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Abstract 

 

Despite a growing understanding of the impact of fat and protein on post-prandial blood glucose 

levels, current medical nutrition therapy for treatment of type 1 diabetes continues to focus 

primarily on carbohydrate counting for mealtime bolus calculation. Standards of care practice 

guidelines suggest increasing mealtime dose for meals high in fat and/or protein, but do not 

provide specific guidelines on adjustment of insulin dose and timing for high fat and/or protein 

meals. There is no recommended macronutrient breakdown for patients with type 1 diabetes, 

who may follow a variety of diets and dietary patterns.  Both low carbohydrate diets and higher 

carbohydrate plant-based diets have increased in popularity over recent years, revealing 

variability in individual response to diet composition and the role of various dietary components 

beyond solely carbohydrate content on glycemic control.   Variability in response to various 

dietary components suggests the need for individually tailored dietary education to develop 

effective mealtime dosing strategies that improve glycemic control within the context of each 

individual’s dietary preferences and responses. Therefore, this review examines recent research 

on the impact of dietary fat and protein on post-prandial blood glucose, discusses the current 

evidence for different mealtime dosing strategies that account for dietary fat and protein, and 

suggests critical areas for future work with the goal of improving postprandial blood glucose in 

patients with type 1 diabetes. 
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Introduction  

Despite a growing consensus that dietary fat and protein impact post-prandial blood glucose 

levels, current medical nutrition therapy for treatment of type 1 diabetes continues to focus solely 

on carbohydrate-counting for mealtime bolus calculation.  A 2015 systematic review on the 

impact of fat and protein on postprandial blood glucose control in patients with type 1 diabetes 

concluded that both fat and protein significantly modified postprandial glycemia in all studies 

included in the review, and recommended that mealtime insulin doses be adjusted based on the 

complete composition of meals rather than solely on carbohydrate content.(1)  

Since 2015, CGM use has increased by 23% and an automated insulin system has been approved 

in the United States, allowing for increased insight into dose adjustment for dietary fat and 

protein.(2) As continuous glucose monitoring becomes standard of care for type 1 diabetes 

management, and hybrid closed-loop systems become increasingly available, in-range 

postprandial blood glucose levels may become more feasible.  

Recent standards of care practice guidelines have suggested increasing mealtime dose for meals 

high in fat and/or protein, but do not provide specific guidelines on dose adjustment and dose 

timing for high fat or protein meals.(3) The 2019 ADA consensus report on nutrition therapy for 

adults with diabetes or prediabetes states that, “When consuming a mixed meal that contains 

carbohydrate and is high in fat and/or protein, insulin dosing should not be based solely on 

carbohydrate counting. A cautious approach to increasing mealtime insulin doses is suggested; 

continuous glucose monitoring (CGM) or self-monitoring of blood glucose (SMBG) should 

guide decision-making for administration of additional insulin.”(4) However, adjusting mealtime 

insulin dose to account for complete meal composition is complex, highly variable based on 

individual response, and therefore rarely incorporated into clinical practice.   

The availability of new technology has allowed for the development and testing of different 

strategies for mealtime insulin dosing that account for macronutrient composition; however, to 

our knowledge, no studies have considered the potential translation of these dosing models 

within the context of what is currently understood about the glycemic response to dietary fat and 

protein, individual variability, and various commercially available insulin delivery systems. 

While glycemic index (GI) and glycemic load (GL) have also been indicated in postprandial 

glycemic response, this review focuses on the effects of fat and protein, and does not specifically 

address the impact of different types of carbohydrate on postprandial glycemia.  Therefore, the 

purpose of this review is to address the following questions: what is known about how fat and 

protein impact blood glucose; what effects do fat, protein, and mixed meals have on postprandial 

blood glucose levels in people with type 1 diabetes; what new dosing models have been 

proposed; and what are critical areas for future work and implications for clinical practice. 

Current Status of Knowledge 

I. Proposed Mechanisms of Dietary Fat and Protein Impact on Blood Glucose 
 

Figure 1-   



 

 
MCT= medium chain triglycerides 

SCFA= short chain fatty acids 

MCFA= medium chain fatty acids 

LCFA= long chain fatty acids 

GLP-1= glucagon like peptide 
PYY= peptide YY 

FFA= free fatty acid 

 

Dietary fat and protein impact blood glucose through a variety of complex interconnected 

mechanisms. Postprandial glycemia is determined primarily by several interrelated factors: 

digestion and absorption of simple sugars by salivary enzymes, rate of gastric emptying, 

preprandial glycemic levels, macronutrient composition of meal, intestinal absorption, hepatic 

glucose production, degree of insulin resistance, and insulin secretion or provision of exogenous 

insulin. Dietary fat has been shown to impair insulin sensitivity and enhance hepatic glucose 

production in addition to delaying gastric emptying, while dietary protein is primarily thought to 

influence blood glucose via modulation of hepatic glucose production.   

 

Amino acids are thought to impact blood glucose in people with type 1 diabetes by modulating 

hepatic glucose production both directly and indirectly.  In healthy subjects, dietary proteins and 

amino acids are known to have an insulinotropic effect, promoting secretion of insulin from 

pancreatic beta cells; however, in animal models and patients with type 2 diabetes, high protein 

diets have been shown to increase hepatic glucose production.(5) Some amino acids can 

contribute to gluconeogenesis as substrates, have the ability to stimulate glucagon and, among 

those with remaining beta cell function, insulin secretion.  Furthermore, amino acids can 

interfere with the ability of insulin to repress endogenous glucose production.  High protein 

intake may increase hepatic glucose production; however, further studies are needed to address 



 

the impact of type of protein/amino acid composition on blood glucose.(5, 6) 

 

Dietary studies on both type 1 diabetes and type 2 diabetes have shown that fat delays gastric 

emptying.(7, 8) Rate of gastric emptying occurs in a biphasic pattern and is determined by the 

integration of motor activity and electrical signaling, and regulated by a complex system of 

metabolic, neuronal, and endocrine signals.(7) After ingestion of a meal, a gastric pacemaker 

located in the upper part of the stomach generates a slow-wave basal rhythm, and tonic 

contraction redistributes solids to the distal stomach. The lag phase consists of redistribution and 

breakdown of solids from the gastric fundus, which pass through the pylorus during the second 

phase known as the lineal emptying phase. Remnants are then delivered more slowly to the 

duodenum, which is regulated by a negative feedback mechanism mediated by the incretin 

hormones: cholescystokinin (CCK), glucagon-like peptide-1 (GLP-1), and peptide YY (PYY).(9)  

 

Dietary triglycerides stimulate intestinal release of incretin hormones via binding to G-protein-

coupled receptors (GPCR) on intestinal mucosal L cells.  Studies suggest that 2-

monoacylglycerol, short-chain fatty acids (SCFAs), and medium and long chain fatty acids 

stimulate GLP-1 secretion via this mechanism.(10, 11) Products of protein breakdown may also 

stimulate GLP-1 secretion; however, the mechanism is poorly understood.(11) PYY, which is 

also released from L cells of the intestinal mucosa, exerts a similarly inhibitory effect on gut 

motility via inhibition of gastric acid secretion.  Studies in animal models and in individuals with 

obesity suggest that a high fat diet stimulates PYY secretion to a greater extent than protein and 

carbohydrates.(12, 13) 

 

Dietary fat may also modulate other gastrointestinal hormones involved in gastric emptying like 

ghrelin, a peptide hormone that originates primarily from the stomach, and stimulates growth 

hormone release, prolactin, adrenocorticotropic hormone (ACTH), and cortisol.  Ghrelin has 

been shown to stimulate appetite in humans, but also modulates gastric motility, and studies have 

shown an increase in gastric emptying after ghrelin administration in normal weight non-diabetic 

individuals.(14) Ghrelin also directly stimulates glucagon secretion from pancreatic alpha-cells, 

reducing insulin sensitivity and increasing hepatic glucose production.(15) Feeding studies in 

both animal models and normal weight individuals without diabetes suggest that ghrelin is 

suppressed less effectively and more slowly by dietary fat than by carbohydrates and protein, 

suggesting that ghrelin may play a role in the modulation of gastric emptying by dietary fat.(16-

18) 

 

While it is well established that dietary fat increases post-prandial blood glucose levels, the 

impact of type of dietary fat on blood glucose and insulin sensitivity remains somewhat 

controversial.  A number of studies have linked insulin resistance and hepatic glucose production 

with free fatty acids.(19) (20)  On the other hand some studies have suggested that a diet rich in 

unsaturated fat, specifically polyunsaturated fat (PUFAs) is beneficial for blood sugar 

regulation.(21) Consumption of meals high in saturated fats is associated with increased insulin 

resistance when compared with meals high in monounsaturated and polyunsaturated fats, and 

monounsaturated fats have been shown to delay gastric emptying to a greater extent when 

compared with saturated fat.(22)  

 



 

An additional factor involved in rate of gastric emptying and postprandial blood glucose is 

preprandial blood glucose level.  Acute and chronic hyperglycemia has been shown to decrease 

rate of gastric emptying. Additionally, many people with diabetes (both type 1 and type 2) may 

experience delayed gastric emptying; however, reported estimates from the T1D Exchange clinic 

registry suggest that only approximately 4.8% of registry participants have a clinical diagnosis of 

gastroparesis.(23) Both individual and inter-individual variability in glycemic response to dietary 

fat and protein are important considerations when establishing mealtime dosing guidelines. 

 

II. Effects of Fat, Protein, and Mixed Meals on postprandial blood glucose levels in people 

with type 1 diabetes 

 

Research on Fat  

Multiple studies published within the last ten years in patients with type 1 diabetes using 

continuous glucose monitors (CGMs) have concluded that dietary fat increases post-prandial 

blood glucose levels and/or insulin requirements.(24-29) This trend persists in some studies 

utilizing hybrid closed loop systems, suggesting the need to consider dietary fat content in 

mealtime dosing strategies regardless of technology utilized by patients with type 1 diabetes.(27)  

High fat meals appear to cause sustained delayed postprandial glycemia.  Bell et. al found that 

increasing dietary fat by 20 g significantly reduced early (0-2 hour) postprandial glucose 

response and significantly raised late (2-5 hour) post-prandial glycemic response when compared 

with the low fat (0 g fat) meal.  Response was dose-dependent.(24) Wolpert et. al. similarly 

found that a high fat meal (60 g) significantly increased insulin needs by 42% 5-10 hours after a 

meal with use of a closed loop algorithm when compared with a low fat (10 g) meal.  Noted 

individual differences were significantly correlated with individual daily insulin 

requirements.(27) While there is a trend across studies that addition of dietary fat results in 

delayed post-prandial hyperglycemia, both studies noted a high amount of variability in 

individual response to dietary fat in meals.(24, 27)  Variability in response to dietary components 

is relevant when considering dose-adjustment for dietary fat. 

Consideration of dietary fat in mealtime dose may also be relevant within the context of 

emerging technology for people with type 1 diabetes.  In fact, it appears that not all hybrid closed 

loop algorithms are able to account for increased insulin needs post consumption of a high fat 

meal. A recent study in 7 participants with type 1 diabetes used a crossover design to examine 

18-hour periods on a closed loop system post a high fat (60 g predominantly saturated fat) versus 

a low fat (10 g) meal.  Within the context of this closed loop system, the high fat dinner 

increased mean insulin requirement by 42% with noted individual differences.  Post-prandial 

plasma glucose and area under curve (AUC) despite additional insulin were significantly higher 

for participants after consuming the high fat meal compared with the low fat meal.(27) This 

suggests that not all algorithms may effectively account for increased insulin needs from high fat 

meals, and dosing strategies may need to be adjusted for high fat meals even with hybrid closed 

loop algorithms. 

While a number of studies have examined the impact of high fat versus low fat meals on post-

prandial hyperglycemia, only a handful of studies have examined the impact of different types or 



 

sources of dietary fat on postprandial blood glucose. Bell et. al. examined response to test meals 

containing the same carbohydrate content but differing foods containing various fat types.  The 

foods were: avocado which is high in monounsaturated fat, margarine which contains 

polyunsaturated fatty acids, or butter a source of mostly saturated fat.  Bell et. al. found no 

significant difference in five hour incremental area under curve (iAUC) for the different fat 

sources.(24) Another study comparing the addition of extra-virgin olive oil (EVOO), butter, or a 

low fat meal found that iAUC was lower after the EVOO test meal than the low fat or butter test 

meals. Bozzetto et. al. also reported gastric antrum volume significantly larger 60-90 min (1-1.5 

hrs.) post-prandially, and significantly smaller 330-360 min (5.5-6 hrs.) after consumption of the 

EVOO meal when compared to the butter meal.  Postprandial GLP-1 iAUC was also 

significantly higher after the EVOO meal when compared with the other meals.  Finally, 

triglyceride iAUC was significantly higher after the EVOO meal when compared with the butter 

meal.(25) These results suggest that type of fat may differentially affect rate of gastric emptying, 

time to peak glucose, and post-prandial blood glucose level; however, currently there is 

insufficient evidence to inform dosing recommendations based on fat source/type.  More 

research is needed to assess glycemic response to both types of fat and specifically to various 

food sources of fat. 

Research on Protein  

The impact of protein on postprandial glycemia is less consistent, and appears to be dependent in 

part on quantity and macronutrient content of meal. While most studies report significant 

differences in glycemia with the addition of protein to a standard meal, protein appears to have 

different effects when consumed with and without carbohydrates.(1)  

Glycemic response to protein may depend on quantity consumed.  A recent within subject 

randomized crossover trial in 25 children and adults utilizing CGM data compared consumption 

of whey isolate protein drinks (varying g protein, 0 g carbohydrate, 0 g fat) to two 150 ml (10 g 

and 20 g glucose) glucose drinks. Authors found that consumption of greater than or equal to 75 

g of protein significantly increased postprandial glycemia 3-5 hours after onset of the meal in 

comparison with the control 0 g protein drink.  Compared with the 20 g glucose drink, glycemic 

excursion following consumption of greater than or equal to 75 g protein did not commence until 

90 minutes and reached the same level as the 20 g glucose at 180 minutes (3 hours) compared to 

60 minutes (1 hour).(30) This suggests that consumption of protein alone (unaccompanied by 

carbohydrates or fat) may only significantly impact blood glucose when consumed in large 

quantities (>75g). 

Another study compared two similar test meals one with an additional 21.5 g of protein from 

non-fat fromage fraiche in 28 patients with type 1 diabetes.  Control meal included 40 g protein, 

37 g fat, and 90 g carbohydrate.  Insulin doses were maintained across the two evening meals 

consumed on consecutive days.  Capillary glucose was measured before, and 2 hrs. post-meal, 

along with continuous glucose monitoring.  Authors found no difference in mean interstitial 

glucose or in capillary glucose for the 12 hours following the meal with added protein compared 

to the standard meal.  The AUC was also similar across meals.(31) It may be that 21.5 g of 

protein was insufficient to significantly impact blood glucose.  Effects may only be evident with 

multiple servings of protein (for example 75 g is equivalent to approximately 10 oz. of red meat). 



 

Research on Mixed Meals 

Given that many foods containing fat also contain protein, a number of studies examined the 

impact of sources of both fat and protein on post-prandial glycemia.  Meals that are high in fat 

and protein require significantly more insulin than low fat low protein meals with the same 

amount of carbohydrates.  In a study of 10 adults with type 1 diabetes, Bell et. al. found that a 

high fat high protein meal (44 g fat, 36 g protein) increased glucose iAUC over twofold and 

required an additional 65% more insulin when compared with a low fat low protein (4 g fat, 9 g 

protein) test meal.(32) Another study in 15 adolescents with type 1 diabetes compared a standard 

meal to a high fat high protein meal (36 g fat, 34 g protein) over two consecutive days.  Insulin 

was dosed using insulin to carb ratios, and blood glucose was measured for 12 hours after 

consumption of the meals.  Gingras et. al. found a significant difference in AUC between 4-12 

hours post-meal.  Maximum AUC difference occurred at 6 hours after the meal, and glucose 

concentration 12 hours after the meal remained higher after the high fat high protein meal than 

after the standard meal.(33) This shows that a high fat high protein meal requires significantly 

more insulin than a low carbohydrate meal, and that the effect may be most notable at least 4 

hours after eating.   

While some closed loop systems may be able to address increased insulin needs after a high fat 

high protein meal, they help highlight differences in time to glycemic peak and give insight into 

optimized insulin dosing.  Gingras et. al examined fat and protein added to standard meals using 

a closed loop insulin delivery system in 15 adults with type 1 diabetes.  The meals were as 

follows: (1) carbohydrate-only (standard 75 g CHO, 1 g fat, 7 g protein), (2) high protein (HP 1 g 

fat, 35 g protein), (3) high fat (HF 10 g protein, 33 g fat) and (4) high fat high protein (HFHP 36 

g fat, 34 g protein).  Addition of fat and/or protein to test meal with fixed carbohydrate content 

significantly increased time to glycemic peak by 40 minutes and increased post-meal insulin 

delivery. Five-hour post-meal basal insulin required 39% more insulin after the high fat high 

protein meal when compared to the standard meal; however, 5-hour post-meal sensor glucose 

area under curve was not significantly impacted by the addition of fat and protein.(33) While the 

algorithm appeared able to adjust for fat and protein in the test meal, insulin requirements were 

significantly increased for multiple hours post meal, important considerations when determining 

dosing and delivering medical nutrition therapy to patients with type 1 diabetes. 

Another important consideration is that high fat high protein meals may include different foods 

with varying nutrient compositions, which may in turn impact blood glucose apart from simple 

macronutrient composition.  One study looked at 2-hour blood glucose (BG), area under curve 

(AUC), and BG range after various takeout meals in 9 individuals with type 1 diabetes.  The 

meals were as follows: high fat pasta meal, Thai meal, a hamburger meal, and a cheese 

sandwich.  Authors found that BG range and AUC was lower after the HF pasta meal when 

compared with the other meals, but found no significant differences between sandwich, Thai, and 

a hamburger meal.(34) It is important to point out that, given the results from previous studies on 

fat and protein, significant differences may not have been noted within 2 hours post-meal.  While 

this paper focuses on the impact of fat and protein on blood glucose, more research on various 

meal compositions is warranted, with blood glucose measured for at least 5 hours post-meal. 

III. Mealtime Dosing Models 



 

 

Table 1 Description of Dosing Models  

Model Name Description of Dose Model Comparison of Model with Insulin to Carb Ratio 

Model 

Predicted 

Bolus (MPB) 

Estimator 

 

Bell et. Al.( 

24, 32) 

2-step individualized model:   

Step 1: metabolic model comprising of 

insulin 

pharmacokinetic/pharmacodynamics 

model Bergman minimal model, and 

piecewise linear approximation of 2nd 

order meal absorption.  

Step 2 optimal insulin dose, split, and 

duration obtained by minimizing 

model-predicted glucose area below 

target 0-120 minutes and above target 

120-360 minutes post-meal 

 

Optimal pattern and Timing: Varies 

based on individual and amount of fat 

in meal.   

Delivery patterns range from 10%/90% 

to 50%/50% split, with the extended 

bolus lasting from 2 to 3 h 

Average was a dual-wave bolus with a 

30%/70% split over 2.4 hrs.( 32) 

20-g fat meal: 75/25% split over 11/ 4 h  

40-g fat meal: 65/35% split over the 

same time period  

60-g fat meal: 50/50% split over 13/4 

hrs.( 24) 

Study 1(32): 

Compared with Insulin to Carb Ratio 

delivered as a 50%/50% combination 

bolus over 2 hours: 

Meals: LFLP v. HFHP (+ 40 g fat, + 27 g 

protein) 

Insulin Dose: + 65% ± 10%  

iAUC difference: MPB decreased the 

glucose iAUC from 27,092 ± 1,709 

mg/dL ⋅ min to 11,712 ± 3,172 mg/dL ⋅ 
min (P = 0.0013)  

Incremental change in blood glucose: 

73 ± 4 mg/dL to 24 ± 11 mg/dL (P = 

0.001) 

Inter-individual Variability: insulin 

needs +17%–+124%; 8 of the 10 subjects 

requiring 75% or more insulin 

Hypoglycemia: 

MPB initially too high in 2/10 subjects 

Study 2 (24): 

Compared with Insulin to Carb 

Ratio delivered as a 50%/50% 

combination bolus over 2 hours 

15 min prior to meal: 

Meal types: 0g v. 20 g v. 40 g fat 

(MUFA v. PUFA v. SFA) 

Mean Insulin Dose: +6% (20 g 

fat), + 6% (40 g fat), +21% (60 g 

fat)  

iAUC difference: -50% (20 g 

fat), -35% (40 g fat), -58% (60 g 

fat)  (<.001) 

Inter-individual Variability: 

Difference in insulin needs ranged 

from -64% to +29% (20 g fat), -

16% to +18% (40 g fat) -28% to 

+34% (60 g fat)  

Hypoglycemia: Not significant, 

Relative risk between ICR and 

MPB dose 0.941 (95% CI 0.437–

1.963; P > 0.999) 

Food Insulin 

Index (FII)( 

35, 38) 

Algorithm that ranks foods based on 

insulin demand in healthy subjects.( 35) 

 

FID = FII x KJ per serving and dividing 

by 1000 KJ (FII x KJ per serving/1000)  

Study 1:   

Triple-blinded randomized w/in subject 

crossover (36) 

Meals: Six foods: steak, battered fish, 

poached eggs, low-fat yoghurt, baked 

beans and salted peanuts 

Time to peak glucose: 34±5 min (FII) 

56±7 min (ICR) 

P=0.007 

Peak BG Excursion: 1.3±0.2mmol/L 

(FII) 1.8±0.3 mmol/L (ICR)  

 (P=0.13) 

Mean Change in BG:   

-12% / 3 hours −0.7±0.2 mmol/L (FII) 

0.1±0.2 mmol/L (ICR) 

(P=0.001) 

Hypoglycemia: Mild hypoglycemia 

occurred in 48% (FII) vs. 33% (ICR) of 

all test sessions 

(P=0.155) 

Study 2:  

Compared Carbohydrate counting 

to FII algorithm.( 37) 

Meals: 2 breakfast equal kcal, 

and FII (FII=60), but different 

Carbohydrates (75 g v. 41 g) 

TIR: +31% (p= 0.001) 

iAUC difference: -52%, (p= 

0.013) 

Time to peak glucose: 

59 min (FII) 

97 min (ICR) 

(P=0.002) 

Peak BG excursion: 

-41% 

2.4 ± 1.9 mmol/L (FII) 

4.1 ± 3.1 mmol/L (ICR) 

(P =0.01) 

Hypoglycemia: No significant 

difference in occurrence of 

hypoglycemia for either meal. 

11 episodes (ICR) 

6 episodes (FII) 

(Meal A: P= 0.57) 

(Meal B: P= 0.31) 



 

 

Currently, mealtime insulin dose is typically calculated by dividing amount of carbohydrate in a 

meal by an individual’s insulin to carbohydrate ratio (ICR). Multiple mealtime dosing models for 

dietary fat and protein have been proposed (table 1), but only a few studies have evaluated the 

efficacy of these models in accounting for delayed post-prandial glycemic response, and only 

one study has compared these dosing models in patients with type 1 diabetes. 

One proposed dosing model utilizes a dual wave bolus based on predicted individual response 

where a percentage of the dose is given immediately and the rest is given over time for high fat 

high protein meals.  The adaptive Model Predictive Bolus (MPB) algorithm consists of a 2-step 

individualized model.  Step 1 includes a metabolic model comprising of an insulin 

pharmacokinetic/pharmacodynamics model (the Bergman minimal model), and a piecewise 

linear approximation of 2nd order meal absorption.  In step 2, optimal insulin dose, split and 

duration are obtained by minimizing model-predicted glucose area below target 0-120 minutes 

(0-2 hours) and above target 120-360 minutes (2-6 hours) post-meal.  The MPB algorithm was 

evaluated in a study of 10 patients with type 1 diabetes.  Bell et. al. found that a high fat high 

protein meal increased glucose iAUC over twofold and required an additional 65% more insulin, 

however, there was a large amount of variability with regards to insulin needs (+/- 10%).  In two 

studies comparing MPB to dosing based on insulin to carb ratio, use of the MPB reduced iAUC 

significantly by at least 50%.(24, 32) In one study, hypoglycemia occurred in 2/10 participants, 

requiring adjustments to the model.(32) Bell et. al however found that when compared with 

dosing based on ICR, there was no significant difference in relative risk of hypoglycemia.(24) 

While the model accounts for individual differences in response to macronutrient composition 

Warsaw Pump 

Therapy 

School 

(Warsaw 

formula/ 

Pankowska 

Equation) 

Extended bolus comprised of number of 

Fat protein units (1 FPU  = 100 kcal of 

fat and/or protein) multiplied by the 

insulin ratio (IR), which is defined as 

the dose of insulin that covers 10 g 

CHO or 100 kcal of fat and protein.( 

39) 

 

Timing of bolus determined based on 

the number of FPU, beginning with 3 

hours for a meal containing 1 FPU (100 

kcal from fat or protein) to 8 hours for a 

meal containing more that 3 FPU (300 

kcal from fat or protein) 

Study 1: Randomized controlled cross-

over (40) 

Meals: SM (70 g CHO, 24 g protein, 17 

g fat) v. 3 test meals HPM (70 g CHO, 36 

g protein, 17 g fat), HPFM using ICR, 

HPFM using FPU (both 70 g CHO, 36 g 

protein, 30 g fat) 

Total AUC:  

ICR 53 275 mg/dLxdk 

FPU 45 253 mg/dL x dk 

(P=0.085) 

Early AUC (0-120 min): 

27 289 mg/dl x dk (ICR) 

24 644 mg/dlx dk (FPU) 

(p= 0.405) 

Late AUC (120-240 min): 

25 986  mg/dl x dk (ICR) 

20 609 mg/dlx dk (FPU) 

(p= 0.032) 

Time to Peak Glucose: 

90 min for both ICR & FPU 

Peak Glucose:  

251.93 (ICR) 

225.00 (FPU) 

(p= 0.227) 

 



 

and utilizes modeling to predict insulin needs for high fat high protein meals, there may be 

challenges to implementing this dosing model in other settings. 

  

Another dosing model is based on insulin response to specific foods in healthy individuals.  The 

Food Insulin Index (FII) is a database containing more than 120 foods that ranks foods by 

relative insulin demand.  It was developed in healthy subjects, and looked at relative dietary 

insulin demand generated by 1,000-KJ portions of foods. (35) Bell et. al compared carbohydrate 

counting for mealtime insulin dose to dose based on the estimated food insulin demand (FID), 

which is calculated by multiplying FII by KJ per serving and dividing by 1000 KJ (FII x KJ per 

serving/1000) in 15 adults with type 1 diabetes.  For the purpose of the study, FID was scaled up 

by a factor of 100/59 (the FID of the reference food pure glucose) so that insulin to carb ratio in a 

pump could be utilized to calculate dose. Mean blood glucose levels after 180 minutes post meal 

were significantly lower when FII algorithm was used to calculate prandial dose when compared 

with carbohydrate counting (5.7 ± 0.2 vs. 6.5 ± 0.2 mmol/l, P = 0.003), and mean change in 

blood glucose level over 3 hours was also significantly lower (−0.7 ± 0.2 vs. 0.1 ± 0.2 mmol/l, P 

= 0.001).(36) The NIDDA (Normal Insulin Demand for Dose Adjustment) study also compared 

dose based on FII algorithm to insulin dose based on conventional carbohydrate counting in 28 

adults with type 1 diabetes on insulin pump therapy.  Bao et. al found that use of the FII 

algorithm improved time in range, and reduced post-prandial peak in blood glucose when 

compared with dose based on carbohydrate counting.  No significant difference in hypoglycemia 

was noted between ICR and FII (Table 1).(37) One limitation of this model is that not all foods 

are available in the database, which limits the applicability of this model among patients that 

may consume foods not listed in the database.  Additionally, due to the complexity of 

calculations required, patients may find it challenging and/or burdensome to implement. 

 

The Warsaw Pump Therapy School or the Warsaw formula/Pankowska equation is another 

formula that accounts for fat and protein in mealtime dose calculation.  The formula utilizes a 

standard insulin-carb ratio and an additional insulin-to-fat-protein ratio.  Insulin is given for 

carbs immediately, and for fat and protein using an extended bolus comprised of number of fat 

protein units (1 FPU  = 100 kcal of fat and/or protein) multiplied by the insulin ratio (IR).  Dose 

timing is determined based on the number of FPU, beginning with 3 hours for a meal containing 

1 FPU (100 kcal from fat or protein) up to 8 hours for a meal containing more that 3 FPU (300 

kcal from fat or protein).(39) Utilizing this formula, Pankowska et. al described a bolus 

calculator that included a food database, and utilized the Warsaw Pump Therapy School formula 

to develop an algorithm for prandial insulin calculation.(41) A recent randomized controlled trial 

evaluated this algorithm compared to doses based on insulin to carb ratios in 30 adolescents with 

type 1 diabetes after consumption of test meals ranging in macronutrient composition.  Kaya et. 

al found that blood glucose levels were significantly higher after consumption of the high fat 

high protein meal when only insulin to carb ratio was used for dose compared with the addition 

of the insulin-fat ratio at 120-240 minutes (2-4 hours) post meal.(40) The Warsaw formula 

allows for dosing based solely on macronutrient content without predictive modeling or a 

reference database; however, it may not adequately account for individual differences in 

response to different foods. 

 

Only one study has compared these dosing models, and found that the Pankowska equation 

better reduced postprandial hyperglycemia after high fat and high protein meals. Lopez et. Al. 



 

evaluated three prandial insulin-dosing algorithms in 33 children and adolescents with type 1 

diabetes. Lopez et. al conducted a randomized, crossover trial at two pediatric diabetes centers.  

Two different test meals (high fat and high protein) were given containing equivalent 

carbohydrate and insulin was dosed according to carbohydrate counting, the Pankowska 

Equation, or the Food Insulin Index (FII).  Postprandial glucose was measured for 300 minutes 

(5 hours) using continuous glucose monitoring.  Mean insulin dose for carbohydrate counting 

was constant across test meals.  Authors reported peak glucose excursion as significantly higher 

for carbohydrate counting and FII when compared to the Pankowska Equation (mean difference 

for carbohydrate counting vs. the Pankowska Equation =1.28 p <.02 for carbohydrate counting 

and FII) after adjusting for meal type.  No significant difference was found between 

carbohydrate counting and FII.  Percentage of time in target range was also lower using the 

Pankowska equation following both high fat and high protein meals [mean difference for 

carbohydrate counting vs. the Pankowska Equation = 13.6, p = 0.018) (mean difference FII vs. 

Pankowska Equation = 15.3 (p = 0.010)]; however, Lopez et al noted a significant increase in 

hypoglycemia.(42) While the Pankowska equation appeared to result in the greatest reduction in 

post-prandial hyperglycemia when compared with dosing based on the FII and ICR, it also 

resulted in a significant increase in hypoglycemia, suggesting the need to adjust dosing in some 

individuals with type 1 diabetes. 

 
1 Nutrient Data Laboratory (U.S.), and Consumer and Food Economics Institute (U.S.). 1999. USDA nutrient database for standard 
reference. Riverdale, Md: USDA, Nutrient Data Laboratory, Agricultural Research Service. 
TIR = Time in Range 
iAUC= incremental Area under Curve 

ICR= Insulin to carb ratio 

IR = Insulin Ratio 
FPU = Fat protein unit 

IV. Future Research Needs and Implications for Practice 

Table 2: Doses for Different meals using 15:1 Insulin to Carb Ratio 

Meal  Nutrition Facts1 ICR 

(1u/15 g 

CHO) 

MPB FII Warsaw Formula 

1 cup Kraft 

Macaroni And 

Cheese 

(HFMPHC) 

Kcal: 376  

CHO: 47 g (50%) 

Total Fat: 16 g 

(39%) 

Protein: 9.7 g (10%) 

3.13 u Varies based on 

individual 

5.4 u  5.87 u total: 

3.13 u 

immediately 

+ 2.74 u over 3.8 

hrs. 

6 oz. Beef 

Tenderloin 

(HFHPLC) 

Kcal: 330 

CHO: 0 g (0%) 

Total Fat: 15 g 

(38%) 

Protein: 54 g (58%) 

0 u Varies based on 

individual 

5.5 u 5.55 u total: 

0 u immediately 

5.55 u over 8 

hrs. 

3 oz. Fish (ling) 

+ 1/2 cup brown 

rice 

(LFHPHC) 

Kcal: 345 

CHO: 39 g (45%) 

Total Fat: 2.74 g 

(7%) 

Protein: 40.8 g 

(47%) 

2.6 u Varies based on 

individual 

7.1 u 5.4 u total: 

2.6 u 

immediately 

2.8 u over 3.87 

hrs. 

 

100 g Mashed 

potatoes 

LFLPHC 

Kcal: 364 

CHO: 81.82 g (90%) 

Fat: 0 g (0%) 

Protein: 9.09 g 

(10%) 

 

5.5 u Varies based on 

individual 

15.1 u 5.5 u total 

immediately 



 

 

While there is significant evidence that dietary fat and protein impact blood glucose, specifically 

causing delayed post-prandial hyperglycemia in patients with type 1 diabetes, there are 

significant gaps in the literature that need be addressed to improve guidelines on mealtime 

insulin dosing to account for fat and protein. 

 

First, more research is needed on the impact of various types and sources of fat and protein on 

postprandial glycemia.  While Bell et. al found no significant differences across different fat-

containing foods, Bozzetto et. al found that olive oil, a food high in monounsaturated fatty acids, 

improved post-prandial blood glucose when compared with butter.(24, 25) A large systematic 

review and meta-analysis that examined randomized controlled feeding trials in adults found 

differing glycemic responses to different types of fat overall and more specifically that 

polyunsaturated fatty acids consistently improved glycemia.(21) This suggests that more 

research is warranted on the differing effects of different sources of fat on blood glucose, and 

future research on dosing may consider type of fat in addition to quantity. 

 

Similarly, more research is warranted on the impact of different protein sources and protein 

types.  Most studies that have exclusively examined the impact of protein on postprandial 

glycemia have utilized whey protein (a protein in milk) in test meals.(30, 31)  There is, however, 

less information on the impact of other protein types and sources.  Not all amino acids are 

glucogenic, meaning that not all amino acids may be converted into glucose.  More research is 

needed on how different protein sources and amino acid compositions impact blood glucose in 

patients with type 1 diabetes to improve mealtime dosing recommendations. 

 

One challenge to improving dosing methods is the amount of individual variability observed in 

many studies (table 1).  While these dosing models appear effective for some participants with 

type 1 diabetes, studies suggest a range of insulin needs that varies based on the participant, with 

some dosing models resulting in post-prandial hypoglycemia in some individuals and 

hyperglycemia in others.(24, 36, 39, 41, 43)  Dosing models may need to be adjusted to the 

individual’s response to fat and protein, suggesting the need for both guidance from a registered 

dietitian or other clinician, and potentially the future role of individualized or precision nutrition 

in diabetes management. 

 

Another consideration is the challenge of translating a complicated dosing regimen, and teaching 

a dosing method in the clinic setting.  While carbohydrate counting is currently standard of 

practice, adherence and accuracy are both concerns with carbohydrate counting.  A number of 

studies have suggested that accuracy of estimating carbohydrates tends to be low in patients with 

type 1 diabetes.  One study found that adults with type 1 diabetes estimated carbohydrates with 

59% accuracy, and it has been suggested that accuracy and adherence may be even lower in 

adolescents and young adults with type 1 diabetes.(44) Any proposed dosing model would need 

to be simple enough to be translated effectively to the clinic setting, but currently many proposed 

models involve complex predictive modeling based on individual profile (MPB) or complicated 

calculations based on observed insulin response to specific foods (FII).   

 

The complexity of dosing models suggests the possible role of technology in determining 

mealtime dosing based on macronutrient content.  Mobile apps and newer hybrid closed loop 



 

algorithms may be employed to optimize and even possibly individualize dosing.  Currently, 

only unofficial DIY Loop systems allow for the input of high fat or high protein meals.  Future 

algorithms may also consider similar mealtime dosing systems to better account for the delayed 

hyperglycemia experienced by many after a high fat high protein meal. 

 

Finally, future research may consider the long-term impact of specific dietary patterns on insulin 

sensitivity and risk of complications. A recent qualitative paper suggested that use of a closed-

loop system may promote less restraint with regard to dietary choices and may lead to increased 

consumption of higher fat, and more energy-dense foods. (45) While this review did not consider 

the long-term impact of diet composition, professionals delivering medical nutritional therapy 

and/or providing dosing education for patients with type 1 diabetes may consider risk of weight 

gain, increased insulin resistance, and risk for complications. 

 

Conclusions  

Dietary fat and protein cause delayed post-prandial hyperglycemia in patients with type 1 

diabetes via a variety of complex interconnected mechanisms, and there is considerable 

individual variability in glycemic response to dietary fat and protein.  Recent research in patients 

with type 1 diabetes supports the need for improved dosing models that account for fat and 

protein content in meals; however, only a handful of models have been proposed and studied, 

typically within a small and homogenous population.  More research on these dosing models is 

needed in larger representative samples within various settings to better assess the feasibility and 

efficacy of these different models. 

Technology, such as continuous glucose monitoring and automated insulin systems may be 

useful in addressing individual difference in response to meal composition.  According to data 

from the T1D Exchange Registry, continuous glucose monitoring has increased from 7% in 

2010-2012 to 30% in 2016-2018.(2) Automated insulin systems are also becoming increasingly 

available with one commercially available hybrid closed loop system and multiple others 

currently under FDA review.  Reviewing CGM trends and dose history when available and 

asking patients about meal composition may be helpful in adjusting mealtime insulin dose to suit 

individual needs.  The rapid development and increasing availability of these new technologies 

such as automated insulin delivery systems in combination with continuous glucose monitoring 

will allow for development and refinement of algorithms and dosing models accounting for fat 

and protein composition that will meet individual needs. 
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