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ABSTRACT

Metal Additive manufacturing (AM) such as Laser Powder-Bed Fusion (LPBF) processes offer

new opportunities for building parts with geometries and features that other traditional processes

cannot match. At the same time, LPBF imposes new challenges on practitioners. These challenges

include high complexity of simulating the AM process, anisotropic mechanical properties, need

for new monitoring methods.

Part of this Dissertation develops a new method for layerwise anomaly detection during for

LPBF. The method uses high-speed thermal imaging to capture melt pool temperature and is com-

posed of a procedure utilizing spatial statistics and machine learning.

Another parts of this Dissertation solves problems for efficient use of computer simulation

models. Simulation models are vital for accelerated development of LPBF because we can inte-

grate multiple computer simulation models at different scales to optimize the process prior to the

part fabrication. This integration of computer models often happens in a hierarchical fashion and

final model predicts the behavior of the most important Quantity of Interest (QoI). Once all the

models are coupled, a system of models is created for which a formal Uncertainty Quantification

(UQ) is needed to calibrate the unknown model parameters and analyze the discrepancy between

the models and the real-world in order to identify regions of missing physics.

This dissertation presents a framework for UQ of LPBF models with the following features:

(1) models have multiple outputs instead of a single output, (2) models are coupled using the input

and output variables that they share, and (3) models can have partially unobservable outputs for

which no experimental data are present. This work proposes using Gaussian process (GP) and

Bayesian networks (BN) as the main tool for handling UQ for a system of computer models with

the aforementioned properties. For each of our methodologies, we present a case study of a specific

alloy system. Experimental data are captured by additively manufacturing parts and single tracks to

evaluate the proposed method. Our results show that the combination of GP and BN is a powerful

and flexible tool to answer UQ problems for LPBF.
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1. INTRODUCTION

1.1 Additive Manufacturing

Additive manufacturing (AM) is formally defined by the American Society for Testing and

Materials (ASTM) as “the process of joining materials to make objects from 3D model data, usu-

ally layer upon layer, as opposed to subtractive manufacturing technologies” [2]. Multiple syn-

onyms have been used to refer to AM since its inception in the early 1980s such as additive layer

manufacturing (ALM), 3D printing, solid freeform fabrication (SFF), direct manufacturing, rapid

manufacturing and rapid prototyping.

1.1.1 Laser Powder-Bed Fusion

Laser powder-bed fusion (L-PBF) is one of the most common additive manufacturing (AM)

processes that produces physical objects directly from a digital computer model through selec-

tively fusing raw material in powder form using a high energy laser beam [3]. Commercial L-PBF

technologies include selective laser sintering (SLS) for processing polymeric powders, and selec-

tive laser melting (SLM) or direct metal laser sintering (DMLS) for processing metallic powders.

The focus of the current work is on metal L-PBF processes that have been reported to successfully

process a variety of metallic materials and alloys including stainless steels [4, 5, 6, 7, 8, 9], titanium

alloys [10, 11], thermoelectric materials [12], nickel-based super alloys [13], and shape memory

alloys [14, 15, 16, 17, 18, 19, 20].

Metal L-PBF is characterized by a broad spectrum of capabilities, often associated with AM

technologies, such as high degrees of geometric freedom, ability to customize parts, and material

saving through design and topology optimization. An example of design optimization is shown in

Fig. 1.1 where a motorcycle was manufactured with minimum weight while ensuring the frame

was strong enough to handle the stresses of various driving scenarios. Other emerging capabili-

ties continue to evolve, including the potential of producing parts with tailored spatially-varying

properties, commonly known as functional grading [21, 22].
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Figure 1.1: Light Rider TM is the world’s first additively manufactured motorcycle weighing only
35 kilograms

Mechanical properties of L-PBF parts depend primarily on their microstructure (e.g. grain size

and morphology), which, in turn, is influenced by the thermal history during manufacturing, i.e.

cooling rates, thermal gradients and reheating cycles [23, 24]. Careful characterization of part

microstructure under various process settings is pivotal toward understanding process-property

relationships.

1.1.2 Challenges of L-PBF

Metal L-PBF is characterized by a broad spectrum of capabilities, often associated with AM

technologies, such as high degrees of geometric freedom, ability to customize parts, and mate-

rial saving through design and topology optimization. Other emerging capabilities continue to

evolve, including the potential of producing parts with tailored spatially-varying properties, com-

monly known as functional grading [21, 22]. Despite the promising potential, the process is highly

prone to defects that are likely to compromise part quality such as delamination[25, 26], pores and

cracks, [27, 10], insufficient fusion [28], and poorly formed weld beads [29], among many others.

Kleszczynski et al [28] provide a detailed overview of defects in metal L-PBF. Consequently, a

myriad of research efforts focus on addressing this challenge.
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1.2 Role of Process Monitoring

One approach calls for experimentally identifying process maps. These are windows of man-

ufacturing process parameter combinations within which certain types of defects are avoided or

minimized; see for example [30, 31, 32]. This approach is both time- and cost-intensive, but also

material- and sometimes even system-specific. That is, a processing map developed for a partic-

ular material or on a particular commercial AM system is not agnostic and cannot be generalized

to other materials and systems. Another approach is to use process modeling and simulation to

understand the underlying physics of the process and identify the root causes of these defects; see

for example [33, 34, 35, 36]. This approach circumvents the challenge associated with the exper-

imental approach since these models are based on first principles. One drawback in this approach

is the fact that physics-based models that simulate L-PBF are very complex and computationally

expensive, making them more suited for understanding the physical phenomena associated with

the process than practically conducting process design and optimization. Hence, the use of pro-

cess monitoring and control to identify and mitigate defects has been suggested as an alternative

approach.

1.3 Role of Computer Models

L-PBF processes offer attractive advantages and capabilities over conventional manufacturing

techniques. These include, for example, higher geometric freedom, flexibility to customize parts,

and recently the potential capability of tailoring the microstructures (and hence the properties) of

fabricated parts. However, they are in the meantime very complex processes that involve several

physical mechanisms most of which are not yet fully understood. Therefore, it is crucial to develop

better understanding of these mechanisms that drive the thermal history within the part during fab-

rication. Ideally, in-situ thermal monitoring can be used to capture information about thermal

histories during fabrication. However, experimental measurement of the thermal field in L-PBF is

extremely difficult due to a number of challenges such as very high thermal gradients and cooling

rates, micro-scale melt pool size, and emissivity variations, among many other challenges. Conse-
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quently, numerical methods are needed to complement experiments in understanding the thermal

history during the fabrication of L-PBF parts.

The disagreement between the real-world and the model outputs can be attributed to one or

more of the following factors: (1) incomplete understanding of the physical system, (2) incom-

plete information about model parameters, (3) incorrect values for the model inputs, (4) natural

stochastic behavior of the system, and (5) uncertainties associated with available numerical sim-

ulation algorithms [37, 38, 39, 40, 41]. Hence, identification, characterization, and quantification

of the uncertainties associated with these models become necessary in order to strengthen the ro-

bustness of model predictions, which is in turn essential if one is to use the models to guide the

design/optimization of the systems (in this case, materials).

1.3.1 Integrated Computational Materials Engineering (ICME)

Integrated Computational Materials Engineering (ICME) prescribes a framework for the accel-

eration in the development and deployment of materials through the establishment and exploitation

of process-structure-property-performance (PSPP) relationships. PSPPs in turn can be established

through linking materials models at multiple length (and possibly time) scales. The goal in ICME

is to optimize the materials, manufacturing process, and component designs prior to part fabri-

cation [38]. Inherently, ICME involves utilization of physics-based simulation models that help

understand the behavior of complex systems. These models use the system governing equations to

compute and predict specific quantities of interest (QoIs). As a well-established fact, all of these

simulation models are imperfect and thus their predictions will differ from the actual physical

phenomena they are trying to describe.

1.4 Uncertainty Quantification for AM

As an independent field of study, Uncertainty Quantification (UQ) seeks to address the chal-

lenges associated with the (unknown) uncertainties in models used to describe the behavior of

complex systems. UQ is an established field that has been successfully applied to many areas

including climate models [42], computational fluid dynamics [43], forestry [44], nuclear engineer-
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ing [45], and econometrics [46]. Although UQ is a key need for computational materials models

[47, 48], there is a literature gap in this area [16]. Chernatynskiy et al. [39] present a review of the

few existing works on UQ of multi-scale simulation models. More recently, Tapia et al. [16] con-

duct UQ for a physics-based precipitation model of nickel-titanium shape memory alloys through

combining experimental and computer simulation data.

In this work we conduct formal UQ for a computational materials model used to predict melt

pool characteristics in L-PBF metal AM processes. More specifically, we perform statistical cali-

bration of an FEM based thermal model via surrogate (or reduced order) modeling and Bayesian

inference. The statistical calibration problem (also known as the inverse UQ problem) refers to

making inference on the posterior distributions of a set of calibration parameters such that model

predictions are in agreement with experimental observations [49]. To the best of the authors’

knowledge, the current work is the first to conduct such rigorous calibration using a multivariate

Gaussian Process-based (GP) surrogate model. While the focus of the work is on specific physical

phenomena associated with L-PBF AM, the overall framework can be readily adapted to address

similar problems that involve systematic calibration of complex multiple-output computational

materials models.

1.5 Key definitions

Before we introduce the mathematical formulations, we establish notation and some defini-

tions. Since the word model will be employed to refer to different types of models that constitute

the building blocks of the framework, we clearly define specific cases to avoid misinterpretation

and ambiguity. We use computer model to denote a computational model implemented via a com-

puter code that simulates and recreates any process (physical, social, mathematical, etc.) by a set

of calculations derived from proper study of the process. One example of a computer model is the

thermal model explained in Section 3.3.1. The term statistical model will refer to the calibration

methodology presented in this section, and is sub-divided in two key components: the surrogate

model and the calibration model, which will be defined in the following paragraphs.

Previous approaches for the calibration of computer models using rigorous statistics rely on
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Monte Carlo (MC) methods. While MC methods are extremely valuable and well-studied, the fact

that they necessitate generating sufficiently large numbers of simulations (sometimes in the order

of 15,000 - 20,000 simulations) makes them impractical for calibrating computationally expensive

models. One possible approach to overcome this challenge is using a two-stage approach based on

surrogate modeling (also called meta-modeling or emulation) and suggested in a series of works

[50, 51, 52, 53]. The surrogate model is thus the computationally efficient statistical approximation

of the original computer model.

In the calibration problem, whether or not a surrogate model is used, we distinguish between

two different types of inputs to the computer model [16]:

• Control inputs (denoted by x) are inputs to the computer model that are directly set to known

pre-determined values by the user. Examples of control inputs in some computer models

include temperature, pressure, or velocity.

• Calibration parameters (denoted by θ) are inputs or parameters to the computer model that

are unknown with certainty, or not measurable, at the time of simulation, but do influence

the results of the computations. Examples include material properties or unknown physical

constants.

The goal of the calibration model is thus to estimate the calibration parameters such that the com-

puter model simulations agree with experimental observations of the real process being simu-

lated [16]. In mathematical notation, the statistical model follows the equation:

yE (x) = yS (x,θ?) + δ (x) + ε (1.1)

where the experimental observation yE of the real process run at some values of control inputs x is

equal to the summation of the response of the computer model yS , a discrepancy (or inadequacy)

function δ, and some measurement error ε, and the objective is to estimate the values of the cali-

bration parameters θ?. Detailed definitions for each term in Equation (1.1) will be provided as we

describe the two stages of the statistical model in the following subsections.
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1.6 Gaussian processes

The statistical models in this work are developed based on Gaussian process . Gaussian pro-

cesses offer appealing mathematical and computational properties, flexibility and richness in mod-

eling dependence among data observed in space, and the ability to incorporate a wide range of

smoothness assumptions [54, 55, 16]. It is important to point out that a wide variety of powerful

data-driven predictive modeling techniques exists, such as artificial neural networks, support vector

machines, and logistic regression. These techniques are more commonly used in the context of the

classification problem in machine learning [56], and typically rely on the availability of datasets

with large enough sizes, since with small datasets there may exist gaps between samples, or only

limited different classification cases may be provided [57].

1.7 Organization of the Dissertation

This Dissertation is organized in the following structure. In Chapter 2 we propose a method for

layerwise anomaly detection LPBF. The method uses high speed thermal imaging to capture melt

pool temperature and is composed of the a four-step anomaly detection procedure. We validate the

proposed method using a case study on a commercial LPBF system custom-instrumented with a

dual-wavelength imaging pyrometer for capturing the thermal images during fabrication.

Next, in Chapter 3 we switch to UQ for LPBF, because in-situ monitoring only provides par-

tial information and simulations may be necessary to have a comprehensive understanding of the

thermo-physical conditions to which the deposited material is subjected. We address this challenge

through linking thermal models to experiments via a computationally efficient surrogate modeling

approach based on multivariate Gaussian processes (MVGPs). The MVGPs are used to calibrate

the parameters of the thermal model against experiments, sidestepping the use of prohibitively

expensive Monte Carlo-based calibration. We demonstrate the framework on the calibration of a

thermal model for laser powder bed fusion AM of Ti-6Al-4V against experiments carried out over

a wide window in the process parameter space. Our work’s applicability is wide as the proposed

framework could potentially be used in many other ICME-based problems where it is essential to
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link expensive computational materials science models to available experimental data.

In Chapter 4, we take the next step toward ICME and present a framework for calibration

of multiple models when they are connected in a hierarchical fashion. Additionally, we address

an important problem of existence of unobservable response in the network of simulation models

using the notion of Bayesian networks. A case study of NiNb singlet tracks is then presented where

two models are connected hierarchically with unobservable variables present.

The dissertation is concluded in Chapter 5 where a summary of implications, concluding re-

marks and potential future extensions are outlined.
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2. TOWARDS MONITORING: NOVEL ANOMALY DETECTION FOR LPBF∗

In this Chapter we present a novel anomaly detection framework for LPBF processes. Our

focus is on detecting anomalies as a proxy for monitoring the process health. Prior works on

monitoring L-PBF processes can be generally classified according to the process signatures under

consideration. According to the report by NIST [59], process signatures are ‘dynamic character-

istics of the powder heating, melting, and solidification processes as they occur during the build’.

The majority of works in the L-PBF process monitoring literature focus on sensing and analyzing

the melt pool (the liquid interface between the laser beam and the raw material), because it is well-

established that melt pool characteristics such as temperature gradients and geometry are critical

factors influencing the outcome of the process [60, 61, 59].

Notable advances in developing hardware and sensors to monitor L-PBF processes have been

reported to date, and more ongoing research is being conducted to improve existing sensors and

develop new ones. In the meantime, these advances have not been adequately matched with meth-

ods to analyze the data acquired by these sensors to improve part quality as is the case in traditional

manufacturing technologies. Some recent works have started to emerge for polymer AM processes

including [62, 63, 64] that focus on polymer-based AM processes such as Fused Deposition Mod-

eling (FDM). Fewer works have developed methods for metal AM such as [65, 66, 67]. The current

work focuses on addressing this literature gap in metal AM processes, with focus on L-PBF.

Process control in metal L-PBF starts with providing the capability to detect deviations in

process conditions that are potentially correlated with defects. Only upon being able to detect these

deviations can actions and protocols be devised to mitigate their undesirable outcomes through

feedback or feedforward control. Our focus is on the first step noted above. More specifically,

we propose a data-driven framework for detecting layer-wise process anomalies in metal L-PBF

through leveraging process monitoring data. The framework involves the use of data anlaytics

∗Parts of this section have been reprinted with permission from M. Mahmoudi, A. A. Ezzat, and A. Elwany,
“Layerwise anomaly detection in laser powder-bed fusion metal additive manufacturing,” Journal of Manufacturing
Science and Engineering, vol. 141, no. 3, p. 031002, 2019. Copyright c© 2019 by ASME.
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to detect process anomalies through analyzing melt pool characteristics captured using high speed

thermal imaging. The thermal imaging system captures the temperature of the melt pools generated

by the fast-moving laser beam within a given layer. These thermal images of the melt pools at a

given layer are then processed to generate a process signature. Details of the process signature used

in this work can be found in Section 2.2. Next, a spatial statistics model is used synergistically with

supervised and unsupervised machine learning techniques to detect process anomalies within the

layer, prior to processing the next layer. In this context, we define process anomalies to be regions

of the process signatures that deviate from reference conditions. The performance of our proposed

framework is tested for anomalies that are caused by a particular class of cavity defects. It has

been reported in previous studies that cavity defects ranging between 50µm to 750µm in size are

common in metal L-PBF and are usually attributed to inadequate fusion between successive layers

[68, 69]. In addition to identifying whether or not a certain layer is defective, the framework also

determines the location of defects on a micro scale. As will be demonstrated in the case study, we

have been able to detect 750µm diameter cavities.

2.1 Process Monitoring for LPBF

As noted previously, the literature on developing hardware and sensors for monitoring AM

processes is rich. Mani et al [59] and Spears and Gold [70] review in-situ sensing techniques in the

literature on selective laser melting (SLM). Tapia and Elwany [3] and Everton et al. [71] present

more general surveys of process monitoring for metal AM. More recently, Grasso and Colosimo

[60] conduct a comprehensive review on process defects and in-situ monitoring methods for metal

L-PBF.

In the specific case of L-PBF, thermal imaging systems comprise a large proportion of the

published works. In a series of studies [72, 73, 74, 75, 76], two types of detectors, namely, a

photodiode and a near-IR CMOS camera, are used to capture melt pool radiation intensity and

dimensions (length, width, and area). In [72, 73], a feedback control method is proposed where

the observed process variable is the melt pool area, and the control input is the laser power. A

controller acts on the difference between the observed area and a reference set point. Although the
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authors show that the feedback control method can improve the geometric accuracy at overhang

regions, the set point needs to be determined experimentally for every different set of process

parameters. In [76], the melt pool data is logged at comparatively high frame rates (10 kHz to

20 kHz). Next, depending on whether the melt pool is along the internal hatches or along the

slice contours, the melt pool signals are compared to corresponding reference values for possible

process errors that might be a result of overheating phenomena at the edges of the part or pores

inside the part. Krauss et al [77, 78] use an IR camera to monitor the scanning tracks for detecting

process deviations. In [77], the authors study the effect of artificial flaws on the irradiance profile

during the scanning of single tracks. In [78], a heat dissipation model is employed to monitor the

local changes in heat flow that causes inhomogeneity in the part. Both of these works [77, 78],

focus on process ‘sensing’ rather than ‘monitoring’. In other words, they focus on analyzing the

effects of process parameters and scan strategies on measured quantities. In another series of works

[79, 80, 81, 82, 83] a two-wavelength pyrometer and a CCD camera are used to measure melt pool

radiations and heat affected zone (HAZ) radiations, respectively. Again, instead of developing an

effective monitoring method, it is only shown that the signals from the sensing devices are sensitive

to the variation in process parameters (e.g. laser power and hatch spacing). More recently, an

in-situ monitoring method that conducts data mining for infrared images taken from the process

plume is proposed in [84] for a particular defect encountered in the fabrication of alloys with low

melting points. The proposed method aims at detecting unstable melting conditions caused by

excessive heat via analyzing the salient properties of the plume. The method uses a multivariate

control-charting scheme to monitor plume emissions for detecting anomalies. The authors rely on

the assumption that statistical descriptors of plume radiations are stable over time under in-control

fabrication conditions.

The advances in hardware and sensor systems for L-PBF have allowed most of the original

equipment manufacturers (OEMs) to integrate in-situ sensing modules and some preliminary data

analysis into their commercial systems. EOS [85] has developed a monitoring suite with the po-

tential for quality assurance, which has multiple components for evaluating process conditions
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such as powder bed integrity, melt pool characteristics, and chamber temperature. Particularly,

the EOSTATE MeltPool Monitoring uses a photodiode to measure the light emitted from the melt

pool, and the EOSTATE Exposure OT uses a near-IR sCMOS camera that takes pictures of the en-

tire layer. Multiple algorithms are available in the EOS proprietary software that require threshold

parameters from the user, potentially offering the capability of drawing conclusions regarding part

quality. Similarly, Renishaw [86] has developed a melt pool monitoring system comprised of three

photodiodes: one for in-situ sensing of the input intensity of the laser, and two other photodiodes

that separately measure the IR melt pool radiations and the visible plasma emissions. These sensor

data is combined with time-synchronized motion control position instructions which can be used to

generate 2D and 3D mappings for every build. These mappings have the potential to be combined

with appropriate data analysis algorithms for further process monitoring.

Additionally, some preliminary studies use high resolution visual imaging techniques, in con-

trast to thermal imaging, for monitoring metal L-PBF. In [66], a high resolution consumer grade

digital camera is used to obtain images of the powder bed just after recoating and immediately after

laser scanning is done. These images are then indexed to the part geometry using a binary template

created from the sliced 3D model of the part. Next, image segmentation techniques are used to

detect lack-of-fusion flaws during fabrication and anomalies of the powder bed. Although a high

rate of true positives in prediction was achieved after artificially induced defects are detected in a

test part, the rate of false positive predictions was also high. Grasso et al. [87] propose a method

for detecting L-PBF defects caused by the local overheating phenomena using a high-speed and

high-resolution commercial camera and a combination of data analyses and machine vision system

in the visible range. Their method consists of using T-mode Principal Component Analysis (PCA)

for image data to identify ‘hot spots’ whose behaviors are different from other portions of the same

layer in terms of pixel intensity patterns over time. An example of applying data analytics for

real-time monitoring of FDM can be found in [64]. The authors propose a novel sparse estimation-

based classification method to use heterogeneous sensor signals for detecting process anomalies.

Other examples of using data analytics for monitoring AM processes can be found in [88, 89].
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We conclude that there is a lack of works in the particular case of metal L-PBF to leverage

sensor data for conducting process monitoring and subsequent control. This can be attributed to

two main reasons. First, the melt pool is small (100−1000µm in diameter) and fast-moving (100−

2000 mm/s). Hence, accurately measuring melt pool temperature (or other process characteristics)

is a challenging task that is still an active research area. Second, the physics involved in metal L-

PBF is more complex than other AM processes (such as fused filament fabrication for polymers),

and hence correlating monitored melt pool dynamics with process conditions is difficult.

We address this gap through proposing a framework for generating process signatures using

melt pool information to detect process anomalies. The process signatures contain thermal and spa-

tial information from different melt pools within each layer. Next, guided by the process physics,

we propose a data-driven framework that exploits the spatial dependence within the thermal image

to identify regions with statistically significant temperature deviations from reference conditions.

2.2 Methodology

For the purpose of anomaly detection, we rely on a process signature which is generated us-

ing the thermal data from successive melt pools. The reason we utilize the melt pool information

for process monitoring is that as a well established fact in metal L-PBF, the melt pool is a proxy

for process stability. It is important to point out that although experimental measurement of the

true melt pool temperature during metal L-PBF still suffers measurement inaccuracies, we rely on

detecting deviations from references conditions. Our proposed methodology is designed to detect

‘changes’ that happen to the process signature, rather than looking at absolute melt pool tempera-

tures. In other words, if our experimental thermal imaging system has some intrinsic measurement

error, nothing will be detected as anomaly as long as the process conditions are unchanged, i.e.

their signature matches with that of a benchmark reference part. Additionally, careful calibration

of our thermal imaging system which was conducted using a tungsten filament (halogen tungsten

lamp) for a range of temperatures between 1500 ◦C and 2500 ◦C, and high repeatability in the

measurements were acknowledged. Put more simply, systematic measurement errors will not be

detrimental to the anomaly detection task as long as measurements are conducted with enough
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repeatability, because it is based on deviations, in contrast to true values of the temperature. The

proposed anomaly detection procedure is comprised of the following steps:

1. Data acquisition: acquire process monitoring data for each layer while the part is being

fabricated. The process monitoring data from the thermal imaging system is subsequently

processed to obtain thermal signatures. For every layer, a signature difference image is

generated by subtracting the signature of that particular layer signature from a pre-specified

reference signature.

2. Screening: for a just-fabricated layer, identify regions of interest (ROIs) representing subsets

within the layer that are likely to include an anomaly. This is in contrast to analyzing the

entire layer.

3. Identify and flag: characterize spatial dependence within these ROIs using a Gaussian pro-

cess (GP) model, then flag pixels with statistically significant deviations.

4. Classify: use a classifier to determine whether an ROI is deemed faulty or faultless. A layer

is considered faulty if at least one of the ROIs is faulty.

Before discussing the details of each step, we briefly point out important considerations re-

lated to this procedure. First, incorporating domain knowledge from the underlying physics of the

process often results in refining and improving data-driven models. In the case of metal L-PBF,

the melt pool thermally interacts with its surroundings (through heat transfer mechanisms such as

conduction and convection) and thus, thermal images of melt pools naturally exhibit spatial cor-

relations within themselves, i.e., spatially-close thermal measurements are strongly correlated. As

such, implicitly assuming independence between thermal measurements is not physically justifi-

able, and any data-driven method that does not take into account the within-image spatial depen-

dence during anomaly detection is most likely prone to severe false positive rates by mistaking

artifacts of inherent spatial dependence for actual process anomalies.

In our research, we model spatial dependence using a GP model, and then employ a statisti-

cal test, called spatial SIZER (SIgnificant ZERo crossing of the derivatives) to detect significant
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deviations in spatially correlated images [90]. Since fitting spatial models to large datasets often

involves heavy computations associated with computationally intensive covariance matrix oper-

ations, analyzing thermal signatures of an entire layer is impractical (in fact, likely infeasible),

especially in the case of high resolution thermal images, or parts with large cross section areas.

For example, in our case study presented in later sections, a 30× 27 mm2 area results in an image

with 1300 × 1000 pixel for which the covariance matrix will have 1, 300, 0002 elements. Hence,

the screening step is needed to narrow down the entire layer into a subset of small regions that are

feasible to analyze. This leads to 1) better characterization of local correlation structures through

making the assumption of stationarity more credible within sub-regions of the thermal image, also

known in geostatistical literature as local stationarity [91], 2) better detection capability through

focusing the detection efforts on few, but critical regions of the image, and 3) reducing the compu-

tational burden often associated with fitting spatial models to large datasets.

Once the spatial dependence is modeled and pixels with statistically significant deviations are

flagged, the classification step is needed to make a final decision on the current status of the process.

The classifier takes into account important features corresponding to the flagged pixels including

the total number of flagged pixels, position and spatial pattern of the flagged pixels, etc. to indicate

if an ROI is anomalous (faulty) or not. The following subsections elaborate the details of the

procedure outlined above.

2.2.1 Step 1: Data acquisition

In this study, the melt pool thermal images are captured using a two-wavelength imaging py-

rometer by Stratonics Inc. with spatial resolution of 25µm/pixel. Pyrometry is defined as the

non-contact measurement of the temperature of a body based on emitted thermal radiations [92].

The two-wavelength pyrometry technique utilized in this work has the important characteristic of

being tolerant to emissivity [93, 94]; that is, it is relatively resilient to the change in emissivity in

the target being measured. This is important for an application like L-PBF where the processed

material goes through different molten and solid phases, each with distinct value of emissivity that

might not be known. The pyrometer used in this work takes images at an approximately constant
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frame rate that can be adjusted by the user.

A representative melt pool thermal image is depicted in Figure 2.1. The X and Y coordinates

are pixel numbers and the Z coordinate is temperature. The thermal image only shows temperatures

above 1500 ◦C that fall within the calibration range of the pyrometer. It can be seen that the melt

pool has an oval geometric profile, with its major axis being along the laser scan direction. Other

researchers have observed similar melt pool shapes during L-PBF, see for example [95]. Note that

high temperature measurements (above 2900 ◦C) are observed at the center of the melt pool. These

observations suggest that the metal powder reaches its evaporation temperature, which is consistent

with other recent works [33, 96, 97, 98, 99] investigating the physics of melt pool for metal L-PBF.

We can generally split each thermal image into two regions: 1) a ‘hot region’ encompassing the

melt pool and its surrounding, and 2) a ‘cold region’ with low temperatures below the calibration

range of the pyrometer. No reliable temperature measurement is available for a cold region. For

the melt pool shown in Figure 2.1, the hot region is the color-coded area with temperatures above

1500 ◦C, and the cold region is the remainder of the image.

Figure 2.1: Representative melt pool thermal image captured during laser melting. Reprinted with
permission. Copyright c© 2019 by ASME.

Here, we illustrate the process of generating a (thermal) process signature for a layer with

simple geometry in Figure 2.2. Consider an L-PBF machine fabricating a rectangular layer using
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45◦ straight line scans. The thermal imaging system monitors the process and takes images at an

approximately constant frame rate. A process signature is then generated for each layer through

processing the monitored data and combining all the successive melt pool thermal images within

that layer. Figures 2.2a-2.2c show the process of combining the successive melt pool images.

Compared to Figure 2.1, the pixel density in Figures 2.2a-2.2c has been decreased by a factor of

3 to reduce the image size and allow for faster computation, which is necessary for a practical

layer-wise monitoring application similar to the one proposed in the current work. The very first

image can be seen in Figure 2.2a with the melt pool observed in the bottom right corner. Note that

the image covers a relatively large area surrounding the melt pool. Using a proprietary algorithm

developed by the sensor manufacturer, the imaging system identifies the ‘hot spot’ in each image,

which corresponds to the molten pool boundaries. The measured temperature values are color-

coded according to the scale on the right. In Figure 2.2b, we notice that the laser has progressed

as schematically shown using the arrows. The arrows show the laser scan path, and the letter h

represents a constant hatch spacing. Finally, Figure 2.2c shows the complete layer signature using

950 melt pool images.

For the areas where melt pools overlap (multiple temperature values were measured for a single

pixel), the average of the measured temperatures is assigned to each pixel. For the pixels without

any temperature measurements (cold regions), we use the ‘grand average’, defined as the average

temperature over all of the pixels in hot regions. The image margins – where no temperature

measurement is available – are colored dark blue which corresponds to the grand average. The

process signature for the layer under consideration is then used for the next step in the analysis.

Since we are interested in detecting anomalous ‘changes’ in the process, we compute the differ-

ence between the signature shown above, and what we call a corresponding “reference signature".

The reference signature can be defined as a signature from a process for which the L-PBF process

parameters have been optimized to produce a fully dense defect-free part. An example of process

parameter optimization for L-PBF can be found in [100]. Hereinafter, the actual anomaly detection

procedure is then performed on the signature difference image, which is obtained by subtracting
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(a)

(b)

(c)

Figure 2.2: Process of generating a thermal signature for a rectangular layer. (a) The very first
melt pool image captured can be seen at the bottom right corner; (b) more melt pool images are
combined as the laser progresses and scans the rest of the rectangle; the arrows schematically show
the laser scan path. (c) The complete thermal signature of the layer. Reprinted with permission.
Copyright c© 2019 by ASME. 18



the layer signature and the corresponding reference signature. In Section 2.3.2, we discuss the

choice of reference signatures used to obtain the signature difference, in light of the case study.

2.2.2 Step 2: Screening

The high spatial resolution of the thermal imaging pyrometer (1300×1000 pixel) and the small

size of the melt pool deems the implementation of data-driven anomaly detection on the entire

signature difference impractical and time-intensive. The screening step is thus necessary to narrow

down the spatial domain to be analyzed, through electing smaller ROIs with higher likelihood of

containing anomalies.

Screening consists of the following steps:

1. Convert to grayscale image: with intensity values between 0 and 1 from the signature

difference. Figure 2.3a shows a grayscale image for a sample layer with rectangular cross

section.

2. Construct binary image: using the thresholding technique in image segmentation (refer to

[101]) to locate pixels whose intensities are too high or too low (below 20th percentile or

above 80th percentile of the intensity levels), indicating deviation of the thermal signature

from the reference signature. Representative output from this thresholding step is shown in

Figure 2.3b. The light colored areas are in fact groups of interconnected deviating pixels

(called ‘islands’ in the text) that are the results of applying thresholding to the grayscale

image in Figure 2.3a.

3. Clustering: use k-means clustering to find the cluster centroids for these clusters of islands,

as shown in Figure 2.3c. The colored dots mark the centroids of each island, and the crosses

mark the cluster centroids. This step essentially enables defining ROIs with high density of

potential faults. We position the ROI centers at the cluster centroids. The ROI boundaries

are shown in Figure 2.3c using rectangles. These ROIs are the ones that will be spatially

modeled and analyzed using the spatial SIZER method and the classifier presented next.
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Figure 2.3: (a) Grayscale image for a sample rectangular layer, (b) the binary image with the
islands detected after thresholding indicating possible anomalies, (c) ROIs positioned at the centers
of the island clusters. Reprinted with permission. Copyright c© 2019 by ASME.

20



We highlight some implementation aspects to the reader’s attention. First, note that the thresh-

olding method used in the screening step involves a number of parameters, e.g. cut-off intensity

values and minimum island size. In our study, these parameters are selected conservative screening

is guaranteed at the layer level. In later stages of the methodology (Steps 3-4), we perform the final

and more accurate anomaly detection at the ROI level. Second, in this work the ROIs are assumed

to have a rectangular shape due to their convenience when using the spatial SIZER method. Third,

the size (dimensions) of ROIs can vary depending on the available computation power. Larger

ROIs require longer computation times and one should adjust the ROI size in a way that allows

for reasonably fast anomaly detection. Finally, the number of clusters should be adjusted such that

minimum overlap exists between the ROIs. Hence, this parameter also depends on the choice of

ROI dimensions.

2.2.3 Step 3: Identify and flag

Consider a set of signature difference data, which is regarded as a matrix of temperature differ-

ence observations denoted by Y = Yij , where i = 1, .., n and j = 1, ...,m are indices of the pixel

locations at which Yij is observed. To account for spatial dependence, we model Y using a GP

model, defined as the sum of a signal value s = {sij} and an error term εεε = {εij}, ∀ i, j, such that

Yij = sij + εij, (2.1)

where the terms εij are zero-mean normally distributed errors with a covariance matrix, for which

the entries are computed using a pre-specified covariance structure. The challenge in GPs is how

to model this covariance structure between any pair of observations through a positive-definite

parametric form. Assuming isotropy, the Matérn covariance function is a popular choice [54],

which only depends on the spatial distance between any pair of locations, and is denoted hereinafter

by C(d; Θ), where Θ is the vector of covariance parameters and d is the spatial distance.

Since we are interested in detecting potential anomalies in spatially dependent signature dif-

ference images, we extend the spatial SIZER method, initially proposed for signalling significant
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temperature changes in climate applications [90], to our problem setting. Earlier versions of SIZER

which assumed statistical independence were first proposed in the statistical literature [102, 103].

Recently, the spatial SIZER method was proposed, which takes into account spatial correlations

to detect statistically significant decadal temperature changes taking place over some regions of

the Earth. In Algorithm 1, we present the main steps of the spatial SIZER method in the context

of detecting anomalies in spatially correlated signature differences. In the sequel, these steps are

explained, however, we refer the interested reader to [90] for details regarding general underlying

theory and implementation.

Algorithm 1 Spatial SIZER method for spatially-dependent signature differences
0. Input the observationsY peculiar to an ROI obtained through the screening step, as outlined
in Section 2.2.2.
1. Estimate the signal s by convolving a bivariate Gaussian kernel with the data Y .
2. Get the MLE estimates Θ̂ for the covariance parameters.
3. Estimate the norm of the signal’s gradient, denoted byG(s) = {G(sij)} ∀ i, j.
repeat

4. Initialize i = 1.
repeat

5. Initialize j = 1.
6. Conduct a test of hypothesis with H0 : Ĝ(sij) = 0.
if H0 is rejected then

7. Yij is flagged as a potential anomaly.
end if
8. j = j + 1

until j > m
9. i = i+ 1

until i > n
10. Compute rf ≡ ratio of the number flagged pixels to the total number of pixels in the ROI.
11. Compute nf ≡ number of flagged islands in the ROI.
12. Compute Cmax ≡ maximum island size in the ROI.

As prescribed in Algorithm 1, the procedure of spatial SIZER goes as follows. The spatial

SIZER takes as input each ROI obtained through the screening step. First, estimates for the signal
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s are obtained by convolving a bivariate Gaussian kernel with the data Y , such that

ŝ` = K` ∗ Y , (2.2)

where ∗ denotes the discrete bivariate convolution operator,K` = K`(i, j) ∀ i, j; and ` is the kernel

bandwidth, which is assumed to be the same for both dimensions. The kernel K` is modeled as the

product of two univariate Gaussian kernels such that K`(i, j) = K`(i)K`(j), where

K`(i) =
exp(−( i

`
)2/2)∑n−1

i′=1−n exp(−( i
′

`
)2/2)

. (2.3)

Next, spatial dependence is modeled by estimating Θ through Maximum Likelihood Estimation

(MLE). To perform anomaly detection, the norm of the signal’s gradient, denoted by G(s) is

estimated as

Ĝ(s) =
√
ĝ21 + ĝ22, (2.4)

where ĝ1 and ĝ2 are the estimates for the partial derivatives in the vertical and horizontal directions,

respectively, and are computed as

ĝ1 = K`,1 ∗ Y , (2.5)

ĝ2 = K`,2 ∗ Y , (2.6)

where K`,1(i, j) = K ′`(i)K`(j), K`,2(i, j) = K`(i)K
′
`(j) and K ′`(i) = (− i

`
)K`(i).

Once the estimates of the signal’s gradient are obtained, a test of hypothesis is conducted for

each pixel with the null hypothesis H0 : Ĝ(sij) = 0. Simply speaking, at any given pixel, if

the gradient of the signal is close to zero, then the observation at that pixel would be deemed

faultless. Otherwise, the null hypothesis is rejected, indicating a potential anomaly (fault) at that

pixel location. Assuming bivariate Gaussian distribution for (ĝ1, ĝ2)
T , the null hypothesis can be

re-written as H0 : (ĝ1, ĝ2)
T ∼ N (0, τττ), where τττ =

(
τ 21 τ 212

τ 221 τ 22

)
.
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Spatial dependence in the anomaly detection is accounted for in the hypothesis test through the

entries of τττ , which are expressed in terms of the parametric covariance C, where

τ̂ 21 = V ar(ĝ1(i, j)) =
n∑

i′=1

m∑
j′=1

n∑
i′′=1

m∑
j′′=1

K`,1(i− i′, j − j′)K`,1(i− i′′, j − j′′)C(d(i′,j′),(i′′,j′′); Θ̂).

(2.7)

The entry τ̂ 22 is computed similary, and

τ̂ 212 = τ̂ 221 = Cov(ĝ1, ĝ2) =
n∑

i′=1

m∑
j′=1

n∑
i′′=1

m∑
j′′=1

K`,1(i−i′, j−j′)K`,2(i−i′′, j−j′′)C(d(i′,j′),(i′′,j′′); Θ̂).

(2.8)

More details about the derivations of these expressions are explained in [90]. Once these values

have been computed, they are plugged in to compute the quantities (t̂1, t̂2)
T , which are the test

statistics of this hypothesis test and are defined as τ̂̂τ̂τ−0.5(ĝ1, ĝ2)T = (t̂1, t̂2)
T ∼ N (0, I), where I is

a 2× 2 identity matrix. As such, the summation of the squares of (t̂1, t̂2) follows a χ2-distribution.

Only when t̂21 + t̂22 > qχ2
2
(α), is the null hypothesis rejected, i.e. Yij is flagged as a potential

anomaly, where α is a pre-specified confidence level and qχ2
2

is the corresponding quantile.

Once the procedure has been implemented on each pixel in the ROI and pixels with statistically

significant deviations are flagged, a decision on whether the entire ROI is considered as an anomaly

or not has yet to be taken. For that purpose, we collect some useful information about the spatial

pattern of the flagged pixels. Similar to our definition in Section 2.2.2, by ‘islands’ we refer to a

group of interconnected flagged pixels (1’s) from a background of unflagged pixels (0’s). Finding

these islands is a standard problem in computer science referred to as the island count problem

and is solved using the standard Depth First Search (DFS) algorithm [104]. As such, the following

features are extracted from the output of spatial SIZER to guide the final decision:

1. ratio of the number flagged pixels to the total number of pixels in the ROI, denoted by rf ,

2. number of flagged islands in the ROI, denoted by nf ,

3. maximum island size in the ROI, denoted by Cmax,
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Our choice of the above features is motivated by the following observations. First, the choice

of rf is straightforward; it is intuitive that the higher the number of flagged pixels in an ROI, the

higher the likelihood that the entire ROI is anomalous. Our experimental observations, however,

suggest that rf alone, despite being an important factor, often fails to find a clear-cutting threshold

between faulty and faultless ROIs, and that the pattern of the flagged pixels within the ROI is

another equally important factor that should not be overlooked. For example, consider two ROIs

with equal number of flagged pixels, then an ROI that has large groups of interconnected flagged

pixels concentrated in a specific area is more likely to contain a fault, in contrast to an ROI with

randomly scattered flagged pixels. A similar observation was made in [105] for quality control

in high-precision manufacturing. As such, in addition to rf as an important feature at the pixel

level, important features related to the spatial pattern of the flagged pixels need to be considered.

Our feature selection experiments have revealed that the number of islands, and the maximum size

of these islands have high explanatory power in detecting whether an entire ROI represents an

anomaly. These features are used as inputs to the classifier discussed in the subsequent section.

2.2.4 Step 4: Classify

The objective of the final step in our anomaly detection framework is to indicate whether the

current process status is in- or out-of-control, which is accomplished by performing the anomaly

detection at the ROI level (in contrast to the higher resolution analysis at the pixel level). Ideally,

we would like to have at hand a ready-to-use classifier that, given the outputs of spatial SIZER,

namely rf , nf , and Cmax, would render a final output as either “0" or “1" indicating a faultless and

faulty ROI, respectively.

In reality, however, such classifier does not exist, and we need to build that classifier based

on observed data. For that purpose, we generate a training dataset that includes both faulty and

faultless ROIs to train that classifier. In practice, that would correspond to the phase of L-PBF

process optimization which typically involves some trial-and-error experiments that result in the

fabrication of both faulty and faultless parts. The thermal data corresponding to these parts can then

be analyzed as described in Sections 2.2.2 and 2.2.3 and used as training data for the classifier. In

25



Section 2.3, we discuss in detail the experiments carried out to generate these training data.

Given the training data, we can use one of the widely used classifiers in the machine learning

literature to carry out the final anomaly detection step. In this work, we compared the performance

of the following common classifiers: (1) logistic regression (LR), (2) k-Nearest Neighbors (kNN)

,(3) support vector machines (SVM) and (4) random forests (RF) [106]. In Section 2.3.2, we the

result of comparing these classifiers in our problem setting is presented.

2.3 Experiments

We validate and assess the performance of the proposed anomaly detection framework out-

lined in Section 2.2 through experiments conducted on a commercial L-PBF system custom in-

strumented with a thermal monitoring sensor as detailed next.

2.3.1 Experimental testbed

Test specimens were fabricated on a 3D Systems ProXTM DMP 100 equipped with a Gaussian

profile fiber laser with wavelength λ = 1070 nm, beam spot size of approximately 70µm-diameter

and a maximum power of 50 W. Metallic parts can be fabricated within a build envelope of 10 ×

10 × 10 cm under an Argon inert protective atmosphere to minimize oxidation. The user has

control over the manufacturing process parameters used during fabrication such as laser power,

laser scanning speed, hatch spacing (distance between two successive passes of the beam within

the same layer), layer thickness, inert gas concentration, among others.

Test parts for this study were built in 17-4 precipitation hardening Stainless Steel (SS) powder

produced using gas atomization under argon inert atmosphere. The chemical composition is given

in Table 2.1. The powder size distribution (PSD) is 10µm < D50 < 13.5µm and D80 < 22µm,

where Dxx denotes the cumulative distribution, that is, xx% of the particles in a given powder

batch have diameters that size or smaller. Samples were fabricated on a 430F SS substrate plate,

and subsequently removed from the plate using wire electric discharge machining (EDM).

A high-speed two-wavelength imaging pyrometer (ThermaVIZTM by Stratonics Inc.) was in-

tegrated with the system through a custom-designed mounting bracket shown in Figure 2.4. The
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Table 2.1: Chemical composition of the 17-4 PH stainless steel powder. Reused with permission.
Copyright c© 2019 by ASME.

Element Fe Cr Ni HC Cu

Concentration (%) 70 – 80 10 – 25 1.0 – 10 1.0 – 10

pyrometer consists of two high resolution CMOS imaging detectors for measuring the melt pool

radiations and converting them into temperature values using two-wavelength pyrometry. Both de-

tectors have a field of view (FOV) of 1300×1000 pixel mapped to a 30×27 mm area, which yields

a spatial resolution of 24µm per pixel. When recording at the full FOV size (1300 × 1000 pixel),

a frame rate of 100 Hz can be achieved. Both the spatial and temporal resolution can be in-

creased through decreasing the FOV, e.g. a 2.8 kHz frame rate is achieved when working with

a 600× 50 pixel FOV. These settings of the imaging system present a number of advantages. First,

the adjustable frame rate is useful to achieve the desired imaging rate according to the laser scan

velocity. Faster imaging rates are needed for generating the process signatures in builds with high

laser scan velocity. As we will mention in Section 2.3.2, for the case study in this work a frame rate

of 250 Hz proved to work. Second, the fine spatial resolution allows us to get a detailed tempera-

ture profile across the melt pool along with spatial temperature gradients – see Figure 2.1. The high

resolution is vital for generating the process signature required for our anomaly detection frame-

work. Third, when the pyrometer is operated fast enough, temporal temperature gradients can be

measured. The temperature gradients give insight about heating and cooling rates across the melt

pool, which are indeed important for studying the physical phenomena that occur in during L-PBF.

A rectangular prism with dimensions 5.5× 8× 9 mm was fabricated using the setup described

above. The part was fabricated with a powder layer thickness of 30µm, thus it consisted of exactly

300 layers. Optimized values of the process parameters including laser scan speed and laser power

were chosen based on an earlier study by the co-authors [100] to maximize part density. The

study conducted a novel accelerated process optimization that significantly reduced the number of

experiments by utilizing experimental data from previous studies in the literature as the initial data
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Figure 2.4: The pyrometer used for temperature measurement. Reprinted with permission. Copy-
right c© 2019 by ASME.

to guide the sequential optimization experiments. The final average part density was reported to

be 99.20% [100]. An artificial defect was induced into the solid model of the part, represented by

the cylindrical cavity illustrated in Figure 2.5a. The part was then fabricated within the pyrometer

FOV to capture the thermal images from each layer (Figure 2.5b). We induced a cylindrical cavity

with diameter 750µm and height 150µm at the center of the part to mimic porosity defects for

metal L-PBF. A similar defect generation method has been used in other works that study defects

in metal L-PBF, see for example [66, 107]. The 150µm height of the artificial defect implies that

only 5 layers located in the center of the part (layers 150-154) are faulty and the rest of the layers

(295 layers) are faultless.

2.3.2 Results

We start by selecting a specific layer among the 5 faulty layers including the cavity as a “test

layer" that we will use to evaluate the performance of our proposed method. Figure 2.6 shows the

thermal signature for layer 151 corresponding to one of the faulty layers. This process signature

was captured with the pyrometer operating at 250 Hz frame rate following the procedure in Section
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(a) (b)

Figure 2.5: (a) Schematic of the prism showing the cavity, (b) as-printed prism. Reprinted with
permission. Copyright c© 2019 by ASME.

2.2.1 through superimposing approximately 1000 individual melt pool thermal images. A cold

region near the center due to the artificially induced defect is easily observed.

It is worth mentioning that the choice of frame rate depends on a number of factors such as the

build size, laser scan speed, and melt pool size. If the laser runs at very high speeds, the imaging

system should be set to capture thermal images at higher frame rates. Generally, the more melt

pool images captured per layer, the more information the corresponding process signature contains.

Our anomaly detection framework requires a process signature composed of a sufficient number of

melt pools; an example is shown in Figure 2.2(c). In this paper, our objective is to demonstrate the

capabilities of our proposed anomaly detection framework given a fast enough imaging system. A

more thorough analysis of optimizing the imaging system settings necessitates further investigation

beyond the scope of the current work.

After selecting that test layer and generating its thermal signature, we need to generate the

signature difference Y . As explained in Section 2.2.2, a reference signature is needed to generate

this signature difference. In our case, any of the 295 layers that were printed without the cavity
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defect can be used for generating the reference signature since the sample was manufactured with

optimal process parameters ensuring a fully dense part. It is important to point out that in practical

settings, the reference signature is ideally extracted from a defect-free part that has been tested

after fabrication. In the most general case, for a specific part with complex geometry, different

layers indeed have distinct shapes. This means that successful detection of anomalies requires

‘layer-specific’ reference signatures. In other words, a fully dense certified part should accompany

a database of reference signatures. This database can be generated automatically as the part is

fabricated. Note that the reference signature does not have to belong to a single fully dense part. In

fact, a specific layer can have multiple reference signatures taken from the same layer of multiple

fully dense parts. Based on our experiments, using multiple fully dense parts to generate the

reference signatures improves anomaly detection accuracy because the additional information from

multiple reference parts enables the supervised learning (classifier algorithm) to capture natural

variability inheret to the fabrication process.

In the current study, we make the simplifying assumption that the reference signature is ex-

tracted from a previous layer within the same part since we know that these previous layers were

fabricated using optimized process parameters, have an identical shape to the test layer, and do not

include an artificially induced defect.

Although one reference signature out of the 295 suffices to generate a signature difference

(since these layers are identical), we selected 5 reference signatures to generate more data for

testing the proposed method. The thermal signature of the test layer 151 was subtracted from

those of the 5 reference signatures, resulting in 5 signature differences. Each of these 5 signature

differences has 15 distinct ROIs (obtained using the screening step) randomly scattered throughout.

Since the the exact position of the induced cavity is known a priori, only the ROIs that included the

cavity were labeled as faulty, and the remainder of the ROIs were labeled faultless. For illustration,

Figure 2.7 shows only five out of the fifteen 30× 30 pixel ROIs in one of the 5 signature difference

images corresponding to the test layer 151. Only the ROI positioned in the center of the thermal

image with red outline is known to be faulty. The rest of the ROIs outlined in green are labeled
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Figure 2.6: Thermal signature corresponding to layer 151 with the cavity in the center. Reprinted
with permission. Copyright c© 2019 by ASME.

faultless. The size of the ROIs can be adjusted based on the available computational resources,

since larger ROIs need more time for implementing spatial SIZER. As such, we have a total of 5

signature differences ×15 ROIs = 75 ROIs. These 75 ROIs represent the test dataset needed for

classification.

Next, we generate a training dataset to train the classifier using a similar procedure. More

specifically, we select 2 additional layers from the 5 layers including the cavity, and 1 faultless

layer from the available 295 faultless layers. For each layer, we generate 5 signature difference

images, and for each of them we identify 15 ROIs. This results in a training dataset of size 5

signature differences ×15 ROIs ×3 layers = 225 ROIs, each labeled as faulty, or as faultless,

respectively. The final step is then to train the classifier using this dataset, and then test it using the

75 ROIs from the test layer 151 as described next.

The training and testing ROIs were analyzed using the spatial SIZER method described in

detail in Algorithm 1, Section 2.2.3. This implementation took 30 sec on average using a PC with

eight 64-bit cores and 32 GB RAM. Note that in practice, the total computation time for a specific

part is directly proportional to the number of ROIs that are detected across all layers during the

build process (Total computation time ≈ 30 sec × Number of detected ROIs). Considering most
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L-PBF builds take hours and sometimes a few days, computational speed of the proposed method

is suitable for online monitoring and control. As described in Section 2.2.4, we then use the outputs

of spatial SIZER for all the ROIs to extract values of the explanatory features, which will be used

in the classifier. For each ROI, we can assign the three explanatory features x = {rf , nf , Cmax},

in addition to the ROI label: y = 1 (faulty), or y = 0 (faultless).
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Figure 2.7: ROIs detected in the screening step corresponding to the thermal signature of the faulty
layer 151. Reprinted with permission. Copyright c© 2019 by ASME.

Four standard classifiers were implemented to obtain predictions for the classes of the 75 test

ROIs; namely: LR, SVM, kNN, and RF. For LR, we used a probability threshold of 0.15, above

which the ROI was deemed anomalous. The choice of a low threshold value is motivated by the

imbalanced nature of anomaly detection problems, where one class (faultless ROIs) is much more

abundant than the other (faulty ROIs) in the experimental data. Therefore, a probability threshold

that is lower than 0.5 corresponds to assigning higher cost towards misdetecting the anomalous

class. This simple adjustment is a common approach in the imbalanced classification literature,

often referred to as “cost-sensitive learning" [108]. For kNN, we set the number of neighbors

k = 7. For SVM, the cost parameter was set at 2.00 and a radial basis kernel was used, while
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(a) Spatial Detection – Faulty ROI (b) Independent Detection – Faulty ROI

(c) Spatial Detection – Faultless ROI (d) Independent Detection – Faultless ROI

Figure 2.8: Top row: SIZER Output for a faulty ROI, (a) Spatial Detection, (b) Independent De-
tection. Bottom row: SIZER Output for a faultless ROI, (c) Spatial Detection, (d) Independent
Detection. Reprinted with permission. Copyright c© 2019 by ASME.
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for the random forest classifier, the number of trees was set to 100. These parameter values were

found to yield reasonable results in our experiments.

In addition, we benchmark our proposed approach against a simpler alternate scenario that does

not take into account the spatial dependence between thermal measurements when performing the

anomaly detection task. This scenario follows the exact same procedure, with the exception that

during the spatial SIZER implementation, as discussed in Section 2.2.3, we substitute the off-

diagonal elements in the τττ matrix with zero values, that is τ 212 = τ 221 = 0. We refer to this

alternative approach as Independent Detection, since it assumes independence between thermal

measurements while detecting anomalies, as opposed to our approach, to which we refer as Spatial

Detection.

Figure 2.8 shows the outputs of SIZER on two different ROIs, where the top row (Panels a and

b) correspond to a faulty ROI, and the bottom row (Panels c and d) correspond to a faultless ROI. In

all the panels, the flagged pixels showing the detected anomalous features are indicated with dark

marks. Figure 2.8a shows the output from Spatial Detection, which is able to specifically pinpoint

the exact location of the fault corresponding to the cold region illustrated in Figure 2.6. On the

other hand, the Independent Detection, as shown in Figure 2.8b, appears to be associated with an

overdetection of faultless features as anomalies (high positive rates). Similarly, for the bottom row,

the Spatial Detection hardly signals any features corresponding to a faultless ROI, as opposed to

the Independent Detection which falsely flags some pixels as anomalous.

Table 2.2 summarizes the results for the four classifiers in terms of the classification error rate,

number of false positives (FPs), and number of false negatives (FNs), for the two scenarios of Spa-

tial and Independent Detection. Classification error rate quantifies the ratio of of mis-classifications

to the total number of test points, and is defined as E =
∑nt

i=1
I(ŷi 6=yi)

nt , where ŷi and yi are the pre-

dicted and observed classes for the ith ROI, respectively, I(·) is an indicator function which returns

1 when ŷi 6= yi and 0 otherwise, and nt is the total number of test points , i.e. nt = 75 in our case

study.

Upon inspecting Table 2.2, it appears that LR outperforms the other four classifiers in terms of
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Table 2.2: Performance of the four competing classifiers. Bold-faced values indicate lowest errors.
Reused with permission. Copyright c© 2019 by ASME.

Spatial Detection Independent Detection

Method Error rate FPs FNs Error rate FPs FNs

LR 0.04 2.00 1.00 0.13 8.00 2.00

kNN 0.09 0.00 7.00 0.08 0.00 6.00

SVM 0.05 1.00 3.00 0.16 6.00 6.00

RF 0.09 0.00 7.00 0.12 2.00 7.00

the classification error rate and FNs. For LR with Spatial Detection, only one anomaly is misde-

tected, while two faulteless ROIs are signaled as anomalies. However, the LR with Independent

Detection misses two true faulty ROIs and misclassifies eight faultless ROIs as faulty. Such high

rate of false positives, which was noted in Figure 2.8, is most likely due to mistaking the natural

artifacts of spatial dependence as anomalies due to the assumption of independence, which agrees

with our motivation in Section ?? regarding the importance of taking spatial dependence into ac-

count when designing data-driven anomaly detection procedures. Figure 2.9 presents the ROC

curve for the LR classifier with Spatial Detection (solid red line) obtained by varying the probabil-

ity threshold from 0 to 1 with an increment of 0.001 and plotting their respective false positive rate

(FPR) versus corresponding true positive rate (TPR). The ROC curve appears to be well far from

the diagonal line corresponding to a random classifier, indicating reasonable performance. Choice

of a suitable probability threshold for LR can be guided by the ROC. For instance, thresholds in

the range between 0.10 to 0.25 appear to maximize the sum of the sensitivity and specificity. The

ROC curve for the LR with Spatial Detection appears to dominate the one obtained from the LR

classifier with Independent Detection (solid blue line). The area under the curve for the Spatial De-

tection ROC is found to be 0.95, as opposed to an area of 0.84 corresponding to the Independent

Detection, which is a good indicator of classification accuracy.
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Figure 2.9: ROC for LR classifier with Spatial Detection (solid red line), with Independent Detec-
tion (solid blue line). Dashed green line corresponds to random guess. Reprinted with permission.
Copyright c© 2019 by ASME.

2.3.3 Comparison of approaches

As pointed out in Section 2.1, process monitoring and anomaly detection in metal AM and

particularly L-PBF are emerging fields still undergoing development. Hence, benchmark method-

ologies do not exist to gauge the performance of our anomaly detection framework. Nonetheless,

many of the published works share similarities and differences worthy of comparison. Table 2.3

sheds some light on how the current study stands among the most recent and relevant commercial

and academic studies. The first important observation is that most studies only consider a spe-

cific type of defect that occur in L-PBF and their proposed approach cannot be generalized for

detecting other types of defects. Defects of different natures require different sensor setups. One

can argue that a comprehensive monitoring system for L-PBF necessitates a select combination of

special-purpose sensing modules. From Table 2.3, we notice that depending on the sensor type

(photodiode, visual camera, thermal camera, etc.) and its resolution researchers and practitioners

have recommended a wide range for the operating frame rates. Thus, very high frame rates do not
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necessarily correspond to more effective solutions. On the contrary, appropriately choosing the

sensor and process signature might avoid the redundant high costs associated with high-resolution

high-frame rate instruments. It can be seen that while most of the prior studies use indirect mea-

surements (visual images or radiations) to generate a process signature, our framework utilizes

two-wavelength pyrometry to capture the melt pool temperature which is directly affected by the

process dynamics. Lastly, we notice that the accuracy that our framework offers is higher than

other approaches reported in the literature.

Table 2.3: Comparison of the current study with the most relevant commercial and academic stud-
ies. Reused with permission. Copyright c© 2019 by ASME.

EOS [85] Renishaw [86]
Grasso et al.
[87]

Grasso et al.
[84]

Abdelrahman
et al. [66]

Current study

Type of
defect

NA (only
sensing and
detection of
abnormalities)

NA (only
sensing)

Local
overheating in
over-hang
acute corners

Unstable
melting due to
excessive heat
for alloys with
low melting
point

Lack-of-fusion
defects

Lack-of-fusion
defects

Sensor
setup

One
photodiode
and one NIR
camera

Three
photodiodes at
different
wavelengths

Visible-range
camera
(Olympus
I-speed 3)

IR Camera
(FLIR
SC3000)

Visible-range
camera (Nikon
D8003)

Two-
wavelength
pyrometer
(Stratonics)

Frame
rate

60 kHz
(photodiode),
10 Hz
(camera)

100 kHz 300 Hz 50 Hz
2 images per
layer

250 Hz

Signature

Radiations
from both the
melt pool and
the entire build
plate

Radiations
from the melt
pool, plasma,
and the laser
beam

Visual images
of the powder
bed

Thermal
images of the
plume

Visual images
of the powder
bed

Melt pool
temperature
profiles

Accuracy NA NA Not quantified Not quantified

Sensitivity:
91.5%,
Specificity:
84.0%

Accuracy:
96%,
Sensitivity:
85.7%,
Specificity:
97.1%
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3. MULTI-OUTPUT CALIBRATION OF A SINGLE COMPUTER MODEL∗

In this Chapter we present a framework for uncertainty quantification and calibration of a

single-computer model with multiple outputs. Prior to this work, UQ of ICME simulation mod-

els has been classically conducted using Monte Carlo methods (see [110, 111, 112, 113, 114]).

However, for many computationally expensive models, Monte Carlo methods are impractical, and

sometimes even unfeasible, as they require sufficiently large numbers of simulation runs in order to

acquire the statistics necessary to adequately characterize model uncertainty. This is especially true

in the specific case of computational models for AM that tend to be computationally demanding,

which precludes the utilization of Monte Carlo methods. To address this, we construct a surrogate

model (also known as an emulator or meta-model). This represents a statistical approximation that

can be used in lieu of the original computationally expensive simulation model without sacrificing

too much accuracy. Although surrogate modeling has been studied in prior works, one important

distinguishing feature of the surrogate model developed in the present study is its ability of ap-

proximating simulation models that have multiple outputs or QoIs. This is an important feature

since multi-output simulation models are quite common in science and engineering applications

[115, 116]. Conventional UQ approaches for multi-output models typically ignore correlations

that might exist among model outputs, and thus usually conduct independent UQ analysis for each

output independently. Clearly, this de-coupling overlooks inherent coupling or interdependence

that may exist among multiple outputs of a single model.

3.1 Methodology

After describing the melt pool FEM based simulation model in Section 3.3.1, we now describe

in details the multivariate statistical framework that will be employed to calibrate that model. This

approach is referred to as calibration of computer models by Kennedy and O’Hagan [52]. We

∗Parts of this section have been reprinted with permission from M. Mahmoudi, G. Tapia, K. Karayagiz, B. Franco,
J. Ma, R. Arroyave, I. Karaman, and A. Elwany, “Multivariate calibration and experimental validation of a 3d finite
element thermal model for laser powder bed fusion metal additive manufacturing,” Integrating Materials and Manu-
facturing Innovation, vol. 7, no. 3, pp. 116–135, 2018. Copyright c© 2018 by Springer-Verlag London Ltd.
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emphasize that although AM is our focus application platform, the framework developed in this

section can be readily generalized to other problems.

3.1.1 Multivariate Surrogate Model

In this section, we build a multivariate surrogate model that replaces the computer model

yS (x,θ) in Equation (1.1). For detailed derivations, the interested reader is encouraged to study

the work by Conti and O’Hagan [117]. Note that, we define the computer model as a function

yS = f (·) that takes as input the control inputs x and the calibration parameters θ, and returns

a q-dimensional response vector yS ∈ Rq. The inputs x and parameters θ lie in some multidi-

mensional spaces X ⊆ Rp and T ⊆ Rt, respectively. Thus, the computer model f is essentially a

mapping f : X × T 7→ Rq. Although f is a deterministic function (that is, if run multiple times

at same input values, it will return the same value for responses), in order to approximate it with a

surrogate model, we can regard f as an stochastic process [117].

We employ GP models that are known for their attractive mathematical and computational

properties [54]. In the simple univariate case, a GP model is a non-parametric statistical model

in which a stochastic process f (·) is assumed to have all of its finite-dimensional distributions

as multivariate normal [118]. Therefore, the joint probability distribution of the outputs from the

stochastic process at any finite set of inputs {x1, . . . ,xn} (assuming f only takes x as inputs for

now) is modeled as an n-dimensional multivariate normal distribution

p (f (x1) , . . . , f (xn)|Φ) ∼MVN n (m,C)

where the mean vectorm is defined by a mean function m (·), and covariance matrixC is defined

by a covariance function c (·, ·), with E [f (x)|Φ] = m (x) and cov [f (xi) , f (xj)|Φ] = c (xi,xj).

The whole distribution is fully defined by some set of hyperparameters Φ. Hence, we denote a

univariate GP by

f (·) | Φ ∼ GP (m (·) , c (·, ·))

Now, generalizing the univariate formulation to a multivariate case, the joint probability distri-
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bution follows a matrix-variate normal distribution

p (f (x1) , . . . , f (xn)|Φ) ∼MVN n,q (m,C) (3.1)

with mean matrix m and cross-covariance matrix C, and fully defined by some set of hyperpa-

rameters Φ. The multivariate q-dimensional GP is denoted as

f (·) | Φ ∼ GPq (m (·) , c (·, ·) Σ) (3.2)

where c (·, ·) is a positive definite correlation function accounting for correlation in the input space

with c (x,x) = 1, and Σ ∈ Rq,q
+ is a positive definite matrix accounting for correlations between

outputs. After this brief digression to set notation, we translate all these definitions into our orig-

inal context, yS = f (x,θ). We build a multivariate GP-based on Equation (3.2), with the i-th

input tuple denoted as (x,θ)i = [xi,1, . . . , xi,p, θi,1, . . . , θi,t]
>. Mean and correlation functions are

defined as follows:

m (x,θ) = B>h (x,θ) (3.3)

c
(

(x,θ)i , (x,θ)j

)
= exp

[
−
(

(x,θ)i − (x,θ)j

)>
R
(

(x,θ)i − (x,θ)j

)]
(3.4)

where h : X × T → Rm is a function (defined by the modeler) that maps the input space to m

basis functions, B = [β1, . . . ,βq] ∈ Rm,q is a matrix of regression coefficients, and R = diag (r)

is a diagonal matrix of positive roughness parameters with r = [r1, . . . , rp, rp+1, . . . , rp+t] ∈ Rp+t
+ .

The roughness parameter vector r explains how rough (or smooth) the function is, i.e. how quickly

its values change across the input domain.

With the choices of linear regression mean function in Equation (3.3), stationary squared expo-

nential correlation function in Equation (3.4), and separable covariance structure (with Σ ∈ Rq,q
+
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accounting for correlations between outputs), the model is fully defined by

Φsim = {B,Σ, r} (3.5)

Under these settings, we run the computer model for several simulations to gather a set of

data that will be used to train and build the surrogate model. There are different approaches to

optimally select the points at which these simulations will be run to generate the training data

set (given the computational burden of the computer model). However, we choose to employ the

Latin Hypercube Sampling (LHS) method given its ability to explore the input space uniformly

and homogeneously. The training data set consists of N points and is denoted by

XS =


(x,θ)1

...

(x,θ)N

 ∈ RN,p+t and Y S =


yS (x,θ)1

...

yS (x,θ)N

 ∈ RN,q

whereXS is an N × (p+ t) input matrix and Y S is an N × q output matrix. It can then be shown,

as presented in Conti and O’Hagan [117], that the conditional posterior distribution of f given r,

after integrating out B and Σ, is a multivariate q-dimensional T Process, such that the probability

distribution it yields is a matrix-variate T distribution:

f (·) |XS,Y S, r ∼ T Pq
(
m? (·) , c? (·, ·) Σ̂, N −m

)
(3.6)

with N −m degrees of freedom (denoted as dof henceforth), and

m? (x,θ) = B̂>h (x,θ) +
(
Y S −HB̂

)>
A−1t (x,θ) (3.7)

c?
(

(x,θ)i , (x,θ)j

)
= c

(
(x,θ)i , (x,θ)j

)
− t> (x,θ)iA

−1t (x,θ)j

+
[
h (x,θ)i −H

>A−1t (x,θ)i
]> (

H>A−1H
)−1 [

h (x,θ)j −H
>A−1t (x,θ)j

]
(3.8)
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where

H> = [h (x,θ)1 , . . . , h (x,θ)N ] ∈ Rm,N

A =
[
c
(

(x,θ)i , (x,θ)j

)]
i,j=1:N

∈ RN,N
+

t> (x,θ)i = [c ((x,θ)i , (x,θ)1) , . . . , c ((x,θ)i , (x,θ)N)] ∈ RN

B̂ =
(
H>A−1H

)−1
H>A−1Y S

Σ̂ = (N −m)−1
(
Y S −HB̂

)>
A−1

(
Y S −HB̂

)

To summarize, the T process defined in Equations (3.6)-(3.8) can be used as a fast surrogate

model for the simulation model. Its mean function m? interpolates the training data
(
XS,Y S

)
exactly and provides an approximation to f (·). For the surrogate model to be only dependent on

the data, we need to integrate out the roughness parameters r. This step is achieved through a

Bayesian approach, for which the posterior distribution of the roughness parameters (again after

proper integration ofB and Σ, see [117]) is given by:

π
(
r
∣∣XS,Y S

)
∝ π (r) |A|−

q
2

∣∣H>A−1H∣∣− q
2

∣∣∣Y S>GY S
∣∣∣−N−m

2
, (3.9)

with

G = A−1 −A−1H
(
H>A−1H

)−1
H>A−1.

Subsequently, we set the prior distribution for r to follow a joint log-logistic distribution as

below:

π (r) =

p+t∏
i=1

(
1 + r2i

)−1
. (3.10)

We estimate posterior distributions of these roughness parameters using the Metropolis Hast-

ings algorithm and select their mode as the values to be used in the surrogate model defined in

Equations (3.6), (3.7) and (3.8). Once the roughness parameters r have been estimated, the sur-
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rogate model in Equation (3.6) is fully defined. At this point, we assess its performance through

k-fold cross validation (CV). CV is a common technique to evaluate the adequacy of predictive

models, including surrogate models, through computing a metric that captures the deviation of

the predictions obtained using the predictive model (the surrogate model in our case) and the true

quantity being predicted (computer model predictions in our case). Put simply, our target to ensure

that predictions obtained using the surrogate model are close to those obtained using the original

computer model. In a CV procedure, we partition the training dataset
(
XS,Y S

)
into k disjoint

partitions. k − 1 of these partitions are used to train the surrogate model, and then predictions are

made on the left-out partition using Equation (3.7). These predictions are then compared with the

computer model predictions. This process is iterated k times, such that at every iteration, a different

partition is left out, and after all k iterations all partitions have been left out once and only once.

Finally, the performance metric is computed. Many metrics have been reported in the literature on

predictive modeling and machine learning. We utilize the well-known mean absolute percentage

error (MAPE) defined as

MAPEj =
1

N

N∑
i=1

∣∣ySi,j − ŷSi,j∣∣ ∀j ∈ {1, . . . , q} ,

where ySi,j is j-th element of the computer model output at input (x,θ)i, and ŷSi,j is the j-th element

of the surrogate model prediction evaluated at the same input (x,θ)i using the estimated values for

r.

If CV results are satisfactory (i.e. MAPE is low), then we can move to the next step of the

calibration procedure in Section 3.1.2. Otherwise, we seek to improve the predictive power of the

surrogate model. More specifically, we run an additional number of computer model simulations,

such that we have a larger training data set that results in a better surrogate model. We achieve

this through an adaptive sampling (AS) technique to select new data points to sample based on

present results. The algorithm devised for this purpose is similar to a grid search, where we

subdivide each dimension from the (p+ t)-dimensional input spatial domain into grids (perhaps
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with different number of divisions per dimension) yielding NAS number of different data points

within the grid,

Xgrid =


(x,θ)grid1

...

(x,θ)gridNAS

 ∈ RNAS,p+t

and calculate the predictive variance for each point based on the probability distribution from

Equation (3.6):

AS =

[
1

q

q∑
j=1

c?
(

(x,θ)gridi , (x,θ)gridi

)
Σ̂j,j

]
i=1:NAS

∈ RNAS
+

where Σ̂j,j is the j-th element in the diagonal of matrix Σ̂.

Elements of the vector AS represent the average predictive variance among all outputs at a

specific input point. The vector is then sorted in descending order, and the corresponding points

for the first 20 elements (with largest average predictive variance) are selected to be evaluated

using the expensive computer model. The underlying hypothesis is that adding these points that

showed high predictive variance to the training data set XS will improve the predictive power of

the surrogate model. We denote the set with these new appended data points byXAS.

In implementing the adaptive sampling procedure as outlined above, we include two filters that

ensure better sampling of new points. The first filter flags points that are very close to one other.

This filter essentially avoids sampling more than one point from within a small sub-set of the input

space, since this is not likely to provide more information. The filter takes the first 20 elements

of the vector AS with largest predictive variance, and selects those that are at least some distance

threshold τAS apart from one another. When a point is flagged and excluded, the next point from

vector AS becomes a candidate to be added toXAS if it satisfies the filter criterion.

The second filter for the AS algorithm addresses the issue of extrapolation. It is well-known

that GP predictive models have less predictive power at regions outside the domain of the training

setXS . Hence, this filter excludes points within vector AS that are located outside of that domain.
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It is important to point out that if the initial selection of design points in the data setXS uniformly

covers the input space (as is the case with Latin Hypercube Design), then this second filter will not

be employed too often.

The AS algorithm can be iteratively conducted until a satisfactory value of the cross validation

predictive error, MAPE, set by the user is achieved.

3.1.2 Multivariate Calibration Model

Once the surrogate model has been adequately constructed, it can now be used in lieu of the

the original computer model in Equation (1.1) to generate sufficiently large number of simulations

needed to conduct calibration of the parameters θ. Some of the steps in developing the following

calibration procedure follow the work of Bhat et al. [119].

We start by elucidating the two remaining terms of the statistical model given in Equation (1.1).

The term δ (x) is a discrepancy or model inadequacy function. This function accounts for factors

that result in deviation between the computer model predictions and the real process being simu-

lated, including missing physics, simplifying assumptions, and numerical errors. The term ε (x)

models the measurement error associated with experimental observations. Note that both of these

terms depend only on control inputs x, since the calibration parameters are not changed or con-

trolled in experiments.

Similar to what was done with the surrogate model in Section 3.1.1, we model δ (·) as a multi-

variate q-dimensional GP,

δ (·) | rδ,σδ ∼ GPq (0, cδ (·, ·) Σδ) (3.11)

with mean function that is equal to 0 for all elements, and a stationary squared exponential corre-

lation function

cδ (xi,xj) = exp
[
− (xi − xj)>Rδ (xi − xj)

]
whereRδ = diag (rδ) is a diagonal matrix of positive roughness parameters with rδ =

[
r
(δ)
1 , . . . , r

(δ)
p

]
∈

Rp
+, and the covariance matrix of the model outputs Σδ = diag (σδ) is a diagonal matrix with pos-

itive variances σδ = [σ1, . . . , σq] ∈ Rq
+.
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The measurement error term ε (·) is also modeled as a multivariate q-dimensional GP,

ε (·) | ψ ∼ GPq (0, cε (·, ·) Σε) (3.12)

with mean function equal to 0 for all elements, and correlation function given by the Kronecker

delta function

cε (xi,xj) =


1 if xi = xj

0 if xi 6= xj

and noise matrix Σε = diag (ψ) with positive noise variances ψ = [ψ1, . . . , ψq] ∈ Rq
+.

Notice that the model introduced in Equation (1.1) involves a summation of three random

processes defined in Equations (3.6), (3.11) and (3.12). Here, we approximate the multivariate

T process (the surrogate model) with a Gaussian Process, so that the summation in the RHS of

Equation (1.1) becomes another Gaussian Process due to the property of addition of statistically

independent Gaussian random variables [120]. This approximation can be justified using an analo-

gous case in a univariate setting. Figure 3.1 shows several univariate T distributions with different

dof, in addition to a standard Normal distribution. It can be seen that as the value of dof increases

(values larger than 10), the T distributions approximate perfectly to the standard Normal distribu-

tion. Therefore, if a T distribution is defined with dof equal to N − m with N > m for some

N ∈ N and m ∈ N, then a T distribution with relative large N − m dof can be approximated

with a Normal distribution. This is the case specially in our setting where the size of the training

dataset for surrogate model N is relative larger than the dimension m from the mean function linear

regression.

With this approximation, the calibration model resulting from Equation (1.1) is a multivariate

q-dimensional GP given by

yE (·) | Φcal ∼ GPq
(
m? (·,θ) , c? (·, ·) Σ̂ + cδ (·, ·) Σδ + cε (·, ·) Σε

)
(3.13)
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Figure 3.1: Approximation of T distributions to a normal distribution. Reprinted with permission.
Copyright c© 2018 by Springer-Verlag London Ltd.

where Φcal = {θ, rδ,σδ,ψ} is the set of hyperparameters that will be estimated (including the

calibration parameters θ).

In order to build the calibration model, we need another data set which is constructed from

experimental observations. The procedure to obtain the experimental data is explained in Section

3.2. We denote this data set as

XE =


xE1

...

xEn

 ∈ Rn,p and Y E =


yE
(
xE1
)

...

yE
(
xEn
)
 ∈ Rn,q

whereXE is an n×p controllable input matrix and yE (x) is the result of the experiment observed

at x, thus Y E is a n×q matrix. It is worth to mention that the size n of this dataset may be different

from simulation dataset size N, and that only control inputs x are used in the context of physical

experiments (as opposed to (x,θ) tuples for both the computer and surrogate models).

For implementation purposes, we rearrange the distribution resulting from Equation (3.13), by

stacking each vector yE
(
xEi
)

and forming a single column vector with length n · q, resulting in
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the following distribution,

p
(
Y E | Φcal,X

E,XS,Y S
)
∼MVN n·q (m?,Σcal) (3.14)

with

Y E =
[
Y E
1,1, . . . , Y

E
1,q, . . . , Y

E
n,1, . . . , Y

E
n,q

]> ∈ Rn·q

m? =
[
m?
(
xE1 ,θ

)
, . . . ,m?

(
xEn ,θ

)]> ∈ Rn·q

Σcal = Ccal
sur ⊗ Σ̂ +Ccal

δ ⊗Σδ +Ccal
ε ⊗Σε ∈ Rn·q,n·q

Ccal
sur =

[
c?
((
xEi ,θ

)
,
(
xEj ,θ

))]
i,j=1:n

∈ Rn,n

Ccal
δ =

[
cδ
(
xEi ,x

E
j

)]
i,j=1:n

∈ Rn,n

Ccal
ε =

[
cε
(
xEi ,x

E
j

)]
i,j=1:n

= In,n ∈ Rn,n

where⊗ denotes the Kronecker matrix product employed to calculate cross-covariance matrix Σcal

that accounts for the spatial dependence between inputs and outputs altogether.

The next step is to estimate the posterior distributions for the calibration parameters and hyper-

parameters. We conduct a Bayesian methodology to achieve this, where the posterior distributions

of the hyperparameters Φcal is given by

θ, rδ,σδ,ψ |XE,Y E,XS,Y S ∝ p
(
Y E | Φcal,X

E,XS,Y S
)
π (θ, rδ,σδ,ψ)

The distributions are computed using the Metropolis Hastings algorithm after adequate selection

of the prior distributions π (θ, rδ,σδ,ψ).

After determining these posterior distributions, the last remaining step is to construct a predic-

tor that can be used to compute model predictions at input settings that have not been previously

simulated or experimentally measured, and we rely on the Kriging technique, also known as the

Best Linear Unbiased Estimator (BLUP) [32].

Let Xpred denote a set of s control inputs xpred
i , that have not been previously simulated or
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experimentally measured

Xpred =


xpred
1

...

xpred
s

 ∈ Rs,p

Then the predictive distribution of model outputs, p
(
Y E

pred

∣∣Xpred,XE,Y E,XS,Y S,Φcal,Φsim

)
,

is an s-dimensional multivariate normal distribution with the following parameters:

• Expected value is given by:

E
[
Y E

pred

∣∣Xpred,XE,Y E,XS,Y S,Φcal,Φsim

]
= m?

pred + Σ0Σ
−1
cal

(
Y E −m?

)
(3.15)

where

m?
pred =

[
m?
(
xpred
1 ,θ

)
, . . . ,m?

(
xpred
s ,θ

)]>
∈ Rs·q

Σ0 = Cpred,cal
sur ⊗ Σ̂ +Cpred,cal

δ ⊗Σδ ∈ Rs·q,n·q

Cpred,cal
sur =

[
c?
((
xpred
i ,θ

)
,
(
xEj ,θ

))]
i=1:s,j=1:n

∈ Rs,n

Cpred,cal
δ =

[
cδ

(
xpred
i ,xEj

)]
i=1:s,j=1:n

∈ Rs,n

• Variance is given by

Var
[
Y E

pred

∣∣Xpred,XE,Y E,XS,Y S,Φcal,Φsim

]
= Σpred −Σ0Σ

−1
calΣ

>
0 , (3.16)
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where

Σpred = Cpred
sur ⊗ Σ̂ +Cpred

δ ⊗Σδ +Cpred
ε ⊗Σε ∈ Rs·q,s·q

Cpred
sur =

[
c?
((
xpred
i ,θ

)
,
(
xpred
j ,θ

))]
i,j=1:s

∈ Rs,s

Cpred
δ =

[
cδ

(
xpred
i ,xpred

j

)]
i,j=1:s

∈ Rs,s

Cpred
ε =

[
cε

(
xpred
i ,xpred

j

)]
i,j=1:s

∈ Rs,s

To assess the performance of the calibrated model, a cross validation (CV) procedure similar to the

one described for the surrogate model in Section 3.1.1 can be used. The mean absolute percentage

error (MAPE) can be computed using Equations (3.15) and (3.16). The key difference is the fact

that in this case, simulations from the calibrated surrogate model are compared with experimental

measurements, in contrast to comparing surrogate model predictions with the computer model

predictions.

3.2 Experimental setup

As mentioned in Section ??, experimental data is needed to calibrate the computer model.

LHS design was also used to uniformly explore the control input space X . A total of n = 24

different configurations of x were determined, which constitute XE . Next, the fabrication and

characterization were conducted to obtain the corresponding outputs Y E .

3.2.1 Melt pool depth and width

Single tracks of length 20 mm were fabricated on a 30µm powder-bed using a ProX 100 DMP

commercial L-PBF system by 3D Systems. The system is equipped with a Gaussian profile fiber

laser beam with wavelength λ = 1070 nm and beam spot size of approximately 70µm-diameter.

Argon was used as inert protective atmosphere during fabrication. The raw Ti-6Al-4V powder

was produced by LPW Technology. Single tracks were built on a Ti-6Al-4V substrate, which was

subsequently cut with a Buehler precision saw and mounted for cross-section analysis. Metal-

lographic grinding was performed with silicon carbide papers (320 to 600 grit size) followed by
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manual polishing with 1µm diamond suspension and final precision polishing with colloidal silica

suspension. To make melt pool boundary lines more visible, chemical etching was performed us-

ing a 3:1 volume mixture of HCl and HNO3 solution. Melt pool depth and width were measured

using optical microscopy (Nikon Optiphot - POL) and verified with scanning electron microscopy

(FEG-SEM/FIB TESCAN LYRA3). Representative SEM images that were used for measuring

the melt pool depth and width are shown in Figure 3.2. We visually ascertain from the figure that

both higher laser powers and lower scan speed increase the melt pool size; however, the impact of

laser speed on the melt pool dimensions is higher, primarily due to the low maximum power on the

system (50 W).

Figure 3.2: Representative SEM images used for measuring the melt pool depth and width.
Reprinted with permission. Copyright c© 2018 by Springer-Verlag London Ltd.
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3.2.2 Melt pool peak temperature

The L-PBF system was custom integrated with a thermal imaging sensor to conduct in-situ

monitoring of melt pool temperature during fabrication. The sensor is a two-wavelength imaging

pyrometer (ThermaVIZ R© by Stratonics Inc.) that consists of two high resolution CMOS imaging

detectors. Both detectors have a field of view (FOV) with 1300× 1000 pixel resolution mapped to

a 30× 27 mm area, which yields a resolution of 24µm per pixel. Figure 3.3 shows the pyrometer

integrated inside the ProX100 DMP build chamber. Experimental Calibration of the pyrometer

(which is to be distinguished from statistical calibration of the model) was performed in-situ after

integration using a tungsten filament (halogen tungsten-lamp) for a range of temperatures between

1500− 2500 ◦C. By fabricating the single tracks within the FOV of the pyrometer, thermal images

of the melt pools were taken at approximately 250 Hz. These images were used to compute the

melt pool peak temperature.

Figure 3.3: The two-wavelength pyrometer used for temperature measurement mounted inside the
L-PBF machine. Reprinted with permission. Copyright c© 2018 by Springer-Verlag London Ltd.

A sample melt pool temperature map taken from a representative thermal image is shown

Figure 3.4 where X and Y coordinates are pixels resolved by the pyrometer and the color scale
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represents temperature. The temperature map shows zero for temperature values below 1500 ◦C

that fall outside the calibration range of the pyrometer.

Figure 3.4: Temperature map of a sample melt pool captured using the pyrometer. Reprinted with
permission. Copyright c© 2018 by Springer-Verlag London Ltd.

3.3 Multivariate calibration of Ti-6Al-4V single tracks

In this section we link thermal models to experiments via a computationally efficient surrogate

modeling approach based on multivariate Gaussian processes (MVGPs). The MVGPs are then

used to calibrate the free parameters of the multi-physics models against experiments, sidestepping

the use of prohibitively expensive Monte Carlo-based calibration. This framework thus makes it

possible to efficiently evaluate the impact of varying process parameter inputs on the characteris-

tics of the melt pool during AM. We demonstrate the framework on the calibration of a thermal

model for Laser-Powder Bed Fusion AM of Ti-6Al-4V against experiments carried out over a wide

window in the process parameter space. While this work deals with problems related to AM, its

applicability is wider as the proposed framework could potentially be used in many other ICME-
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based problems where it is essential to link expensive computational materials science models to

available experimental data.

3.3.1 Melt pool Modeling through FEM based thermal modeling

Formally, we define the melt pool as the region in the laser-powder interface at which metal

powder particles fuse to form a pool of molten metal that eventually solidifies after the laser beam

moves to another location. In this paper, we developed a three-dimensional FEM based thermal

model implemented in COMSOL Multiphysics software to study melt pool characteristics, includ-

ing geometry and thermal profiles, during the fabrication of single tracks printed in a thin layer of

powder on top of a solid substrate. The powder layer was assumed as a 30µm continuum medium

over a 1 mm thick substrate. Ti-6Al-4V alloy was selected as the material for both the powder layer

and the substrate. To ensure accurate analysis, a fine mesh element was used for the laser-powder

interaction zones, while a coarser element was employed for the rest of the simulation domain.

Second-order quadrilateral Lagrange elements were used for the entire domain, while the 30µm

fine elements were found suitable for the powder-bed based on the mesh convergence analysis.

Single track simulations were run for a 3 mm-long track. Figure 3.5 shows a sample output of the

model with melt pool temperature profiles [1].

An appreciable number of FEM based thermal models have been developed to predict the

thermal history and melt pool geometry during L-PBF. In these works, the effects of process pa-

rameters (e.g., laser power, scanning velocity, hatch spacing), material properties, and powder

properties (e.g., particle size distribution, layer thickness) have been investigated. For these melt

pool models, an appropriate powder-bed model should be employed. Modeling of the powder-bed

has been done in two different ways: powder-scale (refer to [33, 121, 122, 99, 123, 124, 125, 126])

and continuum-scale (refer to [127, 128, 96, 129, 130, 131, 97, 132]). Although the first approach

enables simulating the size variations and the local changes in the melt pool such as incomplete

melting or formation of pores [33, 121], it is computationally expensive such that it is almost im-

possible to use it for full-part simulation. The latter approach, on the other hand, has been widely

employed due to its relatively low computational cost and ease of implementation. While some

54



Figure 3.5: Sample output of the melt pool model for Ti-6Al-4V powder on a Ti-6Al-4V sub-
strate, showing the melt pool temperature profiles in three-dimensions. Reprinted with permission.
Copyright c© 2018 by Springer-Verlag London Ltd. [1]

studies have taken fluid dynamics effects in the melt pool into account (e.g., Marangoni convection

in [124, 133, 134]), a significant number of works in the literature have neglected those effects to

simplify the model (see for example [96, 129, 130, 132]). The change in volume during melting of

the powder [97, 135, 136] and layer built-up were modeled in some studies [128, 131, 137, 138].

We refer the interested readers to review papers on numerical modeling and simulation of AM for

more information [139, 140, 141].

The model used in this work accounts for several heat transfer mechanisms that take place dur-

ing metal L-PBF. In particular, conduction, convection, radiation, phase transitions (namely, solid-

to-liquid and liquid-to-gas transitions), latent heat of melting/evaporation, temperature dependent

material properties, and the effective thermo-physical properties for the powder layer were consid-

ered. Furthermore, heat loss due to evaporation was incorporated by employing a simple approach

based on the implementation of a heat sink on the powder surface. The laser beam was defined as

a two-dimensional Gaussian distributed moving heat source. The initial temperature of the build

was set to the ambient temperature (298 K). Natural convection, radiation and evaporation were
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employed as boundary conditions on the powder surface, while a symmetry boundary condition

was applied along the scanning path to reduce the computational cost. All other boundaries were

maintained at the ambient temperature.

Since the thermal model takes different physical mechanisms into account, there are multiple

materials parameters that influence the model results, and thus, the predictive capabilities of the

model. After preliminary simulation experiments, the following parameters were identified as

most significant on variability in model outputs: (1) laser absorptivity, (2) powder-bed porosity,

and (3) thermal conductivity of the liquid. It is known that the laser absorptivity is a function

of temperature and has different values for powder, solid and liquid materials. There are several

factors (e.g., beam intensity, wavelength, temperature, oxidation, powder size and distribution)

affecting the absorptivity of the material. Therefore, it is difficult to experimentally measure it.

Note that while low values of absorptivity result in insufficient energy input and incomplete melting

of the powder particles, very high values lead to overheating of the particles, hence, over estimation

of the melt pool size.

Moreover, to account for the effect of Marangoni convection on the melt pool size and geome-

try, the thermal conductivity of liquid was increased according to [142, 143, 129]. However, there

is no consensus in the community on the level of this increase. Powder porosity is used as an input

to predict the effective thermo-physical properties (thermal conductivity, density, heat capacity) of

the powder layer. Therefore, it has a significant influence on the predicted thermal distribution.

Considering the aforementioned aspects, a need for the calibration of these three parameters was

realized.

The statistical calibration procedure is conducted on the FEM based thermal model described in

Section 3.3.1. Following our definitions, the thermal model represents the computer model, and the

two terms will be used interchangeably in the remainder of the text. This computer model predicts

the three-dimensional thermal profiles of the moving melt pool during L-PBF AM. It is reported in

the literature that the melt pool temperature and geometry (depth and width) are important factors

influencing the outcome of the L-PBF process [59]. The inputs and outputs of the computer model
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are described as follows:

• Two control inputs

– x1: laser power (W)

– x2: laser scan speed (mm/s)

• Three calibration parameters

– θ1: powder-bed porosity (%)

– θ2: laser absorptivity(%)

– θ3: coefficient of thermal conductivity for liquid ( W
m·K )

• Three model outputs (or quantities of interest, QoIs)

– yS1 , y
E
1 : melt pool depth into the solid substrate (µm)

– yS2 , y
E
2 : melt pool width (µm)

– yS3 , y
E
3 : melt pool peak temperature (◦C).

The chosen control inputs (laser power and speed) are known to have the most significant effect

on the melt pool characteristics, and are commonly studied by AM researchers, see for example

[32]. In terms of the notation defined in Section ??, we have the length of the control inputs vec-

tor p = 2, and lengths of the calibration parameters vector and computer model outputs vector

t = q = 3. We test the performance of the proposed multivariate calibration procedure through

studying the melt pool conditions while fabricating single track of Ti-6Al-4V. We derive the poste-

rior distributions of the calibration parameters θ using a synthesis of computer model simulations

denoted by matricesXS and Y S , and experimental observations denoted by matricesXE and Y E .

We start by constructing a GP-based surrogate model using a data set of computer model simula-

tions (Section 3.3.2). Next, we conduct manufacturing and characterization experiments to collect

the data required for calibrating the model (Section 3.2). Finally, we conduct model calibration

and prediction (see Section 3.3.3).

57



3.3.2 Building the surrogate model

Since L-PBF processes involve complicated physical phenomena with different forms of heat

and mass transfer and material phase transitions, the run-times for computer simulation models are

typically long. This necessitates the use of computationally efficient surrogate models, both for the

purpose of conducting calibration or for process planning and optimization. In the present case,

the execution time for the FEM based thermal model developed was dependent on the model in-

puts (control inputs and calibration parameters). From initial test simulation runs, execution times

ranged between 30 minutes to 5 hours. Hence, performing a traditional Markov chain Monte Carlo

(MCMC) with 50,000 iterations would take approximately 800 weeks. Furthermore, MCMC sam-

pling strategies preclude the use of embarrassingly parallel modes of execution to improve com-

putational time. Instead, we use the two-stage surrogate-modeling approach explained in Section

3.1.1 to address this challenge.

To build the surrogate model, a training data set from the original FEM based thermal model

is first needed. This data set consists of the two matrices XS and Y S introduced earlier, rep-

resenting simulation inputs and outputs, respectively. We use the Latin Hypercube sampling

(LHS) strategy to uniformly select design points from the control input and calibration parame-

ters space, X × T . The lower and upper bounds for the control input space X was chosen as

Xmin = {30 W, 80 mm/s}, and Xmax = {500 W, 400 mm/s}. These bounds were determined

based on prior knowledge of the commercial metal L-PBF system used in this study and machine

specifications. The lower and upper bounds for the calibration parameter space were chosen as

Tmin = {20%, 40%, 1}, and Tmax = {70%, 90%, 25}. These bounds were specified by the AM

researchers based on previous values reported in the literature to construct an initial region within

which the true values of θ are believed to lie. A simulation data set of size N = 130 was generated

over the X × T space. Hence, XS is an N × (p + t) matrix with 130 different and uniformly

selected (x,θ) combinations, and Y S is an N × q with elements representing outputs of the ther-

mal model for input XS . Code parallelization was conducted on a 843-node high-performance

supercomputer.
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Recall from Equation 3.6 that the conditional posterior distribution of f(·) given the simulation

training data (XS,Y S) and roughness parameters r is a q-variate T Process. The Bayesian ap-

proach was then used to estimate the roughness parameters. To ensure their positivity, log-logistic

prior distributions for the elements of r with both scale and shape parameters equal to 1 were used

(see Equation 3.10). Next, using the single-component Metropolis-Hastings algorithm, the poste-

rior distributions of r were generated after 50,000 iterations with 25% burn-in period and thinning

every fifth sample. Figure 3.6 shows the histograms and kernel density estimates of the posterior

distributions for the roughness parameters. The posteriors are very informative, and hence the

modes were used as the estimates for the roughness parameters r. At this stage, the surrogate

model is built and ready to use, since essentially when the roughness parameters have been esti-

mated, the output of the computer model at any given combination of (x,θ) can be estimated using

Equation 3.7. A confidence interval for this estimate can also be determined using Equation 3.8.

It is necessary to validate and assess the performance of the surrogate model once the hyper-

parameters Φsim are estimated. A 10-fold cross validation was performed for the surrogate model

and the results are displayed in Figures 3.7a, 3.7b, and 3.7c, corresponding to the the three model

outputs: melt pool depth, width, and peak temperature, respectively. In the plots, the horizontal

axes represent the outputs of the computer simulation model, while the vertical axes show the pre-

dicted outputs using the surrogate model with the bars representing confidence intervals for these

predictions. In other words, the red line represents the ideal case with surrogate model predictions

E[f(x)|XS,Y S,θ] being in full agreement with computer model simulations yS(x,θ).

It can be visually seen that the predictive performance of the surrogate model is satisfactory.

For a quantitative assessment, the computed MAPE values for the three outputs are reported in

Table 3.1, also indicating satisfactory performance. Note that since the predictive accuracy, rep-

resented by MAPE, was deemed acceptable, there was no need for further sampling using the

adaptive sampling technique described in Section 3.1.1.
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Figure 3.6: Histograms and kernel density estimates of the posterior distributions for the roughness
parameters r for the surrogate model. Reprinted with permission. Copyright c© 2018 by Springer-
Verlag London Ltd.
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Figure 3.7: Results of a 10-fold cross validation of the surrogate model for (a) melt pool depth,
(b) melt pool width, and (c) melt pool peak temperature. Reprinted with permission. Copyright c©
2018 by Springer-Verlag London Ltd.
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Table 3.1: Mean absolute predictive error (MAPE) of the surrogate model for the three outputs.
Reused with permission. Copyright c© 2018 by Springer-Verlag London Ltd.

Melt pool property Depth Width Peak Temperature

Observed range in simulation 51.3µm 147.8µm 1284 K
Mean absolute predictive error (MAPE) 2.01µm 8.05µm 56.5 K
MAPE as % of the simulation range 4% 5% 4%

3.3.3 Performance of the calibration

With the surrogate model fully defined and the experimental measurements conducted, we are

now able to estimate the calibration parameters θ, as well as the remaining hyperparameters Φcal

required for the statistical model (rδ,σδ, and ψ, introduced in Equations 1.1, 3.11, and 3.12). As

instructed in Section 3.1.2, we use the Bayesian framework and Metropolis-Hastings MCMC to

estimate the set of hyperparameters Φcal = {θ, rδ,σδ,ψ}. The following prior distributions are

selected for the hyperparameters:

θi ∼ Uniform(αθi , β
θ
i )

rδi ∼ Log-Logistic(α = 1, β = 1)

σi ∼ Inverse-Gamma(α = 2, β = 1)

ψi ∼ Inverse-Gamma(α = 2, β = 1)

Note that the priors for the calibration parameters θi are all uniform and hence non-informative

to avoid bias in estimation, and since no information beyond the suggested lower and upper bounds

were available. Examples of constructing informative prior distributions using additional prior

knowledge can be found in [144, 145]. The lower and upper bounds for these prior distribu-

tions, (αθi , β
θ
i ), were set equal to the lower and upper bounds of the parameters space Tmin =

{20%, 40%, 1}, and Tmax = {70%, 90%, 25}. For the roughness parameters rδi , log-logistic priors

were used as recommended by [117]. For the variance parameters σi and ψi, inverse gamma priors
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Table 3.2: Posterior distribution parameters for the calibration parameters. Reused with permis-
sion. Copyright c© 2018 by Springer-Verlag London Ltd.

Parameter Posterior mean Posterior mode Posterior std. dev.

Powder porosity, θ1 0.423 0.400 0.112
Laser absorptivity, θ2 0.782 0.782 0.066
Coefficient of thermal 6.727 6.709 0.922
conductivity for liquid, θ3

are selected because they represent conjugate priors for the multivariate normal likelihood function

in our model.

Similar to Section 3.3.2, single-component Metropolis-Hastings procedure was used to com-

pute the posterior distributions for the hyperparameters. Figure 3.8 shows the histograms and

kernel density estimates for these parameters after 100,000 MCMC iterations with 25% burn-in

period and thinning every fifth sample. In the plots, we observe unimodal and well-informative

posteriors for all of the calibration parameters with θ1 and θ3 showing symmetric density functions

and θ2 showing a density function skewed to the right. Table 3.2 reports the posterior mean, mode,

and standard deviation for the posterior distributions of the calibration parameters.

Porosity, θ1, is used to calculate the effective thermo-physical properties of the powder-bed

(i.e., thermal conductivity and density). It was observed during simulations that by changing the

porosity from 0.3 to 0.5 the thermal conductivity of the powder changes up to 2 W
m·K , which leads to

an insignificant change in the thermal history and only a few microns change in the melt pool size.

Thus, by considering the variability in experimental measurements for melt pool dimensions, this

change becomes negligible, and the wide nature of the posterior distribution for θ1 is physically

consistent. Furthermore, a posterior mean of 0.423 is reasonable since it agrees with the reported

range of porosity for similar powder sizes and layer thicknesses, see [146, 143].

The posterior distribution of absorptivity (θ2) shows a more informative posterior distribution

with mean of 0.782. This value demonstrates reasonable agreement with reported experimental

results in the literature [147, 148]. However, considering the difficulties associated with experi-
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Figure 3.8: Histograms and kernel density estimates of the posterior distributions for calibration
parameters (a) θ1: laser absorptivity, (b) θ2: powder-bed porosity, and (c) θ3: thermal conductivity
of the liquid. Reprinted with permission. Copyright c© 2018 by Springer-Verlag London Ltd.
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mentally measuring absorptivity due to its dependence on multiple parameters (i.e., wavelength,

temperature, oxidation, powder size, powder distribution, powder porosity), these experimental

results might involve high uncertainty. Therefore, we confidently agree that the estimated dis-

tribution for absorptivity is is consistent with the underlying physical phenomena controlling the

interactions between the laser and the powder bed.

The narrow range of the posterior distribution of θ3 can be attributed to its significant effect

on the thermal profile and the melt pool size. A unit increase in the liquid thermal conductivity

coefficient might lead to a change on the order of 100 K in the thermal history and in a change

between 5 to 10µm in the melt pool size. Additionally, if extremely high values are used for

this parameter, the applied energy would be rapidly transferred to the surroundings and the energy

input will reduce, thus the melt pool peak temperature would decrease in an unrealistic manner.

Therefore, only a small region of this parameter results in physically meaningful simulations,

explaining the narrow posterior distribution.

Next, we use the predictive distributions from Equation 3.15 to assess the performance of

the calibrated model via a 6-fold cross validation. Figure 3.9 displays the results of the 6-fold

cross validation for each of the three outputs yi. In the plots, the horizontal axes represent ex-

perimental measurements, while the vertical axes are the predicted outputs using the calibrated

model with the bars representing the confidence intervals for the predictions. In other words,

each point on the plots compares the experiment yE(x,θ) versus the calibrated model prediction

E[yP (x)|XE,Y E,XS,Y S,θ∗], and the red straight line is a reference line representing ideal pre-

dictions.

Upon visual inspection, the plots qualitatively show acceptable predictive performance for y1

(melt pool depth) and y2 (melt pool width), but less accurate predictions for y3 (peak temperature),

particularly in the case with too low and too high values of y3. Quantitatively, the error metric

MAPE for each output are reported in Table 3.3. We notice that the MAPEs for melt pool depth

and width, y1 and y2, are relatively low compared to the full range of simulations: 5% and 3%,

respectively. These results show that the calibration model is effectively correcting the simula-
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Figure 3.9: Results of the 6-fold cross validation for the predictions using the calibrated model for
(a) y1: melt pool depth, (b) y2: melt pool width, and (c) y3: melt pool peak temperature. Reprinted
with permission. Copyright c© 2018 by Springer-Verlag London Ltd.
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Table 3.3: Mean absolute predictive error (MAPE) of the predictions using the calibrated model.
Reused with permission. Copyright c© 2018 by Springer-Verlag London Ltd.

Melt pool property Depth Width Peak Temperature

Mean absolute predictive error (MAPE) 2.42µm 4.93µm 159.5 K
MAPE as % of the experimental range 5% 3% 12%

tion model output when we use the Kriging technique in Equation 3.15. However, the predictions

for melt pool peak temperature, y3, show a higher value of MAPE (12% of the simulation range)

compared to the predictions for melt pool depth and width. We believe that this is due to the in-

herent high uncertainty associated with experimental temperature measurements using contactless

temperature measurement through pyrometry [60]. The uncertainty in the temperature data can be

measured by computing its standard deviation. The average standard deviation of the experimental

measurements for y1, y2, and y3 are 3.03µm, 8.14µm, and 306.3 ◦C, respectively. We notice low

standard deviations for y1 and y2 (6% of the simulation ranges), in contrast to a relatively high

standard deviation for y3 (24% of the simulation range). This is the likely explanation for the

high MAPE associated with the predictions of y3 due to high measurement noise, which signals

the need for improving existing measurement techniques or developing new sensors with lower

measurement noise.

To support our argument that uncertainty in experimental temperature measurements explain

the high reported value of MAPE for y3, we re-implemented the multivariate calibration procedure

with only the melt pool depth and width (y1 and y2, respectively) as model outputs. In other words,

we excluded the melt pool temperature y3 as a model output. Figure 3.10 shows the results of

the 6-fold cross validation for this calibrated model. We observe that that the cross validation

plots show improvement in predictive performance, indicated by more proximity of the blue data

points to the red line, narrower confidence intervals, and lower MAPE error values of 2.42µm and

4.96µm for y1 and y2, respectively. This both supports our claim regarding measurement errors

associated with temperature measurements, and also demonstrates satisfactory performance of the
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calibrated model.
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Figure 3.10: Results of the 6-fold cross validation for the predictions using the calibrated model
with only two outputs (a) y1, (b) y2. Reprinted with permission. Copyright c© 2018 by Springer-
Verlag London Ltd.
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4. CALIBRATION OF HIERARCHICAL COMPUTER MODELS

The body of literature on statistical calibration of a single computer model is rich, many of

them use the so-called two-stage framework by Kennedy and O’Hagan [52]. However, in most

engineering problems, the processes are often described not by a single computer model, but by a

system of computer models. Many new problems arise when one decides to perform uncertainty

quantification (UQ) for a complex system with multiple simulation models. A limited number

of research works have investigated the problem of UQ for multiple models, see for example

[149, 150, 151, 152, 153]. Additionally, in most cases the models predict multiple quantities of

interest (QoI’s) rather than merely predicting a single scalar QoI [117, 154], and portions of these

QoI’s are often unobservable, i.e. no direct experimental measurement can be acquired for the

purpose of validation and calibration. Figure 4.1 shows a schematic of a network of integrated

computational materials models. The network is used to predict the performance of an additive

manufacturing process using various simulation models that are connected through their input and

output variables.

In our work, we propose using Bayesian networks, which enables us to handle the challenge

of statistical calibration of multi-model systems with unobservable variables. Using a BN, we

can have a UQ framework for “a system of computer simulation models” for analyses in two

directions: (1) forward and (2) inverse. The BN aggregates information from all available sources

(e.g., models, data, etc.) to quantify the uncertainty in the final system QoI [152, 155].

4.1 Hierarchical Models

The following challenges are identified when conducting UQ for engineering systems. First,

the system is not analyzed using a single simulation model, but using multiple hierarchically built

models to analyze a final quantity of interest (QoI) [149]. Second, the models predict a multiple

QoI’s – sometimes functional – rather than merely predicting a single scalar QoI [117, 154]. Last

but not least, portions of QoI’s are often unobservable, i.e. no direct experimental measurement can
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Figure 4.1: Hierarchical modeling in LPBF

be acquired for the purpose of validation and calibration. In our work, we propose using Bayesian

networks, which enables us to handle the aforementioned challenges. Using a BN, we can have a

UQ framework for “a system of computer simulation models” for analyses in two directions: (1)

forward and (2) inverse. The BN aggregates information from all available sources (e.g., models,

data, etc.) to quantify the uncertainty in the final system QoI [152, 155].

4.1.1 UQ for hierarchical models

In this section we develop a framework for formal UQ for a system of L-PBF simulation models

by utilizing Bayesian networks explained in Section 4.1. The assumption here is that these models

– regardless of the number of them – are integrated in a hierarchical fashion. Hence, no feedback is

present between the variables. Note that although the models are connected through their input and

output variables, often an intermediate data processing is needed in order for outputs of a specific

model to be used as inputs to another model. This additional data processing step can be either

due to the different time and length scales that each model work with, or different data structure

that each model uses. Figure 4.2 shows an example of two L-PBF models in which the complete
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coupling cannot be done without a series of intermediate data processing.

Figure 4.2: Schematic showing the process of coupling a melt pool model with a solidification
(phase field) model using the intermediate data processing

The first model (melt pool model) in Fig. 4.2 produces outputs the temperature as a function

of location and time T (x, y, z, t) for a specific geometric domain in the part. This temperature

information then needs to be expanded for the whole additively manufactured part using the part

symmetry. Next, the temperatures at specific points of a 2D plane can be used as inputs and

boundary conditions Ti(x, y, t) for the second model (phase field model).

4.2 Methodology

In this section we describe our methodology to solve a problem which arises in many engi-

neering settings including metal additive manufacturing. Mathematical examples are provided to

demonstrate the performance of the proposed methodology.

4.2.1 Bayesian calibration of hierarchical models

Consider a complex process for which modeling and analysis is done usingN multiple physics-

based computer simulation models. We denote each model by Mi, i = 1, · · · , N . Each model Mi

takes as input two distinct vectors: (1) a vector of control inputs, denoted by xi, and (2) a vector

of calibration parameters, θi. The true QoI’s that each model aims to estimate is denoted by yi,

and the vector of predictions generated by running the model Mi is denoted by ŷi. The models are

connected hierarchically, which means that the outputs of some of the models are used as inputs to

some other models. Figure 4.3 shows a graph for a sample network consisted of four simulation

71



models. It can be seen that only part of the output of M1 – denoted by ŷ1b – has been used as input

to M2. Similarly, we notice that outs of both M2 and M3 have been used as inputs to M4. The final

QoI that the system aims to predict is y4.

Figure 4.3: Graph of a sample hierarchical network of simulation models

Statistical calibration of the physics-based models using experimental observations is a vital

task without which one cannot confidently rely on the simulation model predictions. When dealing

with hierarchical models, an efficient approach for simultaneous calibration of multiple models

is to use a Bayesian network (BN), see for example [149, 152]. BN is a tool that captures the

relationships between variables and parameters in a network of models using a directed graph and

conditional probabilities [156].

We proceed with briefly reviewing the mechanics of calibrating a hierarchical system consisted

of two computer models using a BN. Consider a process that can be modeled using two computer

models M1 and M2 that are used hierarchically as follows: the first model M1 takes vector x as the

control input and θ1 as the calibration parameter. Outputs of M1 can be split into two vectors of

observable and unobservable quantities ŷ1Q and ŷ1U , respectively. The output y1U is unobservable

in the sense that experimental observations needed for calibration is not available. The reason for

this lack of experimental data can be due to technological limitations or other considerations such

as cost. For the observable output y1Q, we have the experimental dataset D1Q. The second model
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M2 takes vectors ŷ1U as input and θ2 as the calibration parameters. The output of M2 is the vector

ŷ2, which is observed by the dataset D2. The Bayesian network for this two-model system is

shown in Figure 4.4.

Figure 4.4: Bayesian network for a two-model system with unobservable variables

Notice that in the network of Figure 4.4, additional nodes of ε1Q and δ1Q are added for the first

model M1. Similarly, nodes ε2 and δ2 are added for M2. The reason for these additional nodes is

that the Bayesian calibration model by Kennedy and O’Hagan [52] requires a model inadequacy

function δ(·) with hyperparameter vector ψ (see [109]), along with a zero-mean measurement error

ε with unknown variance σ2 for each experimental dataset. We have:

y1Q = ŷ1Q (x;θ1) + δ1Q(x) + ε1Q (4.1)

y2 = ŷ2 (y1U ;θ2) + δ2(y1U) + ε2. (4.2)

We define the set of network parameters Φ =
{
θ1,θ2,ψ1Q,ψ2, σ

2
1Q, σ

2
2

}
. It follows that the

posterior probability density function of Φ is proportional to the joint likelihood L(D1Q,D2|Φ)

multiplied by the prior density function π(Φ). Assuming independent datasets we get two separa-

ble likelihoods:
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P (Φ|D1Q,D2) ∝ π(Φ)L(D1Q,D2|Φ) = π(Φ)L(D1Q|Φ)L(D2|Φ) (4.3)

π(Φ) = π(θ1)π(θ2)π(ψ1Q)π(ψ2)π(σ2
1Q)π(σ2

2) (4.4)

Equation 4.4 is simply due to the assumption of independence among the parameters. Through-

out this report, we conduct Bayesian updating to estimate the network parameters Φ using Metropolis-

Hastings sampling.

4.2.2 Handling lack-of-data

Here, we introduce a auxiliary variable ξ2 to account for the lack of data (knowledge) about

y1U . We use the Kenendy and O’Hagan’s tradition and assume this variable to follow a Gaussian

process with mean zero and some covariance structure. Then, using the data about y2, we would

like to make inference about the hyperparameters of ξ2. The network corresponding to this example

is shown in Figure 4.5.

Figure 4.5: Bayesian network of a two-model system with unobservable response for model 1
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For our example, we rewrite the equations for each model:

y1 =

y1Q
y1U

 =

ŷ1Q (x, θ1) + ε

ŷ1U (x, θ1) + ε

 , (4.5)

y2 = ŷ2 (y1U , θ2) + ξ2(y1U) + ε. (4.6)

Next, we write down the joint probability distribution of the network f(U) as follows.

f(U) = π(θ1) · π(θ2) · π(rξ) · π
(
σ2
ξ

)
· p (D1Q|y1Q) · p (D2|y2) . (4.7)

For the auxiliary variable ξt, we assume a zero-mean Gaussian distribution with squared expo-

nential (SE) covariance structure as follows.

ξt ∼ N (0,Σξ) (4.8)

Σξ = [Cξ(xi,xj)]i,j =
[
σ2
ξexp

(
− (xi − xj)T rξ (xi − xj)

)]
i,j

(4.9)

Following the KO’s tradition, we assume a zero-mean Gaussian distribution for the measure-

ment errors ε1Q and ε2. In a general multi-dimensional setting we get

ε ∼ N (0,Σε) (4.10)

Σε = σ2
εI. (4.11)

We denote the tuple of hyperparameters with Ψ =
(
σ2
ξ , rξ

)
. The following prior distributions

are used for the calibration parameters and the hyperparameters.

σ2
ξ ∼ inverse-gamma(α = 2, β = 1) (4.12)

rξ ∼ log-normal(α = 1, β = 1) (4.13)
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4.2.2.1 Prediction

Now that the estimates for all the parameters are known, we use the kriging formula and cross-

validate the calibrated model. Consider we want to predict the output of S new inputs; hence XP

is of size S × κ. For computing the output Y P , we essentially use the experimental values in

addition to running the simulation with calibrated set of parameters θ∗. We have:

E[Y P |Y E] = µ(XP ) + ΣPE(ΣEE)−1(Y E − µ(XE)), (4.14)

where:

µ(XP ) = ŷ2(X
P ;θ∗2) (4.15)

ΣPE = [Cξ(x
P
i ,x

E
j ; Ψ∗)] i=1...S

j=1...N2

, (4.16)

ΣEE = Σε + Σξ = Σε + [Cξ(x
E
i ,x

E
j ; Ψ∗)]i=1...N2

j=1...N2

. (4.17)

4.2.3 Illustrative example

In this section, we conduct Bayesian multi-level calibration for a mathematical example. In-

stead of using simulation models, we employ analytical functions according to the Figure 4.5.

Briefly, the first model has two responses y1Q and y1U that are observable and unobservable, re-

spectively. The second model has a single response y2, which is observable. These response are

become computation nodes (ŷ1Q, ŷ1U , ŷ2) according to the following polynomial functions:

ŷ1Q(x; θ1) = c1x+ θ1 (4.18)

ŷ1U(x; θ1) = x2 + θ21 (4.19)

ŷ2(y1U ; θ2) = c2(θ
2
2 + y21U) + θ2. (4.20)
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Figure 4.6: Histograms and kernel density estimates of the posterior distributions for the example
parameters and hyperparameters

Using single-component Metropolis-Hastings algorithm, the posterior distributions of parame-

ters θ1 and θ2 along with the hyperparameters σ2
δ and rδ that are defined in Equations 4.7-4.10 are

computed after 20,000 iterations with 25% burn-in period and thinning every fifth sample. Figure

4.6 shows the histograms and kernel density estimates of the posterior distributions for θ1, θ2, σ2
δ ,

and rδ. Note that in this example, we do not estimate the measurement error; instead, we assume

that it is known and we use it in generating synthetic data for the example.

Given a reasonable measurement error, the model performance is excellent. The posterior

distribution of the θ1 has a mode of 1.15, which is very close to the true value of 1.20. The

posterior distribution of the θ2 is informative with mode 0.72, while the true value of θ2 is 0.50.

However, for prediction purposes we use the estimates of ψξ to correct for lack of data. Figure

4.7 shows a 10-fold cross-validation when predicting y2. It can be seen that the auxiliary variable

introduced in the model appropriately adjusts the predictions and results in high accuracy.
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Figure 4.7: Cross validation for M2

4.3 Case Study of LPBF

In this section we apply the model presented in Section 4.2.2 to a real-world problem related

to LPBF, where calibrating hierarchical models is needed. In general, LPBF is a complex process

that many researchers have been studying and developing computer simulation models for, see for

example [157, 33, 158]. The complexity of LPBF requires modeling and simulation for different

parts of the process and at different scales, as schematically suggested by the hierarchical network

of simulation models in Figure 4.1. Indeed, systematic calibration and uncertainty quantification of

model parameters for this network is a vital task for robust predictions and usability of the models

to guide the design and optimization [159]. The current case study demonstrates how our approach

to calibration is effective when one seeks to (1) calibrate multiple physics-based models that are

connected in a hierarchical fashion, and (2) some of these models have unobservable variables.

4.3.1 The hierarchical models

For this case study, we deem to calibrate a two-model hierarchical network. We explain the

hierarchical network as follows. The network starts with a finite element thermal model (also called

the melt pool model) as the upstream model. Outputs of this melt pool model are partially used

as inputs to another downstream physics-based model called the phase field (PF) model. Figure

78



4.8 schematically shows the relationships between the variables of each of these two models. We

notice that given the process parameters such as laser power and speed the melt pool model predicts

useful quantities including the melt pool dimensions, along with temperature and solidification

gradients at different locations on the melt pool surface. Given the solidification gradient and

solidification speed for a particular location (G0 and S0, respectively), we can use the PF model to

predict quantities such as primary dendrite arm spacing (PDAS), denoted by λ, which is of great

importance when studying the microstructure of an additively manufactured part. More details

about the melt pool model and the phase field model are provided in Sections 4.3.1.1 and 4.3.1.2,

respectively.

Figure 4.8: Relationships between the variables of a two-model system

4.3.1.1 The melt pool model

The melt pool model used here is an improved version of the melt pool model described in

Section 3.3.1. The model was modified for analyzing a new alloy system (IN718) with shorter

computation time. Our collaborators developed a three-dimensional FE based thermal model im-

plemented in COMSOL Multiphysics R© heat transfer module to study melt pool characteristics,

including geometry and thermal profiles, during the fabrication of single tracks printed in a thin

layer of powder on top of a solid substrate. The thermal model includes phase-dependent ther-
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mophysical properties which are used to approximate heat and mass transport phenomena such as

melting, solidification, vaporization, and keyhole formation. The powder layer was assumed as a

30µm continuum medium over a 1 mm thick substrate. Ni5wt%Nb (NiNb) alloy as a binary proxy

of IN718 was selected as the material for both the powder layer and the substrate.

Figure 4.9: A sample outputs of the melt pool model

Note that compared with Section 3.3.1, we are working with a different set of melt pool model

outputs. Particularly, not only we are looking at quantities such as melt pool dimensions and

temperature gradients, but also we are quantifying the solidification gradient and solidification

speed (denoted by G and S, respectively) for every point on the surface of the melt pool. A

representative output of the melt pool model that shows G and S surface is shown in Figure 4.9(a).

We can see that the melt pool shape is computed in three dimensions. Additionally, solidification

gradient and speed are evaluated across the entire melt pool boundary and color coded. Both of
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Table 4.1: Specifications of the melt pool model

The melt pool model

Control Inputs, x1

P : Laser power [W]
v: Laser speed [m/s]

Model Parameters, θ1
KS: Thermal conductivity coefficient solid [W/mK]
KL: Thermal conductivity coefficient liquid [W/mK]
KLz: Anisotropic thermal conductivity coefficient liquid [W/mK]
KV : Thermal conductivity coefficient vapor [W/mK]
KV z: Anisotropic thermal conductivity coefficient vapor [W/mK]
A0: Bulk absorptivity of powder [%]
Amax: Max absorptivity of powder [%]

Outputs, y1
D: Melt pool depth [µm]
W : Melt pool width [µm]
L: Melt pool length [µm]
T0: Temperature [◦C]
S0: Solidification rate [m/s]
G0: Solidification gradient [◦C/m]

these quantities (G and S) are symmetric about the laser scan path. Hence, for a specific point

such as the solidification tail (as indicated in the Figure), we can report temperature, solidification

gradient, and solidification speed. We denote these three values by T0, G0 and S0, respectively. We

can specify the whole melt pool model by defining three vectors: (1) control inputs x1, (2) model

parameters θ1, and (3) outputs y1. These vectors are described in detail in Table 4.1. As we will

describe in the next subsection, part of this model outputs is used as input to the PF model.

4.3.1.2 The phase field model

A phase field model is used in this section to investigate the solidification microstructure of

AM parts. It is a powerful technique for describing complex microstructural evolutions without

needing to track the moving interface, as opposed to the classical sharp interface models. By

coupling the PF model with a FE based thermal model, quantifiable predictions of solidification

phenomenon during LPBF can be achieved. In this work, our collaborators adopt the phase field
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model with finite interface dissipation introduced by Steinbach et al. [160], Zhang and Steinbach

[161] to investigate the rapid solidification process during LPBF of Ni-5 wt.% Nb (Ni-3.2 at.% Nb)

alloy. The model has been proven to be a capable tool to describe the extremely non-equilibrium

conditions as seen in rapid solidification. At its heart, the PF model uses finite difference method

to numerically solve the following phase-field and concentration evolution equations:

φαc
′

α = ∇(φαDα∇cα) + pintφαφβ

(
∂fβ
∂cβ
− ∂fα
∂cα

)
+ φαφ

′

α (cβ − cα) (4.21)

φβc
′

β = ∇(φβDβ∇cβ) + pintφαφβ

(
∂fα
∂cα
− ∂fβ
∂cβ

)
+ φβφ

′

β (cα − cβ) (4.22)

φ
′

α = K

{
σαβ[∇2φα +

π2

η2
(φα −

1

2
)]− π2

8η
∆gphiαβ

}
(4.23)

K =
8pintηµαβ

8pintη + µαβπ2(cα − cβ)2
(4.24)

∆gφαβ = fα − fβ +

(
φα
∂fα
cα
− φβ

∂fβ
cβ

)
(cα − cβ) (4.25)

In the above equations, σαβ , η, φα/β , cα/β , and c are the interfacial energy, the interface width,

the phase fractions of α/β phases, the phase concentrations of α/β phases, and the overall con-

centration, respectively. Dα, Dβ are the chemical diffusivities in the α and β phases, respectively,

and pint is the interface permeability defined as: pint = 8M
aη

. M is the atomic mobility and a is the

lattice constant. µαβ is the interfacial mobility, K is the kinetic coefficient describing the effect

of finite diffusion and redistribution at the interface and ∆φ
αβ phi is the chemical driving force.

Further information on the physical meaning of the interface permeability, pint, can be found in the

referenced papers [160].

A dynamic time step is adopted to ensure the numerical stability. Neumann boundary condi-

tions are applied to all boundaries. A Fortran code with OpenMP parallelization directives was
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utilized to reduce the computational time. To investigate the general features of the microstructure,

a 2-dimensional simulation domain was used. Figure 4.10 shows a representative output of the PF

model. Similar to the melt pool model, We can specify the phase field model by defining three

vectors: (1) control inputs x2, (2) model parameters θ2, and (3) outputs y2. These vectors are

described in detail in Table 4.2.

Figure 4.10: A sample output of the phase field model

4.3.2 Coupling models using GP surrogates

For any analysis, uncertainty quantification, and calibration purposes we need a framework

for connecting the computer models in our network. To achieve this, we replace these computer

models with fast GP surrogates in the form of Python objects. In fact, directly coupling computer

codes can be extremely difficult due to programming and logistic reasons. Recent examples of

using surrogates for coupling multiple simulation models can be seen in [149, 162, 163]. To build

the GP surrogates we used LHS of the size 100-200 depending on the simulations run time to train
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Table 4.2: Specifications of the phase field model

The phase field model

Control Inputs, x2

S: Solidification rate [m/s]
G: Solidification gradient [◦C/m]

Model Parameters, θ2
σ: Interface energy [J/cm2]
M : Interface mobility [cm4/Js]
pint: Interface permeability [cm3/Js]

Outputs, y2
λ: Primary dendrite arm spacing (PDAS) [nm]
kV : Velocity dependent partition coefficient [-]

the GP and estimate the hyperparameters. Note that compared to the Section 3.1.1, for simplicity

we have used multiple independent GP surrogates for each model instead of building a single multi-

output GP. Another difference is that instead of using square exponential covariance structure, we

used the Matérn covariance function Cν(d) in which covariance between two points separated by

d distance units is given by

Cν(d) =
21−ν

Γ(ν)

(√
2νd

l

)ν

Kν

(√
2νd

l

)
(4.26)

where Γ is the gamma function, Kν is the modified Bessel function of the second kind, and

l and ν are non-negative parameters of the covariance. We chose ν = 1.5 which guarantees

differentiability.

To estimate the hyperparameters Python default optimizer was used which employs the L-

BFGS-B algorithm developed by Byrd et al. [164]. To evaluate the accuracy of the GP surrogates,

k-fold cross-validation was conducted for each GP training. Figures 4.11(a) and 4.11(b) show

the results of cross-validation for melt pool width (W ) and solidification gradient at the tail (G0),

respectively. A total of 238 simulation runs were used with an average of approximately 5 min-

utes per run. The data were randomly divided into 17 folds. Figure 4.11(c) shows the result of
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cross-validation for primary dendrite arm spacing at the melt pool solidification tip, (λ). A total

of 91 simulation runs were used with an average of approximately 4 hours per run. The data were

randomly divided into 13 folds. A 10-fold cross validation was performed for the surrogate model

and the results are displayed in In the plots, the horizontal axes represent the outputs of the com-

puter simulation model, while the vertical axes show the predicted outputs using the GP surrogates

with the bars representing confidence intervals for these predictions. The orange line represents

the ideal case with surrogate model predictions are in full agreement with computer model simula-

tions. It can be seen that the predictive performance of the surrogate models are satisfactory. Also,

the reported MAPE values in the Figure indicate satisfactory performance.

In order for the reader to understand better how the two hierarchical models are coupled, we

summarize the procedure as follows. Consider that we are interested in analyzing the microstruc-

ture of the solidification tail, as shown in Figure 4.9, for a specific LPBF process parameters (P

and v). The process parameters constitute the input vector x1 as described in Table 4.1. Once x1

is known, we can use the trained GP surrogate model and input x1 and θ1 to estimate G0 and S0.

Note that, because the solidification tail is the very last point on the melt pool solidification front,

its solidification speed equals the laser scan speed, hence S0 = v. This means that we will not need

to use the surrogate model to estimate S0. Solidification speed and gradient of the solidification tail

constitute the input vector x2 as described in Table 4.2. We can then use the trained GP surrogate

model and input x2 and θ2 to estimate the microstructure the primary dendrite arm spacing (λ).

It is worthwhile to remember that each of the described models have their own set of calibration

parameters, as shown in the gray boxes in Figure 4.8. Also, note that out of six different outputs of

the melt pool model (W,D,L, T0, S0, G0), experimental observation of only melt pool width and

depth (W andD) are practical. When dealing with calibrating the described two-model system one

faces the following challenges. First, although the melt pool model can be calibrated independently

using melt pool width and depth experimental observations; however, there is no guarantee that

the unobservable outputs of the calibrated melt pool model (e.g. solidification gradients) result

in satisfactory PDAS predictions when used in the PF model. Second, the PF model cannot be
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(a) (b)

(c)

Figure 4.11: Cross-validation of GP surrogates for (a) melt pool width, W ; (b) solidification gra-
dient at the tail, G0; and (c) primary dendrite arm spacing, λ

independently calibrated because the inputs are not observable experimentally. We proceed with

employing the model proposed in Section 4.2.2 to rise to the aforementioned challenges.

4.3.3 Experiments

Gas atomized Ni-5wt.%Nb powder was provided by Nanoval GmbH & Co. KG and used to

additively manufacture LPBF NiNb. Single tracks were printed using a 3D Systems ProX DMP

200 equipped with a fiber laser with a Gaussian profile λ = 1070 nm, and beam size = 100 µm.
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Figure 4.12: Sample melt pool from a single track and segregation

Argon was used as inert protective atmosphere during fabrication. Tracks with 10 mm length

and spaced 1 mm apart were printed on a Ni-5wt.%Nb base plate. Cross sections of the single

tracks were wire cut using wire electrical discharge machining (EDM), and these specimens were

polished down to 0.25 µm with water-based diamond suspension polishing solutions. Kalling’s

Solution No. 2 (5 g CuCl2, 100 mL HCl, and 100 mL ethanol) was used to etch the Ni-5wt.%Nb

single tracks to obtain optical micrographs.

Optical microscopy (OM) was carried out using a Keyence VH-X digital microscope equipped

with a VH-Z100 wide range zoom lens. Width and depth measurements were taken using the VH-

X software. Three cross sections were measured for each track, and the displayed width and depth

values are averaged from these measurements. Backscattered electron (BSE) images of polished

single tracks were captured at 15 kV and 30 nA. BSE images were processed using ImageJ R©

software [165] in order to determine PDAS at different locations along select single tracks. The

displayed PDAS values were averaged from 30 measurements at each location. Figure 4.12 shows

sample OM and SEM images for a representative single track. The images were demonstrate

transverse cross-sections of melt pools. The microstructure can conveniently be characterized

using the SEM images and segregation can be quantified.
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4.3.4 Calibration results

We employed a fully Bayesian approach to estimate the network calibration parameters, θ1,θ2,

and the set of hyperparameters, Ψ =
{
r1Q,δ, r2,ξ, σ

2
1Q,δ, σ

2
2,ε, σ

2
1Q,ε, σ

2
2,ε

}
as introduced in Section

4.2.2. The following prior distributions were used:

θ· ∼ Uniform(αθi , β
θ
i ) (4.27)

r·,δ ∼ Log-Normal(α = 0, β = 1/4) (4.28)

σ2
·,ε ∼ Inverse-Gamma(α = 2, β = 1), (4.29)

where (αθi , β
θ
i ) indicate the lower and upper bounds for the uniform distributions as recommended

by the domain expert. For the roughness parameters, r·,δ log-normal priors were used to ensure

positivity. For the measurement error variance σ2
·,ε inverse gamma priors were selected because

they represent conjugate priors for the multivariate normal likelihood function in our model. Note

that the priors for the calibration parameters θi are all uniform and hence non-informative to avoid

any bias in estimation.

Using single-component Metropolis-Hastings algorithm, the posterior distributions of calibra-

tion parameters, θ1,θ2, and hyperparameters, Ψ were generated after 20,000 iterations with 25%

burn-in period and thinning every fifth sample. Implementation and programming was done in

Python version 3.7. Figure 4.13 shows the histograms and kernel density estimates of the posterior

distributions for the calibration parameters of each model. The posteriors are single-modal and

informative, and hence the modes were used as the estimates. Table 4.3 lists for each calibration

parameter the lower and upper bounds of search in addition to the final estimate after the Bayesian

calibration.

Using the posterior estimates from Table 4.3, we can compute the posterior mean estimates

for the whole input variable space using Equation 4.14. Because the input space is 2-dim, we can

plot the posterior mean estimates as surfaces, which are functions of laser power and speed (P

and v). These surfaces are shown in Figure 4.14(c) and 4.14(f) for the melt pool model and the
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(a)

(b)

Figure 4.13: Histograms and kernel density estimates of the posterior distributions for calibration
parameters for (a) the melt pool model, and (b) the phase field model
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Table 4.3: Posterior estimates of the calibration parameters

Parameter Range Estimate Unit

M1 parameters, θ1

KS [60, 100] 61.4 [W/mK]
KL [100, 200] 126.8 [W/mK]
KLz [0.5, 2] 1.44 [W/mK]
KV [5, 20] 14.6 [W/mK]
KV z [1000, 3000] 1190.9 [W/mK]
A0 [0.25, 0.4] 0.307 [%]
Amax [0.6, 0.8] 0.779 [%]

M2 parameters, θ2

σ [10−7, 10−6] 7.04× 10−7 [J/cm2]

phase field model, respectively. Note that these surfaces are the summation of surrogate models

ŷ·(x;θ∗) (shown in 4.14(a),(d)) and the discrepancy functions δ· (shown in 4.14(b),(e)). In all

of these plots, the experimental data is shown with red dots. It can be seen that the discrepancy

functions appropriately correct the emulator outputs and significantly reduce the error.

4.3.5 Discussion

In this section we take a more careful look at the results that were presented in the previous

subsection. Generally, we deem to calibrate multiple models for the whole input space, which is

defined by the process. For example, the melt pool model in this study is defined over the laser

power-speed input parameter space X . The lower and upper bounds for this space X was chosen

according to the process and machine limitations as Xmin = {80 W, 50 mm/s}, and Xmax =

{250 W, 2000 mm/s}.

The important matter is that the rest of the models in our network, are not necessarily defined

over the whole X domain. The reason is that the physical phenomena that are simulated by dif-

ferent models do not necessarily exist in the whole domain of X . Hence, different models have

different working regions. Only after fully understanding the working region for each model we

can successfully gather experimental data for calibration and uncertainty quantification purposes.
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(a) (b) (c)

(d) (e) (f)

Figure 4.14: Posterior mean estimates for ŷ1Q(x;θ∗), δ1Q, and their sum, y1Q(x;θ∗). The experi-
mental observations are shown by the red dots.

In our case study, we noticed that the segregation phenomenon that the phase field model inves-

tigates only happen in a specific region of X that can be characterized by high laser power and

low laser speed. Figure 4.15 shows the experimental data for each of the models. Based on these

data sets, the working regions are color-coded for each of the models. It can be observed that the

density of data points in the green region corresponding to the working region of M2 is higher.

This guarantees that we have enough data points for calibrating M2.

Figure 4.16 shows the contour maps associate with the prediction error after calibration for

melt pool width, y1Q(x;θ∗1) and PDAS, y2(y1U(x);θ∗2). From these maps, we can find out for

what areas of the input space the model has too much error perhaps due to missing physics com-

pared to the areas where predictions are satisfactory. Note that in these maps we have not used the

discrepancy functions – only the surrogate models with the optimized calibration parameters are

used for prediction. Looking at Figure 4.16(a), we realize that the melt pool model has acceptable
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Figure 4.15: Experimental data grid

performance except for high laser power and low speed the model. This region corresponds to

the so-called keyholing heat transfer mode. The performance of the model for other areas of the

input space is uniformly satisfactory and the error is low. For the phase field model; however, the

situation is different. We notice that the error is correlated with the laser speed: at low laser speeds

error is high, whereas at high laser speeds the error is decreased. The value of discrepancy func-

tion is evident from these error maps, because after adding the discrepancy term final predictions

significantly improve.
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(a) (b)

Figure 4.16: Contour plots of the prediction error after calibration for (a) y1Q(x;θ∗1) and (b)
y2(y1U(x);θ∗2)
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5. SUMMARY

5.1 Contributions of the Dissertation

In this Chapter we summarize the contributions of each part of the Dissertation.

5.1.1 Contributions of Process Monitoring

In Chapter 2, we developed a novel anomaly detection framework for metal laser powder bed

fusion additive manufacturing processes (L-PBF AM). The proposed framework detects process

deviations through thermal signatures captured using thermal imaging of melt pools during fabrica-

tion, where the melt pool represents the interface between the laser beam and metallic powder be-

ing processed. These monitored thermal signatures are analyzed through a step-by-step procedure

whose building blocks include image segmentation, clustering, spatial statistics, and classification

techniques.

The key contributions of the process monitoring work are summarized as follows. First, we

address an important gap in the literature on process monitoring and control in metal-based AM

processes. More specifically, most of the existing works focus on developing sensors and hardware

to enable in-situ process monitoring. However, very few works provide data analysis frameworks

to utilize the data acquired from process monitoring for detecting process anomalies. Second,

our data-driven approach is guided by process physics through accounting for spatial dependence

among successive melt pools at the laser-powder interface in the spatial SIZER used to analyze the

data.

Validation experiments indicate that the propsoed framework is capable of detecting process

anomalies through experiments conducted on a commercial L-PBF AM system instrumented with

a dual-wavelength imaging pyrometer for thermal process monitoring. The current work thus

represents an important foundation towards enabling layer-wise quality control in metal AM,

which has been identified as an important technological need in most recently published research

roadmaps.
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5.1.2 Contributions of Uncertainty Quantification

In Chapter 3 we developed an efficient procedure for conducting formal calibration (also known

as inverse UQ analysis) of computational materials models. In addition to providing one of the first

efforts to systematically perform UQ analysis for ICME purposes, we also present a versatile mul-

tivariate statistical framework to perform such analysis in the case of models with multiple QoI’s,

in contrast to many previous research efforts that typically focus on a univariate scalar QoI. The

proposed framework involves a two-step procedure that starts with constructing a computationally

efficient multivariate Gaussian Process-based surrogate model that can be used in lieu of the origi-

nal expensive computational model. The surrogate model can then be used to generate sufficiently

large numbers of simulations needed to conduct calibration through a synthesis with experimental

measurements.

We implemented the proposed multivariate statistical framework to calibrate a finite element

based thermal model for LPBF metal additive manufacturing. The model predicts the thermal

history and melt pool geometry during fabrication, and can potentially become one of the core

elements of an ICME platform for the LPBF process. Our results indicate that the multivariate

surrogate model is capable of adequately approximating the original FE based thermal model to a

good degree of accuracy. Furthermore, predictions made using the calibrated model showed good

agreement with experimental measurements conducted in a case study on fabricating single tracks

of Ti-6Al-4V using a commercial LPBF system instrumented with in-situ temperature monitoring

capability.

In Chapter 4 we presented an approach to calibrate a system of models with unobservable

variables, when the models are connected in a hierarchical manner. To handle the relationships

between the models, the notion of Bayesian network (BN) was used. BN is a probabilistic graphical

tool that conveniently allows modeling the relationships between variables of each model using

conditional probability distributions. BN also allows any available experimental data at any level

(upstream or downstream) to be incorporated into the analysis. Once the data are added to the

network, we can update our knowledge about the uncertain parameters, i.e. calibration parameters.
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When the network of models include variables that are ‘unobservable’, which means that ex-

perimental observations are not available for all of the models. The reason for this lack of exper-

imental data can be technological limitations or due high costs of experiments. To address this

problem, we introduced an auxiliary variable to account for the lack-of-data of the models with

unobservable output. Using a Bayesian updating scheme, we estimated the unknown parameters

and hyper-parameters so that the desired QoI of the process is predicted with high accuracy.

It is worthy to emphasize another important feature of BNs, which is the compatibility with

GP surrogate models. In practice, whenever the actual simulation models are computationally

expensive, they can be replaced with the fast GP surrogate models.

Similar to Chapter 3, in order to evaluate the performance of the proposed method, a case

study of two hierarchical simulation models used for LPBF was conducted. The first model was an

improved version of the thermal model to predict melt pool geometry and temperature. The second

model – which used part of the first model output as input – was a phase field model to study the

sub-grain structure of the fabricated alloy, in particular the primary dendrite arm spacing (PDAS).

The unobservable variable in this network was the temperature gradients that are both outputs of

the first model and inputs for the second model. We demonstrated how our framework can be used

for calibrating such a network of simulation model by fabricating single tracks of NiNb alloy using

a commercial LPBF system.

Another important contribution of our UQ work is the ability to analyze the model discrepancy

after calibration. Knowing how severe the model discrepancy is for different inputs, we know

for what purposes the models are useful and reliable and vice versa, i.e. when not to rely on

the model predictions without enough experimental validation. In our case study of NiNb single

tracks, for example, we realized how accurate each model is performing after analyzing a heat

map of the discrepancy function. For the first model (the thermal melt pool model), we noted that

when operating at high powers and low laser scan speeds – which corresponds to the keyhole heat

transfer mode – we will have high prediction errors. For the second model, we noticed a slight

increase in the prediction error with higher laser speeds. Additionally, the error map contour lines
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were mostly horizontal signaling independence of the model error from laser power.

5.2 Future work

Some directions for future research in process monitoring for LPBF include developing effi-

cient methods for running the spatial SIZER to enable analyzing parts with large cross sectional

areas. Currently, the framework was only validated for a specific type of defects (namely, cavities).

Metal AM processes are prone to other types of defects such as lack of fusion, delamination, and

powder coating problems. Extending the framework to account for other types of defects is an im-

portant direction for future research. Finally, the proposed framework focuses on detecting process

anomalies, which should be subsequently integrated with feedback control in order to mitigate or

minimize defects.

In the area of UQ for LPBF, the current work represents a foundation for numerous future

investigations. First, more case studies can be conducted to order to accomplish a complete multi-

model ICME platform for laser-based AM. In other words, upgrading the system from two models

to a network with many models can be a research challenge that must be addressed. Additionally,

more validation experiments with other measurement instruments can be carried out to achieve

better accuracy or observing the responses that are currently considered observable.

Another area for future research is conducting UQ for LPBF models when the output has a spe-

cific condition. For example, calibration of ICME simulation models with high-dimensional output

(e.g. fully explicit microstructure simulations) will be very useful but has not been conducted yet.

Another example can be models with binary or categorical response, e.g. when a solidification

model predicts if the microstructure would be planar, cellular, or equiaxed.

Note that utilizing the notion of Bayesian networks limits us to hierarchical network; however,

many ICME frameworks include models with feedback response. This challenge needs to be

addressed with more comprehensive sampling techniques that allow system-level evaluations.
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APPENDIX A

BAYESIAN NETWORKS

Formally, a BN is a directed acyclic graph that represents the joint probability distribution of

the random variables. These random variables represent the uncertain QoI’s in our problem setting.

When the BN has been constructed, computing the distribution of a downstream node based on the

given observation of an upstream node, i.e., forward propagation of uncertainty, and estimating

the posterior distribution of an upstream node at the given observation of a downstream node, i.e.,

backward inference can be pursued [166]. In addition, BN allows utilizing fast surrogate models

to speed up the analysis when the computer models are computationally expensive to run.

At the heart of a Bayes network is establishing a relationship between the variables involved in

the models. A Bayesian network consists of the following [167]

1. A set of variables (nodes) and a set of directed edges (arcs) between variables

2. The variables together with the directed edges form a directed acyclic graph (DAG).

3. To each variable B with parents A1, ..., An, there is an associated conditional probability

P (B|A1, ..., An)

The entire network can be represented using a joint probability density function which is given

by the general expression below:

P (U) =
∏
i

P (Ai|parent(Ai)) (A.1)

An example BN is show in Fig. A.1. Using the rules explained before we can write the joint

probability density function as follows.

P (U) = P (A)P (B)P (C|A,B)P (E|C)P (D|C)P (F |E)P (G|D,E, F ) (A.2)
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Figure A.1: An example of a Bayesian network

Now consider the basic model of Kennedy and O’Hagan [52] describe in Eq. 1.1. We rewrite

the statistical model below.

yE (x) = yS (x,θ?) + δ (x) + ε

We can now build a BN for this model as show in Fig. A.2.

𝒙

𝜽

 𝒚

𝒚𝑅𝜹

𝝐

𝑀

Figure A.2: Bayesian network representation of a calibration problem

A system with two hierarchically built simulation models can be treated by expanding the
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network shown in Fig. A.2 as follows. We denote the two models as M1 and M2; we get

yR1 = y1 + ε1 = ŷ1(x;θ1) + δ1(x) + ε1 (A.3)

yR2 = y2 + ε2 = ŷ2(y1;θ2) + δ2(x) + ε2 (A.4)

Figure A.3: Bayesian network for a system with two hierarchically built models
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APPENDIX B

GLOBAL SENSITIVITY ANALYSIS

In contrast to gradient-based local sensitivities at a chosen nominal value, a global sensitiv-

ity analysis uses the probability information of the variable and quantifies both the individual and

interactive effects of the various uncertainty sources on the model output uncertainty. This is partic-

ularly important in a multi-model calibration in which many uncertain and interrelated parameters

are present [168].

Based on the variance decomposition theorem stated in Eq. B, the overall variance in a model

output ŷ can be decomposed into 1) the variance of the expectation of ŷ conditioned on a fixed

input θi with all other inputs (θ−i) allowed to vary, and 2) the expectation of the variance of ŷ

conditioned on the same set [20,21]:

Var(ŷ) = Varθi [Eθ−i(ŷ|θi)] + Eθi [Varθ−i(ŷ|θi)] (B.1)

There are two quantities to consider in global sensitivity analysis: the first-order effects and

the total effects of θi. The first-order effects index quantifies the individual contribution of θi to

variance in the output ŷ and is given as

Si1,y =
Varθi [Eθ−i(ŷ|θi)]

Var(ŷ)
(B.2)

In Eq. B, the denominator Varŷ is the total variance of a model output ŷ considering uncertainty

in all parameters θ. In addition to individual contribution, a parameter may contribute additional

uncertainty in the output through interactions with other parameters. The total effects index con-

siders the interactions between the ith parameter and all other parameters and is essential to make
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informed decisions regarding calibration. The total effects index is given in Eq. B:

SiT,y = 1− Varθ−i [Eθi(ŷ|θ−i)]
Var(ŷ)

(B.3)
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