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Global urban expansion offsets climate-driven
increases in terrestrial net primary productivity
Xiaoping Liu1,14, Fengsong Pei2,14, Youyue Wen1, Xia Li1,3*, Shaojian Wang1,4*, Changjiang Wu1, Yiling Cai 1,

Jianguo Wu5, Jun Chen6, Kuishuang Feng 7, Junguo Liu8, Klaus Hubacek 9,10,11, Steven J. Davis 12*,

Wenping Yuan1, Le Yu13 & Zhu Liu 13*

The global urbanization rate is accelerating; however, data limitations have far prevented

robust estimations of either global urban expansion or its effects on terrestrial net primary

productivity (NPP). Here, using a high resolution dataset of global land use/cover (Globe-

Land30), we show that global urban areas expanded by an average of 5694 km2 per year

between 2000 and 2010. The rapid urban expansion in the past decade has in turn reduced

global terrestrial NPP, with a net loss of 22.4 Tg Carbon per year (Tg C year−1). Although

small compared to total terrestrial NPP and fossil fuel carbon emissions worldwide, the

urbanization-induced decrease in NPP offset 30% of the climate-driven increase (73.6 Tg C

year−1) over the same period. Our findings highlight the urgent need for global strategies to

address urban expansion, enhance natural carbon sinks, and increase agricultural

productivity.
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The terrestrial biosphere is a large carbon sink in the global
carbon cycle, with a net carbon uptake of 1–4 Pg C year−1

during the last few decades1,2. As the initial production
stage in which atmospheric carbon dioxide (CO2) is fixed by
plants, terrestrial net primary productivity (NPP) increased by
~190 Tg C year−1 between 1982 and 19993. The NPP increase
occurred despite the projected decrease in terrestrial carbon
uptake from climate-carbon cycle simulations4,5. However, tem-
poral trends of global terrestrial NPP since 2000, as well as its
underlying mechanics, remain uncertain in the context of climate
variability and anthropogenic disturbance (e.g., urban expansion
and deforestation)6–8. As one of the important components of
human-associated disturbance, urban land expansion and its
effects on terrestrial NPP have been widely examined using a
case-based approach9–12. However, these interactions cannot be
accurately estimated at a global scale due to the lack of reliable
global land-use data with a high spatiotemporal resolution13,14.
Furthermore, at the global scale, it is difficult to clarify the relative
roles of climate variability and urban land expansion on terres-
trial NPP15,16.

GlobeLand30, one of the newly developed dataset with a 30-m
resolution, has the advantages of both spatiotemporal detail and
data accuracy (see Methods)17,18. Here, we use this dataset to
analyze the change in global urban lands from 2000 to 2010 in
much greater detail than has previously been possible. Here, the
urban lands mainly refer to the area modified by human activities,
including all kinds of habitation, industrial and mining area,
transportation facilities, interior urban green zones and water
bodies18. We then estimated global terrestrial NPP using the
Moderate Resolution Imaging Spectrometer (MODIS) NPP
dataset (MOD17A3), the Carnegie–Ames–Stanford Approach
(CASA)19,20 and one of the Lund-Potsdam-Jena Dynamic Global
Vegetation Model (LPJ-Hydrology)21. On this basis, change in
the global terrestrial NPP was further analyzed using the
approach of multi-model ensemble mean (MMEM). To isolate
the effects of climate variability and urban expansion from other
mechanisms (e.g., CO2 fertilization, nitrogen deposition, and
wildfire), we estimated terrestrial NPP as ‘urban-expansion-based
NPP’ and ‘climate-variability-based NPP’ in two separate simu-
lations, in which either climate drivers or urban land areas were
held constant. Specifically, urban-expansion-based NPP was
simulated by holding fixed climate drivers and varied urban land
use. Conversely, climate-variability-based NPP was calculated
using a fixed urban land distribution (i.e., the 2000 state) and a
varied climate driver from 2000 to 2010. Further details of our
approach are provided in Methods. As results, we found that
global urban expansion remarkably reduced the terrestrial NPP
over the period 2000–2010 (22.4 Tg C year−1), which offset 30%
of the climate-variability-driven NPP increase. In doing so we
provide a comprehensive assessment of urbanization-induced
NPP change in comparison with climate-variability-driven
change.

Results
Global urban expansion. We found that global urban lands
expanded much faster than expected between 2000 and 201022.
Specifically, the world’s urban area increased by 5694 km2 per
year over this 10-year interval, which represents ~5% of total
urban area in 2000. As projected, there were big differences
among urban expansion area on each continent (Supplementary
Figs. 1 and 2), with the largest urban land expansion occurring in
Asia and North America (Fig. 1). In particular, urban expansion
in Asia was marked, involving a total area of 24,770 km2. In
addition, 14,780 km2 was converted to urban land use in North
America. Together, 69% of the global urban expansion took place

in these two continents between 2000 and 2010. In addition,
urban land use in Africa expanded quickly during this period—
faster than in other continents. Although the newly urbanized
land in Africa covered only 8462 km2, this urban expansion
accounted for ~12% of the total urban area of the continent in
2000. This could be associated with the underlying driver such as
population growth. However, the outcome of the urban expan-
sion in Africa in terms of economic growth was poor23. The
smallest increase in urban area occurred in Europe, which is
already highly urbanized. These geographically divergent results
are likely associated with national and regional differences in
socio-economic and political conditions22. In particular, urban
expansion in China was 16,053 km2 between 2000 and 2010,
~65% of total urban land growth in Asia and 28% of the global
urban expansion (Supplementary Table 1). Despite a relatively
low rate of urban land growth in the United States, newly urba-
nized areas here (11,773 km2) accounted for 21% of the world-
wide total (Supplementary Table 1; Supplementary Fig. 1).

The impact of global urban expansion on terrestrial NPP.
Although only occupying a small proportion of the earth’s land
surface (0.04%), newly urbanized areas in the period 2000–2010
had a disproportionately effect on global terrestrial NPP. Speci-
fically, global urban expansion was associated with a 22.4 Tg C
year−1 reduction in the NPP, which is ~9% of the carbon emis-
sions from fossil fuel and cement emissions worldwide24. In
particular, China and United States experienced considerable
NPP reductions of 40.6 Tg C and 47.5 Tg C, respectively (see
Supplementary Note 1; Supplementary Table 1). In the United
States, rate of the NPP losses in the newly urbanized area between
2000 and 2010 could be doubled compared to that of the entire
urbanized area in this country in 1994–1995 (41.5 Tg C year−1)10,
assuming same NPP performance (and thus NPP loss rate) of all
urban lands with the urban expansion area between 2000 and
2010. In addition, prior research found that urban land devel-
opment not only reduced terrestrial NPP, but also resulted in the
loss of a significant amount of fertile agricultural soil9,25,26.
However, it is not currently certain whether this phenomenon
exists at the global scale. Figure 1 compares global urban
expansion and the corresponding changes the in NPP for
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Fig. 1 Continental summaries for all newly urbanized areas (which were
converted from both non-cropland and cropland), cropland-converted newly
urbanized area (which was converted from cropland), and their corresponding
NPP losses between 2000 and 2010. The NPP losses from both newly
urbanized land and cropland-converted newly urbanized area were calculated
for Asia, North America (N. Amer.), Africa, Europe, South America (S. Amer.)
and Oceania based on the urban-expansion-based NPP and global urban land
area in 2000 and 2010. NPP denotes net primary productivity.
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different continents between 2000 and 2010. The proportion of
these changes associated with the conversion of cropland and
non-cropland (e.g., unmanaged land) to urban use are also
shown. Our results show that newly urbanized area had a dis-
proportionately high impact on terrestrial NPP in South America
and Africa (Fig. 1). This phenomenon could be associated with
the large conversion of highly productive ecosystems such as
tropical rainforest to urban land use in these two continents. In
addition, such conversions raise additional concerns. For
instance, urban land development was found to associate with
cropland losses, indicating an irreversible loss of agricultural
capacity. As shown in Fig. 1, 72% of Asia’s urban land growth
involved encroachment on cropland. In North America, although
only 27% of the newly urbanized area (4060 km2) was converted
from cropland, it is approximately twice the area of converted
cropland in Africa (2536 km2).

Figure 2 highlights another dimension of the effects of global
urban expansion on agricultural capacity, with more than 50% of
newly urbanized areas occurring on highly fertile soils (i.e., no or
slight nutrient constraint in Fig. 2) in all continents except Africa
and South America27. In Africa, the proportion was only 37%
probably owing to human-induced soil nutrient depletion28,29.
In addition, the low proportion for South America could
be associated with the widespread distribution of low and
medium quality soil across the continent30. Given the ever-
growing human population and looming impacts of climate
variability on agricultural yields31, this sacrifice of highly fertile
land for urban growth has potentially significant implications for
terrestrial NPP and even crop production worldwide.

Effect of urban expansion and climate variability on the NPP.
We further compared the effects of urban expansion and climate
variability on the terrestrial NPP for the period 2000–2010. The
results show that the reduction in NPP associated with urban
expansion offset a substantial fraction (30%) of the increase in the

NPP resulting from climate variability over the same period
(equating to 73.6 Tg C year−1). Figure 3 provides spatial details of
the effects of urban expansion (Fig. 3a) and climate variability
(Fig. 3b) on the terrestrial NPP between 2000 and 2010. The effect
of urban expansion was much more concentrated, accounting for
a NPP reduction of up to 1123 g Cm−2 year−1, as compared to
the maximum reduction of ~21 g Cm−2 year−1 due to climate
variability. The NPP losses from urban expansion were mainly
clustered in the temperate zones of eastern China, northern
Indian subcontinent, eastern North America, and Europe
(Fig. 3a). In addition, climate drivers played a critical role on
changes in the terrestrial NPP in the study period (see Methods).
For instance, changes in climate-variability-driven NPP were
widespread with the exception of desert area, with substantial
decrease occurring in the Amazon and other tropical regions
(Fig. 3b) due to constrained solar radiation from persistent cloud
cover and the stress of warming temperature (Supplementary
Fig. 11; cf. ref. 6). We also found the greatest climate-variability-
induced increases in the NPP at the temperate and high latitudes
of the Northern Hemisphere, where warming lengthened the
growing season (Fig. 3; Supplementary Fig. 11)6,32. These findings
represent a continuation of the trends observed during the pre-
ceding years3.

Combining climate variability, urban expansion and residual
factor (i.e., all other factors unexplained by climate variability and
urban expansion, such as wildfire and nitrogen deposition),
annual increase in global terrestrial NPP between 2000 and 2010
was ~97.4 Tg C year−1, which is ~49% less than between 1982
and 19993. Spatially, our results show large NPP decreases in the
Northern Hemisphere in 2001, with more persistent decreases in
the Southern Hemisphere between 2002 and 2010 (Supplemen-
tary Fig. 4).

Figure 4 shows the relative contributions of urban expansion
(red), climate variability (green), and residual factor (blue) to
changes in the terrestrial NPP (calculated as the cumulative effect
of each component relative to the total NPP change due to all
factors) at the cell scale from 2000 to 2010 worldwide. Overall, the
contribution of urban expansion was evident in newly urbanized
areas such as Asia, North America and Europe, accounting for an
average of 71% of the total NPP change during 2000–2010 (red
areas in Fig. 4; Supplementary Fig. 5). In contrast, climate
variability accounted for 37% of the total change in terrestrial NPP
(green areas in Fig. 4; Supplementary Fig. 3). However, residual
factor dominated in many areas, explaining an average of 62% of
the total NPP change. It played a vital role in the terrestrial NPP in
Australia, Africa, American southwest, and Indian subcontinent
(blue areas in Fig. 4; Supplementary Fig. 6). This could be
associated with the changes in atmosphic CO2 concertration
(Supplementary Fig. 7). For instance, CO2 fertilization on
vegetation growth was frequently observed, especially in water-
limited regions3,33,34. In addition, wild fire could be attributed to
the variation of terrestrial NPP, and acted as a prevalent driver of
boreal carbon balance in northern Russia and southern Canada35.

Discussion
The GlobeLand30 was proved to be accurate and reliable to capture
global urban land changes, with a precision ten times greater than
most of previous land use/cover datasets (e.g., the University of
Maryland land-cover map and MODIS land-cover maps)17,18.
Based on this dataset, our result shows that global urban land
expanded faster than expected between 2000 and 2010. The
expansion rate was approximately three times that of the global
urban expansion during the previous 30-years between 1970 and
2000 according to the meta-analysis of 326 studies22. In addition, we
found that 44.6% of the urban expansion involved an encroachment
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onto cropland. Considering increasing losses in the cropland pre-
dicted by 2030, an effective regulation of urban expansion is
urgently needed to promote crop production worldwide36.

Urban expansion not only substantially transforms the land-
scape, but also alters biogeochemical cycle and the photosynthetic
productivity of terrestrial ecosystems. Past studies have shown
that urban expansion reduced terrestrial NPP at the city to
country scale due to the replacement of natural vegetation into
impervious surfaces10,37,38. Despite this, however, vegetation
growth can be enhanced in urban environment12,39. This
enhancement can be associated with the introduction of highly
productive vegetation, as well as heat-island effect in urban
area12,40. Nevertheless, such growth enhancement is likely
insufficient to offset the direct loss of productivity caused by the
replacement of productive vegetation with impervious surfaces.
Furthermore, we found that global urban expansion reduced
global terrestrial NPP from 2000 to 2010 by an amount
approximately equal to 9% of worldwide carbon emissions from
fossil fuels and cement production. Considering the projected
increases in urban land use36 and fossil-fuel-consumption emis-
sions41, additional research and policy are needed to regulate
urban land growth at both national and international levels42,43.
Furthermore, we note that global urban expansion has already

caused large losses in fertile lands. The effects of the increases in
cropland productivity that can be achieved via climate variability
adaption strategies (i.e., changing planting dates, new irrigation
regimes, and improved residue management)44 may be largely
limited by the fast urban expansion at a global scale.

As for the effects of climate variability on the terrestrial NPP,
past studies have consistently shown a climate-variability-induced
increase for the period 1982–19993,45,46. However, in compar-
ison, there is a lack of consensus on the NPP trend since 2000.
Zhao and Running6 reported a drought-induced reduction in
global terrestrial NPP of 0.55 Pg C from 2000 to 20096. However,
Medlyn47 and Samanta et al.48 argued that this estimate could be
biased by temperature dependence, gap-filling of satellite data,
and generally weak correlations with field observations6,47,48. In
addition, Potter et al.7 estimated that global terrestrial NPP
increased by 0.14 Pg C during the same period7. The confliction
could be associated with the different approaches they employed
to model the effects of environmental stress on terrestrial NPP6,7.
Our findings partly agree with ref. 7, reporting an increase in the
NPP during 2000–2010. Furthermore, spatial pattern of the NPP
anomalies in our analysis was similar to that reported by refs. 6,7.

Despite the widely documented evidence of individual effects
of urban expansion and climate variability on the terrestrial NPP,

NPP loss from Urban expansion (g C m–2 year–1)

0–200
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High : 17
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600–800
800–

NPP trend from climate variability (g C m–2 year–1)

Fig. 3 Spatiotemporal trends of the NPP caused by urban expansion a and climate variability b between 2000 and 2010. This figure reflects the
spatiotemporal trends of the global terrestrial NPP caused by urban expansion and climate variability. To account for the two factors, two independent
experiments (i.e., climate-variability-driven and urban-expansion-driven simulations) were performed to estimate the terrestrial NPP as ‘urban-expansion-
based NPP’ and ‘climate-variability-based NPP’, in which either climate drivers or urban lands were held constant. The trends of the urban-expansion-based
NPP and the climate-variability-based NPP were then analyzed using linear regression analyses with time (i.e., year) as independent variable and
corresponding NPP as dependent variable. NPP denotes net primary productivity.
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little is known about their interactive effects when integrating the
two factors as a whole, especially at a global scale16. We found
that the NPP reduction associated with urban expansion (22.4 Tg
C year−1) offset a substantial fraction (30%) of the increase in the
NPP due to climate variability (73.6 Tg C year−1) during the
period 2000–2010. In particular, the contribution of urban
expansion was even more pronounced in newly urbanized areas,
accounting for an average of 71% of the total NPP change in the
study period. This reveals that, at a global scale, urban expansion
was the main driving force behind terrestrial NPP changes in
newly urbanized areas. Similar results have also been reported
previously15,16. In addition, climate variability accounted for 37%
of the total change in the terrestrial NPP during this period.
Factors other than climate variability and urban expansion
explained an average of 62% of the total NPP change in some
regions, including the boreal region of northern Russia and Asia.
These results are partly in agreement with ref. 15, which reported
a dominant control of climate variability and residual factors on
the terrestrial NPP in the areas with natural vegetation.

Together, our work provides a comprehensive assessment of the
remarkable effects of global urban expansion on the terrestrial NPP
in comparison with climate-variability-driven changes. Despite it,
multiple uncertainties still remain in our results when separating
the effects of urban expansion and climate variability on the ter-
restrial NPP. For instances, urban landscapes usually include var-
ious land cover types such as trees, lawns, and impervious surfaces,
all of which exhibit different levels of productivity. It is particularly
difficult to simulate urban NPP accurately without complex
experimental designs. Besides addressing land cover types, other
biological, chemical, and physical factors, including topography, air
pollutants, and nitrogen deposition should be given further
consideration6,40,49. In addition, while previous studies have
mostly focused on land use/cover changes related to natural
vegetation, in this context, carbon cycle models should incorporate
urban land development as one of their critical components50.

Methods
Study design. In recent decades, several global land-cover maps have been
developed using satellite data at moderate to coarse resolutions (i.e., from 250 to
1000 m), including the University of Maryland land-cover map, the MODIS land-
cover maps, and the GlobCover land-cover maps. Because of the mismatch

between fine urban expansion and coarse land-cover maps, it is difficult to derive
accurate urban land use change using these maps. Reference14 developed the first
30-m global land-cover dataset (FROM-GLC) using the satellite-based data from
Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+).
However, its usefulness in deriving global urban expansion is limited because of
inadequate temporal coverage. The GlobeLand30 dataset, which covers the years
2000 and 2010 at a 30-m resolution, has advantages on both spatiotemporal details
and data accuracy17,18. In past studies, the GlobeLand30 dataset was evaluated
through sample-based validation or comparison with existing land-cover products
by third-party researchers from more than 10 countries18. Here, accuracy of the
GlobeLand30 dataset was further evaluated by comparing it to the Global Human
Built-up And Settlement Extent (HBASE) dataset using the method proposed by
refs. 51,52. According to the box-plot analysis of the kappa coefficient, the Globe-
Land30 dataset has an overall higher accuracy at fifteen urban ecoregions than the
HBASE dataset (Supplementary Figs. 8 and 9).

To effectively capture the detail distribution of urban land use/cover, the
GlobeLand30 dataset was employed to detect global urban expansion from 2000 to
2010. In addition, global terrestrial NPP was estimated over the period 2001–2010
using the MODIS NPP dataset (i.e., MOD17A3) from the MODIS gross and net
primary productivity algorithms (MOD17A2/A3)53 and the results from two
ecosystem models (i.e., the CASA and the LPJ-Hydrology). On this basis, changes
in the global terrestrial NPP were estimated by using the approach of multi-model
ensemble mean (MMEM). To isolate the effects of climate variability and urban
expansion from other mechanisms, two separate experiments were conducted—an
‘urban-expansion-driven’ simulation and a ‘climate-variability-driven’ simulation,
respectively. Urban-expansion-based NPP was then estimated by holding climate
drivers fixed and varying urban lands from 2000 to 2010. In contrast, climate-
variability-based NPP was estimated by holding urban lands fixed (at its 2000 level)
and varying climate drivers from 2000 to 2010. The relative contributions of urban
expansion/climate variability/residual factor were alternately examined as
proportions between the trends of climate-variability-based NPP/urban-expansion-
based NPP/residual factor and the sum of their absolute values.

Ecosystem model analysis. We simulated global terrestrial NPP using the CASA
and one of the Lund-Potsdam-Jena Dynamic Global Vegetation Model (LPJ-
Hydrology)19–21. The CASA, a light use efficiency (LUE) model54, is widely used to
estimate terrestrial NPP at regional to global scales7,55,56. According to this
approach, the NPP (g C m−2) in a given location x and time t is calculated as
follows:

NPPðx; tÞ ¼ Sðx; tÞ ´ FPAR ´ 0:5 ´T1ðx; tÞ ´T2ðx; tÞ ´Wðx; tÞ ´ εmax ð1Þ
where S(x, t) is solar surface irradiance, MJm−2); FPAR is the fraction of photo-
synthetic active radiation absorbed by green vegetation, which is calculated using
satellite-derived normalized differential vegetation index (NDVI) data; the factor
0.5 represents the fact that approximately half the incoming shortwave solar
radiation is in the photosynthetic active radiation wavelength (0.4–0.7)19; and
account for the effects of very high and very low temperature stress, respectively;W
represents moisture stress factor; and εmax is maximum LUE. The maximum LUE
() is uncertain across land use/cover types, spatial scales and vegetation

Contr.Res.

Contr.Urb. Contr.Cli.

Fig. 4 Relative contributions of urban expansion (Contr.Urb.), climate variability (Contr.Cli.) and residual factor (Contr.Res.) to change in terrestrial NPP
from 2000 to 2010. This figure mainly describes spatial pattern of the relative role of climate effect, human activity and unexplained factors on terrestrial
NPP change. By conducting two independent experiments as climate-variability-driven and urban-expansion-driven simulations, global terrestrial NPP was
estimated as ‘urban-expansion-based NPP’ and ‘climate-variability-based NPP’. The residual factor, which is not explained by urban expansion and climate
variability, was also analyzed. Relative contributions of urban expansion, climate variability, and residual factor were determined as the proportions
between the trends of climate-variability-based NPP, urban-expansion-based NPP, residual factor and the sum of their absolute values. The spatial explicit
approach partitioning the relative influences of urban expansion, climate variability and residual factor provides insight into the mechanisms of terrestrial
ecosystem change (see Methods). NPP denotes net primary productivity.
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coverage57,58. Several methods are available to derive the εmax, including eddy
covariance technology, productivity model inversion and quantum efficiency
reckoning59. The modified least square algorithm, which was proposed by ref. 57,
was proved to be effective in simulating the εmax

11,57. According to this algorithm,
the term εmax was calibrated as:

EðxÞ ¼
Xj

i¼1

ðmi � nixÞ2 ð2Þ

where i represents the samples for a specific land use/cover type; j is the number of
samples; m represents field NPP values; n is the product of S(x, t), FPAR, T1, T2 and
W; x is the maximum LUE to be determined. By minimizing the errors between
field-measured NPP (m) and the term n, εmax was calibrated for each land use/
cover type.

To fit the CASA model, land use/cover data were further compiled by
combining the GlobeLand30 dataset with one of the MODIS product (i.e.,
MCD12Q1 dataset based on International Geosphere–Biosphere Programme
(IGBP) classification scheme). That is, urban land cover was compiled from the
GlobeLand30 dataset using Geographic Information System (GIS). In addition,
natural vegetation including evergreen needleleaf forest (ENF), evergreen broadleaf
forest (EBF), deciduous needleleaf forest (DNF), deciduous broadleaf forest (DBF),
mixed forest (MF), shrub, savanna, and grassland, was compiled from the
MCD12Q1 dataset. Based on this, the CASA model was calibrated using the
algorithm of modified least squares with a total of 2843 field-based NPP records
from the corrected Global Primary Production Data Initiative (GPPDI) dataset. A
detailed description of the calibration steps can be found in refs. 20,57. The values of
our simulated are listed in Supplementary Table 2. It varied from 0.389 g CMJ−1

for any other land use/cover type (e.g., wetland and cropland) to 0.660 g CMJ−1 for
evergreen broadleaf forest (EBF). These values were mostly between 0.389 g CMJ−1

proposed in ref. 19 and the prescribed values employed when producing the
MODIS NPP product (MOD17A2/A3)53. In addition, our calibrated εmax values
were similar to those proposed by other studies57.

To reduce model uncertainty when estimating the terrestrial NPP, LPJ-
Hydrology, one of modified Lund-Potsdam-Jena Dynamic Global Vegetation
Model, was also used to simulate the ecosystem dynamics21. The original Lund-
Potsdam-Jena Dynamic Global Vegetation Model (LPJ-DGVM) simulates
photosynthesis, respiration, fires, growth, and competition of different plant
functional types (PFTs) through explicit representations of vegetation structure,
dynamics, competition between PFT populations and soil biogeochemistry60,61.
However, the LPJ-DGVM often requires a long spin-up simulation from bare soil
to reach an equilibrium state of vegetation and soil carbon pools21,61,62.
Reference21 proposed the LPJ-Hydrology, which incorporates satellite-derived land
use/cover data into the LPJ-DGVM instead of dynamically simulating it. Here, the
LPJ-Hydrology was conducted prescribing the land use/cover input at its 2006 state
to simulate the terrestrial NPP. Following general protocol, we first span-up the
LPJ-Hydrology for 1000 years to reach equilibrium state of the vegetation and soil
pools61. The model was then continuously executed to estimate the terrestrial NPP
using climate and CO2 data for the period 2000–2010 as inputs. To facilitate the
comparability of the NPP results from the CASA and the LPJ-Hydrology, we kept
the input data of both models the same or identical. Concretely, the CASA was
driven by the data on temperature, precipitation, solar radiation and NDVI from
2000 to 2010. In addition, the LPJ-Hydrology was forced by temperature,
precipitation, number of wet days, cloud cover and CO2 concentration over the
same period. To validate the CASA and the LPJ-Hydrology, our estimated NPP
results were compared with the field-based NPP records from the GPPDI dataset.
Significant correlations were found between the field-based NPP and our simulated
NPP from both the CASA (R= 0.963; N= 2843; P= 0.000) and the LPJ-
Hydrology (R= 0.962; N= 2843; P= 0.000) (Supplementary Fig. 10).
Furthermore, consistency was also found among the NPP dataset simulated using
the CASA, our estimated NPP from the LPJ-Hydrology model, and the NPP from
one of the MODIS product (MOD17A3). This indicates the reliability of the CASA
and the LPJ-Hydrology when simulating the global terrestrial NPP.

Based on the NPP from the MOD17A3 dataset and the simulated NPP results
from the CASA and the LPJ-Hydrology, global terrestrial NPP was estimated using
the MMEM approach. Anomalies of global terrestrial NPP were then analyzed by
subtracting mean NPP over past 10 years (2000–2010) from annual terrestrial NPP,
respectively. We found that increases in the terrestrial NPP occurred over large
areas of North America, Western Europe and Eastern Asia (Supplementary Fig. 4).
However, negative NPP anomalies were also found in the Northern Hemisphere in
2001 and in the Southern Hemisphere for most of the study period (Supplementary
Fig. 4).

Isolate the impact of urban expansion and climate on the NPP. To examine the
effects of climate-related drivers on global terrestrial NPP, we performed correla-
tion analyses in both hemispheres and for the entire globe between our estimated
terrestrial NPP and some other factors, including temperature, precipitation and
solar radiation. Significant correlations were found between the terrestrial NPP and
these climate drivers at the global scale (Supplementary Table 3). Spatially, the
observed NPP increases at northern middle and high latitudes were largely con-
sistent with rising temperature (Supplementary Fig. 11a, b). These results indicate
the critical impacts of climate-related drivers on the change in terrestrial NPP.

To ensure consistency with the interactive framework between urban
ecosystems and environmental changes63, global terrestrial NPP was analyzed in
two independent experiments, specifically using a climate-variability-driven
simulation and an urban-expansion-driven simulation. In the climate-variability-
driven simulation, we calculated climate-variability-based NPP by prescribing
changing climate drivers (i.e., monthly temperature and monthly precipitation
from 2000 to 2010) and fixed urban land distribution at its 2000 state. That is, the
CASA was driven by varied observations of temperature and precipitation from
2000 to 2010, with other drivers unchanged (e.g., averaged solar radiation, averaged
NDVI and fixed urban land distribution in 2000). Similarly, the LPJ-Hydrology was
forced by varied observations of temperature and precipitation from 2000 to 2010
and some other averaged observations including number of wet days, cloud cover
and atmospheric CO2 concentration over the same period. To reflect natural land
cover in pre-urban condition, pre-urban NPP in newly urbanized area during
2000–2010 was obtained using a neighborhood proxy method10,11. The pre-urban
condition was defined as a condition of the original vegetation distribution prior to
urban land development. Therefore, the pre-urban NPP represents the NPP in the
absence of urban land development. We assumed that nearby non-urban land
surfaces are the best proxy for urban lands before it is transformed. That is, the pre-
urban NPP in urban cells was calculated by replacing their current NPP (post-
urban NPP) with the mean post-urban NPP of nearby non-urban cells that
corresponded to their original natural vegetation10,11. On this basis, the climate-
variability-based NPP was compiled by aggregating pre-urban NPP in urban areas
and the NPP results from the climate-variability-driven simulation for non-
urban area.

In the urban-expansion-driven simulation, urban-expansion-based NPP was
projected using changing urban land use/cover for 2000–2010 and constant climate
drivers (e.g., a constant NPP distribution derived from the mean terrestrial NPP for
the whole study period). The pre-urban NPP in the newly urbanized areas from
2000 to 2010 were first estimated using a neighborhood proxy method. By
assuming urban lands as a carbon source (i.e., post-urban NPP (NPP2010) is zero),
NPP variation caused by urban expansion was calculated for the newly urbanized
areas (2000–2010) as negative pre-urban NPP (NPP2000) (i.e., NPP2010-NPP2000=
−NPP2000).

Contribution of climate and urban expansion to NPP change. To analyze the
relative contribution of urban expansion/climate variability/residual factor on the
change of the terrestrial NPP, the trends of actual/climate-variability-based NPP
were calculated using linear regression analyses with time (i.e., year) as the inde-
pendent variable and corresponding NPP data as the dependent variable. Thus, the
trends of the climate-variability-based (ΔNPPclimate-driver-based) and actual NPP
(ΔNPPactual) were calculated based on the following Equation:

y ¼ β0 þ β1t þ ε ð3Þ
where y is the climate-variability-based/actual terrestrial NPP (g Cm−2 year−1); t is
the corresponding time (year); β0 is the intercept; β1 reflects the trend of the
climate-driven/actual terrestrial NPP; and ε is the residual error.

Similarly, the trend of urban-expansion-based NPP (ΔNPPurban-expansion-based)
was also calculated as the slope of urban-expansion-based NPP versus the
corresponding time, by assuming a fixed rate of urban land expansion over the
period 2000–2010. In addition, the trend of residual factor (ΔRes), which was not
explained by urban expansion and climate variability, was calculated as the
difference between the estimated actual NPP trend (ΔNPPactual) and the sum of the
trends of climate-variability-based (ΔNPPclimate-driver-based) and urban-expansion-
based NPP (ΔNPPurban-expansion-based).

As shown in Eqs. 4–6, percent contributions of urban expansion (Contr.Urb),
climate variability (Contr.Clim), and residual factor (Contr.Res) were determined as
proportions between the trends of climate-variability-based NPP, urban-
expansion-based NPP, residual factor and the sum of their absolute values
(Supplementary Figs 3. 5 and 6).

Contr:Urb ¼ ΔUrbj j
ΔC limj j þ ΔUrbj j þ ΔResj j ´ 100% ð4Þ

Contr:C lim ¼ ΔC limj j
ΔC limj j þ ΔUrbj j þ ΔResj j ´ 100% ð5Þ

Contr:Res ¼ ΔRsj j
ΔC limj j þ ΔUrbj j þ ΔResj j ´ 100% ð6Þ

where ΔUrb represents the trend of urban-expansion-based terrestrial NPP; ΔClim
defines the trend of climate-variability-based NPP; ΔRes denotes the trend of
residual factor. More details can be found in reference 15.

Global land-use datasets. GlobeLand30 dataset for 2000 and 2010 was obtained
from the National Geomatics Center of China (http://www.globallandcover.com/
GLC30Download/index.aspx). The dataset was produced using more than 20,000
Landsat and Chinese HJ-1 satellite images with a resolution of 30-m17,18. Besides
the GlobeLand30, one of the land cover dataset from MODIS products (i.e., the
MCD12Q1) was also collected from the Earth Observing System (EOS) Data
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Gateway at the Land Processes Distributed Active Archive Center (https://lpdaac.
usgs.gov/data/get-started-data/collection-overview/). Specifically, the MCD12Q1
dataset from IGBP classification scheme was obtained for the year 2006 to capture
the details of natural vegetation distribution.

Satellite datasets. Two satellite-based datasets were employed in this study,
including NDVI dataset and NPP dataset. In details, the NDVI dataset and the
NPP dataset were also downloaded from the EOS data gateway at the Land Pro-
cesses Distributed Active Archive Center. To facilitate large-scale calculations, the
NDVI and NPP datasets from MODIS products (i.e., MOD13A3 and MOD17A3)
were obtained for 2000–2010 at 1-km resolution.

Climate datasets. The climate datasets in this study include mean temperature,
total precipitation, downward shortwave solar radiation, cloud cover, and wet-day
frequency. Specifically, historical records of monthly temperature and total pre-
cipitation for 2000–2010 were retrieved from the Physical Sciences Division of the
NOAA Earth System Research Laboratory (ESRL). Monthly solar radiation data
were provided by the Terrestrial Hydrology Research Group at Princeton Uni-
versity (http://hydrology.princeton.edu/data.php). These datasets were produced
by combining observation-based records with National Centers for Environmental
Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis
data64. In addition, monthly cloud cover and wet-day frequency data were obtained
from the Climatic Research Unit (CRU), University of East Anglia (https://crudata.
uea.ac.uk/cru/data/hrg/cru_ts_3.24.01/). To match the spatial resolution of the
satellite-derived MODIS datasets (e.g., MOD17A3 and MOD13A3), all of the cli-
mate datasets were resampled to a resolution of 1-km although this does not
increase the effective resolution of the data.

Soil data. The soil data were obtained from the Harmonized World Soil Database
(HWSD), which was produced via a collaboration among the Food and Agriculture
Organization (FAO) of the United Nations, International Institute for Applied
Systems Analysis (IIASA), ISRIC-World Soil Information, Chinese Academy of
Sciences, and the Joint Research Centre of the European Commission (JRC)65. The
HWSD is a raster dataset with a 30 arc-second resolution containing >16,000
different soil mapping units. The dataset assimilated existing regional and national
updates of soil information (e.g., European Soil Database and 1:1,000,000 soil map
of China) with 1:5 000 000 FAO-UNESCO Soil Map of the World (FAO,
1971–1981). In addition, dataset on global soil nutrients was also collected from
ref. 25.

Global terrestrial NPP and grain yield data. The global terrestrial NPP data in
this study were compiled from corrected GPPDI dataset66. The GPPDI dataset
covers 2523 individual sites and 5164 half-degree grid cells. It underwent extensive
reviews under the Ecosystem Model-Data Intercomparison process. Here, the
datasets were downloaded from Oak Ridge National Laboratory (http://daac.ornl.
gov//NPP/guides/NPP_GPPDI.html). In addition, grain yield data in 2005 for 232
cities in China were compiled from statistical books, which was downloaded from
China’s economic and social development statistics database (http://tongji.cnki.net/
kns55).

Global CO2 data. The CO2 dataset was obtained from the U.S. NOAA Earth
System Research Laboratory (https://www.esrl.noaa.gov/gmd/ccgg/trends). Both
CO2 and other greenhouse gases have been measured at a globally distributed
network of air sampling sites for several decades67. On this basis, mean CO2

concentration was obtained to produce the dataset68.
The details of the aforementioned datasets are listed in Supplementary Table 4.

Data availability
The datasets in this study are available within this article and Supplementary Information
files. All of them were obtained from publicly available data. The data which were derived
from the original datasets but not aforementioned are available upon requests.
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