
Data-Flow-Based Evolutionary Fault Localization

ABSTRACT
Fault localization is the activity of precisely indicating the faulty
commands in a buggy program. It is known to be a highly costly
and tedious process. Automating this process has been the goal of
many studies, showing it to be a challenging problem. The coverage-
spectrum based approaches commonly apply heuristics grounded
on the execution of control-flow components to calculate the odds
of each program element to be the defective one. The present study
aims to investigate another source of fault information by assessing
how data-flow analysis are useful to compute suspiciousness scores;
and how the combination of scores from different sources impacts
fault localization. We present an approach to calculate the suspi-
ciousness score for each program command by using the execution
of data-flow components. Then we use an evolutionary algorithm
to search sets of weights to combine heuristics from distinct sources
of fault data (both control-flow and data-flow as well as a hybrid
strategy). The approach was applied in programs with seeded faults
and real faults and evaluated by using absolute metrics to asses its
efficacy to locate faults. Furthermore, we introduce a new metric
to investigate the dependence of tie-break strategies in building
the ranking of suspicious commands. Data-flow based methods
demonstrate high effectiveness but increase the need for tie-breaks,
unlike the evolutionary hybrid method that keeps competitive the
effectiveness and depends less on tie-break strategies.

CCS CONCEPTS
• Software and its engineering → Search-based software en-
gineering; Software testing and debugging;

KEYWORDS
Fault Localization, SBSE, Software Debugging, Data-Flow Analysis

ACM Reference Format:
. 2020. Data-Flow-Based Evolutionary Fault Localization. In Proceedings of
ACM SAC Conference (SAC’20). ACM, New York, NY, USA, Article 4, 8 pages.
https://doi.org/xx.xxx/xxx_x

1 INTRODUCTION
Software is progressively adopted to manage critical tasks, such as
health and security systems. On the other hand, it is almost impos-
sible to avoid the insertion of bugs. Such defects have the intrinsic
potential to generate damages, to resources or humans life [10].
Software testing and debugging are topics that concentrate efforts

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SAC’20, March 30-April 3, 2020, Brno, Czech Republic
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6866-7/20/03. . . $15.00
https://doi.org/xx.xxx/xxx_x

on ensuring reliability in software artifacts, preventing, detecting,
and repairing faults [4].

Within the software debugging process, Fault Localization (FL)
is the process of precisely indicating the faulty element in the defec-
tive code. Such activity is known to be too costly and monotonous.
In this context, several approaches seek to automate this task. The
most popular methods are FL heuristics that utilize the information
obtained from the coverage spectrum, to compute suspiciousness
values to each program element[25]. It is possible to obtain coverage
spectrum from different sources of fault information, for example,
by analyzing the execution of control-flow or data-flow elements.

The current study aims to analyze if the suspiciousness score
obtained from data-flow can contribute positively to the location
of faults. We also present an evolutionary approach to combine
suspiciousness scores calculated from different sources of informa-
tion as control- and data-flow coverage spectra. We explore a set
of 24 suspiciousness values, using 12 heuristics with each of the
two coverage spectra. Thus, we use a genetic algorithm to search
sets of weights that when applied to the suspiciousness values,
generate linear combinations of the known heuristics. The method
was evaluated in 112 faulty versions obtained from the Siemens
Suite programs, and 36 faulty versions from jsoup program. We use
Accuracy and Wasted Effort to assess the method, we also intro-
duce a Absolute Critical Tie metric to investigate the number of ties
generated by FL methods.

Heuristics using data-flow information outperform other meth-
ods with respect to accuracy, but a hybrid approach using control-
and data-flow demonstrates a comparable accuracy and a lower
number of ties compared with them, giving a lower wasted effort.

In Section 3, we present our proposals and useful definitions to
understand the approach better. Section 4 presents baselines, met-
rics, genetic algorithm parameters, and the experimentation process.
The research questions are treated in Section 5. Finally, Sections 6
and 7, report potential validity threats and our conclusions.

2 BACKGROUND AND RELATED WORK
The main proposals for automating FL task are based on the execu-
tion of test cases to infer the probability of being responsible for
the incorrect behavior for each program command. The program
spectrum is a set of data that expresses its execution behavior. Then,
it allows the visualization of which program elements are executed
(covered) by the test cases and how they are related to the defect.

The coverage spectrum is defined as amatrixM×N , derived from
M executions that can cover N program commands, and a separate
column represents the execution success or failure information.
From the data of this coverage matrix, it is possible to measure a
suspiciousness score for any element Ni [3], as shown in Figure 1.

Traditionally, the spectrum coverage is shown with control-flow
program elements, as nodes (commands or block of commands), and
edges (decisions), this control-flow coverage spectrum may express
which commands were executed by the test cases, providing useful
information for FL.

Silva-Junior D, Leitao-Junior P, Dantas A, Camilo-Junior C, Harrison R

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Oxford Brookes University: RADAR

https://core.ac.uk/display/266613423?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/xx.xxx/xxx_x
https://doi.org/xx.xxx/xxx_x

SAC’20, March 30-April 3, 2020, Brno, Czech Republic D. Silva-Junior et al.

N Program Elements Success/Fail
M

ex
ec
ut
io
ns

a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

...
. . .

...

am,1 am,2 · · · am,n

f1
f2
...

fm

Figure 1: Example of a spectrum coverage matrix.

Coverage spectrum-based heuristics are equations that use vari-
able values obtained from the coverage matrix to give program
elements a suspiciousness value. We will use the following notation
to indicate these coverage variables that one can obtain for each Ni
element, (i) es - Number of successful test cases that execute (cover)
the element under observation; (ii) ns - Number of successful test
cases that do not execute (cover) the element under observation;
(iii) e f - Number of failed test cases that execute (cover) the element
under observation, and (iv) nf - Number of failed test cases that do
not execute (cover) the element under observation.

The Tarantula heuristic [14]was one of the first coverage spectrum-
based FL techniques presented. A node is a control-flow element,
and one can use the Tarantula heuristic to calculate the suspicious-
ness score to a given node of the investigated program, as presented
in Equation 1.

Tarantula(node) =

e f (node)

e f (node) + nf (node)

e f (node)

e f (node) + nf (node)
+

es(node)

es(node) + ns(node)

(1)

The results obtained by heuristics can be used to guide the local-
ization of bugs. Thus, several studies such as Ochiai [1], Dstar [26],
and OP2 [16] present other heuristics aiming a better accuracy.

Software fault localization techniques face several difficulties. In
addition to highlighting the defective command, they should also
avoid giving high values of suspiciousness score to non-defective
commands.

2.1 Search-Based Fault Localization
Search-Based Software Engineering (SBSE) techniques attack soft-
ware engineering problems by reducing them to optimization prob-
lems, which can, in turn, be addressed by a variety of known, popu-
lational or local, search strategies. Harman et al. [11] highlight two
essential aspects when applying search strategies to software engi-
neering problems, namely, problem representation and the fitness
function to evaluate possible solutions.

Wang et al. [23] use SBSE for the FL problem. This study repre-
sents a solution as a set of weights that should be applied to tradi-
tional heuristics, generating a linear combination of suspiciousness
score values. To evaluate the solutions found by the search methods,
Wang et al. define a fitness function as the average code proportion
that someone should investigate whilst finding the faulty elements,
the goal is to minimize this proportion using Simulating Annealing
(SA) and Genetic Algorithm (GA).

Yoo et al. [29] and De-Freitas et al. [7] applied genetic program-
ming (GP) strategies to the FL problem. The former uses GP to
generate new equations using the same set of variables used in

heuristics described in Section 2, and the solutions are trained with
a set of projects. The latter generates equations with information
based on mutation tests using different versions of the same pro-
grams to train the solutions.

Search-based fault localization methods show promising results,
outperforming several traditional heuristics such as Ochiai and
Tarantula when analyzed for effectiveness.

2.2 Data-Flow Analysis for Fault Localization
Data-flow analysis [12] has been used to define testing criteria, and
refers to the analysis of dynamic interactions between a memory
definition (e.g. change a value in a memory address) and subsequent
uses of such a definition during the program execution.

In program code, a definition (def) happens when a command
changes the value of a variable, and a “use” happens when that
variable is accessed. Two types of use are distinguished: c-use (com-
putational use), when the variable is used to compute a value; and
p-use (predicate use), when the variable is used to compute a predi-
cate. So c-uses happen on nodes and p-uses on edges, as we can see
in Figure 2.

int a = 4; //0

int b = 6; //0

if (a < 5){ //1

a = b; //2

}else{

a = a + b;//3

}

return a; //4

1

2 3

4

0
def a
def b

p-use ap-use a

c-use b
def a

c-use a
c-use b
def a

c-use a

Figure 2: Data-flow example.

A def-use association (dua) with respect to (w.r.t.) a variable x
occurs when there exists at least one path free of definition (def-
clear path) from a definition of x to a subsequent use of x . One
can represent a dua as the triple < variable,de f _site,use_site >,
where variable is defined in node de f _site , and use_site refers
both to a node where a c-use of variable occurs or an edge of a
p-use of variable . For instance from Figure 2, we derive the duas
< a, 0, (1− 2) >, < a, 0, (1− 3) >, < b, 0, 2 >, < a, 0, 3 >, < b, 0, 3 >,
< a, 2, 4 > and < a, 3, 4 >.

In data-flow analysis, a test case covers a dua if at least one
clear path w.r.t. the variable is exercised during its execution. The
purpose of data-flow criteria is to exercise def-use associations in
various ways. Some examples of the data-flow criteria are:

• all-defs: requires the coverage of at least one of the duas
derived from each variable definition.

• all-uses: requires the coverage of all the duas derived from
each variable definition.

Data-flow coverage spectra are derived from the test cases execu-
tion, making available the following variables related to a specific
dua: e f (dua) and nf (dua) are the number of failing test cases that
covered and did not cover the dua respectively; es(dua) and ns(dua)

Data-Flow-Based Evolutionary Fault Localization SAC’20, March 30-April 3, 2020, Brno, Czech Republic

are the number of sucessful test cases that covered and did not cover
the dua respectively.

Data-flow based approaches share the belief data-flow analysis
may improve the effectiveness to locate faults and obtain good
results when compared to pure control-flow analysis. In this sense
the suspiciousness scores of duas have been similarly computed as
the original proposals to the control-flow coverage spectra [20–22].
Equation 2 presents the Tarantula heuristic applied to a dua.

Tarantula(dua) =

e f (dua)

e f (dua) + nf (dua)

e f (dua)

e f (dua) + nf (dua)
+

es(dua)

es(dua) + ns(dua)

(2)

Ribeiro et al. [20, 21] propose JAGUAR, a tool to assist the debug-
ging expert visually. The search for the faulty program element is
guided by the suspiciousness ranking of duas: for each investigated
dua, it considers that two elements were inspected to compute how
many elements were checked until finding the faulty one. The anal-
ysis was applied in ten FL heuristics such as Tarantula and Ochiai,
among others. The results have shown that data-flow coverage
leads the debugging expert to inspect less code than control-flow
with statistical significance for all heuristics experimented.

Santelices et al. [22] apply data-flow analysis to locate faults
and rank duas based on Tarantula. However, they consider the
definition part of data-flow associations as the site of the faulty
element. The approach also employs three different sources of fault
(nodes, branches, and duas) to obtain three suspiciousness scores
for each program node. They conclude that no fault source excels
the others for fault localization, and propose the combination of
them such as calculating for each program node the highest and
average values related to the suspiciousness scores.

Regarding the two aforementioned approaches, the first one
does not calculate suspiciousness scores for program elements but
just builds a ranking of duas to guide the inspection of elements.
The latter does not consider the “def” and “use” parts of data-flow
associations equally to locate the potential fault site. Our proposal
includes an evolutionary method and copes with such gaps as well
as encompassing some benefits of these approaches.

3 APPROACH
Heuristics based on control-flow spectra commonly measure the
intrinsic suspiciousness score for each node in a program. However,
on applying these heuristics to data-flow associations, a pertinent
question is: how to set suspiciousness scores to nodes from the
scores of duas. Moreover, the same node can participate in several
duas, and there may still be different suspiciousness scores in each
of these duas. Therefore, the suspiciousness of duas is not trivially
comparable with the traditional suspiciousness score of nodes.

A data-flow association is defined in Section 2.2 as the triple
< variable,de f _site,use_site >:de f _site refers to the node where
variable is defined, anduse_site refers both to a node where a c-use
of variable or an edge of a p-use of variable occurs.

In our proposal, the nodes related to the definition site and the
use site in a data-flow association should inherit the suspiciousness
score of the dua. As the same node can participate in several duas,
and there may still be different suspiciousness scores in each of

these duas, the suspiciousness score of a node is the highest score
among the duas in which the node participates. In the following
this is formalized as dua-to-node score, the algorithm for calculating
the suspiciousness score of a node:

Definition 1 - allduas(node) set. This set contains all duas that
a specific node is in.

) =
⋃

duai | node ∈ duai (3)

Definition 2 - dua-to-node score (Ĥ (node)). This score denotes
the suspiciousness of a node , obtained from the data flow analysis
of all duas in allduas(node).

Ĥ (node) =max
(
H (duai)

)
| duai ∈ alldua(node) (4)

For instance, suppose that dua_1 is the triple <var_1, node_10,
(node_11–node_12)> anddua_2 is <var_2, node_5, (node_11–node_13)>.
Also let the suspiciousness scores beOP2(dua_1) = 0.55 andOP2(dua_2)
= 0.9. Based on these data ÔP2 of nodes node_5, node_10, node_11,
node_12 and node_13 are 0.9, 0.55, 0.9, 0.55 and 0.9 respectively.

3.1 Evolutionary Fault Localization Based on
Data-Flow Coverage Spectra

Wang et al.[23] explore the combination of control-flow suspicious-
ness scores using a genetic algorithm, modeling the FL problem as
an optimization problem.

A genetic algorithm (GA) is a bio-inspired meta-heuristic used
for optimization problems. It has the main characteristic of allowing
the “evolution” of a population of solutions. To achieve this, it use
operators such as crossover to combine solutions, and mutation to
reach new solutions from other already evaluated [19].

In their approach, Wang et al. try to find a linear combination of
n heuristics, and assign the obtained value of suspiciousness to the
investigated nodes. The applied strategy is to use search weights
wi for each heuristic Hi . This way, the method has as a solution
a weighted sum HC of the suspiciousness score obtained from n
heuristics, as we can see in Equation 5.

HC(node) = w1×H1(node)+w2×H2(node)+...+wn×Hn (node) (5)

The solutions are represented as a binary string with seven bits
reserved for each weightwi , with the domain 0.0 ≤ wi ≤ 1.0. The
fitness of each possible solution is evaluated calculating the average
proportion of code investigated until finding the fault site; also, it
is a metric related to the number of faulty versions investigated.

Similarly, we can investigate the linear combination by apply-
ing in control- and data-flow suspiciousness scores. For all heuris-
tics Hi , we calculate the control-flow (Hi (node)) and data-flow
(Hi_ndua(node))) suspiciousness for each node. Thus, we can gen-
erate three different compositions: a simple combination using only
the control-flow suspiciousness score, a simple combination using
only the data-flow suspiciousness score, and a hybrid combination
using both sources of data, as shown in Equation 6.

HChyb (node) = w1 × H1(node) + ... +wn × Hn (node)+

wn+1 × Ĥ1(node) + ... +wn+m × Ĥn (node)
(6)

We use a genetic algorithm to generate each combination, using
several heuristics from the literature, and evaluate the approach

p0075971
Highlight

SAC’20, March 30-April 3, 2020, Brno, Czech Republic D. Silva-Junior et al.

using absolute metrics commonly used in similar studies. We hy-
pothesize that the linear combination of control-flow and data-flow
information improves the effectiveness of fault localization.

4 EXPERIMENTS
We conduct an empirical experiment aiming to investigate the
following Research Questions:
RQ1: Is the proposed method competitive for locating software faults?
RQ2: Does the evolutionary combination of control-flow and data-flow
coverage spectra improve fault localization ability?

To answer these questions, we analyze how node-to-dua scores
perform in comparison to traditional methods with respect to ef-
fectiveness, and if the evolutionary approach offers improvements
to fault localization when combining the different sources of data.

4.1 Baselines
As baselines we use 12 well known heuristics, that are commonly
used in recent FL studies, they are: Tarantula, Ochiai , OP , Dstar ,
Ample , Jaccard , GP13 , OP2, Wonд3 , Zoltar , Kulczynski2, e
Barinel [2, 14, 15, 25, 27, 29]. Table 1 shows the heuristics used in
the experiment. For each heuristic, we calculate the suspiciousness
score for each node using control-flow and data-flow elements. Ad-
ditionally, we have used the approach described by Wang et al.[23]
as an evolutionary baseline.

4.2 Experimentation Process and Genetic
Algorithm

We use a genetic algorithm to search weights for a linear combina-
tion of suspiciousness values. The utilized method of search takes
advantage of the known faulty command of some buggy versions
using such information to train candidate solutions. So, it builds
new compositions that also perform well in different faulty ver-
sions, i.e., the possible solutions are trained to locate faults better
using the localization of known faults.

When we are training new solutions with a set of faults, achieved
solutions may become so well fitted to the training set, that their
result is not generalizable anymore, such a behavior is called Over-
fitting. Besides that, the genetic algorithm has an intrinsic stochastic
nature, i.e., it can result in a different solution in each execution.

To deal with Overfitting, we conducted the experiments by apply-
ing a Three-Fold Cross Validation. We randomly divided the faulty
versions into three disjointed sets. In each step of cross-validation,
one set is selected to be the validation set, whilst the remaining
sets compose the training set. Consequently, we do not evaluate a
solution by the same information that was used to generate itself.

To ease the GA stochasticity effects, we performed 30 executions
of the cross-validation process and applied statistical tests on result-
ing samples. The results in the next sections refer to the validation
set executions, that do not exert influence in the search.

The individual genotype is a binary string with seven bits for
each heuristic suspiciousness score, that is, 84 bits for simple com-
positions and 168 bits for hybrid compositions. We adopted a bitflip
mutation operator (rate 0.01), two-points crossover (rate 0.6), and
tournament 3 selection strategy. The fitness function is also the

same used by Wang et al.[23], the average proportion of code in-
vestigated before finding the faults in the validation set. The GAs
were executed with 250 generations, 50 individuals as population
size.

We used DEAP (Distributed Evolutionary Algorithms in Python)
[8] to implement the GA and the R Project [18] for statistical anal-
ysis.

4.3 Subject Programs
As Table 2 shows, the experiment was conducted using seven C pro-
grams from the Siemens Suite [13], obtained from the SIR - Software-
artifact Infrastructure Repository[9] and one Java program called
jsoup1 with real faults. We utilized 112 versions with seeded faults
from the C programs and 36 versions from the java one. We ob-
tained the control and data-flow coverage spectra from the Siemens
programs through manual code instrumentation, and the jsoup data
were collected from the JAGUAR tool[20].

5 RESULTS
We use two absolute metrics to evaluate the effectiveness of the
proposal: Accuracy andWasted Effort [17], which are also used in
other FL experiments [6, 7, 24].

Accuracy (acc@n) counts the number of faults located looking
at the top n elements in the suspiciousness ranking. This metric rep-
resents a debugging expert inspecting a limited number of elements
with the highest suspiciousness score. Higher values are better in
this metric. We use the average case strategy for the tie-break, i.e.,
if two or more program elements have the same suspiciousness
score, we consider the average position in the ranking.

Wasted effort (wef@n) counts the number of elements inves-
tigated before locating the faults, limited to n elements for each
faulty version. This metric represents the non-defective elements
inspected by a debugging expert whilst locating the first fault or
stopping. Smaller values are better in this metric. We also use the
average case strategy for the tie-break.

In the following discussion we present acc and wef results (only
@5 because of space concerns) of the traditional heuristics H (node)

represented by “control-flow” and dua-to-node scores Ĥ (node) rep-
resented by “data-flow”. We also present GAs with simple combi-
nations for each source of information (GA-cf and GA-df) and the
“GA_hyb” representing the genetic algorithm using data obtained
from both data-flow and control-flow coverage spectra.

Figure 3a shows the acc@5 results for 112 faulty versions of the
Siemens Suite programs. In this chart, as in the following ones, the
X-axis is FL methods, and Y-axis is the metric value, acc@5 in this
case. For each method, we have two bars of results, the left one
shows the results using control-flow information, and the right
one shows the data-flow results. The one bar in GA_hyb shows the
results combining both information.

Looking at the acc@5 results on Siemens Suite. It is possible
to see the apparent slight predominance of dua-to-node scores
compared with traditional methods. Heuristics using data-flow
information were able to locate up to 35 faults against 33 of the
control-flow based suspiciousness score. GA-cf performed better
than the heuristics using only control-flow with 34 faults located.
1https://github.com/jhy/jsoup

Data-Flow-Based Evolutionary Fault Localization SAC’20, March 30-April 3, 2020, Brno, Czech Republic

Table 1: Heuristics used as baseline and combined using evolutionary approach

Heuristic Name Equation Heuristic Name Equation Heuristic Name Equation

H1 Tarantula
ef

ef +nf
ef

ef +nf +
es

es+ns

H5 Ample
���� e f

e f + nf
−

es

es + ns

���� H9 Wong3

es ≤ 2 e f − es
es > 2 & es ≤ 10 e f − 2 + 0.1 × (es − 2)
es < 10 e f − 2.8 + 0.01 × (es − 10)

H2 Ochiai
e f√

e f + nf ×
(
e f + es

) H6 Jaccard
e f

e f + nf + es
H10 Zoltar

e f

e f + nf + es +
10000×nf ×es

ef

H3 OP
{
nf > 0 −1
nf ≤ 0 ns

H7 GP13 e f ×
(
1 +

1
2 × es + e f

)
H11 Kulczynski2

1
2
×
(e f

e f + nf
+

e f

e f + es

)
H4 Dstar

e f 2

nf + es
H8 OP2

e f − es

es + ns + 1
H12 Barinel 1 −

es

es + e f

Table 2: Subject programs of the experiments

Program LOC Buggy Versions Test Cases
printtokens 472 6 4030
printtokens2 399 9 4415

replace 512 26 5542
schedule 292 8 2650
schedule2 301 7 2710

tcas 141 35 1608
tot_info 440 21 1051

jsoup 10K 36 468

Similarly, GA-df performed better than the heuristics using only
data-flow with 38 faults located. Finally, GA_hyb outperfoms all
other methods analyzed, locating 39 faults inspecting only the top-5
elements of the suspiciousness ranking.

Figure 3b reports acc@5 results with respect to the 36 faulty
versions of jsoup. As well as in Siemens Suite, heuristics with dua-to-
node scores also outperform control-flow based methods, locating
up to 14 faults against 11 of the same heuristics using control-flow
information. GA, in its turn, performs better than heuristics when
comparing using only dua-to-node scores, locating 15 faults, but
does not improve fault localization effectiveness using only control-
flow information, locating just eight faults. The hybrid approach
does not find acc@5 better than GA-df, but maintains the results of
dua-to-node heuristics with 14 faults located.

Concerning acc@5, methods using data-flow information pro-
duce results significantly better than when using control-flow. We
conjecture that by containing information about relations of pro-
gram variables definition and use, the data-flow allows a more
careful investigation than control-flow, that uses only commands
executed in the program— implying amore accurate suspiciousness
score for the faulty element.

Figure 4a presents wef@5 results with respect to Siemens Suite
programs. In thismetric lower results are better. So, in general, meth-
ods using control-flow information perform slightly better than
the same methods using data-flow. For instance, the OP2 heuristic
would require the inspection of 440 elements using control-flow
against 455 using data-flow. The GA-cf presents an almost irrelevant
improvement in comparison with heuristics by reducing just one
element inspected, GA-df reduces ten inspected elements in com-
parison with heuristics. GA_hyb shows the biggest improvement,
reducing to 416 the number of inspected elements, outperforming
all other analyzed methods.

Figure 4b illustrates wef@5 results related to the jsoup program.
Unlike the Siemens Suite results, for jsoup, methods using data-flow
information perform better in comparison with the same method
using control-flow. For example, the heuristic Ample-data-flow
inpected 147 elements, against 156 of Ample-control-flow. The GA-
cf produced a worse result than the heuristic, and GA-df again
shows an almost irrelevant improvement. The GA_hyb keeps the
advantage presented in Siemens Suite, with 140 elements inspected,
also outperforming all other analyzed methods.

The wef results are lower when the number of faults located
(acc) is higher. This behavior may explain why data-flow methods
have lower wef than control-flow in jsoup. However, in Siemens
Suite, this is apparently not true. So, to clarify this interpretation it
is important to point out that the dua-to-node score has the intrinsic
characteristic of attributting the same suspiciousness score to all
nodes that participate in a dua. So, in some cases when heuristics
using control-flow address the highest suspiciousness score to a
node, using data-flow it may share the same score with another
three elements. This way, in this case, the wef@5 that would be 1
analyzing control-flow, becomes 3 (in the worst case). This scenario
probably happens in Siemens Suite and jsoup, but in the first one,
the slight difference of acc@5 does not compensate the wef@5 for
the additional inspected elements.

5.1 Analysis
From the acc results presented earlier, the ability to locate faults
presented by methods using data-flow information is notable. In
Siemens Suite, and jsoup the dua-to-node score makes traditional
heuristics achieve results that without it were impossible to obtain.
The GA approach also has produced more significant improvements
when applied using data-flow information. Although the hybrid
approach demonstrates a slight advantage for the Siemens Suite,
we do not notice this behavior in jsoup, where it only maintains
comparable results.

On the other hand, GA_hyb expresses a considerable contri-
bution when analyzing the wef results, so, the hybrid approach
presents an acc@5 value which is at least as good as the heuristics
using data-flow, but would require less inspected code to locate the
same number of faults. In our investigation, we detected that this
behavior is also valid for n not equal to 5, (n = 3 or 10, say).

As aforementioned, the dua-to-node score has as an intrinsic
behavior, to address the same suspiciousness score for many ele-
ments. We conduct a tie investigation aiming to understand this
phenomenon deeply.

SAC’20, March 30-April 3, 2020, Brno, Czech Republic D. Silva-Junior et al.

both

(a) Siemens Suite.

both

(b) jsoup.

Figure 3: Accuracy (acc@5) results.

both

(a) Siemens Suite.

both

(b) jsoup.

Figure 4: Wasted effort (wef@5) results.

Regarding the faulty suspiciousness of program elements, Xu et
al. [28] defines a tie as a set of statements, each of which has been
assigned the same suspiciousness score, and therefore shares the
same position in the suspiciousness ranking. Due to that, a faulty
statement may be tied with non-faulty statements. In this sense,
the authors also define a critical tie as a tie that contains a faulty
statement, and the statements in a critical tie are called critically
tied statements.

A critical tie impacts the suspiciousness ranking as it aggregates
uncertainty on calculating a suspicious score of the faulty program
elements. Then the higher the number of ties that involve faulty
statements, the harder it is to precisely estimate at what ranking
position during the examination the faulty statement will be en-
countered et al.. Thus reducing the number of critical ties improves
precision when locating faults.

To contribute to the analysis of FL techniques, we define a new
evaluation metric called Absolute Critical Tie (actie@n) that uses the
number of critical ties in the top-n elements of suspiciousness rank-
ings. One may interpret the metric as the potential effort wasted
with critical ties, i.e. the number of non-faulty program elements
tied with faulty ones in the top-n ranked elements. Higher val-
ues indicate more dependencies on tie-break strategies and lower
precision when locating software faults.

For discussion, let us consider a suspiciousness ranking with two
program elements critically tied, occupying the third position (in the
worst case). Inspecting the first three elements of the ranking, two
of them have the same suspiciousness score and one of them is the
faulty element, so, applying actie@3 in this ranking, the result is 2. In
the same example, the actie@2 is 1, because inspecting two program
elements of the ranking, one of them shares the suspiciousness score
with the faulty element.

actie does not express the effectiveness of FL methods. It is an
auxiliary metric and is should be used together with the other
metrics. For example, if we analyze actie and wef together, it is
possible to figure out how much of the wasted effort was used
inspecting elements that are critical ties.

Figure 5 shows a summary of results to acc wef and actie. the
best heuristics in accuracy were considered to represent all other
heuristics in these comparisons, they are Zoltar-cf and Ample-df in
Siemens Suite. In jsoup we choose Zoltar-cf and Zoltar-df.

Considering Siemens Suite (Figure 5a), the heuristic and GA based
only in control-flow information present very similar actie results
96 and 97 respectively. We note the same behavior in methods
exclusively based on data-flow information, 136 for heuristic, and
134 for GA. However, GA_hyb generated a value of 70 for the critical
ties, which is considerably lower than the other methods.

In jsoup (Figure 5b), actie for data-flow methods is higher than
control-flow methods. GA-df demonstrates some improvement to
Ample-df, reducing from 71 critical ties to 56. GA_hyb also demon-
strates a reduced value of critical ties for jsoup.

(a) Siemens Suite. (b) jsoup.

Figure 5: Results for Absolute critical tie (actie@5) in rela-
tion to Wasted effort (wef@5) and Accuracy (acc@5).

Data-Flow-Based Evolutionary Fault Localization SAC’20, March 30-April 3, 2020, Brno, Czech Republic

As expected for data-flow based methods, the number of critical
ties is higher than the control-flow based methods. GA_hyb results
show that it can reduce the need for tie-breaks strategies drastically,
but it maintains the satisfactory effectiveness results provided by
data-flow information, 14 faults located in jsoup and 39 in Siemens
Suite. This improvement is also reflected in wef values, which are
the smallest for both benchmarks.

5.2 Statistical Tests Analysis
To deal with the GA stochasticity and improves confidence in our
findings, we performed two statistical tests on the results from 30
runs: Wilcoxon pairwise comparison and Vargha & Delaney Â12
tests, as recommended in [5]. The former is to reveal whether there
is a significant statistical difference between the results produced
by different algorithms. The later provides how much superior the
results from an algorithm are against results from another one.

Table 3 shows the results of the statistical tests by comparing the
values achieved by all the methods we have used - GA_hyb, GA-cf,
GA-df, H-cf (Heuristic with control-flow,), and H-df (heuristic with
data-flow). We reported results from the metrics acc, wef, and actie.
H-cf and H-df were chosen to represent all heuristics, as earlier we
considered the heuristic that demonstrates better results in each
metric except for actie, which does not express quality alone.

In jsoup, for acc and actie analysis, we selected Zoltar-cf and
Zoltar-df, and Zoltar-cf and Ample-df for wef. In Siemens Suite,
for acc analysis, we selected Zoltar-cf and Ample-df, Zoltar-cf and
Zoltar-df for wef and actie.

We did not perform a comparison between H-cf and H-df as
they are deterministic strategies. The values reported in the Table
are only for Varha & Delaney Â12, in which 1 is the method at the
line, and 2 is the method at the column. bold-face value indicates
that there was no statistically significant difference, considering a
confidence level of 99%.

Table 3: Results from the Vargha & Delaney Â12 test by con-
sidering all the FL methods and all metrics

Siemens Suite jsoup
GA_hyb GA-cf GA-df GA_hyb GA-cf GA-df

GA-cf
acc@5 0.00 0.00
wef@5 1.00 1.00
actie@5 1.00 0.14

GA-df
acc@5 0.15 1.00 0.82 1.00
wef@5 1.00 0.99 0.88 0.00
actie@5 1.00 1.00 1.00 1.00

H-cf
acc@5 0.00 0.13 0.00 0.00 0.98 0.00
wef@5 1.00 0.80 0.00 1.00 0.00 1.00
actie@5 1.00 0.18 0.00 1.00 1.00 0.00

H-df
acc@5 0.00 1.00 0.00 0.53 1.00 0.03
wef@5 1.00 1.00 1.00 1.00 0.00 0.83
actie@5 1.00 1.00 1.00 1.00 1.00 1.00

In the case of the Wilcoxon test, its output is the p-value, which
gives the percentage chance of two samples being statistically equal,
instead of different. In our tests, in all comparisons but one (bold-
face), there was a statistical difference between the results produced
by every FL method taking into account all metrics. This finding
means that, even when the graphics showed close results, there
was a difference between the methods; thus, we were able to make
comparisons and get robust conclusions.

Regarding the Â12 test, its output value informs how frequently
superior are the values from method 1 compared to the values from
method 2. Thus, the closer to 1.0 the output of the test, the higher
the chance of the value from method 1 outperforms value from
method 2. On the other hand, the closer to 0.0 the output of the test,
the higher the chance of the value from method 1 is inferior to the
value from method 2. For example, looking at GA-cf versus GA-hyb,
in the metric acc@5, the statistical test estimated 0.0, i.,e, GA-hyb is
always better than GA-cf, as the higher the values in acc, the better
the FL method. Actually, our proposal GA-hyb outperforms all the
other methods in acc@5 for the benchmark siemens; in the case
of jsoup, GA-hyb was statistically superior to GA-cf and H-cf, yet
it was inferior to GA-df, and it presented no significant statistical
difference when compared to H-df.

Analyzing the Â12 results for the metric wef@5, we see the GA-
hyb outperforms all the methods, as low values in wef indicate a
better FL method. In siemens, GA-hyb achieved lower wef@5 than
its adversaries in 100% of the 30 runs (i.,e. Â12 = 1). In the jsoup, it
was 100% better than all the others but one, where it reached lower
wef@5 in 88% when compared to GA-df. In such a comparison,
GA-hyb was outperformed by GA-df in acc@5. However, it was
worst in 82% runs while better 88% times in wef@5. Finally, except
against GA-cf, GA_hyb had lower critical ties (actie) than all the
other methods.

Therefore, considering the discussion presented in this section
we can answer the research questions.
RQ1: Is the proposed method competitive for locating software faults?
concerning the accuracy, the dua-to-node score performs better
than control-flow heuristics in Siemens Suite and jsoup, but ana-
lyzing Wasted Effort, the same does not happen with the Siemens
Suite results. Also, the number of critical ties is considerably higher
than control-flow heuristics in both benchmarks. So the answer to
RQ1 is“Yes, the proposed method is competitive, performing
even better than traditional methods in the accuracy metric
applied in top-5 of suspiciousness ranking”.

RQ2: Does the evolutionary combination of control-flow and data-
flow coverage spectra improve fault localization ability? The evo-
lutionary approach GA_hyb performed as accurately as the node-
to-dua heuristics to locate faults looking the top-5 elements of the
suspiciousness ranking, and demonstrate improvement in the wef
and actie results. So, the answer to RQ2 is “Yes, although the hy-
brid approach did not show the best results when analyzing
accuracy, it may present contributions reducing the number
of critical ties and consequently the number of inspected el-
ements, with a wispy loss of accuracy”.

6 THREATS TO VALIDITY
Some aspects of this study offer potential threats to validity. Conclu-
sion Validity Threats - the results using GA approaches suffer from
the stochasticity presented in such models. To mitigate this issue,
we conducted 30 executions of each GA setup; furthermore, we
applied statistical tests to improve assurance about the conclusions
presented. Internal Validity Threats - To deal with internal threats
we executed the three GA-based methods by using the same param-
eters, as mutation and crossover rate and the number of generations.
The manual instrumentation process utilized to obtain control-flow

SAC’20, March 30-April 3, 2020, Brno, Czech Republic D. Silva-Junior et al.

and data-flow coverage spectra for Siemens Suite, was conducted
with continual reviews, aiming to ensure no difference in the test
case execution when compared with the original programs; addi-
tionally, we made the instrumented programs accessible publicly2.
The coverage spectra of jsoup are also available publicly3 by the
JAGUAR tool authors. Construct Validity Threats - We utilized a
novel metric (actie) to investigate FL methods. However, it was
used only to support the results of other metrics, which are well
established in the literature. External Validity Threats - whether
more generalizable results, assessment on a large scale for faults
and programs, including other programming languages (PL), are
needed. We have included programs with different sizes and PLs;
the subject programs also present seeded and real faults.

7 FINAL REMARKS
This paper reports an investigation about the use of data-flow based
suspiciousness scores in FL methods, and also their behavior in
evolutionary combinations of heuristics. The approach is conducted
either using data-flow only or together with the traditional control-
flow based suspiciousness score.

Absolute metrics support the evaluation of effectiveness of the
methods and indicate that, when comparing the methods with
well-know heuristics as baselines, the data-flow based approaches
demonstrate superior results to their control-flow version.

In order to further investigate the impact of the inclination to
generate ties found in data-flow suspiciousness scores, we introduce
an absolute metric to measure critical ties and analyze its effects
along with other metrics.

The occurrence of ties is natural, but their intensity (size) de-
pends on factors such as method, data and test results; Thus, in
future work, we will investigate attributes of the test that impact
the occurrence of ties of the FL methods. Besides that, we intend to
analyze how the information concerning ties may also be used to
guide the search in evolutionary FL approaches.

REFERENCES
[1] R. Abreu, P. Zoeteweij, and A. J. c. Van Gemund. 2006. An Evaluation of Similarity

Coefficients for Software Fault Localization. In 2006 12th Pacific Rim International
Symposium on Dependable Computing (PRDC’06). 39–46. https://doi.org/10.1109/
PRDC.2006.18

[2] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. 2009. Spectrum-Based
Multiple Fault Localization. In Proceedings of the 2009 IEEE/ACM International
Conference on Automated Software Engineering (ASE ’09). IEEE Computer Society,
Washington, DC, USA, 88–99. https://doi.org/10.1109/ASE.2009.25

[3] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan J.C. van Gemund. 2009. A
practical evaluation of spectrum-based fault localization. Journal of Systems and
Software 82, 11 (2009), 1780 – 1792. https://doi.org/10.1016/j.jss.2009.06.035 SI:
TAIC PART 2007 and MUTATION 2007.

[4] Paul Ammann and Jeff Offutt. 2017. Introduction to software testing (edition 2 ed.).
Cambridge University Press, Cambridge, United Kingdom ; New York, NY, USA.

[5] A. Arcuri and L. Briand. 2011. A Practical Guide for Using Statistical Tests to
Assess Randomized Algorithms in Software Engineering. In Proceedings of the
33rd International Conference on Software Engineering (ICSE ’11). ACM, New York,
NY, USA, 1–10.

[6] Tien-Duy B. Le, David Lo, Claire Le Goues, and Lars Grunske. 2016. A Learning-
to-rank Based Fault Localization Approach Using Likely Invariants. In Proceedings
of the 25th International Symposium on Software Testing and Analysis (ISSTA 2016).
ACM, New York, NY, USA, 177–188. https://doi.org/10.1145/2931037.2931049

[7] D. M. De-Freitas, P. S. Leitao-Junior, C. G. Camilo-Junior, and R. Harrison. 2018.
Mutation-Based Evolutionary Fault Localisation. In 2018 IEEE Congress on Evolu-
tionary Computation (CEC). 1–8. https://doi.org/10.1109/CEC.2018.8477719

2Available after review
3https://github.com/saeg/experiments

[8] François-Michel De Rainville, Félix-Antoine Fortin, Marc-André Gardner, Marc
Parizeau, and Christian Gagné. 2012. DEAP: A Python Framework for Evolu-
tionary Algorithms. In Proceedings of the 14th Annual Conference Companion on
Genetic and Evolutionary Computation (GECCO ’12). ACM, New York, NY, USA,
85–92. https://doi.org/10.1145/2330784.2330799

[9] Hyunsook Do, Sebastian Elbaum, and Gregg Rothermel. 2005. Supporting con-
trolled experimentation with testing techniques: An infrastructure and its poten-
tial impact. Empirical Software Engineering 10, 4 (2005), 405–435.

[10] Gordon Fraser and José Miguel Rojas. 2019. Software Testing. Springer Interna-
tional Publishing, Cham, 123–192. https://doi.org/10.1007/978-3-030-00262-6_4

[11] Mark Harman, S. Afshin Mansouri, and Yuanyuan Zhang. 2012. Search-based
Software Engineering: Trends, Techniques and Applications. Comput. Surveys
45, 1, Article 11 (Dec. 2012), 61 pages. https://doi.org/10.1145/2379776.2379787

[12] Matthew S. Hecht. 1977. Flow Analysis of Computer Programs. Elsevier Science
Inc., New York, NY, USA.

[13] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. 1994. Experiments on
the effectiveness of dataflow- and control-flow-based test adequacy criteria. In
Proceedings of 16th International Conference on Software Engineering. 191–200.
https://doi.org/10.1109/ICSE.1994.296778

[14] James A. Jones, Mary Jean Harrold, and John T. Stasko. 2009. Visualization for
Fault Localization. In in Proceedings of ICSE 2001 Workshop on Software Visualiza-
tion. 71–75.

[15] L. Naish, H. J. Lee, and K. Ramamohanarao. 2009. Spectral Debugging with
Weights and Incremental Ranking. In 2009 16th Asia-Pacific Software Engineering
Conference. 168–175. https://doi.org/10.1109/APSEC.2009.32

[16] Lee Naish, Hua Jie Lee, and Kotagiri Ramamohanarao. 2011. A Model for Spectra-
based Software Diagnosis. ACM Trans. Softw. Eng. Methodol. 20, 3, Article 11
(Aug. 2011), 32 pages. https://doi.org/10.1145/2000791.2000795

[17] Chris Parnin and Alessandro Orso. 2011. Are Automated Debugging Techniques
Actually Helping Programmers?. In Proceedings of the 2011 International Sym-
posium on Software Testing and Analysis (ISSTA ’11). ACM, New York, NY, USA,
199–209. https://doi.org/10.1145/2001420.2001445

[18] R Core Team. 2013. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.
org/

[19] Colin R. Reeves. 2010. Genetic Algorithms. Springer US, Boston, MA, 109–139.
https://doi.org/10.1007/978-1-4419-1665-5_5

[20] H. L. Ribeiro, H. A. de Souza, R. P. A. de Araujo, M. L. Chaim, and F. Kon. 2018.
Jaguar: A Spectrum-Based Fault Localization Tool for Real-World Software. In
2018 IEEE 11th International Conference on Software Testing, Verification and
Validation (ICST). 404–409. https://doi.org/10.1109/ICST.2018.00048

[21] Henrique L. Ribeiro, Higor A. de Souza, Roberto P. A. de Araujo, Marcos L. Chaim,
and Fabio Kon. 2019. Evaluating data-flow coverage in spectrum-based fault
localization. (2019).

[22] R. Santelices, J. A. Jones, Yanbing Yu, and M. J. Harrold. 2009. Lightweight
fault-localization using multiple coverage types. In 2009 IEEE 31st International
Conference on Software Engineering. 56–66. https://doi.org/10.1109/ICSE.2009.
5070508

[23] Shaowei Wang, David Lo, Lingxiao Jiang, Lucia, and Hoong Chuin Lau. 2011.
Search-based fault localization. In 2011 26th IEEE/ACM International Conference
on Automated Software Engineering (ASE 2011). IEEE, Lawrence, KS, USA, 556–559.
https://doi.org/10.1109/ASE.2011.6100124

[24] Jeongju Sohn and Shin Yoo. 2017. FLUCCS: Using Code and Change Metrics to
Improve Fault Localization. In Proceedings of the 26th ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA 2017). ACM, New York, NY,
USA, 273–283. https://doi.org/10.1145/3092703.3092717

[25] W.E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa. 2016. A survey on software
fault localization. IEEE Transactions on Software Engineering 42, 8 (2016), 707–740.
https://doi.org/10.1109/TSE.2016.2521368

[26] W. E. Wong, V. Debroy, R. Gao, and Y. Li. 2014. The DStar Method for Effective
Software Fault Localization. IEEE Transactions on Reliability 63, 1 (March 2014),
290–308. https://doi.org/10.1109/TR.2013.2285319

[27] W. E. Wong, Y. Qi, L. Zhao, and K. Cai. 2007. Effective Fault Localization using
Code Coverage. In 31st Annual International Computer Software and Applications
Conference (COMPSAC 2007), Vol. 1. 449–456. https://doi.org/10.1109/COMPSAC.
2007.109

[28] XIAOFENG XU, VIDROHA DEBROY, W. ERIC WONG, and DONGHUI GUO.
2011. TIES WITHIN FAULT LOCALIZATION RANKINGS: EXPOSING AND
ADDRESSING THE PROBLEM. International Journal of Software Engineering
and Knowledge Engineering 21, 06 (2011), 803–827. https://doi.org/10.1142/
S0218194011005505

[29] Shin Yoo. 2012. Evolving Human Competitive Spectra-Based Fault Localisation
Techniques. In Search Based Software Engineering, Gordon Fraser and Jerffeson
Teixeira de Souza (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 244–258.

https://doi.org/10.1109/PRDC.2006.18
https://doi.org/10.1109/PRDC.2006.18
https://doi.org/10.1109/ASE.2009.25
https://doi.org/10.1016/j.jss.2009.06.035
https://doi.org/10.1145/2931037.2931049
https://doi.org/10.1109/CEC.2018.8477719
https://doi.org/10.1145/2330784.2330799
https://doi.org/10.1007/978-3-030-00262-6_4
https://doi.org/10.1145/2379776.2379787
https://doi.org/10.1109/ICSE.1994.296778
https://doi.org/10.1109/APSEC.2009.32
https://doi.org/10.1145/2000791.2000795
https://doi.org/10.1145/2001420.2001445
http://www.R-project.org/
http://www.R-project.org/
https://doi.org/10.1007/978-1-4419-1665-5_5
https://doi.org/10.1109/ICST.2018.00048
https://doi.org/10.1109/ICSE.2009.5070508
https://doi.org/10.1109/ICSE.2009.5070508
https://doi.org/10.1109/ASE.2011.6100124
https://doi.org/10.1145/3092703.3092717
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1109/TR.2013.2285319
https://doi.org/10.1109/COMPSAC.2007.109
https://doi.org/10.1109/COMPSAC.2007.109
https://doi.org/10.1142/S0218194011005505
https://doi.org/10.1142/S0218194011005505

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Search-Based Fault Localization
	2.2 Data-Flow Analysis for Fault Localization

	3 Approach
	3.1 Evolutionary Fault Localization Based on Data-Flow Coverage Spectra

	4 Experiments
	4.1 Baselines
	4.2 Experimentation Process and Genetic Algorithm
	4.3 Subject Programs

	5 Results
	5.1 Analysis
	5.2 Statistical Tests Analysis

	6 Threats to Validity
	7 Final Remarks
	References

