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 ABSTRACT 

 

 Hurricane Harvey was one of the most destructive and costliest hurricanes to 

ever make landfall on the Texas coast and one of the many tropical cyclones that 

impacted the United States during the 2017 North Atlantic Hurricane Season.  In recent 

years, emergency managers and researchers have been using hurricane risk and 

vulnerability analyses developed using Geographic Information Systems (GIS) to make 

informed decisions on different aspects of community and regional preparedness when a 

tropical cyclone is forecasted to impact an area.  Though there are many ways to 

quantify risk and vulnerability, this project uses the Federal Emergency Management 

Agency’s (FEMA) Hazards-US Multi-Hazards (HAZUS-MH) GIS extension to estimate 

and illustrate the physical, economic, and social losses associated with tropical cyclone 

impacts along the Texas coast, specifically in the Greater Houston Region. 

 There are numerous ways to quantify risks associated with tropical cyclones 

using GIS, most of which focus on one of the three hazards involved in hurricane 

impact: extreme winds, heavy rainfall, and storm surge.  This project addresses this 

shortcoming by focusing on all three hazards and modelling the physical, economic, and 

social losses in locations in the Greater Houston Region that were caused by Hurricane 

Harvey.  Heavy rainfall produced the most losses, while storm surge affected the 

southern-most areas of the Texas coast.  Wind damage from Hurricane Harvey was 

insignificant in comparison to the probabilistic scenarios, with losses estimated to be in 

the thousands of dollars, instead of in the millions or billions of dollars.  The results of 
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this study are compared to each other to see if the most vulnerable areas of the Greater 

Houston Region were largely affected by Hurricane Harvey. 
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CHAPTER I  

INTRODUCTION  

 

The effects of tropical cyclone impacts on society are becoming more apparent 

every year, with losses from hurricane events expected to become more financially 

damaging in the future (Klotzbach et al. 2018).  This was evident with Hurricane 

Harvey, a major hurricane that made landfall in Texas on August 26, 2017 and made 

significant impacts with its high winds, extreme precipitation, and storm surge in the 

Greater Houston Region (Blake and Zelinsky 2018).  Texas is a state that is vulnerable 

to hurricanes since it is in the western section of the Gulf of Mexico; there have been 37 

tropical cyclones that affected the Houston area from 1950-2017 (Trepanier and Tucker 

2018).  Though the effects of historical storms have been extensively studied on the state 

of Texas and the Greater Houston Region, there have been few studies examining the 

combined effects of the three hazards—winds, precipitation, and storm surge—

associated with these storms and the physical, economic, and social losses that result in 

this area, particularly from the recent Hurricane Harvey. 

 There have been many studies examining the relationship between climate 

change and hurricanes, though some results continue to be debated (GFDL 2018a).  

However, there is agreement in that future hurricanes will most likely have higher 

rainfall rates than the storms we see currently (Knutson et al. 2010; Knutson et al. 2013; 

Knutson, Sirutis, and Zhao 2015; Wright, Knutson, and Smith 2015).  Hurricane Harvey 

produced unprecedented rainfall amounts in southeast Texas, with all previous tropical 
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cyclones precipitation records shattered (Blake and Zelinsky 2018).  With major 

demographic shifts around the country, especially the trend of people moving to the 

southeast U.S. and along the coastlines, property damage and growing populations are 

becoming more at risk from hurricane impacts (Burton 2010).  Improving our 

understanding of risk and vulnerability in the Greater Houston Region can help to 

mitigate and prepare communities for future storms, as well as understand the 

implications of the most recent storm to impact the area (Klotzbach et al. 2018). 

 Using GIS-based software to make informed decisions on regional and 

community preparedness has become more popular in recent years, particularly to 

illustrate hazard impacts on society.  Though there are numerous ways to quantify the 

risks associated with tropical cyclones using GIS, most studies focus on either high 

winds, extreme precipitation, or storm surge as individual hazards.  This project 

addresses this shortcoming by focusing on all three hazards and modelling the physical, 

economic, and social losses in the Greater Houston Region, including those from 

Hurricane Harvey, using FEMA’s HAZUS-MH model.  This thesis will examine this 

through three objectives: 

1. Update HAZUS-MH with more recent input variables and databases. 

2. Identify the areas of Houston that are most vulnerable to the three hazards of 

extreme winds, heavy rainfall, and storm surge. 

3. Assess Houston’s specific losses from Hurricane Harvey. 

 In this study, hurricane event risk will be evaluated for nine counties in southeast 

Texas that make up the Greater Houston Region.  To obtain the most up-to-date 
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assessment, the outdated default data included in HAZUS-MH will be replaced with 

current information with the use of the Comprehensive Data Management System 

(CDMS).  The updated data will then be used in HAZUS-MH to provide a probabilistic 

overview of the consequences of hurricanes and to estimate the losses that specifically 

occurred during Hurricane Harvey.  An assessment of the probable and actual losses in 

the Greater Houston Region can help to establish ways to improve current mitigation and 

preparedness strategies. 

(Simpson and Lawrence 1971; Elsner and Kara 1999; Keim, Muller, and Stone 2006) 
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CHAPTER II  

BACKGROUND AND LITERATURE REVIEW 

 

2.1 Hurricanes 

Tropical cyclones are defined by Montgomery and Farrell (1993) as large-scale 

rotary storms that form over warm ocean waters in tropical regions with outer 

circulations that can extend more than 1,000 kilometers from a storm center.  They are 

categorized as hurricanes in the Atlantic and Eastern Pacific Oceans and typhoons in the 

Western Pacific Ocean when they reach sustained surface winds of 33 m/s or higher 

(Montgomery and Farrell 1993).  Tropical cyclones are categorized based on their wind 

speeds via the Saffir-Simpson Hurricane Wind Scale (Table 1, adapted from Schott et al. 

2012), which was updated in 2012 to specifically highlight peak winds.  The earlier 

versions of this scale, originally developed by Saffir (1973) and Simpson (1974),  

 

Category Sustained Winds 

(m/s) 

Types of Damage Due to Hurricane Winds 

1 33-43 Very dangerous winds will produce some damage. 

2 43-49 Extremely dangerous winds will cause extensive 

damage. 

3 (major) 49-58 Devastating damage will occur. 

4 (major) 58-70 Catastrophic damage will occur. 

5 (major) 70 or higher Catastrophic damage will occur. 

  

incorporated other features of hurricanes, such as central pressure and storm surge, so 

that the scale could describe the impacts of these destructive storms.  Changes were 

Table 1: The Saffir Simpson Hurricane Wind Scale (adapted from Schott et al. 

2012) 
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made because recent hurricanes, such as Hurricane Charley (2004) and Hurricane Ike 

(2008) had extents and peak storm surges that exceeded the ranges of earlier versions of 

the scale.  To reduce public confusion about the impacts associated with storms of 

various categories on the scale, the National Hurricane Center (NHC) removed the storm 

surge ranges, flood impact, and central pressure descriptions and revised it to be 

specifically for sustained winds.  Each category on the scale, ranging from 1-5, with 5 

having the most destructive impacts, has descriptive statements of the damage that can 

occur if an area is impacted by the strength of hurricane.  For example, Category 1 

hurricanes have sustained winds between 33 and 42 m/s and can inflict some damage 

upon landfall, while Category 5 hurricanes have sustained winds of 70 m/s or higher and 

produce catastrophic damage when within range of populated areas (Schott et al. 2012). 

Hurricanes usually start as easterly waves, which have cyclonic vorticity and 

enough atmospheric instability for tropical cyclogenesis.  Easterly waves form in sub-

Saharan Africa and make their way across the Atlantic Ocean, becoming more powerful 

as they progress.  The wave becomes classified as a tropical depression when the winds 

begin to rotate counterclockwise around a low-pressure center, but remain below 16 m/s.  

A tropical depression can become stronger when the conditions continue to be favorable 

across the Atlantic Ocean, transitioning to a tropical storm with winds ranging from 17 

to 32 m/s or even further to a Category 1 hurricane and beyond.  For this to happen, the 

atmosphere needs to be unstable or have a disturbance to produce strong thunderstorms, 

sea surface temperatures should be at least 27°C, the ocean depth should be at least 45 
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meters, and a deep layer of humid air, little to no wind shear, and a strong Coriolis force 

must be present (Emanuel 2005). 

 

2.2 Damages and Losses from Hurricanes 

 Damages associated with tropical cyclones are usually due to the three main 

attributes from this destructive natural hazard: extreme winds, heavy rainfall, and storm 

surge (Emanuel 2005).  However, social factors may be influencing the amount of 

physical, economic, and social losses that have come out of more recent North Atlantic 

hurricane seasons, such as risk perception and self-assessment of levels of emergency 

preparedness (Kashem, Wilson, and Zandt 2016).  In recent decades, the United States 

has experienced several major demographic shifts, with the most significant being a 

trend in people moving to the southeast and along the coasts of the country (Burton 

2010).  In Texas, specifically, the population of coastal counties, which includes the 

three major metropolitan areas of Brownsville, Corpus Christi, and Houston, continues 

to grow at an unprecedented rate (Dixon and Fitzsimons 2001).  In turn, there has been 

an increase in development, including housing, infrastructure, and commercial buildings, 

making them more vulnerable to hurricane damages from the winds, rainfall and storm 

surge (Dixon and Fitzsimons 2001).  Although trends in landfalling hurricanes in the 

contiguous United States have more significantly increased and decreased in frequency, 

hurricane-related damages have had a notable increase, likely due to the increases in 

population and development along the Gulf and east coasts (Klotzbach et al. 2018).  It is 
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also expected that future losses from hurricane events will be financially damaging to 

local, state, and federal agencies (Klotzbach et al. 2018).   

 Storm surge is defined by the NHC as a storm’s abnormal rise of water above the 

predicted astronomical tides and is produced by water being pushed toward the shore by 

the force of tropical cyclone-strength winds rotating (NHC 2019b).  Storm surge is 

particularly hard to predict for any given location because of different factors, such as 

storm intensity, forward speed, geographical extent of the storm, angle of approach to 

the coast, central pressure, and the shape and characteristics of coastal features, such as 

barrier islands.  Storm surge is destructive due to the weight of water (approximately 

1008 kg/m3), and, along with big waves, can destroy any structure that is not specifically 

designed to withstand those forces.  Salt water intrusion from the ocean into estuaries 

and bayous can endanger public health, kill vegetation, and force wildlife away from the 

flooded areas (Emanuel 2005; NHC 2019b).  The potential impacts of storm surge on the 

Texas coastline, specifically in the Houston/Galveston area, were studied in the years 

following Hurricane Ike.  Torres et al. (2015) looked at the hydrologic contributions and 

interactions of hurricane storm surge and rainfall-runoff for the Houston Ship Channel 

by implementing a hurricane shifting modeling framework that preserves the spatial and 

temporal characteristics of rainfall and wind fields.  While storm surge consistently 

dominated the flooding potential in the area, the rainfall-runoff volume contributed more 

than 50% of the volume share in the overall storage budget (Torres et al. 2015).  

Moreover, using a methodology for estimating the annual probability of the joint hazard 

of storm surge and extreme winds based on the bivariate copula model for Galveston, 
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Texas, Trepanier et al. (2015) found that the probability peaks in September and a 

Category 3 hurricane with a storm surge of at least 4 meters has a 1.7% chance of 

occurring every year. 

 Hurricanes can result in billions of dollars-worth of losses when they make 

landfall in the United States.  The top five costliest U.S. hurricanes on record include the 

three major hurricanes of the 2017 season: Harvey, Maria, and Irma.  The cumulative 

cost of 16 separate billion-dollar weather events that occurred in the U.S. in 2017 was 

$306.2 billion, with approximately $265 billion coming from Harvey, Maria, and Irma.  

The top vulnerable states in the U.S. to hurricanes when it comes to insured coastal 

properties are New York, Florida, Texas, Massachusetts, and New Jersey (NOAA 2019). 

 

2.3 Climate Change and Hurricanes 

 

2.3.1 Precipitation 

 One of the most prominent features of tropical cyclones is the extreme 

precipitation that causes inland flooding, which can greatly affect the people and 

environment, as well as result in significant economic damage and loss of life (Paul and 

Sharif 2018).  Precipitation from tropical cyclones accounts for a large percentage of the 

total annual precipitation and extreme precipitation events along the U.S. Atlantic and 

Gulf of Mexico coasts (Knight and Davis 2007, 2009).  Texas, specifically, receives an 

average of 123.5 mm of precipitation from tropical cyclones per year, which is about 

13% of the state’s mean annual precipitation (Zhu and Quiring 2013). 
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 Though the human influence has not been definitively detected for this feature of 

hurricanes, tropical cyclone precipitation is expected to increase in the future due to the 

increase in atmospheric moisture from anthropogenic warming; there is a projected 

average of 10-15% increase for a 2°C warming scenario (GFDL 2018a).  Though there is 

disagreement and uncertainty on the extent of how much tropical cyclone precipitation 

will increase in the future, there is a consensus that future hurricanes will most likely 

have higher rainfall rates than the storms seen today (Knutson et al. 2010; Knutson et al. 

2013; Knutson, Sirutis, and Zhao 2015; Wright, Knutson, and Smith 2015). 

 

2.3.2 Intensity and Frequency 

 In a 2°C warming scenario, it is likely that global tropical cyclone intensity can 

increase anywhere from 1-10%, according to climate model projections (Knutson, 

Sirutis, and Zhao 2015; Knutson et al. 2010).  Furthermore, the global proportion of 

tropical cyclones that reach the Category 4 or 5 level on the Saffir-Simpson Hurricane 

Wind Scale will also likely increase, but there is less confidence in the number of storms 

of these strengths since the global frequency of tropical cyclones is expected to decrease 

throughout the century (Knutson et al. 2013; Bender et al. 2010).  More intense 

hurricanes, in turn, suggest that there is a large destructive potential in any given storm.  

Vecchi, Swanson, and Soden (2008), however, show that the relationship between rising 

sea-surface temperatures and the destructive potential of a tropical cyclones is only 

statistical, not physically meaningful, and convey that current measurements show long-

term trends of Atlantic hurricane activity that are much more conservative.  Though the 
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global mean temperature and sea-surface temperatures in the Atlantic show statistically 

significant warming trends, the historical hurricane record for the basin does not have 

enough compelling evidence to prove that this warming will induce a long-term increase 

in tropical cyclones (GFDL 2018a).  Vecchi and Soden (2007) suggest that vertical wind 

shear and upper tropospheric temperatures will increase over the western tropical 

Atlantic Ocean when assessing model-projected changes in large-scale environmental 

factors associated with variations in tropical cyclone statistics.  Increased vertical wind 

shear and higher upper tropospheric temperatures are conditions that are unfavorable for 

hurricane development and intensification, while increased sea-surface temperatures 

have the opposite effect (GFDL 2018a).   

 It is difficult to predict the frequency of future intense tropical cyclones for a 

myriad of reasons, such as model parameter constrictions and idealized assumptions that 

do not reflect real-world conditions (Knutson and Tuleya 2004; Knutson et al. 2008).  

Using an 18-model average of climate change projections, Bender et al. (2010) estimate 

that the frequency of Category 4 and 5 hurricanes can increase by as much as 81% by the 

end of the century since observed tropical cyclones at that magnitude have increased 

linearly in the last 60 years.  However, the confidence of these projections is low since 

there is little evidence to lead to that conclusion that anthropogenic climate change will 

lead to a large increase in the frequency of tropical cyclones in the Atlantic (GFDL 

2018a). 

 Another factor in the difficulty in understanding how Atlantic hurricanes have 

changed historically is the lack of accurate records and observations from before 1965 
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(Vecchi and Knutson 2008).  When assessing Atlantic HURDAT (Jarvinen, Neumann, 

and Davis 1984; McAdie et al. 2009), the hurricane database managed by the NHC, 

many studies have concluded that the increase in tropical cyclones in this basin since the 

late 19th century is most likely due to the improved monitoring from advances in 

technology and observation methods, such as the implementation of satellite data 

(Vecchi and Knutson 2008; Landsea et al. 2010; Vecchi and Knutson 2011; Villarini et 

al. 2011).  Furthermore, Landsea et al. (2010) noticed that there has been a significant 

increase in the number of tropical cyclones with durations of less than two days since the 

1800s.  Though there is no clear indication that climate change is the cause of this, it 

does verify that the improvement of observational practices may be the explanation for 

the historical increase in tropical cyclone frequency (GFDL 2018b). 

 

2.3.3 Storm Surge 

 Due to sea level rise from anthropogenic climate change, it is predicted that 

tropical cyclones will likely produce higher levels of storm surge (IPCC 2014).  

Moreover, the vulnerability of coastal regions to storm surge is also expected to increase 

because of the increase of commercial, residential, and infrastructural development in 

the most susceptible areas to tropical cyclones (GFDL 2018a).  The average rate of 

global sea level rise has been about 3.1 mm/year since the start of satellite sea level 

recording in 1993 (Lindsey 2018).  Throughout the 21st century, sea level rise will most 

likely exceed levels observed from 1971-2010 for a myriad of future carbon emission 

scenarios (IPCC 2014).  Part of the increased risk in higher levels of storm surge are due 
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to the rise in global sea levels (Rahmstorf 2017).  Sea levels have risen about 20 cm 

since 1900, with the rate accelerating in the last 25 years and expected to increase further 

in the future (Chen et al. 2017).  This is occurring because continental ice melts from 

global warming, which is adding water to the oceans (Rahmstorf 2017).  The severity of 

storm surge that will happen in the future will depend on the size and intensity of the 

tropical cyclone, meaning that larger and more powerful storms will likely produce more 

storm surge (Rahmstorf 2017).  With these factors expected to increase due to climate 

change, storm surge should also become more of a threat (Rahmstorf 2017). 

2.4 Hurricanes That Have Affected Houston, Texas 

Houston, Texas is vulnerable to tropical cyclones due to its geographical location 

along the western coast of the Gulf of Mexico.  Carr (1967) calculated that a total of 32 

hurricanes affected the state of Texas from 1900-1965, including the deadly Galveston 

hurricanes that occurred in 1900 and 1915, and had origins in the Atlantic Ocean and the 

Gulf of Mexico.  Carr (1967) also suggested that tropical cyclones were sometimes 

unable to properly develop into hurricanes due to the meteorological conditions in the 

region, but they continued to move toward Texas as weak tropical cyclones or tropical 

depressions.  Moreover, using HURDAT2 (Landsea, Franklin, and Beven 2015), the 

updated version of HURDAT, Trepanier and Tucker (2018) found that there have been 

37 tropical cyclones that have impacted Houston from 1950-2017.  Moreover, Islam et 

al. (2009) provided a comprehensive analysis of Texas hurricanes from 1851-2006 using 

climatological information and historical case studies and found that the Upper Texas 
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Coast, where Houston is located, is more prone to tropical cyclone impact that the Lower 

Texas Coast; that is probably due to most of these storms originating in the Gulf of 

Mexico.  Furthermore, Islam et al. (2009) discovered that the tropical cyclones 

impacting that area of Texas tend to form early on the North Atlantic hurricane season, 

intensify rapidly, and make landfall within a few days of formation, which poses a 

unique threat to the ecosystems, infrastructure, and people of the coast. 

 An influential hurricane to impact Houston was Hurricane Ike, which made 

landfall on Bolivar Peninsula in early September 2008 and had an unusually long storm 

surge duration of 2.5 days (Kraus and Lin 2009).  Thirty-four Texas counties were 

declared disaster areas by FEMA and 15 of them were under mandatory evacuation 

orders (Zane et al. 2011).  Zane et al. (2011) identified 74 deaths in Texas from 

September 8, 2008 through October 13, 2008 that were either directly, indirectly, or 

possibly related to Hurricane Ike.  Despite extensive and large-scale efforts for 

government-sponsored public education in disaster preparedness, Chen, Banerjee, and 

Liu (2012) discovered that the residents of the Gulf Coast showed no significant changes 

in preparedness and evacuation plans in a comparison of interviews conducted one 

month before and one year after Hurricane Ike.  This emphasizes how the increase in 

access of information to minority groups can be beneficial for disaster resiliency and 

quicker recover time (Chen, Banerjee, and Liu 2012).  The storm surge that affected the 

Houston area from Hurricane Ike also had significant consequences.  Schiller (2011) 

used GIS to find which areas in the counties surrounding Houston would be flooded 

from a 2-m and 5-m storm surge and approximated that the daily wage loss can run into 
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millions of dollars.  Because of this storm surge from the hurricane, studies have 

examined the potential benefits of putting a levee, commonly known as the “Ike Dike,” 

along the coastline of Galveston Island to protect the surrounding communities from this 

effect of major hurricanes (Subramanian et al. 2013; Pan 2015; Atoba et al. 2018). 

 

2.5 Hurricane Harvey 

 Hurricane Harvey started out as a wave off the west coast of Africa on August 

12, 2017, became a tropical depression east of Barbados four days later, and a tropical 

storm within 12 hours.  It reached an initial peak intensity of 20 m/s, in the range of 

tropical storm classification on the Saffir-Simpson Hurricane Wind Scale, early on 

August 18 as the storm’s center passed over Barbados and St. Vincent at 1000 UTC.  

Harvey regressed to a tropical wave the next day but stayed convectively active as it 

moved west toward the Yucatan Peninsula on August 22.  A low-pressure system 

formed due to a burst of deep convection in the wave, which allowed Harvey to 

regenerate into a tropical depression the next day.  Forecasters initially noted that the 

depression was poorly organized and had a large radius-of-maximum winds, but those 

conditions did not last for very long since a smaller radius-of-maximum winds formed 

from concentrated deep convection near the center.  This was also a sign of weakening 

because a double eyewall was forming.  Rapid intensification began on August 23 when 

Harvey entered an area of warm waters, light shear, and high mid-level moisture.  

Turning northwestward, intensity increased even further when a large mass of deep 

convection formed in the center of the depression and an eye was observed on August 
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24.  Harvey became a Category 1 hurricane later that night with a well-defined eye 

becoming apparent in satellite imagery (Blake and Zelinsky 2018). 

 Almost as fast as Hurricane Harvey had sustained winds to classify it as a 

hurricane, the system reached major hurricane status, becoming a Category 3 hurricane 

by 1200 UTC on August 25.  Harvey intensified to a Category 4 hurricane as it 

approached the Texas coast on August 26.  Hurricane Harvey made landfall on the 

northern part of San Jose Island around 0300 UTC on August 26 with estimated 

sustained winds of 59 m/s and estimated minimum central pressure of 937 hPa.  The 

hurricane made a second landfall on the Texas mainland hours later southeast of 

Refugio, Texas; it was slightly weaker due to land interaction with estimated sustained 

winds of 54 m/s and estimated minimum central pressure of 948 hPa.  Once Harvey 

reached land, it rapidly weakened again to a tropical storm within 12 hours, but 

maintained sustained winds of around 18 m/s for a couple of days since the southeastern 

portion of the storm was still over the warm waters of the Gulf of Mexico.  The storm 

halted in movement when it became embedded in light steering currents between a mid-

tropospheric high-pressure system over the Four Corners region of the U.S. and another 

high-pressure system over the northern area of the Gulf of Mexico.  Harvey slowly 

drifted east over the next several days.  Though the eye passed south of the Houston 

area, record-setting rainfall occurred in the city and surrounding areas due to a stationary 

front on the north and east sides of the hurricane caused Harvey to stall.  The storm 

finally started moving northeast late on August 29 from a strengthening ridge over the 

western Atlantic Ocean, but heavy rains continued to fall.  Harvey made its third landfall 
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in Louisiana early on August 30 with estimated sustained winds of 20 m/s.  After this, 

Harvey quickly became a tropical depression again, moving northeastward and finally 

dissipating over northern Kentucky on September 2 (Blake and Zelinsky 2018). 

 Hurricane Harvey is the most recent major hurricane to impact southeast Texas.  

Therefore, most of the literature focuses on the storm’s immediate impacts, such as the 

causes of fatalities during the storm (Jonkman et al. 2018).  Although Texas is a 

vulnerable area to tropical cyclones and Houston is a rapidly growing city, social factors 

impacted the amount of damage this storm caused.  For example, Trepanier and Tucker 

(2018) explain that an evacuation like that of Florida with Hurricane Irma (2017) was 

not conducted because of the lack of early tropical cyclone development.  This resulted 

in over 1,000 people trapped in their homes from flooding, having to be rescued 

overnight.  Furthermore, the Houston government also called upon those who were able 

to assist in the rescues with small boats and rafts in the unprecedented flooding, which 

put volunteer civilian lives in danger (Trepanier and Tucker 2018). 

 One of the notable features of Hurricane Harvey was the record-setting rainfall 

recorded in southeast Texas due to the storm stalling over the region for several days; it 

was the highest tropical cyclone rainfall event in U.S. history since official 

meteorological records began (Blake and Zelinsky 2018).  The highest storm total 

rainfall report from this hurricane was 60.58 inch near Nederland, Texas, with Groves, 

Texas coming in a very close second place with 60.54 inches recorded (Blake and 

Zelinsky 2018).  This rainfall was extremely unprecedented, so studies have been 

conducted to estimate the return period of a hurricane of similar capacity.  Emanuel 
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(2017) found that the return period of at least 500 mm of rainfall in one event is about 

100 years for the period from 1981-2000; assuming a linearly changing frequency, the 

return period would change for 2017 conditions to about 16 years in Texas.  Moreover 

Oldenborgh et al. (2017) concluded that an event with rainfall similar to that of 

Hurricane Harvey would flood any city and that climate change has affected the 

probability of any given rainfall event in Texas, with intensity of rainfall increasing by 

8-19% and the probability of a rainfall event equivalent to Harvey increasing by 1.5-5 

times.  Warming of the oceans and atmosphere that began in 1980 likely resulted in a 

20% increase in accumulated event precipitation, according to a study by Wang et al. 

(2018) that used the Advanced Research Weather Research and Forecasting (WRF) 

model’s downscaling simulations on Hurricane Harvey.  However, Risser and Wehner 

(2017) note that Hurricane Harvey was a very unusual event since it stalled over Texas 

and can be an outlier in future precipitation studies.  Trepanier and Tucker (2018) also 

found that Houston is at a greater risk for extreme tropical cyclone rainfall than other 

cities vulnerable to hurricanes, such as Miami, Florida, because of its large population, 

noting that geographic variability should be considered in future studies of regional 

tropical cyclone rainfall comparisons.  Other studies note that urbanization can 

exacerbate the effects of the flooding caused by hurricane rainfall, which shines light on 

the importance of adding the component of urbanization to climatological studies when 

assessing the future risk of an extreme rainfall event in highly urbanized coastal areas 

(Kashem, Wilson, and Zandt 2016; Zhang et al. 2018).   
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 Though studies mostly focus on the winds and precipitation that Hurricane 

Harvey brought to Texas, storm surge also occurred because it is one of the three 

hazards that make up hurricane impact.  There was a combined effect of storm surge and 

tide that produced maximum inundation levels of 1.8-3 m above ground level north and 

east of Harvey’s two landfalls in Texas that occurred between Port Aransas and 

Matagorda.  The highest inundations were along the western shores of San Antonio Bay 

and Hynes Bay.  However, a tide gauge at the Texas Coastal Ocean Observing Network 

site at Port Lavaca measured the highest water level of the event at 2 meters above Mean 

Higher High Water (MHHW).  After Hurricane Harvey impacted Texas, the United 

States Geological Survey and the National Weather Service conducted several surveys to 

observe the damages of the storm.  They suggested that water levels as high as 3.7 

meters MHHW could have occurred between Austwell and the Aransas National 

Wildlife Refuge.  A tide gauge at the USS Lexington in Corpus Christi measured a water 

level of 0.3 meters MHHW, most likely due to offshore winds on the west side of 

Harvey that helped to produce less flooding in that area.  It is difficult to know how 

much storm surge occurred in every region along the coast because there are little to no 

tide gauge observations in some areas.  Furthermore, several of the tide gauges, 

specifically those near Houston, Beaumont, and Port Arthur, measured peak water levels 

that were greatly affected by the excessive rainfall-runoff from Harvey’s extreme 

precipitation.  Therefore, some of the water levels recorded from the storm are not 

entirely representative of the storm surge that occurred during Hurricane Harvey (Blake 

and Zelinsky 2018).  Because of this, there is no research that focuses specifically on 
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Harvey’s storm surge; there are studies that look at the combined effects of rainfall-

runoff and storm surge on various aspects of the Houston area (Bilskie and Hagen 2018; 

Aghababei, Koliou, and Paal 2018; Sreetharan, Batten, and Lawler 2018; Pan, Yan, and 

Archer 2018). 

 

2.6 HAZUS-MH 

 The development of hazards models using GIS has become a growing topic of 

research in recent years.  For example, by exploring the results of a hydraulic GIS 

model, Colby, Mulcahy, and Wang (2000) found that in the wake of Hurricane Floyd 

(1999), their methods showed a better representation of the flooding than FEMA’s Q3 

100-year and 500-year floodplain maps of the same area.  However, tropical cyclones 

involve three hazards: extreme winds, heavy rainfall, and storm surge.  Therefore, more 

studies are beginning to use multi-hazard models to conduct hurricane risk analyses to 

understand how all three phenomena affect an area at the same time, particularly in the 

context of economic losses.  After finding the aggregated average number of tropical 

cyclones that have affected the Caribbean over the last 30 years, Bertinelli, Mohan, and 

Strobl (2016) concluded that a 50-year event could cost about $8 billion, but the risks 

and losses differ across the many islands in the region.  Moreover, using a combination 

of models can create results that are in line with what was observed.  Pan (2015) 

developed a general framework to estimate the cost of damages from Hurricane Ike 

using models that included direct and indirect impacts on the economy using GIS.  Using 

this combination of models, Pan (2015) found that Ike was the third costliest hurricane to 
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impact the U.S. at the time and the results were like what was observed in the aftermath 

of the storm.  The use of GIS-based models can also help the user to visualize the 

impacts of hurricanes from maps created from model runs.  Estimating hurricane-

induced damage and risk to utilities in Florida, Xu and Brown (2008) presented maps 

developed from a probabilistic hurricane simulation model that shows peak wind gusts 

and, compared to the American Society of Civil Engineers 7 wind map of the state, 

indicated that the results are similar to what is observed in reality. 

 Due to the fact that tropical cyclones are associated with multiple hazards, there 

is a need to integrate all aspects of the coast; GIS is one of the most appropriate tools to 

use for this study due to its versatility (Rodríguez et al. 2009; Andrews, Gares, and 

Colby 2002).  The Hazards U.S. Multi-Hazard (HAZUS-MH) model is multi-hazard risk 

assessment tool developed by FEMA and is used by local government agencies and 

community emergency managers to aid in mitigation, response, and recovery (Schneider 

and Schauer 2006).  The model estimates the potential physical, economic, and social 

losses from many types of natural hazards and has had many successful applications in 

the government and private sectors (Schubert et al. 2015; Jaiswal et al. 2017; 

Blankenship 2009).  HAZUS-MH utilizes the ArcGIS software developed by the 

Environmental Systems Research Institute to present the data (Schneider and Schauer 

2006).  The user can use HAZUS-MH as a way to analyze past storms by using 

historical data, hypothetical storms by creating a user-defined hurricane scenario from 

user-defined input, and present storms for disaster planning and response (Beckmann 

and Simpson 2006). 
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 The Hurricane Wind Model within HAZUS-MH contains many different models, 

including a hurricane hazard model, terrain model, and wind pressure and windborne 

debris model, all of which are updated versions of the original models developed by 

Vickery et al. (2000) and Vickery, Skerlj, and Twisdale (2000).  The hurricane hazard 

model is composed of a storm track and wind field model, as well as a hurricane rainfall 

model.  The mean simulated rate of landfalling hurricanes has a 95% confidence interval 

for the observed intense hurricanes categorized by both central pressure and estimated 

wind speed.  The hurricane rainfall model is empirical and considers the increase in 

rainfall rate with increasing storm intensity by deeming a factor that regards the effect of 

the rate of change in central pressure on rainfall rate and another factor that models the 

asymmetric distribution of rainfall that is a function of storm translation speed.  Rainfall 

rates far from the storm center tended to be overestimated, but a calibration factor is 

used to provide reasonable estimates of rainfall rates from all areas of the storm.  The 

terrain model considers the fact that as ground surface becomes rougher, the wind speeds 

near the ground decrease, but the upper level winds remain the same.  However, the 

hurricane model yields estimates of wind speeds for open terrain conditions.  In addition, 

there are no direct databases that describe surface roughness over regions in the U.S.  

Therefore, the model uses information on land use and land cover to estimate surface 

roughness from the National Land Cover Data compiled by the Multi-Resolution Land 

Characteristics Consortium (Vickery, Lin, et al. 2006). 

 The Wind Load Modeling included in the HAZUS-MH Hurricane Wind Model 

consists of Wind Induced Loads and Windborne Debris Models.  The Wind Induced 
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Loads have an empirical modelling approach to estimate the directionally dependent 

wind induced pressures acting on the exterior or buildings.  The Windborne Debris 

models consist of modelling debris from residential types of buildings, which is used to 

assess the window damage probabilities for buildings located within different terrains, 

with different building densities and missile source environments, and roof top gravel 

debris (Vickery, Lin, et al. 2006).  The damage loss estimation model within HAZUS-

MH approximates damage with an engineering-based load and resistance model 

(Vickery, Skerlj, et al. 2006).  The costs are estimated using a combination of a cost 

estimated model and an empirical model developed using insurance data (Vickery, 

Skerlj, et al. 2006).  Both models have been validated through comparisons of model and 

actual losses with reasonable outcomes and are acceptable to use for loss estimation 

(Vickery, Skerlj, et al. 2006). 

 HAZUS-MH is mostly used to estimate potential losses and identify risks from 

seismic activity, such as earthquakes (Jaiswal et al. 2017; Remo and Pinter 2012; 

Schmidtlein et al. 2011; Padgett, Nielson, and DesRoches 2008).  In general, the studies 

that use HAZUS-MH that involve hurricane risk only consider one of the hazards 

associated with tropical cyclones: extreme winds.  After using the probabilistic mode 

from HAZUS-MH to estimate wind speed and the deterministic mode to find the wind 

swath, Scheitlin et al. (2011) produced a 100-year hurricane wind gust of 58 m/s on 

Santa Rosa Island within a 90% confidence interval and found that at least 25% of the 

residential and commercial buildings would be damaged in their hypothetical simulation.  

The model was tested for Eglin Air Force Base in Florida, a place that is not only 



 

23 

 

vulnerable to hurricanes, but also needs to act in the case of a state-wide emergency; 

understanding the risks for that area is essential to the safety of the entire area and results 

can be applied to nearby places (Scheitlin et al. 2011).  Moreover, to quantify the 

resilience of residential buildings against a hurricane event, Tokgoz and Gheorghe 

(2013) formulated a methodology to create a fragility curve, which shows probabilistic 

numbers for an impaired structure as a function of wind speed; HAZUS-MH provided 

the likeliness of building type and the damage inflicted to the home.  There have been 

few studies that also supplement the wind evaluation with storm surge, since the model 

combines the Hurricane Wind model and the Flood model in HAZUS-MH (Katehis 

2015; Kilma et al. 2012).   

 

(Saffir 1973; Simpson 1974) 

(Trepanier et al. 2015; Vecchi, Swanson, and Soden 2008; Vecchi and Soden 2007; Carr 

1967; Islam et al. 2009; Schiller 2011; Emanuel 2017; Oldenborgh et al. 2017; Wang et 

al. 2017; Risser and Wehner 2017; Colby, Mulcahy, and Wang 2000; Bertinelli, Mohan, 

and Strobl 2016; Xu and Brown 2008; Vickery, Skerlj, and Twisdale 2000; Vickery et 

al. 2000; Tokgoz and Gheorghe 2013)
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CHAPTER III  

DATA AND METHODS 

 

3.1 Study Area 

Located in the central south U.S., north of Mexico on the western side of the 

Gulf of Mexico, Texas is the second biggest state in the U.S., in both land area and 

population, behind Alaska and California, respectively (USCB 2018).  Climatically, the 

study area is sub-tropical and humid with a mixture of marine prairies, marshes, 

                      

 

   
Figure 1: Map of Texas with elevation. 
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 savanna, and woodlands (Climate of Texas  2012).  Southeast Texas, specifically, has a 

very low elevation, especially near the coast (Rajsekhar, Mishra, and Singh 2013), and is 

more developed than other areas of the state (Figure 1).  Houston, Texas, a major city in 

southeast Texas, is one of the most rapidly growing cities in the U.S., with an estimated 

2017 population of over 2 million people and the expectation of it growing further to 

become the third most populous city in the country in the late 2020s (About Houston: 

Facts and Figures  2019).  The area is also geographically vulnerable to tropical 

cyclones, with some of the most memorable North Atlantic tropical cyclones impacting 

the region, including the 1900 Galveston Hurricane, Hurricane Carla (1961), Hurricane 

Alicia (1983), Tropical Storm Allison (2001), Hurricane Rita (2005), Hurricane Ike 

(2008), and 2017’s Hurricane Harvey (Roth 2010; NHC 2019a).  The Greater Houston 

Region, which is the area including and surrounding the city, consists of nine counties: 

Austin, Brazoria, Chambers, Fort Bend, Galveston, Harris, Liberty, Montgomery, and 

Waller (Houston city, Texas  2019).  This nine-county region will be examined in this 

study because of Hurricane Harvey’s great impacts on this portion of southeast Texas 

(Figure 2). 

 

3.2 Datasets 

 This study uses a myriad of datasets, some of which are provided as the default 

data of HAZUS-MH, and others that are updated as part of Objective 1 of this thesis.  

The HAZUS-MH inventory contains hazard and boundary map data, as well as a proxy 

for the general building stock for the continental U.S., Hawaii, and the U.S. Territories 
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(FEMA 2019c).  Furthermore, it consists of national data for essential facilities, high 

potential losses facilities, transportation systems, lifeline systems, agriculture, vehicles, 

and demographics, most of which are updated for the purposes of this thesis (FEMA 

2019c).  A full description of the databases that were not specifically updated for this 

study can be found at https://www.fema.gov/summary-databases-hazus-multi-hazard. 

A more detailed explanation of the datasets that were updated for this study is provided 

in Chapter IV of this thesis. 

Objective 2 of this thesis will use the probabilistic mode of the HAZUS-MH 

Hurricane Wind Model.  The storms that will be simulated for the analysis are part of the  

software’s 100,000-year database of pre-generated peak wind gust speeds for each 

census tract in the U.S.  The Hurricane Wind Model takes rainfall into account, so two of 

the three hurricane hazards will be analyzed in this part of the objective.  Since the 

HAZUS-MH cannot estimate losses from storm surge in a probabilistic simulation, both 

the Hurricane Wind Model and the Flood Model will be run using the historical storm 

Hurricane Ike to simulate storm surge conditions in Galveston County.  These data will 

be used to determine which areas of the Greater Houston Region are the most vulnerable 

to high winds, extreme rainfall, and storm surge.  The developers of HAZUS-MH 

recently released a service package to the most recent version of the model, Version 4.2, 

which includes the additions of Hurricanes Sandy (2012), Harvey (2017), Irma (2017), 

Maria (2017), and Nate (2017) to the historical storm database (FEMA 2018b). 

Objective 3 of this study will use Hurricane Harvey for the storm simulation in 

the Hurricane Wind Model for the wind and rainfall analysis.  However, the developers  

https://www.fema.gov/summary-databases-hazus-multi-hazard
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Figure 2: Map of the Greater Houston Region comprising the domain for this 

study. 
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discourage users from applying this storm to a storm surge analysis (FEMA 2018b).  

Therefore, the hurricane aspect of the storm surge analysis for this objective will use a 

storm advisory file from HURREVAC, a decision support tool of the National Hurricane 

Program and is administered by FEMA, the U.S. Army Corps of Engineers, and the 

National Hurricane Center (HURREVAC 2019).  This option is included within the 

User-Defined Scenario option in HAZUS-MH and updated with hurricane tracks 

through the year 2017 (FEMA 2018d).  When an existing forecast is selected, hurricane 

radii, and wind speeds are reduced to default factors (FEMA 2018d). 

 

3.3 Methods 

 

3.3.1 Objective 1: Update HAZUS-MH with more recent input variables and databases 

 The HAZUS-MH data inventory includes a vast amount of information for any 

of the hazards that can be run in this model: earthquake, flood, tsunami, and hurricane.  

Data that are used in all HAZUS-MH analyses include information about buildings and 

describes the materials that they are made from, as well as how the building is used.  The 

material descriptions are referred to as general building types and includes descriptions 

such as wood, concrete, steel, masonry, and manufactured homes.  Buildings can be used 

in many ways, such as residential, commercial, and industrial.  In addition, lifelines, 

which are utilities that, if not available, make it difficult for normal community 

functioning to proceed, and replacement costs are economic factors that can be affect by 

hazard.  For a social standpoint, demographics are common in many hazard analyses.  
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All the information provided in the inventory can and, where possible, should be 

enhanced with improved data, such as those that are up-to-date or provided by local 

governments.  The data are verified and inputted by the CDMS, which validates that user 

data are compliant with the requirements for the HAZUS-MH software to work properly.  

The primary function of the CDMS is to allow users to query and explore the inventory 

and supports the transfer of data into and out of the major statewide databases (Mickey 

2004).  The datasets that have been updated or replaced using the CDMS are described 

in Tables 3, 5, 7, and 8 in Chapter IV.  Using a combination of updated and default data 

within HAZUS-MH constitutes the study to be designated a Level 2 analysis (Table 2, 

adapted from the HAZUS-MH Hurricane Wind Model Technical Manual). 

 

Parameter/Data Level 1 (Default 

Data) 

Level 2 (Default 

Data) 

Level 3 (Advanced 

Data) 

Wind Model Default 

Probabilistic 

User-Defined 

Scenario 

 

Coastal Surge 

Model 

Default Historic User-Defined 

Scenario 

 

Building Inventory Default User-Supplied  

Facilities and 

Building Classes 

Display/Edit Locations Only – No Damage or Loss Estimates 

Terrain Default  Expert-Supplied 

Loss Functions Default   

Damage Functions Default   

Shelter 

Requirements 

Default User-Supplied 

Parameters 

 

Debris Default User-Supplied Tree 

Coverage 

Parameters 

 

Table 2: Summary of Hurricane Model Capabilities adapted from the HAZUS-MH 

Hurricane Wind Model Technical Manual 
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3.3.2 Objective 2: Identify the areas of Houston that are most vulnerable to the three 

hazards of extreme winds, heavy rainfall, and storm surge 

 Using the updated datasets provided by Objective 1, a probabilistic scenario of 

hurricanes will be simulated to determine the areas of the Greater Houston Region that 

are most vulnerable to the three hazards that are involved in the hurricane event: extreme 

winds, heavy rainfall, and storm surge.  HAZUS-MH includes a 100,000-year database  

of pre-generated peak wind gusts for each census tract in the U.S. that will simulate 

every possible storm scenario for the study area.  The hurricanes included in the database 

vary in size, strength, speed, and direction, providing an objective way to compare risk 

in different areas of the region.  The probabilistic scenario option in HAZUS-MH looks 

at the simulated storms that intersect the study area and the total losses from those are 

ranked.  Then, the storm that caused that loss is used to make a wind-speed map. 

 The HAZUS-MH Hurricane Wind Model uses several models to estimate losses 

in a study area.  The hurricane risk model included in the overall wind model consists of 

three parts: a wind field model, a hurricane track model, and a rainfall model.  The wind 

field model solves the full non-linear equations of motion of translating hurricanes and 

establishes parameters for a fast-running simulation.  This model also accounts for storm 

asymmetries, changing sea surface roughness, and air-sea temperature differences.  The 

hurricane track model simulated the entire track of a tropical storm and allows the 

storms to curve, as well as change speed and intensity as they move.  Based on the 

HURDAT database, this model can show hurricane wind risk over large regions.  

Rainfall is one of the most difficult parameters to simulate in any hurricane model 
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because it involves the non-linear interactions of weather fronts and topography.  The 

rainfall model uses central pressure deficit, storm category, and storm translation speed 

to estimate precipitation in a hurricane.  The validation of this model was done with 

rainfall measurements from Hurricanes Hugo (1989), Bertha (1996), Fran (1996), and 

Bonnie (1998) (Mickey 2004).  HAZUS-MH Version 4.2 produces reasonable estimates 

of rainfall, but there is an expectation of significant variation with actual events due to 

unmodeled events (FEMA).  Other models within the HAZUS-MH Hurricane Wind 

Model include a terrain model and a tree blow down model.  A terrain model is 

necessary because surface roughness from buildings, trees, vegetation, and hills can slow 

down wind due to friction, which a hurricane model should consider for loss estimation.  

The tree blow down model shows the effects of trees during a wind storm.  Though trees 

can provide shelter to structures, thus reducing wind pressure, falling trees produce a 

strike hazard to structures and add debris to dispose of after a storm.  The tree database 

in HAZUS-MH includes three types of trees (deciduous, coniferous, and mixed), tree 

density measured in stems per acre, and tree height, distributed between three broad 

categories of 30-40 ft, 40-60 ft, and greater than 60 ft (Mickey 2004).   

 HAZUS-MH estimates physical, economic, and social losses in several ways.  

The model takes into consideration wind pressure, wind-borne debris, and building 

resistance when estimating physical losses.  In HAZUS-MH, wind pressure is calculated 

as a function of wind speed, wind direction, and location of the wind on a building.  In 

practice, design wind loads on buildings are determined using wind tunnel data or 

building code provisions based on wind tunnel data.  There are two wind-borne missile 
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models in the HAZUS-MH Hurricane Wind Model, one is for residential buildings that 

account for shingles, wood, and sheathing-type missiles, and the other for commercial 

buildings that considers gravel missiles from built-up roofing.  The building debris 

model is based on damage states for structural and non-structural components of the 

HAZUS-MH model buildings and considers the typical density of that debris type.  Each 

building type has a set of debris functions related to terrain, where rougher terrains 

produce less building debris.  There are many ways a building can be resistant to the 

effects of hurricanes, such as having precautionary water resistance measures, masonry 

reinforcements, shuttering, improvement of roof-wall connections, and roof-deck 

attachments, tie downs, and roof covers.  The physically based damage-to-loss model in 

HAZUS-MH computes direct economic losses using the explicit costing of windows, 

doors, sheathing, and roof covers, and the implicit costing of the estimates of volume of 

water entering through failed windows and doors.  The estimates of the tree analysis are 

based on the tree coverage database, the tree blow down model, and the expected green 

weight of tree stems for trees greater than 30 feet tall.  The eligible tree debris is an 

estimate made for all areas, though there may not be data for more sparsely populated 

areas; the volume of trees is based on 10 yd3/ton.  The terrain analysis parameters show 

roughness lengths where higher roughness creates more drag at the surface, which yields 

lower wind speeds.  The direct economic impacts that are estimated in HAZUS-MH 

include annual gross sales, business inventory, disruption costs, restoration time, and 

income and wage losses.  Social losses determined in this model show the need for 

public shelters in the aftermath of a hurricane.  The parameters that are considered are 
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age, ethnicity, income, home ownership, and the damage states of the different types of 

buildings (Mickey 2004). 

 There are several ways that HAZUS-MH presents results from a probabilistic 

scenario of the Hurricane Wind Model.  The model can randomly select seven storms 

from the 100,000-year database with return periods of 10, 20, 50, 100, 200, 500, and 

1,000 years, which represents the physical, economic, and social losses for each return 

period.  The return periods are based on total direct economic losses for the entire study 

region.  In addition, there is a full set of results provided; that contains damage, debris, 

shelter estimates, and dollar losses, among other results.  The direct physical losses that 

are presented from this model include the structural damage for buildings and the extent 

of losses on the essential facilities.  The structural damage for buildings involves the 

damage state probability counts and losses by occupancy and building type, while the 

essential facility losses show the loss of use measured in days and the damage state 

probability.  The debris results show building debris in terms of wood and masonry, as 

well as steel and concrete, and the tree debris as related to building density, length of 

roads, and census block shapes.  Trees downed near streets, highways, or buildings, 

make up the great majority of trees brought to curbs for collection and disposal.  The 

direct economic losses from the general building stock include building losses, which are 

calculated from the structural, non-structural, content, and business inventory and 

interruption losses, which are estimated from wage, income, proprietor losses, and costs 

from rental and relocation.  There is also an uncertainty analysis within the results of a 

HAZUS-MH Hurricane Wind Model run.  The forecast uncertainties model uses 
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statistics to forecast errors compiled from the period from 1993 to 2004 to simulate a 

range of possible outcomes.  The results report displays the 5th and 95th percentiles of the 

simulated outcomes.  HAZUS-MH can automatically save result reports and create 

thematic maps of results on the fly, but this can increase the analysis processing time 

(Mickey 2004). 

 When estimating the losses from storm surge in HAZUS-MH, the user must use 

a combination of the Hurricane Wind Model and the Flood Model.  Because the model is 

unable to determine storm surge from a probabilistic scenario and the study area cannot 

be larger than one county (FEMA 2018d), the storm surge from Hurricane Ike, a historic 

storm in the HAZUS-MH inventory, will be simulated and analyzed to determine the 

potential storm surge as compared to Hurricane Harvey in Objective 3.  HAZUS-MH 

uses three industry standard models that are used simultaneously to determine the storm 

surge in a study area: the Sea, Lake, and Overland Surges from Hurricanes (SLOSH) 

model, the Simulating Waves Nearshore (SWAN) model, and a modified version of the 

Wave Height Analysis for Flood Insurance Studies (WHAFIS) model (Mickey 2004).  

Using this combination of storm surge models allow for the estimation of economic 

losses to the general building stock for hurricane scenarios on coastal flood regions 

(Mickey 2004).  Only the direct economic losses are output results from HAZUS-MH as 

a table or report; maps are unable to be generated in this hazard scenario, but results can 

be compared to flood maps from FEMA and other government agencies (Mickey 2004). 

 The losses that are estimated by HAZUS-MH allow for a user, government 

agency, or private organization in planning for emergency preparedness, response, and 
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recovery for future tropical cyclones.  This methodology considers many aspects of the 

built and natural environment, as well as a wide range of losses that can occur when a 

tropical cyclone impacts an area.  The results of this objective will provide a reliable 

preliminary assessment of the weaknesses in the structures in the Greater Houston 

Region. 

 

3.3.3 Objective 3: Assess Houston’s specific losses from Hurricane Harvey 

 Objective 3 is like Objective 2 in that HAZUS-MH will be run for the Greater 

Houston Region.  However, this portion of the study will have a historic storm scenario 

and a user-defined storm scenario for Hurricane Harvey.  The results of these two 

scenarios will be compared to the results from Objective 2 to see if the areas that are 

most vulnerable to specific aspects of hurricanes were greatly affected by Harvey.  The 

historic scenario will be used for the Hurricane Wind Model, while the storm surge will 

be calculated from the user-defined storm scenario.  Assessing the results from 

Hurricane Harvey with the updated data from Objective 1 can help to evaluate current 

mitigation strategies in the Greater Houston Region and to understand how Harvey was 

unique in comparison to the probabilistic scenario.  

 Objective 3 will differ from Objective 2 in that the HAZUS-MH Flood Model 

will be used to determine the full extent of losses.  The Greater Houston Region was not 

greatly affected by the extreme winds from Hurricane Harvey; losses related to the 

hurricane’s winds are more apparent near the location of the its first two landfalls, which 

are southwest of the study area.  The losses in the Houston area were almost entirely 
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determined by the flooding, which came through the combination of the hurricane 

stalling for several days and the amount of precipitation in the region that were observed 

as a result.  Because of this, only Harris County, which comprises of both the riverine 

and coastal features, as well as contains the city of Houston, will be used for this part of 

Objective 2.  The outcomes of the Flood Model are slightly different from the Hurricane 

Wind Model in that the Flood Model has influence from the National Flood Insurance 

Program, which pays claims to victims during the recovery period based on the 

depreciated value of a building (Scawthorn, Blais, et al. 2006).  However, using the 

Flood Model can help to estimate the losses for this unique hurricane that are lacking the 

results of the Hurricane Wind Model run for Hurricane Harvey.  

 The HAZUS-MH Flood Model can help to quantify flood risks and support 

communities in making informed decisions in land use and determining flood-prone 

areas.  There are two basic analytical processes that make up the methodology of this 

model: a flood hazard analysis and a flood loss estimation analysis.  The flood hazard 

portion of this analysis identifies the spatial variation in flood depth and velocity for 

riverine and coastal flooding conditions for a user-defined study area.  A flood hazard is 

defined by Sathorn, Blais, et al. (2006) as the relationship between the depth of flooding 

and the annual probability of inundation greater than that depth and can be shown in a 

depth-frequency curve.  A Level 1 analysis is used in this study because the Flood 

Information Tool, provided by HAZUS-MH and similar to the CDMS, is not used to 

preprocess the site-specific flood hazard data or facilitate the import of these data into 

the Flood Model to run a further analysis of the damage and loss associated with the 
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flooding (Scawthorn, Blais, et al. 2006).  However, the data inputted into the model in 

Objective 1 are used for basic loss estimation. 

 The flood hazard analysis begins with determining the terrain of a study area 

through the use of a Digital Elevation Model (DEM) (Scawthorn, Blais, et al. 2006).  

This is determined through HAZUS-MH, which has the capability of importing the 

raster files directly from the USGS National Elevation Dataset based on the spatial 

extent of the study region; it also clips the rasters to the watersheds that intersect the 

study area (Scawthorn, Blais, et al. 2006; FEMA 2018c).  Topographic information is 

necessary for a flood hazard analysis because the boundary and depth of flooding is 

determined by the differences between the ground and flood surfaces (Scawthorn, Blais, 

et al. 2006). 

 Because Harris County is subject to a riverine flood hazard from its many rivers, 

but particularly from Buffalo Bayou and the San Jacinto River, a stream network was 

generated to identify the river reaches in the study area (FEMA).  The Flood Model 

processes the DEM of the study region to determine the locations of the streams (FEMA 

2018c).  A hydrological analysis must also be done in order to delineate the floodplain in 

the area (FEMA 2018c).  Harris County also has coastal areas, so a coastal flood hazard 

also had to be run for this study.  The shoreline is determined by the DEM; the 100-year 

still water elevation and vertical datum for each shoreline segment were found through 

the use of the Harris County Flood Insurance Study (FEMA 2018c, 2017a).  Delineating 

the floodplain also had to be performed for the coastal regions (FEMA 2018c).  A single 

return period of 200 years was selected for both the riverine and coastal analyses since 
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Hurricane Harvey was determined to have a return period of approximately 230 years, in 

terms of its winds and precipitation (Trepanier and Tucker 2018).  The HAZUS-MH 

Flood Model analyzes the impact of both hazards on the data inventory independently so 

that it can compare the resulting losses to determine which hazard has the greatest 

impact on that structure type (FEMA 2018c).   

 HAZUS-MH uses a combination of flood depth estimations and depth damage 

functions to find direct damage that can result from flooding.  The outputs of this 

module are the area-weighted estimations of damage as a percent of replacement cost, 

either at the census block level or for a specific building and are used as inputs to the 

induced physical damage and direct economic and social loss modules.  Depth-damage 

functions are plots of floodwater depth versus percent damage, and can be done for a 

myriad of building types and occupancies, but are most reliable for predicting damage 

for large groups of buildings.  The depth-damage curves that are used in the HAZUS-

MH Flood Model are from the Federal Insurance Administration and the U.S. Army 

Corps of Engineers; they are used to estimate damage to the general building stock and 

the essential facilities.  The functions that are applied to the damages to lifeline systems 

differ from the other depth-damage curves in that they define the potential damage to the 

components of the systems that are either uniquely vulnerable to inundation or are 

expensive to repair or replace; these components are grouped based on vulnerabilities 

and expected loss.  The buildings types that are evaluated for damage from a flood are 

the same as in the Hurricane Wind Model.  In the Flood Model, building type, level of 

design, and quality of construction do not play a big role in the loss estimation because 
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they do not affect a building’s resistance to flooding; this is very much unlike the 

Hurricane Wind Model.  Major structural elements typically survive flooding, unless 

floodwaters move with an extremely high velocity, the structures and foundations 

become separated, or there are flood-borne debris impacting the building, but these 

situations are rare (Scawthorn, Flores, et al. 2006). 

 The direct economic losses that are estimated in the Flood Model are building 

repair and replacement costs, building content losses, building inventory losses, 

relocation expenses, income and wage losses, and rental income losses.  Income losses 

are dependent on the necessary time to completely restore business operations, which 

includes the time needed for physical restoration of a building from cleaning up, 

repairing, getting the required inspections and permits, and the delay of contractor 

availability.  These are indirect losses that HAZUS-MH accounts for in the loss 

estimation.  Therefore, a flood-specific restoration model was developed to provide that 

estimate of time required based on occupancy type and flood depth at 4-ft increments.  

The total restoration time increases with flood depth until the building reaches 50% 

damage; after that point, the building is considered to be totally lost and it is assumed 

that the building will be demolished and rebuilt (Scawthorn, Flores, et al. 2006). 

 Social losses are estimated in the HAZUS-MH Flood Model in terms of shelter 

needs.  The algorithm used in the Flood Model is the same as the Earthquake Model, but 

slightly adjusted to demonstrate the differing shelter needs; sheltering related to floods is 

based on the number of displaced people in inundated areas in a study area and are 

modified by taking into account income and age (Scawthorn, Flores, et al. 2006).  This is 
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because those who have lower income and those who are part of younger or elderly 

families tend to seek shelter more than those who are more financially established 

(Scawthorn, Flores, et al. 2006).  The individuals from displaced households also are 

made up of people who live in areas that were evacuated from an issued warning or who 

cannot get to their properties because of flooded or damaged roadways, though their 

structure may not be damaged (Scawthorn, Flores, et al. 2006). 
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CHAPTER IV  

UPDATING HAZUS-MH DEFAULT DATA 

 

4.1 Updated Datasets 

 The categories of data that are updated as part of Objective 1 are essential 

facilities, high potential loss facilities, transportation systems, and utility systems.  Most 

of the data collected had to be modified to fit the specific requirements of the model, 

such as filtering national data to the state of Texas, adding replacement cost, or changing 

fields based on character limits.  Much of the data came from the U.S. Department of 

Homeland Security’s Homeland Infrastructure Foundation Level Data (HIFLD) public 

domain and were changed based on the specifications HAZUS-MH.  Facility or Analysis 

Class attributes were added to all data based on the CDMS Data Dictionary for analysis 

purposes (FEMA 2019a).  Furthermore, the data points representing the locations of the 

facilities had to be within a census tract in the state of Texas; those that did not were 

eliminated from the dataset for inclusion in HAZUS-MH.  When the replacement cost 

was not included in the new dataset, the average value from the default HAZUS-MH 

data was calculated and the inflation percentage, found using the U.S. Department of 

Labor’s Inflation Calculator (DOL 2019), was accounted for and added since most of the 

default data were collected between 1999 and 2001.  The names and addresses of all 

facilities were limited to 40 characters.  Therefore, they were either cut off at the 

specified limit or abbreviated based on the C1 Street Suffix Abbreviations from the 

United States Postal Service (USPS 2019).  There are some instances when a facility was 
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not part of the default database; when possible, those were added to HAZUS-MH for a 

more comprehensive analysis. 

 

4.1.1 Essential Facilities 

 An essential facility is a manmade structure serving the health and welfare of the 

whole population of an area (FEMA 2007).  Table 3 describes the replacement data for 

the essential facilities for HAZUS-MH, which includes medical care facilities, fire 

stations, police stations, emergency response centers, and schools. 

 

Essential Facility Original Data 

Source 

New Data Source Specific 

Modifications to 

Dataset 

Medical Care 

Facilities 

American Hospital 

Association, 2000 

HIFLD 

File Name: 

Hospitals, 2017 

Eliminated facilities 

that were closed or 

had null values for 

number of beds.  

Type of Hospital 

field edited based 

on character limits. 

Fire Stations InfoUSA Inc., 2001 HIFLD 

File Name: Fire 

Stations, 2010 

 

Police Stations InfoUSA Inc., 2001 HIFLD 

File Name: Local 

Law Enforcement 

Locations, 2018 

Eliminated facilities 

that were not police 

stations. 

Emergency 

Response Centers 

InfoUSA Inc. and 

FEMA, 2001 

HIFLD 

File Name: Local 

Emergency 

Operation Centers, 

2018 

 

Table 3: Replacement Data for Essential Facilities 
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Essential Facility Original Data 

Source 

New Data Source Specific 

Modifications to 

Dataset 

Schools U.S. Department of 

Education National 

Center for 

Education 

Statistics, 2000 

HIFLD 

File Names: Public 

School, 2018; 

Private Schools, 

2018; College and 

Universities, 2018; 

Supplemental 

Colleges, 2018 

Combined all files 

together.  

Eliminated schools 

with enrollment 

with negative 

numbers, 0, or no 

information.  

Eliminated 

technical and trade 

schools.  Eliminated 

schools with 

number of students 

exceeding 32,767.  

Added two 

attributes with 

University of 

Houston with half 

the number of 

students for the 

analysis. 

Table 3 Continued. 

For the medical care facilities, Facility Class was determined based on the size of the 

hospital.  A small hospital has fewer than 50 beds, while a medium hospital has between 

50 and 150beds, and a large hospital has more than 150 beds (FEMA 2019a).  Because 

the type-of-hospital field was limited to 10 characters, the names were shortened to be 

able to be used in the model analysis (Table 4).  The types of police stations that were 

included were included were Park Police, Police Departments, Sheriffs’ Offices, State 

Police, and Transit Police.  The types of higher education institutions that remained in 

the dataset are colleges, universities, professional schools, fine arts schools, and junior 

colleges. 
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4.1.2 High Potential Loss Facilities 

 A high potential loss facility is a key resource in a community that is so vital that 

Their incapacity or destruction would have a devastating impact on public services, 

security, economics, public health, or safety (FEMA 2019b).  The high potential loss 

facilities that are included in HAZUS-MH are dams, hazardous materials sites, military 

facilities, and nuclear power plants (Table 5). 

 

High Potential 

Loss Facility 

Original Data 

Source 

New Data Source Specific 

Modifications to 

Dataset 

Dams None HIFLD 

File Name: Dam 

Lines, 2009 

 

Hazardous 

Materials Sites 

Environmental 

Protection Agency 

Toxic Release 

Inventory Database, 

1999 

Environmental 

Protection Agency 

Toxics Release 

Inventory Program, 

2017 

Chemical Name 

field changed based 

on character limits. 

Military Facilities None U.S. Census Bureau 

TIGER/Line 

Shapefiles 

File Name: Military 

Installations, 2018 

 

Table 5: Replacement Data for High Potential Loss Facilities 

 

HIFLD Type of Hospital Abbreviation for HAZUS-MH 

General Acute Care General 

Psychiatric Psych 

Rehabilitation Rehab 

Long Term Care Long Term 

Critical Access Critical 

Table 4: Abbreviations of Types of Hospitals for HAZUS-MH Analysis 
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High Potential 

Loss Facility 

Original Data 

Source 

New Data Source Specific 

Modifications to 

Dataset 

Nuclear Power 

Plants 

U.S. Nuclear 

Regulatory 

Commission, 2000 

U.S. Nuclear 

Regulatory 

Commission, 2018 

 

Table 5 Continued. 

The Chemical Name field had to be changed because of the 25-character limit; the 

shortened names that were used were either the official name as designated by the 

International Union of Pure and Applied Chemistry or another common name for the 

chemical (Table 6). 

 

Name of Chemical Shortened Name for Model 

Purposes 

1-(3-Chloroallyl)-3,5,7-Triaza-1-

Azoniaadamantane Chloride 

Quaternium-15 

1,1,1,2-Tetrachloroethane 

1,1,2,2-Tetrachloroethane 

Tetrachloroethane 

1,1,1-Trichloroethane 

1,1,2-Trichloroethane 

Trichloroethane 

1,1-Dimethyl Hydrazine Dimethyl Hydrazine 

1,2,3-Trichloropropane Tricholorpropane  

1,2,4-Trichlorobenzene Trichlorobenzene 

1,2,4-Trimethylbenzene Trimethylbenzene 

1,2-Dichloroethylene 1,2-Dichloroethene 

1,2-Diphenylhydrazine Diphenylhydrazine 

1,2-Phenylenediamine 

1,3-Phenylenediamine 

Benzene-1 

1,3-Dichloropropylene Dichloropropylene 

1-Chloro-1,1-Difluoroethane Chlorodifluoroethane 

2,2-Dichloro-1,1,1-Trifluoroethane HCFC-123 

2,4,5-Trichlorophenol 

2,4,6-Trichlorophenol 

Trichlorophenol 

2,4 D 2-Ethylhexyl Ester 2,4-D 2-EHE 

2-Acetylaminofluorene Acetylaminofluorine 

2-Chloro-1,1,1,2-Tetrafluoroethane HCFC-124 

Table 6: Shortened Chemical Names 
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Name of Chemical Shortened Name for Model 

Purposes 

3,3’-Dichlorobenzidine Dichlorobenzidine 

3,3’-Dimethoxybenzidine Dimethoxybenzidine 

3,3’-Dimethylbenzidine Orthotolidine 

3-Chloropropionitrile Chloropropionitrile 

3-Iodo-2-Propynyl Butylcarbamate Iodocarb  

4,4’-Diaminodipheyl Ether 4,4’-Oxydianiline 

4,4’-Isopropylidenediphenol Bisphenol A 

4,4’-Methylenebis(2-Chloroaniline) Cyanaset 

4,4’-Methylenedianiline Methylenedianiline 

4-Dimethylaminoazobenzene Methyl Yellow 

Aluminum (Fume Or Dust) Aluminum 

Aluminum Oxide (Fibrous Forms) Aluminum Oxide 

Bis(2-Chloro-1-Methylethyl) Ether Nemamort 

Bis(2-Chloroethyl) Ether Chlorex 

Bis(Chloromethyl) Ether Chloromethyl Ether 

C.I. Solvent Yellow 34 Auramine 

Certain Glycol Ethers Glycol Ethers 

Chlorodifluoromethane HCFC-22 

Chloromethyl Methyl Ether Chlorodimethyl Ether 

Chromium Compounds(Except Chromite Ore 

Mined In The Transvaal Region) 

Chromium Compounds 

Cresol (Mixed Isomers) Cresol 

Decabromodiphenyl Oxide BDE-209 

Di(2-Ethylhexyl) Phthalate Dioctyl Phthalate 

Diaminotoluene (Mixed Isomers) Diaminotoluene 

Dichlorobenzene (Mixed Isomers) Dichlorobenzene 

Dichlorodifluoromethane Freon-12 

Dichlorotetrafluoroethane (Cfc-114) CFC-114 

Dimethylcarbamyl Chloride DMCC 

Dinitrotoluene (Mixed Isomers) Dinitrotoluene 

Dioxin And Dioxin-Like Compounds Dioxin 

Ethylenebisdithiocarbamic Acid, Salts, And 

Esters 

Nabam 

Ethylidene Dichloride 1,1-Dichloroethane 

Hexachloro-1,3-Butadiene Hexachlorobutadiene 

Hexachlorocyclopentadiene Graphlox 

Hydrochloric Acid (1995 And After Acid 

Aerosols” Only)” 

Hydrochloric Acid 

Table 6 Continued. 



 

47 

 

Name of Chemical Shortened Name for Model 

Purposes 

Isopropyl Alcohol (Manufacturing,Strong-

Acid Process Only,No Supplier) 

Isopropyl Alcohol 

Methoxone Sodium Salt Phenoxylene 

Methyl Chlorocarbonate Methyl Chloroformate 

Methyl Isobutyl Ketone Isopropylacetone 

Methyl Tert-Butyl Ether MTBE 

Monochloropentafluoroethane Freon 115 

N,N-Dimethylformamide Dimethylformamide 

Nitrilotriacetic Acid Triglycine 

N-Methyl-2-Pyrrolidone N-Methylpyrrolidone 

N-Nitrosodiphenylamine Diphenylnitrosamine 

N-Nitrosomethylvinylamine Myna 

N-Nitroso-N-Ethylurea Ethylnitrosourea 

N-Nitroso-N-Methylurea Methylnitrosourea 

O-Toluidine Hydrochloride O-Methylaniline 

Phosphorous (Yellow Or White) Phosphorous 

Polychlorinated Biphenyls PCB 

Polycyclic Aromatic Compounds PAH 

Sodium Dimethyldithiocarbamate Carbamodithioic Acid 

Sodium O-Phenylphenoxide Sodium 2-Biphemylate 

Sulfuric Acid (1994 And After Acid 

Aerosols” Only)” 

Sulfuric Acid 

Tetrabromobisphenol A Bromdian 

Titanium Tetrachloride Tetrachlorotitanium 

Toluene Diisocyanate (Mixed Isomers) 

Toluene-2,4-Diisocyanate 

Toluene-2,6-Diisocyanate 

Toluene Diisocyanate 

Trans-1,4-Dichloro-2-Butene 1,4-Dichlorobutene-2 

Trichlorofluoromethane Fluorochloroform 

Triclopyr Triethylammonium Salt Garlon 

Vanadium (Except When Contained In An 

Alloy) 

Vanadium 

Xylene (Mixed Isomers) Xylene 

Table 6 Continued. 
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4.1.3 Transportation Systems 

 Transportation systems are important to hazard preparedness and recovery 

because they can help to transfer emergency relief personnel and supplies, mitigate 

detrimental economic impacts, and meet other societal needs (FEMA 2013).  Ensuring 

that the transportation systems in an area are effective and do not have unnecessary 

restrictions is essential to the effectiveness of prevention, preparedness, response, 

recovery, and mitigation of any hazard in a community (FEMA 2013).  Table 7 presents 

the updated datasets for the transportation systems in HAZUS-MH.  Highway segments, 

highway tunnels, light rail bridges, light rail facilities, light rail track segments, light rail 

tunnels, and railway tunnels were not replaced because either there were none in the 

Greater Houston Region or the files found did not meet the specifications of the model. 

 

Transportation 

System 

Original Data 

Source 

New Data Source Specific 

Modifications to 

Dataset 

Airport Facilities U.S. Department of 

Transportation 

Bureau of 

Transportation 

Statistics and 

Federal Aviation 

Administration, 

2007 

HIFLD 

File Name: 

Aircraft Landing 

Facilities, 2018 

 

Table 7: Replacement Data for Transportation Systems 
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Transportation 

System 

Original Data 

Source 

New Data Source Specific 

Modifications to 

Dataset 

Airport Runways U.S. Department of 

Transportation 

Bureau of 

Transportation 

Statistics and 

Federal Aviation 

Administration, 

2007 

HIFLD 

File Name: 

Runways, 2017 

 

Bus Facilities InfoUSA Inc., 2001 U.S. Department 

of Transportation 

Geospatial at the 

Bureau of 

Transportation 

Statistics 

File Name: 

Intermodal 

Passenger 

Connectivity 

Database, 2018 

 

Ferry Facilities Port and Waterway 

Facilities Database 

from the U.S. Army 

Corps of 

Engineers/CEIWR 

Navigation Data 

Center Port and 

Waterways Division 

United States 

Geological Survey 

National Map Data 

File Name: Ferry 

Ports, 2014 

Inflation was not 

calculated since 

year default data 

obtained was not 

listed 

Highway Bridges National Bridge 

Inventory Database 

provided by the 

Federal Highway 

Administration 

Office of Bridge 

Technology, 2001 

HIFLD 

File Name: 

National Bridge 

Inventory Bridges, 

2017 

Filtered to only 

highway bridges 

Table 7 Continued. 
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Transportation 

System 

Original Data 

Source 

New Data Source Specific 

Modifications to 

Dataset 

Port Facilities U.S. Army Corps of 

Engineers/CEIWR 

Navigation Data 

Center Ports and 

Waterways 

Division, 2000 

HIFLD 

File Name: Port 

Facilities, 2019 

 

Railway Bridges National Bridge 

Inventory, 2001 

HIFLD 

File Name: 

Railroad Bridges, 

2009 

 

 

Railway Facilities U.S. Department of 

Transportation 

Bureau of 

Transportation 

Statistics, 2007 

HIFLD 

File Name: 

Intermodal 

Terminal 

Facilities, 2017 

Filtered to heavy 

railway stations 

Table 7 Continued. 

 

4.1.4 Utility Systems 

 Utility systems provide necessary services that allow for the continuous 

operation of critical business and government functions and are vital to human health, 

safety, and economic security (NIST 2016).  Distribution sewers, natural gas distribution 

pipelines, natural gas pipelines, oil pipelines, potable water distribution pipelines, 

potable water pipelines, and wastewater pipelines were not updated because either there 

were none in the Greater Houston Region or the files found did not meet the 

specifications of HAZUS-MH.  Table 8 describes the replacement data for the utility 

systems within the model. 
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Utility System Original Data 

Source 

New Data Source Specific 

Modifications to 

Dataset 

Communication 

Systems 

Federal 

Communication 

Commission 

Broadcast Auxiliary 

Microwave File, 

2001 

HIFLD 

File Name: 

Microwave Service 

Towers, 2017 

 

Electric Power 

Facilities 

Environmental 

Protection Agency 

Envirofacts Data 

Warehouse 

Location Reference 

Tables Tool, 2001 

HIFLD 

File Name: 

Environmental 

Protection Agency 

Facility Registry 

Service Power 

Plants, 2019 

 

Natural Gas 

Facilities 

Environmental 

Protection Agency 

Envirofacts Data 

Warehouse 

Location Reference 

Tables Tool, 2001 

HIFLD 

File Name: Natural 

Gas Compressor 

Stations, 2018 

 

Oil Facilities Environmental 

Protection Agency 

Envirofacts Data 

Warehouse 

Location Reference 

Tables Tool, 2001 

HIFLD 

File Name: Oil 

Refineries, 2017 

 

Potable Water 

Facilities  

Environmental 

Protection Agency 

Envirofacts Data 

Warehouse 

Location Reference 

Tables Tool, 2001 

Environmental 

Protection Agency 

Facility Registry 

Service  

File Name: Facility 

Interests Dataset, 

2018 

Filtered to Water 

Treatment Plants 

Table 8: Replacement Data for Utility Systems 
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Utility System Original Data 

Source 

New Data Source Specific 

Modifications to 

Dataset 

Wastewater 

Facilities 

Environmental 

Protection Agency 

Envirofacts Data 

Warehouse 

Location Reference 

Tables Tool, 2001 

HIFLD 

File Name: 

Environmental 

Protection Agency 

Facility Registry 

Service 

Wastewater 

Treatment Plant, 

2019 

 

Table 8 Continued. 
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CHAPTER V  

IDENTIFYING VULNERABLE AREAS IN THE GREATER HOUSTON REGION 

 

Chapter V will present the results of Objective 2 of this thesis, which is to 

identify the most vulnerable areas of the Greater Houston Region to the three different 

types of hazards that make up a hurricane: extreme winds, heavy precipitation, and storm 

surge.  By comparing the results of the different return periods of hurricane from the 

probabilistic mode of the HAZUS-MH Hurricane Wind Model, there can be a better 

understanding of the extent of losses with each strength of storm.  These results will also 

be used to compare to the losses estimated from Hurricane Harvey in Objective 3. 

 

5.1 Return Periods 

 Using the return period of hurricane winds can help to compare to the historical 

record of a study area (Emanuel and Jagger 2010).  An early effort to calculate hurricane 

return periods was based on hurricane landfalls that occurred in the U.S. from 1886 to 

1970 by Simpson and Lawrence (1971), where they studied the return periods for all 

hurricanes within 80-kilometer coastal segments, ranging from Texas to Maine.  Elsner 

and Kara (1999) focused on counties along the coast, finding return periods that ranged 

from 4 years for Monroe County, Florida to about 100 years for some counties in 

Georgia and Maine.  By analyzing the spatiotemporal patterns of tropical cyclone strikes 

from 1901-2005 at 45 different locations from Brownsville, Texas, to Eastport, Maine, 

Keim, Muller, and Stone (2006) found that the return period of tropical storm-strength 
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systems or greater for southeast Texas is three years, on average.  The expected return 

period of an event similar to Hurricane Harvey, in terms of its combined wind and 

precipitation measurements, in Houston, Texas is estimated to be 230 years (Trepanier 

and Tucker 2018).  For each county in the Greater Houston Region, results were 

calculated for each return period based on the 100,000-year database of storms included 

in HAZUS-MH.  To compare to the results from Hurricane Harvey (see Objective 3), the 

10-year, 200-year, and 1000-year return periods will be analyzed for the purpose of this 

objective.  This allows for the examination of the events that are likely to happen most 

often, a storm with risk that is like Harvey, and the most extreme scenario possible in 

this model. 

 

5.2 Storm Tracks 

 The HAZUS-MH Hurricane Wind Model probabilistic mode was used to 

determine the physical, economic, and social losses that can occur for a variety of storms 

with specific return periods.  As HAZUS-MH looks through the 100,000-year database 

for all storm events that intersect the study region, the total losses for each storm event 

are ranked and used to determine a specific storm track for each chance event (FEMA 

2018d).  The probable storm tracks of 10, 20, 50, 100, 200, 500, and 1000-year return 

periods are shown in Figure 3.  The types of hurricanes that occur the most often, the 10-

year and 20-year storms, probably would not make a direct impact on the Greater 

Houston Region since they tend to track south of the area.  Though the other return  
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Figure 3: Probable storm tracks of the Greater Houston Region. 
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periods are estimated to not occur as often, they can make a direct impact on the area.  

These storms are usually more destructive with higher winds and the greater possibility 

of causing more losses. 

 

5.3 Wind Speeds 

 After HAZUS-MH chooses the storm tracks for each return period, the wind 

speeds for the specific hurricane track are used as the basis to determine the wind speed 

values at the census tract level (FEMA 2018d).  The wind speeds that are shown in 

Figure 4 are the estimated maximum 3-second gust in open terrain at 10 m above the 

ground at the centroid of each census tract for that specific hurricane event (FEMA 

2018d).  The results show that in some census tracts, there are lower wind speeds for the 

less frequent events.  For example, on the eastern side of the Greater Houston Region in 

Liberty and Chambers counties, the wind speeds are higher in the 200-year return period 

than in the 1000-year return period.  This could be due to the location of the storm track, 

as well as the surface roughness of the region (Figure 5). 

 

5.4 Building Damage 

 The HAZUS-MH Hurricane Wind Model was run for the greater Houston 

Region for a total population of 5,290,416 in 1,069 census tracts with a 8,550 mi2 area, 

according to 2010 U.S. Census data (FEMA 2019c).  The study region contains a total of 

1,848,049 buildings, of which about 92% are residential, 5.5% are commercial, and  
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Figure 4: Wind speeds for selected hurricane return period scenarios. 
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Figure 5: Surface roughness of the Greater Houston Region. 
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2.5% are either agricultural, industrial, religious/non-profit, governmental, or 

educational buildings (FEMA 2019c).  The amount of structural damage on each type of 

building is divided into five damage state categories that range from no damage to 

complete destruction.  For a single-family residential building, Vickery, Skerlj, et al. 

(2006) define no damage or very minor damage as little or no visible damage from the 

outside, no broken windows or failed roof deck, minimal loss of roof cover, with no or 

very limited water penetration.  Minor damage includes a maximum of one broken 

window, door, or garage door, moderate roof cover loss that can be covered to prevent 

additional water entering the buildings, with marks or dents on walls that require 

painting or patching for repair.  The moderate damage category is given when there is 

major roof cover damage, moderate window breakage, and minor roof sheathing failure, 

which results in damage to the interior of the building from water.  Severe damage 

occurs when there is major window damage or roof sheathing loss, major roof cover 

loss, and extensive damage to the interior of the building from water.  Lastly, Vickery, 

Skerlj, et al. (2006) describe the complete destruction designation as a complete roof 

failure and/or failure of wall frame and loss of more than 50% of roof sheathing.  

Though the definition of damage-state categories is for single-family residential 

buildings, they can be interpreted in a similar fashion for other types of buildings. 

 

5.4.1 Building Damage by Occupancy Class 

 For all figures describing damage states by occupancy class, the number of 

buildings in that category is shown in terms of percent of the total number of buildings 
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of that class.  Figures 6, 7, and 8 show the building damage state by occupancy class for 

the 10-year, 200-year, and 1000-year hurricane return periods. 

 

 

Figure 6: Building damage by occupancy class for 10-year hurricane return period. 
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Figure 7: Building damage by occupancy class for 200-year hurricane return 

period 
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Figure 8: Building damage by occupancy class for 1000-year hurricane return 

period. 

 

 Almost all buildings of all occupancy classes had little to no damage in the 10-

year hurricane return period scenario.  This is probably because this type of storm occurs 

the most often of all the return periods, thus most buildings are well-prepared for such 

frequent events.  There were little to no buildings with damage states that would greatly 

impair their functionality if a 10-year hurricane were to impact the Greater Houston 

Region.  In the 200-year return period scenario, there are more buildings that will have 

greater damage.  There are more residential buildings that are expected to have minor 

damage than in other occupancy classes; this could be because those types are buildings 

are made mater materials that are not as resilient to hurricane conditions of greater 
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magnitude.  In this scenario, agricultural and residential buildings have a small 

percentage in the complete destruction category, meaning that there is the potential for 

parts of the Greater Houston Region to have devastating results.  In the 1000-year 

hurricane return period scenario, only about 30% of buildings will have little to no 

damage across all the occupancy classes.  More than 35% of residential buildings can 

have minor damage, while the other occupancy classes are expected to have between 

18% and 26% of buildings damaged.  Most commercial buildings would have moderate 

damage, while more than 25% of agricultural buildings will fall into the severe or the 

complete destruction categories.  A very small amount of residential buildings fall into 

those more serious categories in comparison to the other occupancy classes. 

 

5.4.2 Building Damage by Building Type 

 Just as the results describing the building damage by occupancy class, the 

building damage by building type is represented in terms of percent of the total buildings 

of that are damaged (Figures 9, 10, and 11).  Like the building damage counts by 

occupancy, almost no buildings are damaged in the 10-year hurricane return period 

scenario, with less than 1% of buildings experiencing a more severe damage state 

(Figure 9).  In the 200-year hurricane return period scenario, more than 70% of the 

manufactured homes have minimal or no damage, while the other buildings types have 

60% of the total with no damage.  However, the manufactured homes also have the most 

percentage of buildings that were completely destroyed, with almost 8%.  Structures 

made of wood are expected to have the highest percentage of buildings with minor 
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damage in this scenario, as well.  Manufactured homes have the most percentage of 

buildings that experience no damage in the 1000-year hurricane return period scenario, 

with almost 60% of the total in the Greater Houston Region.  Wooden homes had the 

most amount of buildings with minor damage, accounting for about 38% of the total of 

that building type, while steel structures had more than 20% in the severe damage 

category.  In this scenario, manufactured homes also have the most percentage of 

buildings in complete destruction, this time having more than 10% of the total of that 

building type. 

 

 

Figure 9: Building damage by building type for 10-year hurricane return period. 
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Figure 10: Building damage by building type for 200-year hurricane return period. 

 

 

Figure 11: Building damage by building type for 1000-year hurricane return 

period. 
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5.5 Economic Losses on Building Damage 

 

5.5.1 Direct Economic Loss 

 The direct economic losses that result in HAZUS-MH, based on the damages to 

the structures described earlier in this chapter, consider the general building stock class 

and the business interruption losses (Mickey 2004).  The building losses include the 

structural and non-structural damages, the content, and the business inventory, while the 

business interruption losses recognize wage, income, rental, relocation, and proprietor 

costs (Mickey 2004).  These two parameters can be broken down further into seven 

specific losses that will be described in this section: building, content, inventory, 

relocation, income, rental, and wage.  All costs in this section are expressed in terms of 

thousands of dollars. 

 

5.5.1.1 By Occupancy 

 The following tables show the direct economic losses that can occur in the 

Greater Houston Region from a 10-Year (Table 9), 200-Year (Table 10), and 1000-Year 

(Table 11) hurricane return period event for seven occupancy classes: agriculture 

(AGR), commercial (COM), education (EDU), government (GOV), industrial (IND), 

religion/non-profit (REL), and residential (RES).  The resulting tables from HAZUS-

MH correspond to all census tracts in the study area. 
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Class Total Building Content Inventory Relocation Income Rental Wage 

AGR 184 138 26 3 16 0 1 0 

COM 8,611 7,751 209 2 172 236 73 168 

EDU 530 522 3 0 2 1 0 2 

GOV 218 177 5 0 2 0 0 34 

IND 1,660 1,608 37 7 6 1 0 1 

REL 618 599 7 0 4 2 0 6 

RES 346,210 308,791 28,846 0 4,870 0 3,703 0 

Table 9: Direct Economic Losses by Occupancy Class for 10-Year Return Period 

 

Class Total Building Content Inventory Relocation Income Rental Wage 

AGR 118,255 61,449 37,988 4,676 12,059 1,123 515 445 

COM 6,229,973 2,830,968 1,563,569 40,936 572,717 440,618 325,725 455,440 

EDU 481,616 246,064 155,625 0 55,129 6,391 330 15,075 

GOV 197,222 80,964 52,786 0 21,539 540 5,855 35,538 

IND 1,786,678 860,920 698,247 110,975 67,786 15,194 11,354 22,202 

REL 424,106 226,726 115,019 0 46,137 9,640 3,990 22,594 

RES 47,411,770 31,486,405 10,219,471 0 4,081,762 17,916 1,564,215 42,001 

Table 10: Direct Economic Losses by Occupancy Class for 200-Year Return Period 

 

Class Total Building Content Inventory Relocation Income Rental Wage 

AGR 291,450 149,954 94,979 11,684 28,993 3,278 1,262 1,300 

COM 17,194,440 7,557,914 4,556,949 116,980 1,474,465 1,265,512 861,845 1,360,775 

EDU 1,113,383 580,374 372,965 0 127,073 7,561 7,572 17,838 

GOV 420,801 188,814 122,914 0 50,419 604 15,094 42,956 

IND 4,871,251 2,295,017 1,953,680 306,634 175,607 43,568 31,073 65,672 

REL 999,328 542,923 291,187 0 110,271 13,527 9,717 31,703 

RES 106,997,628 69,051,237 24,607,464 0 9,606,770 45,261 3,580,819 106,078 

Table 11: Direct Economic Losses by Occupancy Class for 1000-Year Return 

Period 

 

 The economic losses dramatically increase from the 10-year to the 1000-year 

hurricane return period storm.  The 10-year event results in an estimated loss of over 

$358 million, while the 200-year event shows a $56.6 billion loss and the 1000-year 

event shows an estimated $131.9 billion loss.  Most buildings in the study area are 

residential, therefore they experience the greatest economic loss.  All the occupancy 

classes experienced a great increase in losses from the most frequent type of storm to the 

least likely storm scenario. 
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5.5.1.2 By Building Type 

 The direct economic losses by building type are shown in Tables 12, 13, and 14 

for the three hurricane return periods.  The building types are concrete (CON), 

manufactured homes (MH), masonry (MAS), steel (STE), and wood (WOO).  Just as 

with the direct economic losses by occupancy class, this is also shown in terms of 

thousands of dollars. 

 

Type Total Building Content Inventory Relocation Income Rental Wage 

CON 1,853 1,691 19 3 31 24 62 23 

MH 7,491 6,485 395 0 521 0 90 0 

MAS 39,976 35,667 2,476 2 766 73 922 70 

STE 3,952 3,576 156 6 60 72 22 60 

WOO 294,458 263,216 24,738 1 3,694 72 2,680 57 

Table 12: Direct Economic Losses by Building Type for 10-Year Return Period 

 

Type Total Building Content Inventory Relocation Income Rental Wage 

CON 1,528,346 671,911 503,429 36,583 125,129 58,347 51,751 81,196 

MH 1,126,047 747,203 278,742 0 88,907 0 11,195 0 

MAS 8,079,686 4,900,445 1,718,386 29,477 735,269 148,863 359,373 187,873 

STE 3,379,009 1,601,071 1,067,156 74,975 223,978 142,838 106,864 162,127 

WOO 42,552,610 27,879,067 9,284,870 15,552 3,683,847 141,373 1,385,800 162,101 

Table 13: Direct Economic Losses by Building Type for 200-Year Return Period 

 

Type Total Building Content Inventory Relocation Income Rental Wage 

CON 4,316,522 1,865,688 1,479,799 103,267 320,601 172,373 133,600 241,194 

MH 1,729,684 1,138,368 437,481 0 136,786 0 17,049 0 

MAS 18,936,545 10,930,309 4,419,029 82,041 1,763,570 411,350 835,796 494,448 

STE 9,114,236 4,217,813 2,979,629 208,266 570,619 403,901 282,580 451,428 

WOO 97,848,382 62,243,087 22,712,255 41,723 8,782,024 391,687 3,238,358 439,250 

Table 14: Direct Economic Losses by Building Type for 1000-Year Return Period 

 

 Again, direct economic losses greatly increase from the 10-year hurricane return 

period event to the 1000-year hurricane return period event.  The losses begin at $347.7 

million for the 10-year hurricane, increase for the 200-year storm to $56.6 billion, and 
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again to $131.9 billion for the 1000-year storm.  Buildings made of wood have the most 

economic losses of all the building types because they are the most by count.  Though 

concrete and steel structures had the lowest loss from the 10-year event, manufactured 

homes had much larger losses in the 200-year and 1000-year hurricane return period 

scenarios. 

 

5.5.2 Output and Employment 

 HAZUS-MH also estimates the loss of employee output or productivity as a 

direct economic loss, as well as the losses that result from lack of employees in the 

aftermath of a hurricane.  The results are presented for the 10-year, 200-year, and 1000-

year hurricane return periods are only for the occupancy classes and the costs are shown 

in thousands of dollars. 
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5.5.2.1 Employment Loss 

 

 

Figure 12: Employment losses from 10-year, 200-year, and 1000-year return period 

hurricanes 

 

 Commercial structures experienced the most economic losses from employment 

for all three event scenarios (Figure 12).  In comparison, the other occupancy classes do 

not have as significant of an impact, with losses until $2 million in each case.  

Government buildings have the most losses outside of the commercial building costs 

(Figure 12). But have much lower losses than the other occupancy classes for the other 

return periods.  Agricultural buildings had fewer losses than expected. 
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5.5.2.2 Output Loss 

 Output losses include the costs of employees not being able to work, which is 

due to factors such as the employees not being able to come to work due to health risks 

from water damage or a tree blown down, blocking the road.  HAZUS-MH produces 

output loss results by census tract for each occupancy class.  Like the employment loss, 

the commercial structures experienced the most economic losses and the agricultural 

buildings experienced little to no losses for all three return periods (Figure 13).  The 

residential building losses in the Greater Houston Region have a significant increase 

from the 10-year return period hurricane to the 1000-year return period hurricane, going 

from $0 to over $1 million. 

 

 

Figure 13: Output losses from 10-year, 200-year, and 1000-year return period 

hurricane 
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5.6 Essential Facilities 

 

5.6.1 Medical Care Facilities 

 No medical care facilities in the study area would experience losses of use during 

a 10-year storm (Figure 14).  During a 200-year hurricane, few of the facilities would be 

out of commission, with the rest having a loss of use period of less than 3 days.  The 

areas of the Greater Houston Region with hospitals that are unable to take patients are 

closer to the coast and are near other facilities.  There are some hospitals in the study 

area that would have loss of use longer than one week, with a few having more than two 

weeks; these facilities are also along the coast and along the pathways of the city of 

Houston.  Only the hospitals on the outskirt areas of the Greater Houston Region would 

have loss of use of less than 3 days. 

 

5.6.2 Fire Stations 

 For the 10-year, 200-year, and 1000-year return period hurricane events and their 

relation to the days lost for the fire stations in the Greater Houston Region, these 

facilities have zero days lost (Figure 15), meaning that they can have full use during an 

emergency during tropical cyclone impact and post-storm recovery efforts. 

 

5.6.3 Police Stations 

 There is full use of the police stations during a 10-year hurricane event (Figure 

16).  Though there is mostly no loss of days in the 200-year return period scenario, the 
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facilities that do have losses are near the coast and near the probabilistic hurricane track.  

However, the loss of use is only about one day.  In the 1000-year hurricane, there are 

more police stations that are affected and have more than one day of loss of use; these 

facilities are primarily located in Galveston County.   

 

5.6.4 Emergency Response Centers 

 Like the other essential facilities, there are little to no expected days lost for the 

emergency response centers.  The 200-year return period and 1000-year return period 

maps are almost identical.  The locations are affected are close to the coast and the storm 

track, in the areas of higher winds (Figure 17). 

 

5.6.5 Schools 

 The 10-year hurricane is expected to have no days lost, just like all the other 

essential facilities.  Some schools in the Greater Houston Region can have as many as 

195 days lost in the wake of a 200-year hurricane.  The facilities with the most days are 

located near the coast or near the probabilistic storm track.  For the 1000-year hurricane 

return period, schools near the coast and along the probabilistic storm track have the 

most expected days with loss of use, the highest being 208 days.  In both the 200-year 

and the 1000-year events, the days lost decrease as the distance from the coast or the 

storm track increases.  The schools that are located more inland or on the edges of the 

study area have less loss of use (Figure 18). 
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Figure 14: Locations of the medical care facilities and their loss of use 
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Figure 15: Locations of the fire stations and their loss of use 
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Figure 16: Locations of the police stations and their loss of use 
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Figure 17: Locations of the emergency response centers and their loss of use 
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Figure 18: Locations of schools and their loss of use 
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5.7 Debris Analysis 

The debris that HAZUS-MH analyzes is separated into four categories: brick and 

wood, concrete and steel, eligible trees, and trees, and is reported as the expected weight 

of each debris type in tons (Figure 19).  Eligible trees are the downed trees that would 

likely be collected and disposed of at the public’s expense (FEMA 2018d). 

In each scenario, trees have the highest amount of debris because they are the 

lightest debris type.  Concrete and steel, being the heaviest, are expected to produce the 

least debris.  The eligible trees amount is lower than expected, since trees that are 

downed would likely need to be disposed of if they are blocked a road or on power lines.  

In the 1000-year hurricane event, there are be more than 60 million tons of trees that 

become debris in the high winds and extreme precipitation of the hurricane. 

 

 

Figure 19: Debris expected from 10-year, 200-year, and 1000-year hurricanes  
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5.8 Shelter Analysis 

5.8.1 Displaced Households 

The social impacts of a hurricane can be described by the number of displaced 

households an area can experience, which HAZUS-MH quantifies by census tract.  The 

probabilistic 10-year, 200-year, and 1000-year hurricane return periods and the resulting 

number of displaced households in the Greater Houston Region indicates that the 

number of census tracts with a great number of displaced households decreases from the 

200-year return period to the 1000-year return period (Figure 20).  This is due to the 

location of the storm track, which results in wind damage, as well as the census tract’s 

proximity to the nearby waterbodies, which can be a reason for damage from flooding. 

5.8.2 Short-Term Shelter Needs 

Societal impacts can also be explained in terms of the short-term shelter needs.  

The number of shelters needed in the wake of 10-year, 200-year, and 1000-year 

hurricanes (Figure 21) correspond with the number of displaced households because 

people will need to access them quick, and at a short distance from their homes.  Since 

there may not be shelters in all census tracts, people may need to go further and use 

shelters in another census tract. 
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Figure 20: Displaced households by census tract 
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Figure 21: Short-term shelter needs by census tract 
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5.9 Storm Surge 

To estimate the losses from storm surge, a combined hurricane and flood hazard 

analysis was run for Galveston County, Texas.  Since HAZUS-MH is unable to produce 

results for a probabilistic scenario, Hurricane Ike was simulated for Galveston as a  

historical scenario (FEMA 2018d).  This alternate study region was chose for both the 

hurricane and flood models because the area must be about the size of one coastal county 

(FEMA 2018d).  The hurricane wind model is run first using the SLOSH model to 

produce estimates of the coastal still water elevations (FEMA 2018d).  The “No Waves” 

option was selected for this scenario, where the SWAN model is skipped entirely and the 

Flood Model assumes depth-limited waves at the coastline rather than using significant 

wave heights produced by the SWAN model, so that the analysis could be completed 

with no issues (FEMA 2018d).  The initial water level with respect to the North 

American Vertical Datum of 1988 was estimated to be 0.964 ft above sea level by using 

the NOAA tide forecasts and the pre-storm tide anomaly, which is the difference 

between the forecast and observed water levels two days before landfall at Galveston 

Pier 21 (NOAA 2008).  This shows the water level along the coast that would have been 

expected in the absence of the hurricane near the center of the study region at the time of 

hurricane landfall.  After the wind-only damage and loss calculations are completed, the 

hurricane coastal storm surge analysis is run with results including two sets of direct 

building losses: one for the wind damage by itself, and the other for the combined wind 

and surge damage.  The Flood Model is then used to obtain the combined losses, first by 

running a coastal surge analysis and then calculating the combined losses.  To analyze  
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the coastal storm surge, the user must import a digital elevation model for the study 

region (FEMA 2018d).  HAZUS-MH has a database from the United States Geological 

Survey’s National Map at 1 arc-second and 1/3 arc-second resolutions and automatically 

determines which raster images are needed based on the spatial extent of the study area 

(FEMA 2018c).  The model then needs to delineate the floodplain to output a flood 

depth grid, which is comprised of the SLOSH model and wave height grids (FEMA 

2018d).  To complete the analysis, the HAZUS-MH Flood Model is run to find the 

general building stock damages and losses (FEMA 2018c).  The results show the 

combined wind and flood losses for the study region of Galveston county and they are 

only available for the building, content, and inventory losses, but not for the relocation, 

income, rental, and wage losses (FEMA 2018c).  The results are divided into the losses 

by occupancy class and building type (FEMA 2018c). 

 

5.9.1 By Occupancy 

 The direct economic losses from the combined wind and flood analysis of 

Galveston County by occupancy class for Hurricane Ike exceeds $63 billion, with most 

costs coming from the damages to residential buildings, particularly with the building 

replacement costs and content losses (Figure 22).  Commercial buildings also had 

significant losses in those categories, estimated to be more than $386 million.  The 

losses from inventory damages were very small for all occupancy classes; education, 

governmental, religious/non-profit, and residential buildings lost $0, while the other 

three classes had losses that did not surpass $8 million. 
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Figure 22: Direct economic losses by occupancy classes from Hurricane Ike’s storm 

surge 

 

5.9.2 By Building Type 

 The direct economic losses caused by storm surge from Hurricane Ike in 

Galveston County, divided by building type indicates that, like the division by 

occupancy class, building replacement cost and content losses dominated the losses for 

this county (Figure 23).  Structures made of wood had the greatest losses, with costs 

estimated to be around $1.1 billion.  Masonry also had significant losses of over $222 

million and most of it was due to the building replacement costs.  Losses from inventory 

damages only came from buildings made of masonry and wood, but only had losses of 

just almost $4.5 million. 
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Figure 23: Direct economic losses by building type for Hurricane Ike’s storm surge 

 

5.10 Discussion 

 The 10-year, 200-year, and 1000-year hurricane return period probabilistic 

scenarios represent the potential tropical cyclones that can impact the Greater Houston 

Region.  Using the HAZUS-MH Hurricane Wind and Flood Models, the physical, 

economic, and social losses were calculated from the extreme winds, heavy 

precipitation, and storm surge that can occur during these three hurricane scenarios for 

this study area.  The storms that are expected to occur less frequently were also expected 

to have the greatest impact on the region.  Based on the results presented in this chapter, 

it is obvious that the most vulnerable areas in the Greater Houston Region to the hazards 

of hurricanes are the locations of structures and facilities that are closest to the storm 

track or the coast.  Those that are located with both conditions are even more susceptible 
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to having large losses.  The residential and wooden structures experienced more damage 

than any other category of building and the 1000-year hurricane return period scenario 

caused the most damage in the Greater Houston Region.  The losses greatly increased as 

the return period increased; this trend could be seen in every result throughout this 

chapter.  

The losses that come from the different hurricane scenarios show that any 

tropical cyclone to impact the Greater Houston Region, whether directly or indirectly, 

can result in billions of dollars’ worth of damages.  This can mean that mitigation 

strategies need to improve in order to reduce the impact costs, as well as recovery time 

in the aftermath of the storm, in this area.  This is apparent with the residential and 

wooden buildings that are in the counties around the central Harris County, where 

Houston is located.  Most of the people working in the city would live in the outer 

suburbs of the area; with many of those people affected by a tropical cyclone, the 

economy of this major city would also be impacted.  This can have adverse effects on 

county, state, and federal economies, such as FEMA providing aid to those impacted and 

shelters being opened by the state.  However, the data from the general building stock 

was not updated as part of Objective 1, meaning that these data are out of date (FEMA 

2019c).  This has an impact on the results because Houston has been undergoing an 

intense urban sprawl in recent years, with population increasing exponentially from 2010 

to the present, and continuing to grow every year (About Houston: Facts and Figures  

2019).  If this scenario were to be done with more recent general building stock data, it is 

expected that the losses, especially the economic losses, would be lower since major 
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hurricanes, such as Hurricanes Ike and Harvey, have made a major impact on the Greater 

Houston Region, prompting changes in building codes and other hurricane mitigation 

strategies.   
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CHAPTER VI  

ASSESSING LOSSES FROM HURRICANE HARVEY 

 

6.1 Storm Track and Wind Speeds 

 FEMA recently updated the HAZUS-MH hurricane model with storm 

information from the 2017 North Atlantic Hurricane Season, including Hurricane 

Harvey.  Using the historical scenario in the model, Harvey was simulated to see the 

effects on the Greater Houston Region.  The track of the tropical cyclone is south and 

west of the study area.  This is because Harvey made its first and second landfalls 

southwest of Houston, though it did turn clockwise after making landfall before stalling 

over southeast Texas.  The wind speeds that were observed in the Greater Houston 

Region were in tropical storm range of 39-73 mph for the entire region, but only peaked 

to greater than 50 mph in the southwest corner of Brazoria County (Figure 24). 

 

6.2 Building Damage 

 

6.2.1 By Occupancy Class 

 Almost 100% of all buildings had no damage from the winds of the tropical 

cyclone, with less than 1% expecting minor damage (Figure 25). 
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Figure 24: Hurricane Harvey storm track and estimated wind speeds in the 

Greater Houston Region 
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Figure 25: Building damage by occupancy class for Hurricane Harvey 
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6.2.2 By Building Type 

 

 

Figure 26: Building damage by building type for Hurricane Harvey 

 

Like the division by occupancy class, all types of buildings had at or close to 

100% with no damage (Figure 26).  Only buildings made from concrete, masonry, and 

steel had less than 1% receiving minor damage due to the winds from Hurricane Harvey. 

 

6.3 Economic Losses on Building Damage 

 

6.3.1 Direct Economic Loss 

 There were no direct economic losses to the different occupancy classes of 

buildings from the winds of Hurricane Harvey in the Greater Houston Region.  
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Separated by building type, there was virtually no losses by building type; the highest 

economic losses came from manufactured homes of approximately $2,370. 

6.3.2 Output and Employment 

There were no employment or output losses from the winds produced by 

Hurricane Harvey in the study area. 

6.4 Essential Facilities 

None of the essential facilities had significant losses in the Greater Houston 

Region. 

6.5 Debris Analysis 

There was no debris caused by Hurricane Harvey’s winds in this study area. 

6.6 Shelter Analysis 

No people needed to evacuate from their homes, therefore no short-term shelters 

were necessary from Hurricane Harvey’s winds. 

6.7 Storm Surge 

The storm surge from Hurricane Harvey was simulated for Galveston County, 

Texas using a combination of the HAZUS-MH Hurricane Wind and Flood Models.  This 

hurricane scenario was imported from HURREVAC into the model, with the storm track 

beginning at a location less than 24 hours before landfall (FEMA 2018d).  All the 
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parameters of this simulation were the same as the Hurricane Ike simulation described in 

Chapter V.  The only exception was the initial water level with respect to the North 

American Vertical Datum of 1988, estimated to be 0.7 ft at Galveston Pier 21 (NOAA 

2017). 

6.7.1 By Occupancy 

Losses were highest for residential buildings, with costs resulting to be around 

$17 million (Figure 27).  Commercial and industrial buildings also had significant losses 

of less than $1 million each due to storm surge from this tropical cyclone.  The only 

losses in inventory came from industrial buildings.  Educational and government 

buildings had no losses from Hurricane Harvey’s storm surge. 
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Figure 27: Direct economic losses by occupancy class from Hurricane Harvey’s 

storm surge 

6.7.2 By Building Type 

The losses that resulted from wood buildings were the highest of all the 

categories, resulting in almost $1 million in damages (Figure 28).  Inventory losses for 

all categories were less than $1,000, with concrete, manufactured homes, and steel 

structures having $0 in losses.  Buildings made of concrete also had no losses in building 

replacement costs.  Content losses in steel structures were much higher than the building 

replacement losses, but the total costs are much lower than the wood buildings and 

manufactured homes. 
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Figure 28: Direct economic losses by building type from Hurricane Harvey’s storm 

surge 

The HAZUS-MH Flood Model was run for Harris County because the wind 

losses described earlier in this chapter do not truly represent the total costs from 

Hurricane Harvey; the winds were of tropical storm strength or loss.  However, flooding 

was the major issue for this county, therefore the results from the flood model give a 

clearer representation of all the physical, economic, and social losses from this storm.  

Both the riverine and coastal flooding analyses were conducted for a 200-year return 

period because the return period for Hurricane Harvey is estimated to be 230 years 

(Trepanier and Tucker 2018). 

6.9 Riverine Flooding 
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6.8 Losses from Flooding 

Riverine flooding in Harris County for the 200-year scenario can be as high as 51 
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ft. particularly in the northern and eastern sides of the county (Figure 29).  These depths 

also occur in some of the lower elevations in the study area, as well as in the downtown 

areas of Houston. 

6.10 Coastal Flooding 

The coastal flooding that can occur from a 200-year flood had a lower depth than 

the riverine flooding, with the maximum estimated to almost 27 ft in the areas with the 

lowest elevations in the county (Figure 30).  These areas also include some of the most 

densely populated regions in the county, as well as some economic hub near the Houston 

Ship Channel. 

6.11 Damage to General Building Stock 

Damage to the general building stock is the percent of structures affected by 

either a riverine or coastal flood, or both, that had greater than 50% damage to the 

building. 

6.11.1 By Occupancy 

For the buildings that were affected by flooding in this scenario, 100% of the 

agricultural structures within the floodplain experienced damaged of more than 50% 

(Figure 31).  Residential buildings were the most affected, with more than 50% lost, but 

only about 30% of the total dwellings of this category were affected in the floodplain. 
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6.11.2 By Building Type 

Over 80% of the manufactured homes within the river and coastal floodplains 

experienced more than 50% damage to the buildings (Figure 32).  The other building 

type categories had less than 30% of the structures greatly affected by the flooding of a 

200-year storm.  This is especially surprising that most of the wood buildings did not 

experience major damages, but it is possible that many of these structures had minor 

damages, but it is possible that many of these structures had minor damage and were not 

reported in these data. 
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Figure 29: 200-year riverine flooding for Harris County
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Figure 30: 200-year coastal flooding for Harris County 
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Figure 31: Building damage due to flooding by occupancy class 

 

 

Figure 32: Building damage due to flooding by building type 
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6.12 Economic Losses on Building Damage 

Unlike in Chapter V, the values from the HAZUS-MH Flood Model are 

estimated as the actual dollar amount; not in terms of thousands of dollars. 

 

6.12.1 Direct Economic Loss 

 The following tables show the direct economic losses that can occur from a 200-

year flood in Harris County for the seven occupancy classes and five building types, 

which correspond to all census blocks within the riverine and coastal floodplains.    

 

6.12.1.1 By Occupancy 

 

Class Total Building Content Inventory Relocation Income Rental Wage 

AGR 19,818 4,871 9,475 1,481 696 2,406 8 881 

COM 3,107,867 435,323 871,042 21,094 215,154 751,983 156,944 656,327 

EDU 205,475 21,448 56,573 0 12,280 33,982 921 80,271 

GOV 492,618 9,517 39,973 0 10,531 4,929 3,260 424,408 

IND 416,472 103,028 238,381 40,306 8,724 11,207 1,971 12,855 

REL 341,764 41,285 130,902 0 22,480 43,221 2,298 101,578 

RES 6,083,338 3,256243 1,934,748 0 582,695 9,859 276,591 23,202 

Table 15: Direct Economic Losses by Occupancy Class for 200-Year Return Period 

Flood 

 

 The losses that occur from a 200-year flood in Harris County can result in over 

$10 million in damages (Table 15).  Since most buildings in this area are either 

residential or commercial, they experience the highest economic losses of all the 

occupancy classes.  The building replacement costs were lower than expected and, 

except for residential structures, lower than the content losses. 
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6.12.1.2 By Building Type 

 

Type Total Building Content Inventory Relocation Income Rental Wage 

CON 667,200 106,660 231,000 10,500 30,400 90,200 19,900 178,600 

MH 34,192 18,531 9,014 0 5,788 0 859 0 

MAS 2,353,939 639,653 694,947 14,373 159,158 270,572 101,666 473,570 

STE 1,347,923 190,376 413,806 26,137 76,579 245,224 49,760 346,041 

WOO 6,203,358 2,906,319 1,920,688 7,661 572,776 241,379 263,973 290,562 

Table 16: Direct Economic Losses by Occupancy Class for 200-Year Return Period 

Flood 

 

 Wooden structures have the most loss in this scenario, with damage costs 

exceeding $6 million, because they have the highest county of buildings within the 

floodplains (Table 16).  Building replacement costs and content losses for the buildings 

made of masonry are also particularly high.  Inventory losses for all building types were 

lower than expected. 

 

6.12.2 Output and Employment 

 

6.12.2.1 Employment Loss 

 The HAZUS-MH Flood Model outputs the estimated employment loss in terms 

of thousands of days.  There were no significant employment losses in Harris County 

from a 200-year flood scenario. 

 

6.12.2.2 Output Losses 

 Commercial structures had the most output loss, which is to be expected because 

that occupancy class had the most employment out of these categories (Figure 33).  
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Education buildings also had over $600,000 in output loss, making it the second highest 

loss for this scenario. 

 

 

Figure 33: Output losses for 200-year return period flood 

 

6.13 Essential Facilities 

 Medical care facilities, fire stations, police stations, emergency response centers, 

and schools are all considered to be essential facilities (Figure 34).  All the essential 

facilities affected by the flood are also located within the floodplain.  Most of the 

facilities that were damaged in this scenario are in the southeast corner of the study area, 

where both riverine and coastal floodplains are located, near the Houston Ship Channel.  

Outside of that area, the locations of essential facilities are isolated in different areas of 

Harris County. 
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6.14 Transportation Systems 

 The transportation systems that are affected by the 200-year flood in this scenario 

only include the highway bridges (Figure 35).  The affected bridges in Harris County are 

mostly scattered evenly throughout the area.  However, there are some bridges in the 

southeast corner of the county that are grouped together that are affected by both river 

and coastal flooding. 

 

6.15 Utility Systems 

 Only two potable water facilities are affected by the flooding from the 200-year 

flood scenario in Harris County (Figure 36).  Both locations are near the coastlines of the 

county, making them vulnerable to flooding more frequently.  Though these specific 

potable water facilities receive notable damage, the other utility facilities in the county 

are not affected by the riverine or coastal flooding. 

 

6.16 Debris Analysis 

 The debris that the HAZUS-MH Flood Model analyzes is separated into three 

categories: building finish, structural, and foundation; it is estimated as the expected 

weight of each debris type in tons (Figure 37).  Building finish produced the highest 

amount of debris in the floodwaters, with the total estimated to be approximately 

250,000 tons.  The foundation and structural debris are much lower than the finish debris 

and are estimated to weigh around 165,000 tons. 



106 

 

 

Figure 34: Locations of essential facilities in Harris County affected by a 200-year return period flood 
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Figure 35: Locations of transportation facilities in Harris County affected by a 200-year return period flood 
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Figure 36: Locations of utility facilities in Harris County affected by a 200-year return period flood 



109 

 

 

Figure 37: Weight of debris from a 200-year return period flood 

 

6.17 Shelter Analysis 

 

6.17.1 Displaced Population and Short-Term Shelter Needs 

 The displaced population due to a 200-year flood is approximately 84,000 people 

with the need for about 5,800 short-term shelters throughout Harris County.  However, 

this data is based on the 2010 U.S. Census, so it may not reflect what would be needed 

for a present-day storm.  This displaced population is also small in percentage in 

comparison to the entire county, which was around 4 million in 2010 (Houston city, 

Texas  2019).  Nonetheless, almost 100,000 people displaced is significant and would 

still need to be addressed with urgency in the wake of a flood. 

 

 

0

50000

100000

150000

200000

250000

Finish Structural Foundation

W
e

ig
h

t 
(T

o
n

s)

Debris Type



 

110 

 

6.18 Discussion 

 The results from the Hurricane Harvey simulation from the HAZUS-MH 

Hurricane Wind Model and the results from the 200-year probabilistic riverine and 

coastal flooding from the HAZUS-MH Flood Model representing the conditions of the 

flooding caused by the hurricane show that this storm caused immense losses and 

billions of dollars in damages.  Based on the results from Hurricane Wind Model, the 

damage was not from the winds, but rather from precipitation and the resulting flooding 

in the Greater Houston Region, particularly for Harris County.  However, the losses that 

come from the buildings in the floodplain were not as high as expected, given what is 

known about the flooding of Hurricane Harvey. 

 There were no significantly damaged manufactured homes reported in the results 

of the HAZUS-MH Hurricane Wind Model.  However, there were some losses 

associated with the minor damages to those structures; they were small and estimated to 

be $2,370.  In the storm surge analysis, it was noted that the commercial and industrial 

buildings had high economic losses, while the educational and governmental buildings 

had much lower damage costs.  This is most likely because the latter structures tend to 

be located more inland.  Furthermore, manufactured homes are not located in the 

floodplains in this scenario since the losses are much lower in comparison to the other 

building types.  With 51 ft in riverine flooding estimated for a 200-year flood, it is 

expected that the losses coming from the downtown Houston area will be much higher 

since the city was built around Buffalo Bayou and other rivers.  The coastal flooding in 

Harris County is estimated to be about half of the riverine flooding at around 27 ft, but 
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can potentially be more dangerous and devastating because of the lower elevation of the 

coastal area.  This low and flat topography of the area can cause the floodwater to be 

more widespread, affecting more people and property. 

 Hurricane Harvey made landfall as a major hurricane well southwest of the 

Greater Houston Region, so the intense winds that were observed were not near this 

study area.  The winds that were in this region were of tropical storm-strength; the 

buildings in this region are most likely able to withstand that force.  However, it is 

obvious that the structures located within the riverine and/or coastal floodplains had a lot 

of damage from the flooding.  The high floodwaters observed in Harris County were 

much higher than what was estimated in the HAZUS-MH Flood Model.  With hundreds 

of thousands of tons of debris, just within Harris County, from a 200-year flood, millions 

of dollars of losses are expected.  Not as many facilities are affected by the riverine and 

coastal flooding as in the results from the Hurricane Wind Model, so the losses are much 

less than the results from the 200-year probabilistic return period hurricane from 

Objective 2 of this thesis.  The residential and wooden structures received the most 

losses in both models; results since they have the highest county of all the categories 

within the floodplains; this is due to more building homes in the most vulnerable areas to 

flooding in Harris County.  However, manufactured homes are not typically located in 

the floodplain or just did not receive as much damage in this scenario.  These data may 

be out of date, due to there not being any available updates with more recent data in 

Objective 1, therefore the losses from Hurricane Harvey were likely much larger.  It is 
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clear the flooding mitigation strategies in the study area should be changes to reduce the 

damages and resulting losses that can come from a storm such as Hurricane Harvey. 
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CHAPTER VII  

CONCLUSION 

 

7.1 Summary 

 In this study, the physical, economic, and social losses than can occur from 

probabilistic hurricane scenarios and Hurricane Harvey were analyzed from the Greater 

Houston Region in southeast Texas using FEMA’s HAZUS-MH Model.  In Objective 1, 

most databases included the model were replaced with available updated information 

from government sources to provide the most up-to-date estimates possible.  This was 

necessary because much of the included HAZUS-MH data were collected between 1999 

and 2001 and would not truly represent the losses that could occur from a hurricane in 

recent years.  The essential facilities, high potential loss facilities, transportation 

systems, and utility systems were updated as part of this objective.  Though there were 

no direct results from Objective 1 of this thesis, this comprehensive effort led to the 

results from Objectives 2 and 3 producing losses that were more representative of the 

current structure and environmental conditions of the Greater Houston Region. 

 Objective 2 sought to find which areas of the Greater Houston Region were the 

most vulnerable to the three hazards associated with tropical cyclones: high winds, 

extreme precipitation, and storm surge.  The winds and precipitation were analyzed 

using the HAZUS-MH Hurricane Wind Model.  The probabilistic mode was used to 

determine the probable storm tracks of the 10, 200, and 1000-year return periods to 

compare the most and less frequent hurricanes, as well as the strength of the storm that is 
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most like the strength of Hurricane Harvey.  The results of this objective showed the 

losses dramatically increased as the return period of the storm also increased.  

Furthermore, the residential and wood buildings received the most damage of all 

structure types in all three scenarios, meaning that more people and property, and fewer 

businesses, would be greatly affected by the winds of a tropical cyclone in the study area 

(Figures 38 and 39).  The effects of storm surge were found using a combination of the 

HAZUS-MH Hurricane Wind and Flood Models for Hurricane Ike in Galveston County, 

Texas; only the direct economic losses were able to be produced.  Residential and wood 

buildings again had the highest losses from this hurricane hazard, but the structures 

made of masonry also had losses estimated to be in the millions of dollars.  The areas of 

the Greater Houston Region that are most vulnerable to the effects of hurricanes depend 

on the storm track and the proximity to the coast.  The western part of Chambers County 

that shares its boundary with Galveston Bay, for example, has high losses in the 200-

year return period scenario because it experiences the coastal effects of the storm, as 

well as the closeness to the storm track, meaning higher winds.  Since higher winds are 

closer to the center of the storm, and therefore the storm track, those census blocks that 

are intersect or are near the storm track experience the most losses. 

 In the final objective of this thesis, the HAZUS-MH Hurricane Wind Model was 

run with a historical Hurricane Harvey.  Though this model accounts for winds, 

precipitation, and size of storm, as well as many other attributes of a hurricane, the 

results of this model show that, in general, winds would produce a lot of damage, but 

this turned out to not be an issue with Harvey in the Greater Houston Region.  The  
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Figure 38: Total economic losses for residential buildings 
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Figure 39: Total economic losses for wood buildings 
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results of the storm surge analysis for this hurricane in Galveston County show that the 

residential and wood buildings had the highest losses, but this hazard in a hurricane was 

not nearly as devastating as the surge from Hurricane Ike; the estimated losses were 

about half of what was estimated for Ike.  Since the results from the hurricane and surge 

analysis did not give a true insight to the losses that were observed in Hurricane Harvey, 

the HAZUS-MH Flood Model was then also run for Harris County to get a clearer 

picture of the effects of flooding from this unique hurricane.  Both riverine and coastal 

analyses were run to determine which areas of Harris County would be most affected by 

a 200-year flood.  Based on this, it was determined that that southeast section of the 

county near the Houston Ship Channel is most vulnerable to both types of flooding due 

to the widespread coastal flooding that occurs in a 200-year flood, as well as the high 

flooding from the rivers.  The economic losses that resulted from the flooding were more 

in line to what was observed during Hurricane Harvey.  Residential and wooden 

structures had the most losses of all the building types, but manufactured homes also had 

surprisingly high losses from the flooding, as well. 

 

7.2 Implications 

 The results of this study have various implications for other areas of the U.S.  

Though there is debate on exactly how climate change will affect hurricanes, there is 

agreement that tropical cyclones are expected to be able to produce more precipitation, 

though hurricanes will most likely occur less frequently and have stronger winds 

(Knutson et al. 2010; Knutson et al. 2013; Knutson, Sirutis, and Zhao 2015; Wright, 
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Knutson, and Smith 2015).  Hurricanes affect Texas about once every 2-3 years, but 

some of the most recent notable storm, such as Hurricane Ike and Hurricane Harvey, 

have made a lasting impact on the people of the Greater Houston Region.  However, 

there has been an increase in development in this area of the county, making people 

more vulnerable to hurricane damages from wind, rainfall, and storm surge than before 

(Dixon and Fitzsimons 2001).  Hurricane preparedness officials fear that the general 

public will think that large loss of life and property will diminish in future tropical 

cyclone events because of advanced technology and improved forecasting (Blake, 

Landsea, and Gibney 2011).  Yet, NOAA directors and other prominent meteorologists 

and climatologists have stressed the importance of proper hurricane preparedness plans 

to be formulated, maintained, and executed in the most vulnerable areas of the U.S. so 

that losses can be reduced in the future (Blake, Landsea, and Gibney 2011). 

 The methodology used in this thesis can be applied to other areas of the U.S. and 

to other hurricanes for comparison.  Applying the HAZUS-MH Flood Model to 

supplement the results of the Hurricane Wind Model can also help to understand the 

combined effects of hurricanes that produce more flooding effects than wind damages.  

Because climate change is expected to affect hurricanes, particularly with the increase in 

precipitation, it is important to understand all implications of hurricanes, not just the 

winds. 

 The results of this study can benefit federal, state, and local governments and 

organizations in understanding the significance of the damages created by a unique 

tropical cyclone, such as Hurricane Harvey.  Recent hurricanes have caused record-
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setting precipitation, flooding and storm surge, and loss of homes throughout the Greater 

Houston Region and southeast Texas, so coordinate at all levels of government were 

necessary to ensure that the hazard mitigation, emergency preparedness strategies, 

emergency response, and the disaster recovery were as efficient as possible.  For 

example, before Harvey made landfall, FEMA sent supplies and personnel to join the 

Texas Division of Emergency Management and other local agencies to respond to the 

devastation (FEMA 2017b).  In the immediate aftermath of the hurricane, FEMA 

distributed $1.5 billion in federal funds, which included assistance grants, low-interest 

disaster loans, and flood insurance advance payments (FEMA 2017b).  In the months 

after Harvey, FEMA conducted an after-action report to evaluate their response to the 

entire 2017 North Atlantic Hurricane Season and have taken the recommendations of 

improvement, such as supporting states in building a greater capacity to respond to and 

recover from disasters by maintaining financial support while correctly sizing the federal 

deployment footprint, and implemented them into their future strategic plans (FEMA 

2018a).  Having knowledge of how a hurricane can affect a certain area can provide the 

general public and decision makers with the necessary information to maintain and 

increase preparedness at all levels (Demuth et al. 2012).  This can also lead to the effects 

of the three hazards of hurricanes being lessened (Demuth et al. 2012).  Furthermore, 

understanding how climate change might affect hurricanes in the future and their 

possible effects to the environment can play a role in protecting lives and property 

(Demuth et al. 2012). 
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7.3 Limitations 

 One of the limitations of this study is the use of a model to estimate losses.  The 

most apparent examples of this are the results from the HAZUS-MH Hurricane Wind 

Model’s simulation of Hurricane Harvey for the Greater Houston Region.  Although the 

hurricane model accounts for a myriad of hurricane features, such as rainfall rate, it did 

not correctly evaluate the damages that Harvey caused on the study area in terms of the 

flooding from by the immense precipitation.  In turn, the HAZUS-MH Flood Model was 

run to represent that hazard.  Future research utilizing this methodology will have to 

keep in mind that the HAZUS-MH Hurricane Wind Model is best suited for hurricanes 

whose winds were the biggest drivers of losses; the flood model may have to be used in 

order to estimate the total losses.   

Another limitation was the data used in Objective 1 of this thesis.  The data 

found from the various federal departments and organizations had to be manipulated for 

successful inclusion in the model.  In some cases, the only the only publicly available 

data did not include all the necessary components for a full analysis for some facilities.  

For example, the data associated with highway bridges did not include a record of the 

year built or remodeled for all the highways in the Greater Houston Region; 

understanding the age and materials used to build a structure can help to estimate its 

vulnerability to hurricane-strength winds and floods.  More comprehensive data with all 

the necessary attributes would be needed in future research using any of the models 

included in HAZUS-MH. 
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Statistical significance was also not able to be calculated because HAZUS-MH 

produced the same results every time it was run with the considered parameters in both 

the Hurricane Wind Model and the Flood Model.  However, testing of the models and 

statistical analyses were performed during the development stages and can be found in 

the technical manuals of the models. 

 The Greater Houston Region in southeast Texas is an area in the U.S. that is 

vulnerable to tropical cyclone impacts.  The effects of climate change on hurricanes 

were evident when Hurricane Harvey produced record-setting rainfall in this area.  

Though hurricane and flood models, such as those included in HAZUS-MH, can 

estimate the physical, economic, and social losses associated with storms such as 

Harvey, some caution must be taken get a clear picture of the potential impacts of future 

storms.  Regardless, the population of this area is at risk for tropical cyclone impact, 

which will continue to increase if actions far beyond the current efforts are not taken to 

mitigate these hazards. 
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