are injective: each reception corresponds
to a distinct emission. They also include resistance against KCI
attacks because the rcvd∗ events are issued even if the receiver’s
static key has already been compromised: the receiver session
is still clean in this case. Note that, for the responder, resistance
against KCI attacks only starts after it receives the first data
transport message. Indeed, the first protocol message is subject
to a KCI attack: if the private static key of the responder (Spriv

r )
is compromised, then the adversary can forge the first message
and impersonate the initiator to the responder.

Secrecy and forward secrecy. We show secrecy of transport
data messages in clean sessions by a left-or-right message
indistinguishability game. In the initial setup, we randomly
choose a secret bit. For each transport data message in a clean
session, the adversary provides two padded plaintexts of the
same length, and we encrypt one of them depending on the
value of that bit. CryptoVerif proves the secrecy of that bit, in
variants 1 and 2 of Section V-A, showing that the adversary
cannot determine which of the two plaintexts was encrypted.

The secrecy query includes forward secrecy, because we
allow dynamic compromise of static keys after the session
keys have been established, if the ephemeral key of the same
party is not compromised. This assumes that the parties delete
the sessions’ ephemeral and chaining keys after key derivation.

In variant 2 of our model, the query also shows secrecy
provided the pre-shared key is not compromised, even if all
other keys (static and ephemeral) are compromised. Our models
do not consider the dynamic compromise of the pre-shared key,
due to a limitation of CryptoVerif. We can still obtain forward
secrecy with respect to the compromise of the pre-shared key
using the following manual argument. As mentioned above,
variant 2 of our model shows authentication when the pre-
shared key is not compromised (all other keys are compromised
in this model). This authentication property is preserved when
the pre-shared key is compromised after the rcvd∗ event,
because the later compromise cannot alter the fact that the
sent∗ event has been executed. Furthermore, authentication
guarantees that the ephemeral public key received by the
initiator was generated by the responder and conversely.
Variant 1 of our model then guarantees secrecy in this case,
because the session is clean when the ephemeral received by
the initiator was generated by the responder and conversely.

Hence, we get the desired forward secrecy property: we have
message secrecy when the pre-shared key is compromised after
the session, and neither both Spriv

i and Epriv
i nor both Spriv

r

and Epriv
r are compromised.

We cannot prove key secrecy for the session keys in the full
protocol, because the session keys are used for encrypting
transport data messages, and this allows an adversary to
distinguish them from fresh random keys. Instead, we prove
key secrecy for a model in which all transport data messages,
including key confirmation, are removed. To prove this result,
we need to strengthen the session cleanliness condition. Indeed,
the first message is subject to a KCI attack, as mentioned
above. Therefore, when the private static key of the responder
is compromised, we additionally require that the ephemeral
received by the responder is equivalent to one generated by
the initiator. With this stronger cleanliness condition, we show
that the session keys are secret, that is, the keys for various
clean sessions are indistinguishable from independent random
keys. We do not need this stronger cleanliness condition when
we study the full protocol, since the key confirmation message
protects the responder against KCI attacks.

Resistance against replay for the first message. We prove
that the first message cannot be replayed but only if no
static key is compromised when it is received. If Spriv

i were
compromised, the adversary can impersonate the initiator as the
sender of this message. If Spriv

r is compromised, we have a KCI
attack, as described above. So we prove the following injective
correspondence in a model where the static keys cannot be
compromised but the ephemeral keys may be compromised,
so we rely on the static-static Diffie-Hellman shared secret:

inj-event(rcvd1(true, Spub
r , Epub

i , Spub
i µ , Spub

i , tsµ, ts))

⇒ inj-event(sent1( Spub
r , Epub

i , Spub
i µ , Spub

i , tsµ, ts)) .

The first parameter of rcvd1 is true if the public static key
received by the responder with the first message is the public
static key of the honest initiator: we prove this property only for
sessions between honest peers. Replay protection is guaranteed
by each timestamp being accepted only once. With this check
removed, the first message can be replayed, but we still prove a
non-injective correspondence between the two events, replacing
inj-event by event in the query. This is a weaker property,
meaning that, if an event rcvd1 has been executed, then at least
one event sent1 with matching parameters has been executed
before. Thus, even with the replay protection removed, we can
prove that the origin of the first message cannot be forged in
a model without static key compromise.

Correctness. Correctness means that, if the adversary does
not modify the first two messages, then the initiator and
responder share the same session keys and transcript hash
H7. Actually, it suffices that the adversary does not modify
the ephemerals and ciphertexts of the first two messages. We



prove it with the following query:

event(responder_corr(Epub
i , Spub

i µ , tsµ, E
pub
r , emptyµ,

T→r , T←r , Hr7))

∧ event(initiator_corr(Epub
i , Spub

i µ , tsµ, E
pub
r , emptyµ,

T→i , T←i , Hi7))⇒ T→i = T→r ∧ T
←
i = T←r ∧Hi7 = Hr7 .

The events initiator_∗ and responder_∗ used in this query and
in the following ones are issued after key derivation, in the
initiator and responder respectively. Here, the two events given
as assumptions guarantee that the adversary did not modify the
ephemerals and ciphertexts of the first two messages, and the
query concludes that the session keys and transcript hash must
be equal. However, in our main models, CryptoVerif is currently
unable to prove that the ciphertexts have not been created by
the adversary, although this is true in the sessions considered
by the correctness query. Thus, we created a separate model to
prove correctness, in which the assumption is hard-coded by
interleaving the initiator and responder in a single sequential
process. In this model, we prove correctness even if all keys
are compromised.

Session Uniqueness. First, we prove that there is a single
initiator and a single responder session with a given T→ or
T←. The query below shows that there cannot be two distinct
initiator sessions with the same T→:

event(initiator_uniq_T→(ii, T
→))

∧ event(initiator_uniq_T→(i′i, T
→))⇒ ii = i′i ,

where ii, i′i are replication indices: CryptoVerif assigns each
execution of the initiator (or responder) process a unique
replication index, so the query means that if we execute two
events initiator_uniq_T→ with the same T→, then they have
the same replication index ii = i′i, hence they belong to the
same session. This query is proved in variant 3 of Section V-A,
so the property holds even if all keys are compromised. (It
relies on the choice of a fresh ephemeral at each session.) The
queries for the other cases are similar.

Second, we show similarly that there is a single initiator
and a single responder session for a given set of publicly
transmitted protocol values.

Channel Binding. We prove channel binding with the query:

event(initiator_H7(params, H7))

∧ event(responder_H7(params ′, H7))⇒ params = params ′

This query shows that if the initiator and responder have
the same value of the session transcript H7, then they share
the same value of all session parameters params (static and
ephemeral public keys, timestamp, pre-shared key, session
keys). This query is also proved in variant 3 of Section V-A,
so the property holds even if all keys are compromised. (It
relies on the collision resistance of hash.)

Identity Mis-Binding. For this property, we need to show
that if an initiator and a responder session share the same
session keys T→ and T←, then they share the same view on

the ephemeral and static keys used in that session. This is
formalised by the following query:

event(responder_imb(T→, T←, Epub
i,rcvd , E

pub
r , Spub

i,rcvd , S
pub
r ))

∧ event(initiator_imb(T→, T←, Epub
i , Epub

r,rcvd , S
pub
i , Spub

r,rcvd))

⇒ Epub
i = Epub

i,rcvd ∧ E
pub
r = Epub

r,rcvd

∧ Spub
i = Spub

i,rcvd ∧ S
pub
r = Spub

r,rcvd .

CryptoVerif proves it in variant 1 of our model, so it holds
when neither both Spriv

i and Epriv
i nor both Spriv

r and
Epriv
r are compromised. However, the proof fails when all

static and ephemeral keys are compromised (variant 3 of
our model): CryptoVerif can prove only the weaker property
that pow_k

(
Spub
i

)
= pow_k

(
Spub
i,rcvd

)
and pow_k

(
Spub
r

)
=

pow_k
(
Spub
r,rcvd

)
. An adversary can indeed break the equality

of public static keys in this case:
• The adversary instructs A to initiate a session to a public

static key Spub
r
′ equivalent to our model’s honest respon-

der public static key: pow_k(Spub
r ) = pow_k(Spub

r
′)

but Spub
r 6= Spub

r
′. This is possible because Spriv

r is
compromised. In this session, the adversary acts as
responder, and because the ephemeral is also compromised,
gets A’s Epriv

i .
• The adversary now acts as initiator to start a session with
B using a public static key Spub

i
′ equivalent to the honest

initiator public static key: pow_k(Spub
i ) = pow_k(Spub

i
′)

but Spub
i 6= Spub

i
′. This is possible because Spriv

i is
compromised. The adversary uses Epriv

i as ephemeral.
The ephemeral of this session is also compromised, so
the adversary gets Epriv

r .
• The adversary continues the session with A using the

ephemeral Epriv
r .

If a pre-shared key is used, we assume that the adversary
has the same pre-shared key with A (presenting itself with
key Spub

r
′) and with B (presenting itself with Spub

i
′). The

session keys T→ and T← for these two sessions are computed
as hashes of Epub

i , dh(Epriv
i , Spub

r ), dh(Spriv
i , Spub

r ), Epub
r ,

dh(Epriv
i , Epub

r ), dh(Spriv
i , Epub

r ), and psk . They are the same
in both sessions, so the session keys are also the same.

This scenario, with a session between A and B′ and one
between B and A′ that share the same session keys, is an
instance of a bilateral unknown key-share attack [33] and of
a key synchronisation attack [5]. It appears only when all
static and ephemeral Diffie-Hellman keys are compromised,
and hence should be considered a corner-case. However, we
note that this scenario does not require the psk shared by A
and B to be compromised, since this psk does not get used in
the execution above. We suggest a possible fix of this identity
mis-binding issue in Section VII.

Resistance against DoS. As described in Section II, Wire-
Guard provides a cookie mechanism that a peer under load
can use to enforce a round trip per sender address, and thus to
bind a handshake message to a sender address; this permits per-
address rate limiting. We model this mechanism in a separate



model in which a responder generates Rr, replies with a cookie
τ = mac(Rr, Ai) upon receipt of messages 1 from Ai with
zero mac2, and verifies mac2 upon receipt of messages 1 with
non-zero mac2. The rest of the protocol is run by the adversary,
which has the long-term static keys. In particular, we do not
model the encryption of the cookie τ , but send it in the clear,
assuming that the adversary carries out the encryption and
decryption, which depend only on values it knows.

In this model, we prove that, if a responder under load
accepts a handshake message from a sender with address
Ai, then this sender passed through a round trip, that is, the
responder did indeed previously generate a cookie for the
address Ai. This formalised by the following query:

event(accepted_cookie(Ai, ir, τ,msgβ ,mac2))

⇒ event(generated_cookie(Ai, ir, τ)) ,

where ir is an index that uniquely identifies the key Rr used
for generating the cookie. This query is proved under the
assumption that mac is a pseudo-random function (PRF).

Identity Hiding. When the adversary has a candidate
public key Spub

Y , it can determine whether this public key
is involved in WireGuard sessions, as already mentioned
in the WireGuard specification [8]. In the first message, it
can test whether mac1 = mac(hash(labelmac1‖Spub

Y ),msgα)

and that reveals whether Spub
Y = Spub

r . A similar test on
message 2 reveals whether Spub

Y = Spub
i . When an entity

with public key Spub
m sends a cookie reply, the adversary

can try to decrypt the encrypted cookie τ µ with the key
hash(labelcookie‖Spub

Y ), the nonce nonce (obtained from the
cookie reply), and the associated data mac1 (obtained from a
previous message). If decryption succeeds, then the adversary
knows that Spub

Y = Spub
m . In practice, the public keys of VPN

endpoints may be easy to obtain: they are often published to
subscribers on a web page. In such scenarios, WireGuard does
not provide identity hiding.

If we consider the protocol without MACs and cookie
reply, that is, basically the Noise protocol IKpsk2, we can
obtain stronger identity protection guarantees, however with
the additional assumption that the AEAD scheme also preserves
the secrecy of the associated data. Indeed, if the AEAD scheme
is only IND-CPA and INT-CTXT, then the adversary may
obtain the associated data of the first ciphertext Spub

i µ, that is,
hash(hash(H0‖Spub

r )‖Epub
i ). It can compare this value with

hash(hash(H0‖Spub
Y )‖Epub

i ) since Epub
i is sent in the first

message and H0 is a constant. Thus, it can determine whether
Spub
r = Spub

Y .
However, assuming that the AEAD scheme also preserves

the secrecy of the associated data, we prove using CryptoVerif
that the protocol without MACs and cookie reply satisfies
the following identity hiding property: an adversary that has
Spub
A1 , Spub

A2 , Spub
B1 , Spub

B2 cannot distinguish a configuration
in which the entity with public key Spub

A1 initiates sessions
with Spub

B1 from one in which the entity with public key
Spub
A2 initiates sessions with Spub

B2 . ChaCha20Poly1305 indeed
preserves the secrecy of the associated data, because it satisfies

the stronger IND$-CPA property, which requires the ciphertext
to be indistinguishable from random bits, as shown in [24].

We discuss possible solutions to strengthen the identity
hiding for the protocol with MACs in Section VII.

Proof Guidance and Metrics. CryptoVerif needs to be
manually guided to perform these proofs. We sketch the main
instructions given to CryptoVerif for proving authentication
and message secrecy in variant 1 of our model, with dynamic
compromise of the private static keys. The guidance we give
for other proofs follows similar ideas.

The first step is to distinguish cases. In the initiator A, we add
a test to distinguish whether the partner public key is equivalent
to B’s static public key, and whether the received ephemeral
is equivalent to an ephemeral generated by B. Similarly, in
the responder B, we distinguish whether the partner public
key is equivalent to A’s static public key, and whether the
received ephemeral is equivalent to an ephemeral generated by
A. These case distinctions allow us to isolate Diffie-Hellman
shared secrets that the adversary will be unable to compute
because both shares come from honest participants. Then, we
apply the random oracle assumption for the 3 random oracles
chain′6, chain′2, chain′1. For the arguments of these oracles that
are Diffie-Hellman shared secrets in the protocol (and thus are
in Gsub), we distinguish whether the argument received by the
random oracle from the adversary is in Gsub before applying
the random oracle assumption. (When it is not in Gsub , it
cannot collide with a call coming from the protocol.) Next, we
apply the gap Diffie-Hellman assumption; we split the keys
generated by chain′6 into 4 keys, and apply ciphertext integrity
of the AEAD scheme. (For keys that the adversary may have
after compromising the static keys, we apply a variant of the
ciphertext integrity transformation that allows corruption.) This
suffices to obtain authentication. Then we apply the IND-CPA
property of the AEAD scheme to prove message secrecy.

In total, we give 36 instructions to CryptoVerif to perform
this proof (not counting the instruction to display the current
game), and CryptoVerif generates a sequence of 168 games.
This proof takes 14 min, the proof of key secrecy with dynamic
compromise of private static keys takes 16 min, and the one for
identity hiding 18 min on one core of an Intel Xeon 3.6 GHz;
these are our longest proofs.

VII. DISCUSSION

WireGuard is a promising new VPN protocol that aims
to replace IPsec and OpenVPN, and is being considered for
adoption within the Linux kernel. We presented a mechanised
cryptographic proof for a detailed model of WireGuard using
the CryptoVerif prover. Our model accounts for the full
Noise IKpsk2 secure channel protocol as well as WireGuard’s
extensions for stealthy operation and DoS resistance. We
consider an arbitrary number of parallel sessions, with an
arbitrary number of transport data messages. Furthermore, we
base our proof on a precise model of the Curve25519 group.

We proved correctness, message and key secrecy, forward
secrecy, mutual authentication, session uniqueness, channel



binding, and resistance against replay, key compromise im-
personation, and denial of service attacks. In some cases, our
analysis pointed out potential improvements in the protocol
(which we did not prove secure using CryptoVerif):

Adding Public Keys to the Chaining Key Derivation.
When analysing WireGuard for Identity Mis-Binding attacks,
our analysis uncovered a corner case. Suppose all the Diffie-
Hellman keys in a session between two hosts A and B were
compromised, but the pre-shared key between them is still
secret. Then the adversary can set up a man-in-the-middle
attack where A thinks it is connected to B′, B thinks it is
connected to A′, but in fact they are both connected to each
other, in the sense that the two connections have the same
traffic keys, even though they have different static keys.

In particular, once it has set up the session, the adversary
can step away and let A and B directly communicate with each
other, while retaining the ability to read and modify messages
at will. Interestingly, this vulnerability only appears in our
precise model of Curve25519; it cannot be detected under a
classic Diffie-Hellman assumption.

Although this attack scenario may be quite unrealistic, it
points to a theoretical weakness in the protocol that is easy
to prevent with a simple modification. Noise IKpsk2 already
adds ephemeral public keys to the chaining key derivation;
we recommend that the static public keys be added as well.
Alternatively, adding the full transcript hash to the traffic key
derivation would also prevent this corner case.

Separately, it is also worth noting that adding public keys to
the key derivation significantly helps with the cryptographic
proof. For example, consider the Noise IK protocol, which
is similar to IKpsk2 except that it does not use PSKs. IK
does not mix the ephemeral keys into the chaining key, and
it turns out that it is much harder for CryptoVerif to verify
than IKpsk2, since we now have to reason about mis-matched
ephemeral keys. In particular, even if we use a public PSK key
of all-zeroes, the IKpsk2 protocol is easier to prove secure than
IK. In fact, our recommendation is to add further contextual
information to the key derivation. It would not only prevent
theoretical attacks, but also make proofs easier.

Balancing Stealth and Identity Hiding. Our analysis also
points out that the use of static public keys in mac1 and
mac2 in WireGuard negatively affects the identity hiding
guarantees provided by IKpsk2. This is a conscious trade-
off that WireGuard makes to achieve stealthy operation [8].
However, in deployment scenarios where identity hiding is
more important than stealth, we recommend that the protocol
use a constant (say all-zeroes) instead of the static public keys
to compute the MACs and cookies.

While it is difficult to preserve stealth while hiding the
responder’s identity, a modification to the protocol can still
hide the initiator’s identity. We recommend that the initiator
should send a MAC key (along with the timestamp) in the
first handshake message, and the responder should use this
MAC key to compute mac1 in the second handshake message.
The initiator can verify this MAC to get DoS protection, but
its static public key is kept hidden from a network adversary.

Table I: Security models (upper part) and properties analysed
(lower part) in different works on WireGuard or Noise IKpsk2.
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verified protocol Noise IKpsk2 WireGuard

tool set PV T T T m CV
computational model x x x x X X

Curve25519 w/ eq. keys x x x x x X
compromise static keys X X X X X X
compromise eph. keys x x X X X X

dishonest eph. keys x x X x x x
compromise psk X X X X X X

compromise all keys x x X X x X
both roles per static key x X X X X X

mutual authentication X X X X X X
KCI X X X X X X

1st message replay — — — x x X
transport data replay x X X x x X

session uniqueness x X x X X X
channel binding x X x x x X
DoS resistance — — — x x X

forward key secrecy X X X X X X
forward message secrecy X X X x x X

identity hiding x x X X2 x X
identity mis-binding x x x X1 x X

Definitions differ between models.
T = Tamarin, PV = ProVerif, CV = CryptoVerif, m = manual.
X= included, x = not included, — = not applicable.
1) The identity mis-binding issue we found was not found.
2) Weaker identity hiding property using a surrogate term.

Essentially, the MAC key acts as an in-session cookie.
Related Work. The use of formal verification tools to

analyse real-world cryptographic protocols is now a well-
established research area with hundreds of case studies (see
e.g. [34]). CryptoVerif itself has been used to analyse modern
protocols like Signal [29] and TLS 1.3 [35]. We conclude
this paper by comparing our results with closely related work;
Table I provides a condensed, high-level overview.

WireGuard itself has been formally analysed before. Donen-
feld et al. [11] symbolically analyse the IKpsk2 key exchange
protocol used by WireGuard for a number of security goals,
including identity mis-binding and identity hiding. However,
they do not model the MACs or the cookie mechanism, and
hence they do not prove DoS resistance. Interestingly, their
analysis concludes the absence of identity mis-binding attacks
even if all keys are compromised, because their model does
not include equivalent public keys. We disprove this property
by considering a precise model of Curve25519.

Dowling et al. [12] present a manual cryptographic analysis
of WireGuard. In particular, they prove key indistinguisha-
bility for the WireGuard handshake based on the PRF-ODH
assumption in an extension of the eCK-PFS key exchange
model. (Because of this difference in the used assumption,
our mechanization cannot be used directly to find issues in
proof steps; it is a different proof.) Key indistinguishability no
longer holds once the key is used, so they prove security for a
slightly modified variant of the IKpsk2 protocol that includes a



key confirmation message independent of the session keys. In
contrast, our proof requires no changes to the protocol, since
we use an ACCE-style model. Furthermore, [12] focuses only
on the key exchange, and does not consider other properties like
identity hiding or DoS resistance. Their analysis also does not
find the identity mis-binding issue since they do not consider
a scenario where all Diffie-Hellman keys are compromised.

Finally, the Noise Explorer tool [36] has been used to
perform a comprehensive symbolic analysis of numerous Noise
protocols using the ProVerif analyser. Noise Explorer can be
used to find violations of secrecy and authentication properties
for any protocol expressed in the language defined by Noise,
using per-message authentication and confidentiality grades. It
includes a symbolic analysis of Noise IKpsk2. A similar work
has been done in Tamarin [37], [38].
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