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ABSTRACT

The dynamics of articulated rigid bodies can be solved in O(n) time using a recursive

method. When elasticity is added between the bodies, with linearly implicit integration, the

stiffness matrix in the equations of motion breaks the tree topology of the system, making the

recursive method inapplicable. The only alternative has been to form and solve the system

matrix, which takes O(n3) time. A new approach that can solve the linearly implicit equations

of motion in near linear time, coined REDMAX, is built using a combined reduced/maximal

coordinate formulation. This hybrid model enables direct flexibility to apply arbitrary com-

binations of forces in both reduced and maximal coordinates, while maintaining near linear

performance in the number of bodies.
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NOMENCLATURE

REDMAX Refers to the new Reduced Coordinate System

PCG Preconditioned Conjugate Gradient Solve

DOF Degree of Freedom

Rigid Body Used synonymously with body, block, and link
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1 INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

Articulated rigid body dynamics has many applications in various disciplines, including

biomechanics, robotics, aerospace, and computer graphics. It has been extensively studied

starting in the 1960s (e.g., [Roberson 1966]), but it was not until the 1980s that an O(n)

algorithm, where n is the number of joints or bodies, became widely known [Featherstone

1983]. This algorithm and its variants are based on a recursive formulation, where various

quantities are computed recursively based on the tree structure of the mechanism. Around the

same time, an alternative O(n3) method based on matrix factorization was also developed by

[Walker and Orin 1982], which, according to De Jalon and Bayo [2012], can outperform the

O(n) recursive method when n is small (< 10). Although some important mechanisms, such

as serial manipulators, have only a few joints, for many applications in computer graphics,

n can be quite large—even a single hand has n ≥ 15. Therefore, there are still many cases

where O(n) methods are still preferred over O(n3) methods.

The story changes when implicit elasticity is added between arbitrary bodies rather

than only between immediate neighbors, which results in off-diagonal elements being added

to the stiffness matrix. Examples of such scenarios include: architectural design with cables

[Whiting et al. 2012; Deuss et al. 2014], deployable folding mechanisms [Demaine and

O’Rourke 2008; Zhou et al. 2014], and simply attaching damped springs between pairs of

bodies. Using the linearly implicit integrator commonly used in graphics [Baraff and Witkin

1998], the O(n) recursive method no longer works because the stiffness matrix breaks the

tree topology of the system matrix. To date, the only alternative has been to use the O(n3)

factorization method. We address this issue by introducing a new approach that allows us to
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solve the linearly implicit equations of motion in linear to subquadratic time. If the topology-

breaking springs are not present, this method gracefully reverts back to the standard O(n)

recursive approach.

In the discussion so far, we have tacitly assumed that the dynamics are represented

using “reduced” coordinates, where a minimal set of degrees of freedom (DOFs), such as joint

angles for revolute joints and relative translations for prismatic joints, are used to represent

the state of the system. An alternate approach that uses “maximal” coordinates has also

been studied. For example, an O(n) method for maximal coordinates was discovered by

Baraff [1996]. However, constraints need to be applied to model joints, and these constraints

must be stabilized to avoid drift [Baumgarte 1972; Cline and Pai 2003]. On the other hand,

reduced coordinates do not require any stabilization, since reduced coordinates only allow

configurations that satisfy the joint constraints. Loops are handled with constraints in either

approach, but in practice, stabilizing a few loop constraints is much easier than stabilizing the

whole structure. Furthermore, reduced coordinates are in general faster, as no additional joint

constraints are required and the number of DOFs in a system is much smaller (typically 1
6 the

size) than its maximal counterpart. Also, Baraff [1996] notes that there is anecdotal evidence

that larger time steps are possible using reduced coordinates.

One of the advantages of maximal coordinates is that it is more intuitive—it is easier to

add various forces and to combine with other constraints (e.g. damped springs). To address

this point, we show that our formulation of dynamics, which we call REDMAX, is very

flexible even though it uses reduced coordinates. Any combination of reduced/maximal forces

can be handled.

To summarize, the contributions presented here are:
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• A near linear time approach for articulated dynamics, even in the presence of a

non-diagonal maximal stiffness matrix, based on our novel projected block Jacobi

preconditioner.

• A formulation that exposes both maximal and reduced degrees of freedom, allowing

the presence of forces and constraints in reduced or maximal coordinates.

1.2 Related Work

Articulated rigid body dynamics has been an active research area for many decades,

especially in the field of robotics, where high-performance algorithms were required for

low-power systems. For example, a great deal of effort has been spent on both O(n) and O(n3)

methods to refine the performance for tree configuration or for closed loop systems [Bae

and Haug 1987a,b]. Although asymptotically worse, O(n3) methods have attracted significant

attention because they are more intuitive and are more easily parallelizable [Walker and Orin

1982; Avello et al. 1993; Negrut et al. 1997]. However, these methods do not work in the

presence of the maximal stiffness matrix from linearly implicit integration, one of the most

common integration methods in graphics [Baraff and Witkin 1998].

There have also been a number of related works on the simulation of various phenomena

using articulated rigid bodies, such as: trees [Quigley et al. 2018], hair [Hadap 2006], and

characters [Hernandez et al. 2011]. Linear time methods for flexible multibody systems have

also been studied for decades, as described in the detailed survey by Wasfy and Noor [2003].

Of particular importance to graphics, Bertails [2009] showed that the recursive linear time

approach can be used to simulate the dynamics of elastic rods. These efficient methods can

only be used in the special case when all of the implicit forces are between topologically

neighboring bodies (e.g., joint springs), since then the topology of the reduced stiffness matrix

will be the same as that of the reduced mass matrix. However, in the general case, the implicit
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forces are between arbitrary bodies, and so the recursive linear time approaches cannot be

used.

It is important to note that REDMAX can easily be extended to enable the use of

reduced/maximal coordinates with fully implicit two way coupling of articulated and de-

formable bodies, which has been of particular interest in computer graphics: [Shinar et al.

2008], [Kim and Pollard 2011], [Jain and Liu 2011], [Liu et al. 2013]. However, the work

presented here is limited in scope to the optimization of REDMAX with respect to systems

of rigid bodies with various constraints and forces that induce a complex stiffness matrix,

breaking the topology requirements of previous O(n) methods.

1.3 Overview

We first present the mapping between maximal coordinates and the REDMAX reduced

coordinate space, and consider how this affects different forces. We then present our iterative

solver within REDMAX, which is abbreviated PCG, as it utilizes the preconditioned conjugate

gradient method for fast convergence. We then motivate our method as an alternative to

direct articulated body solvers with arbitrary forces by presenting three carefully designed

scenes to compare its performance to the off-the-shelf linear system Pardiso solver, which

automatically combines iterative and direct solving method and has been optimized using

parallel computing.
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2 BACKGROUND AND THEORY*

2.1 Maximal Coordinates

Following the convention used by Cline and Pai [2003], maximal coordinates can be

represented by the usual 4 × 4 transformation matrix consisting of rotational and translational

components:

0
i E =

©­«
0
i R

0p

0 1

ª®®¬ . (2.1)

The leading subscripts and superscripts indicate that the coordinates of rigid body (or frame)

‘i’ are defined with respect to the world frame, ‘0’. Given a local position ix on a rigid body,

its world position is

0x = 0
i E

ix , (2.2)

omitting the homogeneous coordinates for brevity.

The spatial velocity, iϕi , also called a “twist,” is composed of the angular component,

iωi , and the linear component, iν i , both expressed in body coordinates:

iϕi =
©­«
iωi

iν i

ª®®¬ . (2.3)

This 6 × 1 vector can also be expressed as a 4 × 4 matrix similar to the transformation matrix

in Eq. 2.1, with the rotational part in the 3 × 3 upper-left block and the translational part in

the 3 × 1 upper-right block: [
iϕi

]
=
©­«
[iωi]

iν i

0 0

ª®®¬ , (2.4)

where the 3 × 3 matrix, [a], is the cross-product matrix.
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The spatial velocity transforms from one frame to another according to the adjoint of

the coordinate transform, which is defined from the rigid transform 0
i E:

0
i Ad =

©­«
0
i R 0

[0i p]
0
i R

0
i R

ª®®¬ . (2.5)

The spatial velocity of the ith rigid body in world coordinates is then

0ϕi =
0
i Ad

iϕi . (2.6)

The time derivative of the adjoint, dropping the superscripts and subscripts for brevity, can be

expressed as:

ÛAd = ©­«
ÛR 0

Û[p]R + [p] ÛR ÛR

ª®®¬ . (2.7)

This can be factored into a product of two matrices, Ad(E) and ad(ϕ):

ÛAd(E,ϕ) = ©­«
R 0

[p]R R

ª®®¬︸      ︷︷      ︸
Ad(E)

©­«
[ω] 0

[ν ] [ω]

ª®®¬︸       ︷︷       ︸
ad(ϕ)

, (2.8)

with the parameter list displayed to more be explicit. The second factor, ad = Ad−1 ÛAd, is the

spatial cross product matrix, which is the adjoint action of the Lie algebra on itself [Selig

2004; Kim 2012].

Finally, the Newton-Euler equations of motion of a single rigid body can be written in

a compact form as:

Mi
Ûϕi = [Coriolis forces] + [body forces (e.g., gravity)]

= ad(ϕi)
⊤Miϕi + fbody(Ei),

(2.9)
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where, Mi is the spatial inertia of the rigid body, Ûϕi is the acceleration of the rigid body, and

ad(ϕi) is the spatial cross product matrix from Eq. 2.8. The mass matrix is diagonal as all of

the velocities are expressed in body coordinates—i.e., we use a body-fixed frame aligned

with the principal axis of the body and whose origin is coincident with the center of mass

of the body. Stacking all of the maximal acceleration DOFs together, Üqm =
(
Ûϕ
⊤

1 · · · Ûϕ
⊤

n

)⊤,

provides the following linear system for maximal DOFs:

Mm Üqm = fm . (2.10)

2.2 Reduced Coordinates

Recursive O(n) methods for the forward and inverse dynamics of articulated mech-

anisms with support for both reduced and maximal coordinates have existed for decades

[Popov et al. 1978; Featherstone 1983; Baraff 1996; Negrut et al. 1997; Serban et al. 1997].

Unfortunately, when maximal springs apply implicit forces on the rigid bodies (e.g., Figs.1b &

1c), these recursiveO(n) methods can no longer be used, because the stiffness matrix resulting

from these springs breaks the tree topology of the system matrix. This section defines the

REDMAX approach (Eq. 2.13), and introduces a new preconditioner that gives linear to

subquadratic time performance, depending on the scene, even in the presence of the maximal

stiffness matrix (Eq. 3.1).

2.2.1 Define the Reduced Coordinate Space

Reduced coordinate methods have been used before; this re-imagining defines the state

of the entire system through the joints. For the types of joints presented in the various scenes

in this paper, as well as other simple and highly complex joints, there is a linear relationship

between the maximal and reduced velocities.
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Denoted by Ûqm the vector of all maximal velocities and by Ûqr the vector of all reduced

velocities:

Ûqm = Jmr Ûqr , Üqm = ÛJmr Ûqr + Jmr Üqr , (2.11)

where Jmr is the Jacobian matrix that transforms velocities from reduced to maximal, which

will be derived later in this section. Then, combining Eq. 2.10 and Eq. 2.11 yields

(
J⊤mrMm Jmr

)
Üqr = J⊤mr

(
fm −Mm ÛJmr Ûqr

)
. (2.12)

Where Mm is the diagonal maximal mass matrix, qr is the reduced configuration (e.g., joint

angles), fm is the maximal force, and Jmr is the velocity transforming Jacobian mentioned

earlier. The Jacobian and its time derivative, Jmr , ÛJmr , are of size #m × #r , where #m is the

number of maximal DOFs, and #r is the number of reduced DOFs.

The reduced inertia matrix, Mr = J⊤mrMm Jmr is much smaller than its maximal counter-

part. Furthermore, representing joints here does not require constraints, since the Jacobian

automatically projects forces down to the reduced space. The last term, −J⊤mr Mm ÛJmr Ûqr , is the

extra quadratic velocity vector due to the change of coordinates, in analogy to the Coriolis

force in Eq. 2.9 [Shabana 2013]. This formulation (Eq. 2.12) is an instance of the well-known

“velocity transformations” for articulated dynamics [De Jalon and Bayo 2012]. This equation

of motion can be used in conjunction with different choices of time integrators.

We now describe our REDMAX formulation that exposes all the reduced and maxi-

mal quantities, and, following the common practice in graphics, discretizes Eq. 2.12 at the 

velocity level. Then, by combining the linearly implicit terms for both reduced and maximal 

coordinates with this discretization [Baraff and Witkin 1998], we arrive at our REDMAX

8



formulation: (
J⊤mr

(
Mm + hDm − h2Km

)
Jmr + hDr − h2Kr

)
Ûq(k+1)
r =(

J⊤mrMm Jmr

)
Ûq(k)r + h

(
fr + J⊤mr

(
fm −Mm ÛJmr Ûq

(k)
r

))
,

(2.13)

where Dm and Km are the maximal damping and stiffness matrices, Dr and Kr are the reduced

damping and stiffness matrices, fr is the reduced force vector, fm is the maximal force vector,

including the Coriolis force, and Ûq(k)r and Ûq(k+1)
r are the reduced velocities at time steps k and

k + 1. The resulting LHS matrix, in reduced coordinates, is

M̃r =
(
J⊤mr

(
Mm + hDm − h2Km

)
Jmr + hDr − h2Kr

)
(2.14)

and the RHS vector is

f̃r =
(
J⊤mrMm Jmr

)
Ûq(k)r + h

(
fr + J⊤mr

(
fm −Mm ÛJmr Ûq

(k)
r

))
. (2.15)

This equation, M̃r Ûq
(k+1)
r = f̃r , gives us the flexibility to choose the types of forces we want to

use, be they maximal or reduced.

2.2.2 The Mapping Jacobian

Assuming there are no loops (as loops are handled with constraints), the topology of

the system can be described by a tree system. Furthermore, there is a one-to-one relationship

between a body and a joint—every body has a joint between itself and its parent body. The

body frame is aligned to the body’s inertial frame (as described below Eq. 2.9), and the joint

frame is aligned according to the joint type (e.g., Z axis along the axis of rotation). Here i will

be used to denote a body, j to denote its corresponding joint, and p to denote the parent body

of i (or to the parent joint of j depending on the context).
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The twists of bodies p and i at joint j are

jϕp =
j
pAd

pϕp,
jϕi =

j
iAd

iϕi , (2.16)

and their relative twist is

jϕ j =
jϕi −

jϕp

=
j
iAd

iϕi −
j
pAd

pϕp

=
j
iAd

iϕi −
j
iAd

i
0Ad

0
pAd

pϕp,

(2.17)

where 0 indicates the world frame. Since i owns the joint, jiAd is constant. (It is constructed

from j
iE, which represents where the i’s body frame is with respect to the joint frame, which is

set at initialization.) Note that in maximal coordinates, positions are stored with respect to

the world and velocities with respect to the body itself. In other words, for each body, store

0
i E and iϕi . So in the above expression, the adjoint matrices of the form 0

i Ad and i
0Ad can be

computed easily from 0
i E. Then rearrange Eq. 2.17 to solve for body i’s spatial velocity:

j
iAd

iϕi =
j
iAd

i
0Ad

0
pAd

pϕp +
jϕ j

iϕi =
i
0Ad

0
pAd

pϕp +
i
jAd

jϕ j .

(2.18)

What this expression implies is that if parent body’s velocity, pϕp , is known, and the joint’s ve-

locity, jϕ j ,is known, then we can compute the child body’s velocity, iϕi . In reduced coordinates,

jϕ j is parameterized not with the full 6 degrees of freedom but with some subset Ûqj ⊆ R
6. For

example, a revolute joint about the Z axis can be expressed as

jϕ j = Sj Ûqj , Sj =
(
0 0 1 0 0 0

)⊤
. (2.19)
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Here S is used to follow the notation of Park et al. [1995] and Kim [2012]. S takes on this

simple constant form for revolute joints, but in general is a nonlinear function of the joint’s

DOFs, Ûqj . Combining Eq. 2.18 and Eq. 2.19, provides the recursive expression for the velocity

of body i:

iϕi =
i
pAd

pϕp +
i
jAd Sj Ûqj , (2.20)

where i
pAd =

i
0Ad

0
pAd.

The recursive relationship between the velocity of a body and its parents’ bodies can be

recursively applied to form the system Jacobian. For example, for a serial chain with three

links, the Jacobian is the following lower triangular matrix, where each body quantity is

labeled with i and each joint quantity with j:

©­­­­­«
i1ϕi1

i2ϕi2

i3ϕi3

ª®®®®®¬︸ ︷︷ ︸
Ûqm

=

©­­­­­«
i1
j1Ad Sj1 0 0

i2
i1Ad

i1
j1Ad Sj1

i2
j2Ad Sj2 0

i3
i2Ad

i2
i1Ad

i1
j1Ad Sj1

i3
i2Ad

i2
j2Ad Sj2

i3
j3Ad Sj3

ª®®®®®¬︸                                                    ︷︷                                                    ︸
Jmr

©­­­­­«
Ûqj1

Ûqj2

Ûqj3

ª®®®®®¬︸︷︷︸
Ûqr

. (2.21)

The pseudocode to fill Jmr is given in Alg. 1. This function must be called on the joints

in a tree traversal order starting from the root, as it takes advantage of the recursive structure

of the tree hierarchy. As the ancestor’s hierarchy is traversed, we reuse the products already

computed by the ancestor instead of recomputing those values. Since this matrix has O(n2)

elements, it takes O(n2) time to fill, even with its recursive structure. However, since we only

need the product of this matrix with a vector, the algorithm only takes O(n) time, as shown

in Alg. 2 and Alg. 3, a strategy implicitly exploited by the recursive dynamics algorithm

[Featherstone 1983; Kim 2012].
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To compute ÛJ, take the derivative of each term in Eq. 2.21. For the diagonal terms, the

derivative is

ÛJ(i, j) = i
jAd ÛSj , (2.22)

which is 0 for revolute joints, since S is constant. For off-diagonal terms, traverse the hierarchy

through the joint’s ancestors back to the root, and the recursive expression for the derivative is

ÛJ(i,a) = i
p
ÛAd J(p,a) + i

pAd ÛJ(p,a), (2.23)

where a = a(j) is an ancestor joint of j, and p = p(i) is the parent body of i. To compute i
p
ÛAd,

use Eq. 2.8 and the identity for taking the derivative of the matrix inverse: ÛA−1 = −A−1 ÛAA−1:

i
p
ÛAd = −i

0Ad
0
i
ÛAd i

0Ad
0
pAd +

i
0Ad

0
p
ÛAd. (2.24)

2.2.3 Mapping Various Joints

This section describes all joint types used in the various scenes presented. For all joint

types, the joint transform is a 4 × 4 matrix that defines where the joint, j, is with respect to its

Algorithm 1 Fills the Jacobian matrix and its time derivative
1: while forward traversal do
2: J(i, j) = i

jAd Sj
3: ÛJ(i, j) = i

jAd ÛSj
4: ancestor a = parent joint of j
5: while a , null do
6: J(i,a) = i

pAd J(p,a) ▷ p = p(i) is the parent body of i
7: ÛJ(i,a) = i

p
ÛAd J(p,a) + i

pAd ÛJ(p,a)
8: a = a’s parent joint
9: end while

10: end while
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Algorithm 2 Computes products y = Jx and z = ÛJx
1: while forward traversal do
2: y(i) = i

jAd Sj x(j)
3: z(i) = i

jAd ÛSj x(j)
4: if p , null then ▷ p = p(j) is the parent joint of j
5: y(i) += i

pAdy(p)
6: z(i) += i

pAd z(p) +
i
p
ÛAdy(p)

7: end if
8: end while

Algorithm 3 Computes product x = J⊤y
1: while backward traversal do
2: yi = y(i)
3: for all children c do ▷ c = c(j) is a child joint of j
4: yi += αc ▷ α is a temp variable stored by each joint
5: end for
6: αi =

i
pAd

⊤yi ▷ to be used by j’s parent later
7: x(j) = S⊤j

i
jAd

⊤yi
8: end while

parent joint, p(j):
p
j E =

p
j E0 Q j(qj), (2.25)

where p
j E0 is the initial transform (often a translation) that specifies where the joint is with

respect to its parent joint, and Q j(qj) is the transform that actually applies the degrees of

freedom of that joint. Additionally, for each joint type, S and ÛS are required for the computation

of J and ÛJ.

Fixed Joint

A fixed joint is used for rigidly attaching two bodies together. For a fixed joint, qj = ∅,

and Q j(qj) is simply the 4 × 4 identity matrix. The joint Jacobian, S , is an empty 6 × 0 matrix.
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Prismatic Joint

A prismatic joint allows one degree of translational freedom. Let a represent the axis

along which the joint is able to translate. Then

Q j(qj) =
©­«
I aqj

0 1

ª®®¬ , (2.26)

which is a 4 × 4 translation matrix. The corresponding joint Jacobian is

S =
©­«
0

a

ª®®¬ ∈ R6×1. (2.27)

Revolute Joint

A revolute joint allows rotation about an axis, a. The rotation matrix is constructed

from the (axis, angle) pair: (a, qj).

Q j(qj) =
©­«
R(a, qj) 0

0 1

ª®®¬ , (2.28)

and the corresponding joint Jacobian is

S =
©­«
a

0

ª®®¬ ∈ R6×3. (2.29)
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Universal Joint

A universal joint allows bending in X and Y but no twisting along Z. We start with the

rotation matrix corresponding to the XYZ Euler angles:

R =

©­­­­­«
c2c3 −c2s3 s2

c1s3 + s1s2c3 c1c3 − s1s2s3 −s1c2

s1s3 − c1s2c3 s1c3 + c1s2s3 c1c2

ª®®®®®¬
, (2.30)

where c1 = cos(q1), c2 = cos(q2), etc. Then fix the third angle at 0, so that c3 = 1 and s3 = 0.

This results in

R =

©­­­­­«
c2 0 s2

s1s2 c1 −s1c2

−c1s2 s1 c1c2

ª®®®®®¬
. (2.31)

Q is then

Q = ©­«
R 0

0 1

ª®®¬ . (2.32)

The joint Jacobian, S , is going to be a 6 × 2 matrix. To get the 1st column of S , take the

derivative of R with respect to q1 and premultiply by R⊤. After some cancellations, the result

is a skew symmetric matrix, from which the angular elements are extracted into the first
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column of S . Repeat this for the second column, and the resulting matrix is

S =

©­­­­­­­­­­­­­­«

c2 0

0 1

s2 0

0 0

0 0

0 0

ª®®®®®®®®®®®®®®¬
. (2.33)

The time derivative of the joint Jacobian is

ÛS =

©­­­­­­­­­­­­­­«

−s2 Ûq2 0

0 0

c2 Ûq2 0

0 0

0 0

0 0

ª®®®®®®®®®®®®®®¬
. (2.34)

2.2.4 Forces

Our REDMAX formulation Eq. 2.13 exposes terms that easily allow us to account for

constraints and forces in both maximal and reduced coordinates. These terms may come from

a variety of sources, including geometric stiffness [Tournier et al. 2015]. For example, we can

easily combine body damping (Dm), maximal springs acting on the bodies (Km and fm), joint

damping (Dr ), and joint stiffness (Kr and fr ). Recall that we can use a O(n) solve when the

maximal forces present only connect adjacent bodies. In this case both Dm and Km would have

block entries only along the diagonal. When forces reach across bodies that do not share a

connecting joint, these matrices will have entries beyond the diagonal, breaking the topology
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limitation of previous O(n) methods. Following the approach of Baraff and Witkin [1998], we

can then add implicit damping and elastic forces into the various exposed matrices.

Damping Force

With simple viscous damping, D = dI is a diagonal matrix, where d is the damping

coefficient. There is no contribution to the right-hand-side force vector, f.

Directional Point Force

Let us say that we want to pull on a point ix on a rigid body in a particular direction 0a,

where ix is in local coordinates and 0a is in world coordinates. Then the linear wrench to be

applied to the rigid body can be computed as follows:

f = kΓ⊤R⊤ 0a, (2.35)

where k is the stiffness constant, Γ = ([ix]⊤ I ) transforms twists to local point velocities, and

R is the rotation matrix of the rigid body. The corresponding potential energy is

V = −k 0x⊤ 0a, (2.36)

where 0x is the position of the force application point in world coordinates. The force in

Eq. 2.35 is the negative gradient of this potential energy with respect to the 6 rigid degrees of

freedom. We obtain the stiffness matrix if we differentiate again:

K = k ©­«
[ix][R⊤ 0a] 0

[R⊤ 0a] 0

ª®®¬ , (2.37)

where we use the following identity for the derivatives with respect to the 6 rigid DOFs:

∂R⊤a

∂ω
= [R⊤a],

∂Ra
∂ω
= −R[a],

∂p

∂ν
= R. (2.38)
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Point-to-Point Force

For a linear force between two points on two different bodies, the wrenches acting on

these two bodies are

f = k ©­«
Γ⊤1 R

⊤
1 ∆x

−Γ⊤2 R
⊤
2 ∆x

ª®®¬ , (2.39)

where ∆x = 0x2 −
0x1, and 0x1 and 0x2 are the world coordinate positions of the two points,

which are obtained by transforming the corresponding local coordinate positions. This force

is the negative gradient of the potential energy:

V =
1
2
k∆x⊤∆x . (2.40)

As before, we obtain the stiffness matrix by differentiating the force with respect to the DOFs:

K = k

©­­­­­­­­«

[1x1][R⊤
1 (p1 −

0x2)] [1x1] [1x1]R⊤
1 R2[

2x2] −[1x1]R⊤
1 R2

[R⊤
1 (p1 −

0x2)] I R⊤
1 R2[

2x2] −R⊤
1 R2

[2x2]R⊤
2 R1[

1x1] −[2x2]R⊤
2 R1 [2x2][R⊤

2 (p2 −
0x1)] [2x2]

R⊤
2 R1[

1x1] −R⊤
2 R1 [R⊤

2 (p2 −
0x1)] I

ª®®®®®®®®¬
. (2.41)

2.2.5 Constraints

Of the constraints that may be present in a system, loop closing constraints are the most

common. They do not fit in reduced coordinates, which define the relationship of bodies in

terms of their parent body through a connecting joint, as directly adding a loop constraint

in this manner would over-constrain the linear system. For example, in the BRIDGE scene

shown in Fig. 1b, we apply bilateral loop-closing constraints, GÛqr = 0, to ground both ends

of the bridge deck. We solve the following dual problem:

GM̃
−1
r G⊤λ = GM̃

−1
r f̃r , M̃r Ûqr = f̃r − G⊤λ. (2.42)
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3 OUR NEAR LINEAR TIME METHOD

3.1 Solving RedMax

When there are no maximal springs imposing off-diagonal terms in Dm and Km , we

can apply the standard O(n) approach to solve the system, more concisely written M̃r Ûqr = f̃r .

By allowing for arbitrary maximal forces we can no longer directly solve M̃
−1
r f̃r . Instead we

introduce our preconditioner, P, an approximation of M̃r , and of a form that allows to compute

its product with a vector in linear time. We can then apply a preconditioned conjugate method

(PCG) to iteratively solve P−1M̃r Ûqr = P−1f̃r , which converges to the solution of Eq. 2.13.

3.2 Projected Block Jacobi Preconditioner

This section will introduce a preconditioner that gives linear to subquadratic perfor-

mance in the presence of the maximal stiffness matrix. This preconditioner is effective when

the rigid DOFs make up a large portion of the system DOFs, and when these rigid DOFs are

tied together by maximal forces, such as damped springs between various bodies. These cover

some important simulation scenarios, including architectural design with cables [Whiting

et al. 2012; Deuss et al. 2014] and biomechanical simulations with line-based forces [Delp

et al. 2007; Wang et al. 2012].

The preconditioner, P, can be expressed as follows:

P = J⊤mr (Mm + blkdiag(hDm − h2Km)) Jmr + hDr − h2Kr , (3.1)

where ‘blkdiag’ is a filter that keeps only the 6 × 6 diagonal blocks of Dm and Km. We call

this the “projected block Jacobi” preconditioner because we take the block diagonals of

the maximal terms and project them into the reduced space. When there are no maximal
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Algorithm 4 Computes y = (Mr + J⊤mrblkdiag(hDm − h2Km) Jmr + hDr − h2Kr )
−1x in linear

time for preconditioning a linearly implicit solver. Script j refers to the current joint, i to the
associated body, c to the joint’s child joint, and p to the joint’s parent joint.

1: // Run this loop once as a preprocessing step
2: while backward traversal do ▷ c = child joint of j
3: Amj =

i
jAd

⊤blkdiag(hDm
i − h2 Kmi )

i
jAd ▷Maximal term

4: Ar
j = hD

r
j − h2Kr

j ▷ Reduced term
5: M̂j = (Mj + Amj ) +

∑
c
c
jAd

⊤ Πc
c
jAd

6: Ψj = (S⊤j M̂jSj + Ar
j )
−1

7: Πj = M̂j − M̂jSjΨjS
⊤
j M̂j

8: end while
9:

10: // Run these two loops for each RHS vector x
11: while backward traversal do ▷ c = child joint of j
12: B̂j =

∑
c
c
jAd

⊤ βc

13: βj = B̂j + M̂j(SjΨj(xj − S⊤j B̂j))

14: end while
15: while forward traversal do ▷ p = parent joint of j
16: yj = Ψj(xj − S⊤j M̂j

j
pAd ÛVp − S⊤j B̂j)

17: ÛVj =
j
pAd ÛVp + Sjyj

18: end while

springs, this preconditioner still gives the same performance as the O(n) recursive approach—

it gracefully reverts back to the standard O(n) approach. This preconditioner is motivated by

Featherstone’s algorithm [Featherstone 1983], and is shown in Alg. 4.

3.3 PCG

To use P in the preconditioned conjugate gradient (PCG) method to solve Eq. 2.13 in

near linear time, we have the following requirements:
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(1) Form the RHS vector of Eq. 2.13 in O(n) time.

(2) Multiply a vector by the LHS matrix of Eq. 2.13 in O(n) time.

(3) Apply the preconditioner, P, in O(n) time.

(4) Converge in a sublinear number of iterations.

Steps (1) and (2), require multiplying a vector by J, J⊤, and ÛJ, as required by the RHS

of Eq. 2.13, in O(n) time. Although filling these matrices takes O(n2) time, computing the

product can be done in O(n) time by taking advantage of the recursive nature of the topology.

To multiply by J and ÛJ, we traverse forward starting from the root, whereas to multiply by

J⊤, we traverse backward starting from the leaf. The recursive dynamics method takes this

approach while computing the reduced velocities and forces. Alg. 2 shows the procedures for

computing y = Jx and z = ÛJx , and Alg. 3 shows the procedure for computing x = J⊤y. Adding

the spring contributions to the RHS force and LHS stiffness matrix can be done trivially in

O(m) time using standard techniques, wherem is the number of springs.

To enable (3), we must be able to solve by P in linear time. We draw inspiration from

the fact that the recursive forward dynamics algorithm solves the reduced system Mr Üqr = fr

in linear time, allowing it be utilized efficiently to construct, or to multiply by, the inverse

inertia matrix by setting all forces and velocities to zero [Kim 2012; Drumwright 2012]. In

the same way, this preconditioner can be used to solve the block diagonal approximation of

the LHS matrix of Eq. 2.13 in linear time. The standard recursive forward dynamics algorithm

can achieve this with two important modifications corresponding to the maximal and reduced

implicit terms, as shown lines 3-6 in Alg. 4. These two types of implicit terms must be handled

differently, since they operate in different spaces. In each joint j, we store the reduced stiffness

and damping matrices (scalars for revolute joints), and in the corresponding body i, we store

the 6 × 6 block diagonal components of the maximal stiffness and damping matrices. The

maximal terms are first transformed to be in j’s coordinate space and then are added to the j’s
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inertia matrix in line 5. Then, the reduced terms are added prior to taking the inverse, in line 6

of Alg. 4. These terms are then processed recursively together with the inertia.

For (4), we will offer empirical evidence comparing the performance of REDMAX to

an optimized sparse direct solver when simulating a TREE (Fig. 1a), BRIDGE (Fig. 1b) and

the UMBRELLA (Fig. 1c) scenes. When using the direct solver, the system indices are ordered

backward from leaf to minimize fill-ins [Negrut et al. 1997]. The TREE scene provides a

worst-case evaluation of our preconditioner with respect to the Pardiso solver. In this scene

the mass matrix is very sparse (Fig. 1d), and behaves well for optimized sparse solvers (e.g.

Pardiso). In the BRIDGE scene wherein the towers are infinitely stiff, PCG converges in 1

iteration because all of the cables are attached to a stationary body, and so the stiffness matrix

becomes block diagonal. We also test the bridge scene with variably stiff body chains in

place of the stationary towers; this imposes entries in the mass matrix off the diagonal and

provides an interesting evaluation of the performance of REDMAX. Finally, the umbrella

scene features a dense mass matrix with off-diagonal terms and exemplifies a case when

REDMAX is expected to perform well.

3.4 Loop Closure and PCG

Recall that in the presence of loop-closing constraints we solve the dual problem:

GM̃
−1
r G⊤λ = GM̃

−1
r f̃r , M̃r Ûqr = f̃r − G⊤λ. (3.2)

Let l be the number of rows in the constraint matrix G. Then we need to run PCG l times to

form the dense LHS matrix GM̃
−1
r G⊤ by backsolving with the columns of G⊤. We also run

PCG once to form the RHS vector, and then solve these small, dense LHS and RHS matrices

for the Lagrange multipliers in O(l3) time. They are then fed into a final PCG to compute

the new velocities. The first l calls to PCG are independent of each other and compute the
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reduced column vectors of M̃
−1
r G⊤. Using OpenMP to run these PCG operations in parallel

will minimize the overhead associated with including maximal constraints in a scene. The

overall run time is then O(nαl + l3), where α depends on the scene and should typically be

near linear.

3.5 Code Optimization

The Intel Math Kernel Library includes optimizations for Eigen as well as our chosen

direct system solver, Pardiso. We use Eigen to perform all mathematical operations for

both PCG and the direct solver. The Pardiso solver also utilizes parallelization, automatic

combination of direct and iterative solvers, and can rely on a high rate of cache hits.

To ensure REDMAX is competitive with the direct solver, we considered ways of

decreasing the overall runtime rather than only focusing on the asymptotic behavior of the

method. For simplicity, we initially implemented REDMAX using c++ structures for joints

and bodies and stored the configuration as arrays of these structures. To reduce the overhead

associated with using many different object potentially stored inconveniently in memory, we

instead stored all associated member variables directly in many arrays. Using the Structure of

Arrays framework increased the efficiency of REDMAX by about 3 times.

All Eigen containers are initialized during the setup of the scene, as doing so repeatedly

would incur a lot of overhead. Additionally, there are several instances where the algorithms

presented in the previous section perform redundant computations. To address the redundan-

cies, we took care to save any such products and thereby prevent performing the same matrix

operations multiple times.

The last significant improvement to performance improves scenes with maximal con-

straints (wherein each constraint requires a separate call to PCG) by performing the calls in

parallel. We feel utilizing parallel computing is justified because the Pardiso solver does so
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as well. In our method, parallelization is only used when solving systems with many loop

closing constraints, whereas Pardiso utilizes parallelization for all solves. For this reason,

future efforts might well be focused on adding parallel computations throughout the method.
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4 RESULTS

We implemented our system in C++ and ran the simulations on a consumer desktop

with an Intel Core i7-7700 CPU @ 3.6 Ghz and 16 GB of RAM. We use Eigen for linear

algebra computations, both sparse and dense, and Pardiso as the comparison for sparse linear

solves. We ran each simulation for both REDMAX and the direct solver (Pardiso) at different

resolutions and display the recorded wall-clock timing for each case on a log2 − log2 plot. The

slope of fitted lines of the log2 − log2 plot of time vs. DOFs shows the empirical order of each

approach.

Selected Configurations

(a) (b) (c)

(d) (e) (f)

Fig. 1. (a) TREE and, (d) shows sparsity of mass matrix for the tree scene. (b) A cable-stayed
BRIDGE and, (e) sparsity. (c) A deployable UMBRELLA and, (f) shows sparsity.

We will discuss the results of simulating 5 seconds of scene time for these three scenes

under different circumstances using both our REDMAX solver and the Pardiso solver.
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4.1 Bridge

This scene is modeled after a cable-stayed bridge with a fan design, (Figs. 1b & 1e).

The towers and the deck are composed of a sequence of bodies connected by revolute joints,

with 30 cables attaching evenly spaced deck pieces to the towers. In this scene, when the

towers are infinitely stiff, we instead model the towers as a single fixed body. Then PCG

converges in 1 iteration, because all of the cables are attached to a stationary body, and so the

stiffness matrix becomes block diagonal. Our block diagonal preconditioner then becomes

exactly the inverse of the system matrix. When we model the towers as variably stiff body

chains, in place of stationary towers, this fills entries in the mass matrix off the diagonal and

provides an interesting evaluation of performance.

Bridge Skeleton

Fig. 2. Flexible tower bridge scene with exposed joints and links

The bridge scene in (Fig. 2) shows towers and deck comprised of a body-chain with

variable stiffness. For the rigid tower case we define only the number of bodies in the deck,

and when the towers are made to be flexible, and composed of a link chain, we keep the

number of bodies in each of the towers and the bridge equivalent. A scene with flexible towers

can be related to a rigid tower bridge where the bridge decking has three times as many DOFs

as the deck in the flexible tower scene but the same number of DOFs overall.
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Bridge Scene Timing

Fig. 3. Physical time cost of 5 seconds of simulation for the various bridge
scenes

Fig. 3 displays the relative performance of different bridge scenes that we investigated.

REDMAX features the most improvement over the direct approach for the bridge with rigid

towers. This is not surprising considering that, when the towers are stationary, our block

diagonal preconditioner becomes exactly the inverse of the system matrix, and so only the

block diagonal portions of the local stiffness matrices enter the system matrix and PCG

converges in a single iteration. That is to say, using REDMAX on the rigid towers scene

(solid blue line) is a direct solve of the system. The next two scenes with flexible towers

comprised of rigid body chains are slower than REDMAX for the rigid scene; this is expected

since the towers are no longer stationary and the elastic cables between them and the bridge

now impose off-diagonal terms and PCG requires more than a single iteration to converge.
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Furthermore, scene one of these scenes introduces a weighted object, modeled after a car

traversing the bridge in the 5 second simulation. For REDMAX this scene (yellow solid line)

performs slightly worse than the flexible tower scene without the car. Again, this is expected

as the car traversing the bridge is determined, but the small effect it has on the bridge deck

and towers makes the warm start of PCG less accurate. In the same manner, the scene with a

car weighing 500 times that of the first car (purple line) performs notably worse than all the

previous scenes, as the extreme weight of this car causes dramatic bending in the towers and

bridge (Fig. 2).

Flexy and Rigid Tower

Fig. 4. Left: The bridge with rigid, infinitely stiff towers. Right: The bridge scene with chain-link
towers. Dotted lines in the graphs represent the linear fit displayed on the graph.

Fig. 4 shows, on the left, the fitted timing result of the rigid tower bridge with a varied

number of bodies comprising the decking of the bridge. Note that the first few points from

Fig. 3 are not included in the fit since their behavior does not match the trend of larger

scenes; we attribute these discrepancies to caching effects and Eigen container overhead. We

follow this method for all asymptotic runtime evaluations. REDMAX still tends to have more

overhead than the direct method for smaller scenes, but demonstrates better performance

for larger scenes. With respect to the resolution of the deck, these results show nearly linear
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growth for PCG, O(n0.94), and worse than quadratic growth for the direct solver, O(n2.74).

REDMAX also performs better overall for scenes with 60 or more DOFs (seen in Fig. 3).

When the tower joints are not infinitely stiff, the system matrix has structure shown in

Fig. 5. In this example the bridge and towers are each composed of 20 rigid bodies. The three

dense 20 by 20 blocks centered on the diagonal represent the body chain

Flexy Tower System Matrix

Fig. 5. Sparsity pattern of the system matrix for the bridge with flexible towers

of bridge and two towers (outlined in red), the off-diagonal block (highlighted in green)

represents the tower’s dependencies on the deck, and the 20 by 20 overlap of the towers

(highlighted in yellow) shows that there are no direct dependencies between the two towers.
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Fig. 4 shows, on the right, the timing result of the bridge with flexible towers. In this

case, however, the bridge and each of the two towers are comprised of 1
3 of the total number

of links apiece. The same number of DOFs are present but, due to the off-diagonal terms in

the system matrix, PCG no longer converges in just one iteration. The tower chains are made

very stiff, as under normal conditions we would not expect a bridge to bend under the weight

of the cars travelling across it. The results of this simulation show O(n1.00) time for PCG, and

O(n2.39) for the direct solver.

REDMAX is expected to perform well when there is little movement, as the previous

result will provide a closer warm start for PCG. However, given that there are plenty of

potential scenes involving a lot of movement, we investigate the performance of PCG when

the bridge scene with flexible towers has a car of varying weight traveling across it.

Flexy Tower with Car

Fig. 6. Bridge with flexible towers and a
car

Flexy Tower with Heavy Car

Fig. 7. Bridge with flexible towers and
500x car

Given the size of the modeled bridge in this scene, it would only physically fit about

600 average sized cars in stop-and-go traffic. If we model the bridge to be made from steel

and concrete, then Fig. 6 represents the bridge scene with flexible towers and a medium sized

car of average weight traversing the deck of the bridge. Fig. 7 features the same scene with
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Flexy Tower Iteration Growth

Fig. 8. The number of PCG iterations for the various bridge scenes

a single car weighing relatively 500 times that of an average, medium sized car. While we

only roughly estimated the masses, sizes, and material composition of the elements in this

scene, the desired outcome is a bridge simulation that seems to model intense bending in

both the decking and the towers of the bridge as a result of an inordinately heavy load. We

see that REDMAX performs better than the direct method for the scene with the regularly

weighted car where there are more than 270 DOFs present, and, in the case of the scene with

the inordinately heavy car, with more than 306 DOFs present. For both scenes, the asymptotic

growth is much better for REDMAX then the direct solve. Even for the scene with lots of

movement, with growth O(n1.21) for REDMAX and O(n2.47) for the direct method.

As expected, the number of PCG iterations required is greater when the rigid bodies

move around more in the scene. Fig. 8 exemplifies this, showing that the scene without a car
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(blue line), which we expect to have the least movement has the fewest iterations, while the

scene with the heavy car (yellow line) and the most movement also takes the most iterations.

Furthermore, we clearly see that the asymptotic growth of the number of iterations is sublinear

for all scenes, as their slope is always less than the grey line exemplifying linear growth.

Fig. 9 shows how much bending occurs in the towers and bridge deck as a result of the

car weighing 500 times the average weight of a car its size.

Buckling Bridge

Fig. 9. Showing the bending of the flexible towers when an extremely heavy
car is present

Fig. 10 shows the effect of many differently weighted cars as they traverse the bridge.

This is interesting because the weight of the vehicles does not affect the performance of the

direct solver, whereas for PCG the amount of clock time changes as the weight of the car

increases. In Fig. 11 we see that the scene with the normally weighted car (dark blue) takes

the least amount of time, and that, as the weight of the car increases, so does the amount of

clock time required to simulate 5 seconds of scene time.
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Flexy Bridge Runtimes

Fig. 10. Bridge with flexible towers and
many differently weighted cars

Flexy Bridge Runtimes Closeup

Fig. 11. Closeup on the runtime of PCG in
the presence of cars with different weights

Flexy Bridge Runtime with OpenMP

Fig. 12. The rigid and flexible tower scenes with and without parallelization

Pardiso, the direct solver, utilizes multi-threading and optimized sparse matrix multipli-

cations. For the bridge we did not employ multi-threading, as we found that doing so did not
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reliably or significantly improve the performance of either the rigid tower or felxible tower

scene. Fig. 12 shows that for the scene with flexible towers (i.e., more than one PCG iteration)

parallelization speeds up the simulation only by about 5%. While, for the rigid tower scene,

multi-threading had little to no effect on the runtime of the simulation.

4.2 Umbrella

Umbrella Skeleton

Fig. 13. Left: Umbrella scene with joints exposed. Right: Umbrella scene showing the open
canopy

In this scene we model a deployable umbrella, Fig. 13. The root body is the tube, with 8

ribs attached to its tip. The 8 ribs are pushed open by the 8 stretchers, as the runner, connected

to other end of all 8 stretchers, pushes along the tube. The runner has a prismatic joint with

respect to the tube. Both the ribs and the stretchers are modeled using a sequence of universal

joints, and are connected to each other by bilateral constraints. Springs are placed between the

8 ribs to model the canopy. For this scene, the number of bodies in the ribs and the stretchers
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are varied. The system stiffness matrix dense dense diagonal regions that extend well beyond

the block diagonal terms. This exemplifies a case when REDMAX is expected to perform

well.

The umbrella as 8 revolute loop closing constraints (imposing 16 maximal constraints),

one for each stretcher-rib sequence, where the bridge only had one. This means that PCG is

called 18 times to solve the umbrella and 16 of these calls to PCG are independent from each

other with respect to the DOF that they are limiting. This is where parallelization makes a

difference, as the 2 PCG calls for each of the 8 loop closing constraints can all be executed

separately in parallel. Provided the presence of enough threads to distribute the load, the solve

for the umbrella can be even better than the bridge, which did not utilize parallelization as we

discussed in the previous section. The remaining two PCG calls must be executed in order

and only after PCG is called for each of the constraints.

Umbrella Runtime

Fig. 14. The runtime of the umbrella
scene

Umbrella Runtime Closeup

Fig. 15. Asymptotic evaluation of the um-
brella

The i7-7700 CPU used in our tests has 8 threads, therefore the umbrella scene should

scale similarly to the bridge scene. Fig. 14 shows the relative runtime of the two scenes, and
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Fig. 15 shows the empirical orders of the two methods are O(n1.38) and O(n2.35) for PCG and

direct, respectively. REDMAX is initially slower than the direct solver, but when there are

more than 350 DOFs, PCG becomes faster.

Umbrella System Matrix

Fig. 16. Sparsity pattern of the system
matrix

Umbrella Iterations

Fig. 17. PCG iterations of the umbrella
scene

The umbrella scene is designed to test REDMAX for a setup expected to perform better

than the direct solver due to the sparsity of the system matrix, while also depicting a scene

that undergoes a lot of movement. The first block diagonal in the system matrix stores the

stretcher chains, and the larger blocks along the diagonal show the dependencies between the

ribs and the elastic forces, Fig. 16. Because the system matrix has large dense regions, we

would expect REDMAX to perform better than Pardiso. We can see from Fig. 17 that, despite

this scene featuring a lot of movement, the growth of the number of iterations in PCG is still

clearly sublinear. Therefore, in this scene REDMAX has a much better asymptotic growth

than the direct solver, but only outperforms Pardiso when there are many DOFs in the scene.
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4.3 Tree

Tree Skeleton

Fig. 18. Tree scene with exposed joints

This scene (Fig. 18) models a 3D binary tree and provides a worst-case evaluation

of our preconditioner, as the mass matrix for this setup with many dependency branches is

very sparse and enables optimized sparse direct system solvers (e.g., Pardiso) to become

sub-quadratic. Additionally, the sparse direct system solver has little overhead compared to

our PCG method, which utilizes many small dense matrix computations in place of directly

computing the sparse system matrix. Consequently, we expect that the method utilizing the

sparse direct solve will be much faster than PCG for small systems, and for this case, with a

sparse dependency tree, we also expect the direct method to scale well compared to PCG.

From the root body, each subsequent level adds a horizontal spacing body and two

vertical bodies on either side. Only revolute joints are used, but the hinge axis of the joints
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on the horizontal bodies rotate 90 degrees locally with each level. At each level springs are

placed between the sibling nodes. Each corner leaf body has a spring force attached, pulling

the corner leaves down and away from the tree. To ensure that the tree is always balanced,

and that all scenes we are considering have the same movement pattern, we vary only the

number of levels in the tree.

Tree Runtime

Fig. 19. The runtime of the tree scene

Tree Runtime Closeup

Fig. 20. Asymptotic evaluation of the tree

Fig. 19 shows the results of these simulations with a sparse system matrix. It is important

to note that REDMAX does not perform better than the direct method for this scene, as the

sparsity of the system matrix enables Pardiso to work more efficiently. For this scene even the

asymptotic behavior of REDMAX is worse than the direct solver, Fig. 20.
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Tree System Matrix

Fig. 21. The sparsity of the system matrix

Tree Iterations

Fig. 22. Growth of iterations in PCG

Fig. 22 shows nearly linear growth of the number of PCG iterations with respect to

the number of bodies in the scene, because the system matrix is so sparse each subsequent

iteration of PCG learns very little about the scene. However, if we change the configuration of

the scene slightly and move the elastic forces from between siblings on each level to a square

pattern between indirect siblings on the lowest level, Fig. 23, then the resulting system matrix

is shown in Fig. 24.

Alternate Tree Skeleton

Fig. 23. The new tree scene

Alternate Tree System Matrix

Fig. 24. The sparsity of the system matrix
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Alternate Tree Runtime

Fig. 25. Asymptotic evaluation of the new
tree

Alternate Tree Iterations

Fig. 26. Growth of the number of itera-
tions in PCG

REDMAX still does not outperform the direct method, but, in this scene, we see that

its asymptotic behavior is close to that of the direct solver. While REDMAX is not the best

choice for highly sparse solves, it remains a robust and competitive method in many contexts.
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5 SUMMARY AND CONCLUSIONS

We introduced an efficient and flexible approach for computing the dynamics of articu-

lated rigid bodies. Unlike prior approaches that require O(n3) time, our approach maintains

near linear performance, even in the presence of maximal stiffness matrix used by a linearly

implicit integrator. In some simulation scenarios, our preconditioned solver converges in a

single iteration. Our approach also provides flexibility, allowing us to mix and match implicit

and explicit forces in both reduced and maximal coordinates, as well as bilateral and unilateral

constraints in either coordinates. We showed this flexibility with several results including

those that use hybrid dynamics in both coordinates and fully two-way coupled dynamics

of articulated and deformable bodies. The C++ implementation of REDMAX is available

open-source at github.

5.1 Further Study

Although the theoretical runtime of factorization methods are O(n3) [De Jalon and

Bayo 2012], in practice, they exhibit better asymptotic behavior depending on the sparsity

pattern of the system matrix. When the scene has many branches, the system often becomes

very sparse, and these methods become subquadratic, with very small overhead compared to

our PCG method. Automatically detecting when to switch between the two methods would be

of practical interest. This is especially true since we have only shown empirically that PCG

takes a sublinear number of iterations using our preconditioner, without a formal proof.

We have not taken into account all avenues of parallelization or any GPU implemen-

tations. Some parts of this approach could be easily parallelizable (e.g., each branch in the

tree topology can be processed in parallel). Such improvement might help REDMAX to

be competitive in cases where the sparsity of the system matrix better suits existing sparse

linear system solvers. Existing O(n) and O(n3) methods have shown good parallelizability
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(e.g., [Avello et al. 1993; Negrut et al. 1997]), and so we believe it is worthwhile to explore

similar techniques that work even with the inclusion of the stiffness matrix.
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