
DESIGN OF SPECIAL FUNCTION UNITS IN MODERN MICROPROCESSORS

A Dissertation

by

ABBAS A. E. A. FAIROUZ

Submitted to the Office of Graduate and Professional Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Sunil P. Khatri

Committee Members, Paul V. Gratz

Laszlo B. Kish

Anxiao Jiang

Head of Department, Miroslav M. Begovic

August 2019

Major Subject: Computer Engineering

Copyright 2019 Abbas A. E. A. Fairouz



ABSTRACT

Today’s computing systems demand high performance for applications such as cloud com-

puting, web-based search engines, network applications, and social media tasks. Such software

applications involve an extensive use of hashing and arithmetic operations in their computation. In

this thesis, we explore the use of new special function units (SFUs) for modern microprocessors,

to accelerate such workloads.

First, we design an SFU for hashing. Hashing can reduce the complexity of search and lookup

from O(p) to O(p/n), where n bins are used and p items are being processed. In modern micropro-

cessors, hashing is done in software. In our work, we propose a novel hardware hash unit design

for use in modern microprocessors. Since the hash unit is designed at the hardware level, several

advantages are obtained by our approach. First, a hardware-based hash unit executes a single hash

instruction to perform a hash operation. In a software-based hashing in modern microprocessors,

a hash operation is compiled into multiple instructions, thereby degrading performance. Second,

software-based hashing stores hash data in a DRAM (also, hash operation entries can be stored in

one of the cache levels). In a hardware-based hash unit, hash data is stored in a dedicated memory

module (a hardware hash table), which improves performance. Third, today’s operating systems

execute multiple applications (processes) in parallel, which entail high memory utilization. Hence

the operating systems require many context switching between different processes, which results

in many cache misses. In a hardware-based hash unit, the cache misses is reduced significantly

using the dedicated memory module (hash table). These advantages all reduce the power con-

sumption and increase the overall system performance significantly with a minimal increase in the

microprocessor’s die area. We evaluate our hardware-based hash unit and compare its performance

with software-based hashing. We start by evaluating our design approach at the micro-architecture

level in terms of system performance. After that, we design our approach at the circuit level design

to obtain the area overhead. Also, we analyze our design’s power and delay for each hash opera-

tion. These results are compared with a traditional hashing implementation. Then, we present an

ii



FPGA-based coprocessor for hash unit acceleration, applied to a virus checking application.

Second, we present an SFU to speed up arithmetic operations. We call this arithmetic SFU a

programmable arithmetic unit (PAU). In modern microprocessors, applications that require heavy

arithmetic computations are done in software. To improve the performance for such computa-

tions, we present a programmable arithmetic unit (PAU), a partially reconfigurable methodology

for arithmetic applications. The PAU consists of a set of IP blocks connected to a reconfigurable

FPGA controller via a fast mesh-based interconnect. The IP blocks in the PAU can be any IP block

such as adders, subtractors, multipliers, comparators and sign extension units. The PAU can have

one or more copies of the same IP block (for example, 5 adders and 7 multipliers). The FPGA

controller is an on-chip FPGA-based reconfigurable control fabric. The FPGA controller enables

different arithmetic applications to be embedded on the PAU. The FPGA controller is programmed

for different applications. The reconfigurable logic is based on a LUT-based design like a tradi-

tional FPGA. The FPGA controller and the IP blocks in the PAU communicate via a high speed ring

data fabric. In our work, we use the PAU as an SFU in modern microprocessors. We compare the

performance of different hardware-based arithmetic applications in the PAU with software-based

implementations in modern microprocessors.

iii



To my parents, my wife, my parents in law, my whole family, and my friends.

iv



ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my committee chair Dr. Sunil P. Khatri. I thank

him for the continuous support of my PhD study and research, for his patience, motivation and

enthusiasm. His guidance helped me in all the time of research and writing of this dissertation.

I would also like to thank my committee members: Dr. Paul V. Gratz, Dr. Laszlo B. Kish and

Dr. Anxiao (Andrew) Jiang for their valuable suggestions and feedback.

I would like to thank my fellow doctoral students Dr. Monther Abusultan and Dr. Viacheslav

V. Fedorov, for their feedback, cooperation and of course friendship. Also, special thanks to my

colleagues Andrew Douglass, Kunal Bharathi and Mian Qin for their feedback and support.

Finally and most importantly, I would like to thank my parents, siblings, parents in law for

supporting me spiritually throughout writing this dissertation and my life in general. Special and

many thanks to my lovely wife for her endless support. I would like to thank her from my heart

for standing next to me through my tough journey of my PhD study. Also, I would like to thank

my friends for accepting nothing less than excellence from me.

I would like to thank Kuwait University for their support. Also, I would like to thank the Texas

A&M University Office of Graduate and Professional Studies for allowing me to construct this

LATEX dissertation template.

v



CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professors Sunil P. Kha-

tri (advisor), Paul V. Gratz and Laszlo B. Kish of the Department of Electrical and Computer

Engineering and Professor Anxiao (Andrew) Jiang of the Department of Computer Science and

Engineering.

The experimental work conducted for the dissertation was completed by the student, under

the supervision and guidance of Dr. Khatri. The experiments in Chapter 6 were conducted with

assistance from Andrew Douglass and Kunal Bharathi.

Funding Sources

Graduate study was supported by Kuwait University.

vi



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

CONTRIBUTORS AND FUNDING SOURCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF TABLES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

1. INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Design of Modern Microprocessors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Modern Microprocessor Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.3 Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Modern Microprocessor Design Challenges and Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Scalability of CMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2 Hardware Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Special Function Units (SFUs) in Modern Microprocessors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Field Programmable Gate Array (FPGA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Hashing in Computer Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6.1 The Hash Function (HF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6.2 The Hash Table (HT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2. THESIS OUTLINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Hardware Hash Unit (HU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Design of a Hardware HU at Microarchitecture Level . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.2 Design of a Hardware HU at Circuit Level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 An FPGA-based Coprocessor for Virus Checking Applications . . . . . . . . . . . . . . . 14

2.2 Programmable Arithmetic Unit (PAU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3. Microarchitecture Level Design of Hardware Hash Unit for use in Modern Microprocessors 16

vii



3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 The HU Microarchitecture Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 Overview: Hash Unit (HU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.2 Hash Function (HF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.3 Hash Table (HT) Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.4 HU Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.5 Memory Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.6 Hash Lookups Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.7 Replacement Operation in the HU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.8 Benchmarks Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.1 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.2 Simulation Parameters and Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.3 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.3.1 Uniform Distribution (UNIF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.3.2 Normal Distribution (NORM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.3.3 HU Replacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4.3.4 YCSB benchmark (YCSB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4. Circuit Level Design of a Hardware Hash Unit for use in Modern Microprocessors . . . . . . . . 63

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 The HU Circuit Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.1 Hardware Hash Unit (HU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.2 Hash Function (HF) and Bin Selector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.3 Control Signals Unit (CSU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.4 Hash Table (HT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4.1 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4.2 Design Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.4.3 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5. An FPGA-based Coprocessor for Virus Checking Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 CPU-FPGA Hash Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.1 Hash Unit (HU) on an FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3.2 Hash Function (HF) of class H3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3.3 Hash Table (HT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.4 Hash Unit Pipeline Structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

viii



5.4.1 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4.2 Benchmark Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4.3 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6. PAU: A PROGRAMMABLE ARITHMETIC UNIT FOR USE IN MODERN MICRO-

PROCESSORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3 The PAU Design Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3.1 Overview: PAU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3.2 Tiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.3.3 The FPGA Controller (FC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.3.4 The Ring NoC Data Fabric (Ring) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3.4.1 The Ring Clock (Rclk). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3.4.2 The Insertion/Extraction Station (IES) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.3.4.3 The Junction Station (JS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.3.4.4 The Repeater (RPT) Station . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3.5 The PAU Design Flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3.6 Arithmetic Applications used in the PAU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.4.1 The PAU Design Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.4.2 Simulation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.4.3 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.4.3.1 The FIR filter in the PAU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.4.3.2 The DCT in the PAU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.4.3.3 The Viterbi Decoder in the PAU .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7. FUTURE WORK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.1 Coherent Hash Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.2 Flash-based CAM Cells in Hash Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.3 The HU and the PAU using Coherent Memory CPU-FPGA System . . . . . . . . . . . . . . . . . . . 142

8. THESIS SUMMARY AND CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

ix



LIST OF FIGURES

FIGURE Page

1.1 Moore’s Law Trend from 1971 to 2016 (Our World in Data [1], Max Roser) . . . . . . . . . 1

1.2 Propagation delay (tpf or tpr), fall time (tf) and rise time (tr) [2] . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Physical structure of a CMOS transistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Common special function units (SFUs) in modern microprocessors . . . . . . . . . . . . . . . . . . . 8

1.5 General FPGA architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 (Key, Value) pair in an array in Computer Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7 Hashing in computer systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Thesis outline diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Proposed Hash Unit (HU) for Modern Microprocessors (Modified [3]) . . . . . . . . . . . . . . . 20

3.2 HF, HT, and HT Bin Configuration (Modified [3]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Hash table bin entries for Uniform distribution hash lookups . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Hash table bin entries for Normal distribution hash lookups . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Replacement operation in the HU – in case of a HT miss and a DRAM hit of a

lookup operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6 Percentage of Hash Instructions in NBSAT Benchmark (Reprinted [3]) . . . . . . . . . . . . . . . 28

3.7 (UNIF) Speedup as CPU Speed is Varied – HWhash: HT=64kB, L1D=64kB. SWhash:

L1D=128kB. DRAM: DDR3 1600MHz x64. (Reprinted [3]) . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.8 (UNIF) Tradeoff of HT and L1D Sizes – SWhash: L1D=128kB. DRAM: 1GB

DDR3 1600MHz x64. CPU=1GHz. (Reprinted [3]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.9 (UNIF) Vary Memory Types – HWhash: HT=64kB, L1D=64kB. SWhash: L1D=128kB.

CPU=1GHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.10 (UNIF) Vary DRAM Latency – No Caches. HWhash: HT=64kB, L1D=0kB. SWhash:

L1D=0kB. CPU=1GHz. (Reprinted [3]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

x



3.11 (UNIF) Hash and PARSEC Benchmarks in Parallel (BHu and BP) – Simulation

Type G2 (size(L1D) in SWhash = size(L1D) in HWhash) (Modified [3]) . . . . . . . . . . . . . . . . 37

3.12 (UNIF) Hash and PARSEC Benchmarks in Parallel – Simulation type G1 (size(L1D+HT)

in HWhash = size(L1D) in SWhash) (Modified [3]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.13 (UNIF) Multiple BHu Instances – Simulation Type G2 (size(L1D) in SWhash =

size(L1D) in HWhash) (Modified [3]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.14 (UNIF) Multiple BHu Instances – Simulation Type G1 (size(HT+L1D) in HWhash =

size of (L1D) in SWhash) (Modified [3]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.15 (UNIF) NBSAT Benchmark with %Hashinst Varying – Simulation Type G2 (size(L1D)

in SWhash = size(L1D) in HWhash) (Modified [3]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.16 (UNIF) NBSAT Benchmark with %Hashinst Varying – Simulation type G1 (size(L1D+HT)

in HWhash = size(L1D) in SWhash) (Modified [3]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.17 (NORM) Speedup as CPU Speed is Varied – HWhash: HT=64kB, L1D=64kB.

SWhash: L1D=128kB. DRAM: DDR3 1600MHz x64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.18 (NORM) Tradeoff of HT and L1D Sizes – SWhash: L1D=128kB. DRAM: 1GB

DDR3 1600MHz x64. CPU=1GHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.19 (NORM) Vary Memory Types – HWhash: HT=64kB, L1D=64kB. SWhash: L1D=128kB.

CPU=1GHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.20 (NORM) Vary DRAM Latency – No Caches. HWhash: HT=64kB, L1D=0kB.

SWhash: L1D=0kB. CPU=1GHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.21 (NORM) Hash and PARSEC Benchmarks in Parallel (BHn and BP) – Simulation

Type G2 (size(L1D) in SWhash = size(L1D) in HWhash) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.22 (NORM) Hash and PARSEC Benchmarks in Parallel – Simulation type G1 (size(L1D+HT)

in HWhash = size(L1D) in SWhash) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.23 (NORM) Multiple BHn Instances – Simulation Type G2 (size(L1D) in SWhash =

size(L1D) in HWhash) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.24 (NORM) Multiple BHn Instances – Simulation type G1 (size(L1D+HT) in HWhash

= size(L1D) in SWhash) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.25 (NORM) NBSAT Benchmark with %Hashinst Varying – Simulation Type G2 (size(L1D)

in SWhash = size(L1D) in HWhash) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.26 (NORM) NBSAT Benchmark with %Hashinst Varying – Simulation type G1 (size(L1D+HT)

in HWhash = size(L1D) in SWhash) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

xi



3.27 HWhash: HT=64kB, L1D=64kB. SWhash: L1D=128kB. CPU=1GHz. DRAM: DDR3

1600MHz x64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.28 (σ = 12k) HWhash: HT=64kB, L1D=64kB. SWhash: L1D=128kB. CPU=1GHz.

DRAM: DDR3 1600MHz x64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.29 (σ = 16k) HWhash: HT=64kB, L1D=64kB. SWhash: L1D=128kB. CPU=1GHz.

DRAM: DDR3 1600MHz x64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.30 (σ = 20k) HWhash: HT=64kB, L1D=64kB. SWhash: L1D=128kB. CPU=1GHz.

DRAM: DDR3 1600MHz x64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.31 (YCSB) Speedup as CPU Speed is Varied – HWhash: HT=64kB, L1D=64kB. SWhash:

L1D=128kB. DRAM: DDR3 1600MHz x64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.32 (YCSB) Tradeoff of HT and L1D Sizes – SWhash: L1D=128kB. DRAM: 1GB

DDR3 1600MHz x64. CPU=1GHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.33 (YCSB) Vary Memory Types – HWhash: HT=64kB, L1D=64kB. SWhash: L1D=128kB.

CPU=1GHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.34 (YCSB) Vary DRAM Latency – No Caches. HWhash: HT=64kB, L1D=0kB. SWhash:

L1D=0kB. CPU=1GHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.35 (YCSB) Hash and PARSEC Benchmarks in Parallel (BHy and BP) – Simulation

Type G2 (size(L1D) in SWhash = size(L1D) in HWhash) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.36 (YCSB) Hash and PARSEC Benchmarks in Parallel – Simulation type G1 (size(L1D+HT)

in HWhash = size(L1D) in SWhash) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.37 (YCSB, HWhash: HT=64kB) First Three Bars: 9 PARSEC Benchmarks with Vary-

ing L1D. Fourth Bar: 9 PARSEC + 1 BHy Running on HWhash. Fifth Bar: 9 PAR-

SEC + 1 BHy Running on SWhash. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.38 (YCSB) Multiple BHy Instances – Simulation Type G2 (size(L1D) in SWhash =

size(L1D) in HWhash) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.39 (YCSB) Multiple BHy Instances – Simulation type G1 (size(L1D+HT) in HWhash =

size(L1D) in SWhash) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.40 (YCSB) NBSAT Benchmark with %Hashinst Varying – Simulation Type G2 (size(L1D)

in SWhash = size(L1D) in HWhash) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.41 (YCSB) NBSAT Benchmark with %Hashinst Varying – Simulation type G1 (size(L1D+HT)

in HWhash = size(L1D) in SWhash) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1 Hardware Hash Unit (HU) Block Diagram (Reprinted [4]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

xii



4.2 Hardware Hash Function (HF) of Class H3 [5] (Reprinted [4]) . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Control Signals Unit (CSU) (Reprinted [4]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4 9-T NOR-type CAM cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5 6-T SRAM cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.6 Hardware Hash Table (HT) for a Single Bin [3] (Reprinted [4]) . . . . . . . . . . . . . . . . . . . . . . . 71

4.7 Determining WL for Deletion (Reprinted [4]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.8 Determining WL for Insertion (Reprinted [4]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.9 Deriving CWLi
(Reprinted [4]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.10 SRAM and CAM cell layouts in 45nm design rules [6] (Reprinted [4]) . . . . . . . . . . . . . . . 76

5.1 Software-based hash table implementation (Reprinted [7]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Hardware-based FPGA hash table implementation (Reprinted [7]) . . . . . . . . . . . . . . . . . . . . 83

5.3 Hash Unit CPU-FPGA through PCIe implementation (Modified [7]). . . . . . . . . . . . . . . . . . 85

5.4 Hash Table (HT) structure in the FPGA (Modified [7]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.5 Hash operations burst structure in our CPU-FPGA implementation (Modified [7]) . . . 90

5.6 Hash operation pipeline stages in the FPGA (Reprinted [7]) . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.7 Plot of NOCC(x): L = 1M , n = 262144, and α = 0.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.8 Plot of NOCC(x): L = 1M , n = 262144, and α = 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.9 Plot of NOCC(x): L = 1M , n = 262144, and α = 0.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.10 Lookup hash operations for DB = 65,536 MD5 virus signatures, the HT size is

512kB – Varying: the number of bins (n) and the number of entries/bin (m) in the

HT. (Modified [7]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.11 Hash table (HT) occupancy for DB=65k entries and HT=512kB (n = 1024 bins

and m = 32 entries). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.12 Hash table (HT) occupancy for DB=65k entries and HT=512kB (n = 512 bins and

m = 64 entries). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.13 Hash table (HT) occupancy for DB=65k entries and HT=512kB (n = 256 bins and

m = 128 entries). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

xiii



5.14 Lookup hash operations for MD5 hash virus signatures – Varying burst and HT

sizes. DB = 65,536 MD5 virus signatures (Modified [7]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.15 Lookup hash operations for MD5 hash virus signatures – Varying burst and HT

sizes. DB = 131,072 MD5 virus signatures (Modified [7]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.16 Lookup hash operations for MD5 hash virus signatures – Varying burst and HT

sizes. DB = 196,608 MD5 virus signatures (Modified [7]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.17 Lookup hash operations for MD5 hash virus signatures – Varying burst and HT

sizes. DB = 262,144 MD5 virus signatures (Modified [7]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.18 Lookup hash operations for MD5 hash virus signatures – Varying the percentage

of virus hits. DB = 262,144 MD5 virus signatures. HT size = 1520kB. . . . . . . . . . . . . . . . 103

6.1 CPU units with the PAU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2 The PAU General Architecture showing Single Ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.3 A 4×4 Ring-based NoC Architecture [8] in the PAU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.4 Single wave ring clock [8, 9] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.5 Address wires cross-section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.6 Insertion/Extraction Station (IES) in the NoC in the PAU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.7 Junction Station (JS) in the NoC in the PAU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.8 Repeater (RPT) Station in the NoC in the PAU.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.9 A discrete form of the FIR filter in the time domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.10 An example of an 8-point DCT used in JPEG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.11 An example of a convolution encoder with a rate of 1

2
and the Viterbi decoding trellis.121

6.12 The PAU Design Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.13 FIR filter – the PAU speedup compared to a software-based implementation. . . . . . . . . . 127

6.14 FIR filter – the PAU area increase compared to a 32kB L1D cache. . . . . . . . . . . . . . . . . . . . 128

6.15 FIR filter – the PAU power increase compared to Intel i7-5600U average power. . . . . . 129

6.16 DCT – the PAU speedup compared to a software-based implementation. . . . . . . . . . . . . . 132

6.17 DCT – the PAU area increase compared to a 32kB L1D cache. . . . . . . . . . . . . . . . . . . . . . . . . 133

xiv



6.18 DCT – the PAU power increase compared to Intel i7-5600U average power.. . . . . . . . . . 134

6.19 Viterbi decoder – the PAU speedup compared to a software-based implementation. .. 136

6.20 Viterbi decoder – the PAU area increase compared to a 32kB L1D cache. . . . . . . . . . . . . 137

6.21 Viterbi decoder – the PAU power increase compared to Intel i7-5600U average power.138

xv



LIST OF TABLES

TABLE Page

3.1 PARSEC [10] Benchmarks Utilization in Parallel with Hash Benchmarks BHu, BHn,

or BHy (Reprinted [3]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 CSU op-codes for the HT operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 Delay and Dynamic Power analysis of Insert, Delete, and Lookup operations in HT

(Modified [4]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 Area and Delay analysis of the HU for different configuration of the HT (Modi-

fied [4]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4 Power analysis of the HU for different configuration of the HT (Modified [4]) . . . . . . . 79

5.1 Opcodes for the HT operations (Reprinted [7]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.1 Area Breakdown of the PAU for the FIR filter of 64 Taps / 16 Bits (A: adders, M:

multipliers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.2 Area Breakdown of the PAU for the FIR filter of 96 Taps / 64 Bits (A: adders, M:

multipliers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.3 Area Breakdown of the PAU for the FIR filter of 128 Taps / 64 Bits (A: adders, M:

multipliers) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.4 Area Breakdown of the PAU for the 8-point DCT with 4 parallel inputs (A: adders,

M: multipliers, S: subtractors) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.5 Area Breakdown of the PAU for the 4-point DCT with 4 parallel inputs (A: adders,

M: multipliers, S: subtractors) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.6 Area Breakdown of the PAU for the Viterbi decoder of r = 1

2
and l = 6 (A: adders,

M: multipliers, S: subtractors, C: comparators) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.7 Area Breakdown of the PAU for the Viterbi decoder of r = 1

3
and l = 6 (A: adders,

M: multipliers, S: subtractors, C: comparators) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.8 Area Breakdown of the PAU for the Viterbi decoder of r = 7

8
and l = 6 (A: adders,

M: multipliers, S: subtractors, C: comparators) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

xvi



6.9 Area Breakdown of the PAU for the Viterbi decoder of r = 9

10
and l = 6 (A:

adders, M: multipliers, S: subtractors, C: comparators) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

xvii



1. INTRODUCTION

1.1 Design of Modern Microprocessors

Modern Microprocessors typically use a complementary metal oxide semiconductor (CMOS)

transistors to build integrated circuits (ICs), using very large scale integration (VLSI). There are

two types of CMOS devices: N-channel metal oxide semiconductor (NMOS) and P-channel metal

oxide semiconductor (PMOS) transistors. In 1965, Gordon Moore observed that the number of

transistors in an IC will double every 18 months (Moore’s law [11]). The transistor count for each

Figure 1.1: Moore’s Law Trend from 1971 to 2016 (Our World in Data [1], Max Roser)

1



IC in the period from 1971 to 2016 is shown in Figure 1.1. In Figure 1.1, the x-axis represents the

year of introduction and the y-axis represents the number of transistors in each IC on a logarithmic

axis. The dots in Figure 1.1 represent each IC. Also, the curve shows the transistor count doubling

every two years, which is in keeping with Moore’s law. Until recently, researchers in the field (in

both the academy and industry) have worked together to sustain Moore’s law. More recently, the

scaling of transistor sizes cannot keep up with Moore’s law because transistor dimensions have

reached lithographic limits. It is becoming extremely challenging to shrink the transistor device to

smaller sizes. Today’s applications require higher performance and lower power consumption. As

a result, the IC industry is working hard to find new technologies and approaches as an alternative to

scaling CMOS transistor dimensions. One of these approaches is hardware acceleration. Hardware

acceleration is used to speedup common software algorithms in today’s applications. First, we will

discuss the modern microprocessor performance metrics. Then, we will study the tradeoffs of these

metrics to improve the performance of today’s applications.

1.2 Modern Microprocessor Performance Metrics

In modern microprocessors, the key performance metrics are delay, power dissipation and area.

Microprocessor designers usually use one or more of these performance metrics as their target (ie.

high performance computers, low power processors, small design footprints, etc.). For micropro-

cessor designers, it is extremely hard to achieve an improvement in all microprocessor performance

metrics. Usually, achieving an improvement in one of the microprocessor performance metrics re-

sults in a degradation in another microprocessor performance metric. In the case of using a smaller

technology node (ie. moving from 45nm technology node to 32nm technology node), micropro-

cessor designers can achieve improvements in all of these performance metrics.

Next, we will discuss the delay as the first microprocessor performance metric.

1.2.1 Delay

In digital circuit design, there are different types of delays [2] for combinational and sequential

circuits. In combinational circuits, the most important types of delay are: propagation delay (tpf

2



or tpr), fall time (tf), and rise time (tr). The propagation delay (tpf or tpr) is the time that it takes

an input signal of a logic gate to appear at the output. Usually the tpf or tpr is measured at 50%

of the voltage source from input signal to the output signal. As shown in Figure 1.2, the falling

f

out

V in

tpf

1.0

0.5

1.0

0.5

0.9

0.1

0

0

time

time

tpr

t rt

V

Figure 1.2: Propagation delay (tpf or tpr), fall time (tf) and rise time (tr) [2]

propagation delay tpf is the time that it takes a transition at the input signal of a logic gate to appear

as the falling output signal of the same logic gate. The rising propagation delay tpr is the time

that it takes a transition at the input signal of a logic gate to appear as the rising output signal of

the same logic gate (Figure 1.2). The fall time (tf) is the time that it takes an output signal to fall

from 90% of the supply voltage to 10% (Figure 1.2). The rise time (tr) is the time that it takes

3



an output signal to rise from 10% of the supply voltage to 90% (Figure 1.2). Sometimes tr and tf

are measured with the reference levels set to 20% and 80% of the supply voltage. In sequential

circuits, we consider other types of delay. The most important types of delay in sequential circuits

are: setup time (tsetup), hold time (thold) and clock-to-Q propagation delay (tcqp). In a rising (falling)

edge triggered flip-flop, the input signal D must arrive by a specific time (setup time, tsetup) before

the rising (falling) edge of the clock, and stay stable until another specific time (hold time, thold)

after the rising (falling) edge of the clock. The clock-to-Q propagation delay (tcqp) is the time that

takes the input signal D to propagate through the flip-flop until it appears at the output signal Q of

the same flip-flop after the rising (falling) edge of the clock.

We measure the delay of a circuit design using static timing analysis (STA). In any circuit

design, we calculate the maximum delay using STA tools. The STA tools report the maximum

delay after calculating the maximum delay in the design. The critical path is the circuit path that

results in the worst case delay in the design.

Next, we will discuss the power dissipation as the second microprocessor performance metrics.

1.2.2 Power Dissipation

In the digital circuit design, the average power dissipation is represented by the average of the

power consumed over some time interval T [2].

Pavg =
1

T

∫ T

0

P (t)dt (1.1)

Here P (t) is the instantaneous power consumed at time t. The power dissipation in digital circuits

consists of two parts: dynamic power (Pdyn) and static power (Pst). The dynamic power (Pdyn) is

the power consumed during the switching activity (during transitions from logic ”0” to logic ”1” or

vice versa) of the circuit. The static power (Pst) is the power consumed while the circuit is idle (no

switching activity). One of the causes of static power in CMOS digital circuits is the subthreshold

leakage when the CMOS transistor is OFF. Several efforts have been made to address this issue.

One of the ways to reduce the leakage in CMOS circuits is power gating, which works by isolating

4



the power source from idle parts in the circuit [12].

The total power dissipation in the circuit is the sum of dynamic and static power., as shown in

the following formula:

Ptotal = Pdyn + Pst (1.2)

Next, we will discuss the area as the third microprocessor performance metrics.

1.2.3 Area

Circuit area is an important metric in digital circuit design since microprocessor designers

are limited to a chip die area. By using a smaller process node technology in CMOS transistors

(usually, each new technology node is 30% smaller than the previous one [2]), microprocessor de-

signers are capable to embed more CMOS transistors in the same area. Microprocessor designers,

in early design stages, usually estimate the area by calculating the active area of all the channel

regions in all CMOS transistors in the circuit. This is also called the active area of the circuit. As

Substrate

Gate (G)

W

Drain (D)Source (S)
L

Figure 1.3: Physical structure of a CMOS transistor

shown in Figure 1.3, the active area of a single CMOS transistor is composed of the width (W) and

5



the length (L) of the channel:

Areaactive = W × L (1.3)

The active area does not represent the actual physical area of the design. For a more accurate area

representation, microprocessor designers use the cell area. The cell area includes the area of the

entire cell and the local interconnects with respect to the cell.

1.3 Modern Microprocessor Design Challenges and Solutions

In this section, we will discus the key issue in microprocessor design: the scaling of CMOS.

We then propose hardware acceleration as one way to address it.

1.3.1 Scalability of CMOS

CMOS transistor scaling is reaching its limits. The size of the CMOS transistor is limited

by lithographic challenges. As a result, researchers are working on finding another alternative to

overcome this issue and improve performance. One way to address this issue is to use hardware

accelerators to accelerate portions of common software algorithms. Next, we will discuss the

hardware acceleration in modern microprocessors.

1.3.2 Hardware Acceleration

Hardware acceleration is one solution to overcome the CMOS scaling issue. The main chal-

lenge for hardware accelerators is to find common algorithms for today’s applications that would

benefit from acceleration. Today’s applications have a heavy utilization of hashing and arithmetic

computations. In this thesis, we will study the possibility of implementing hardware accelerators

for hashing and arithmetic computation.

In modern microprocessors, applications run as processes for a certain number of central pro-

cessing unit (CPU) clock cycles, where the CPU clock cycle is a time unit in modern microproces-

6



sors. The CPU clock cycle is the inverse of the CPU frequency (f).

CPUcycle =
1

CPUf

(1.4)

Assuming that a hardware accelerator in a modern microprocessor can speed up a portion (p) of a

process by a factor s [13, 14], then, based on Amdahl’s law [13], the overall speedup of a process

can be calculated by the following equation:

Speedupoverall =
Cyclesold
Cyclesnew

=
1

(1− p) + p

s

(1.5)

As a results, the overall speedup can be increased by the increment of speedup portion (p) of a

process or by increasing the speedup (s) of that portion of the process. To maximize the speedup

portion p, it is important to focus on common algorithms that are utilized by most of today’s

applications.

1.4 Special Function Units (SFUs) in Modern Microprocessors

In modern microprocessors, there are several special function units (SFUs) such as integer

unit (IntU), floating point unit (FPU), memory management unit (MMU) and vector extension unit

(VXM) [14]. Figure 1.4 shows the common SFUs in a CPU. The IntU is used for integer arithmetic

operations, while the FPU is use for floating point arithmetic operations. The MMU is used for

memory operations such load or store data from the memory system in modern microprocessors.

The VXM is used for vector processing applications that utilize a single instruction on multiple

data (SIMD) operations. These SFUs are intended to speedup operations for common algorithms.

In this thesis, we focus on exploring new hardware accelerators such as a hardware hash unit and

a programmable arithmetic unit, to be used as new SFUs in modern microprocessors.

1.5 Field Programmable Gate Array (FPGA)

The filed programmable gate array (FPGA) is a flexible hardware platform, that can be re-

configured for multiple applications [15, 16]. Recently, the utilization of FPGA based designs

7



CPU

FPUIntU

MMU VMX

Figure 1.4: Common special function units (SFUs) in modern microprocessors

has been increased for low and medium volume applications, compared to application specific

integrated circuits (ASIC). Using FPGAs have several advantages compared to an ASIC. For ex-

ample, FPGAs have a faster design time and a lower non-recurring engineering (NRE) cost. The

NRE cost includes an engineering design cost and a prototype manufacturing cost [2]. Also, the

cost of ASIC IC fabrication masks has dramatically increased recently, which results in a reduc-

tion in ASIC designs [17]. As a result, FPGAs are increasingly favored over ASIC designs. As

shown in Figure 1.5, FPGAs consists of four major parts: configurable logic blocks (CLBs), rout-

ing switches, vertical and horizontal routing wires, and configurable I/O pins. The CLB consists

of one or more look-up tables (LUTs). Each LUT can be programmed to implement any logic

function with a specific number of inputs (n) (usually, n is between 4 to 6, depends on the FPGA

IC), using static random access memory (SRAM) cells. The routing switches are configured based

on the configuration of the CLBs, to route the configured logic (using routing wires as well) from

one CLB to another one.

A comparison between FPGA and ASIC has been reported in [18]. For a set of applications,

8



Configurable

CLBCLBCLBCLB

CLBCLB

CLB

CLB CLB

CLBCLB CLB

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O

I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O I/O

Routing 
switch

Routing
wires

Logic
Block

Figure 1.5: General FPGA architecture

FPGAs have 4.5× larger delay, 54× larger area, 14× more dynamic power and 87× more static

power compared to ASICs. The FPGA has lower speed and higher power dissipation compared

to ASICs, due to reconfigurability (which often results in redundant logic) and high wire density

in the FPGA ICs. As a results, FPGAs is generally not a good candidate for low power designs.

However, logic designers often use FPGAs, due to the fact that FPGAs have a faster design turn-

around time, a lower NRE cost, and great flexibility.

1.6 Hashing in Computer Systems

In computer systems, there are several ways to store and retrieve data in a database such as

link lists, arrays and hash tables. Usually, database entries have unique keys and multiple values.

For example, entries in a database can be social security numbers (as a key) associated with their

first names (as a value1) and last names (as a value2). Assume you have p (key, value) pairs

9



Array
. . . . .Key Value1 1 Key Value2 2 Key Valuep p

Figure 1.6: (Key, Value) pair in an array in Computer Systems

(further assume that a key is associated with a single value) to be stored in an array, as shown in

Figure 1.6. The search complexity for a key will be O(p). Hashing can reduce the complexity of

search and lookup from O(p) to O(p/n), where n bins are used, as shown in Figure 1.7. In modern

microprocessors hashing is done in software. As a result, software-based hashing often entails

high CPU utilization and memory utilization. Hashing is performed on an entry of a (Key, Value)

4

. . . .

Key, ValueInput: (                   ) pair

Key Value1 1

Key Value3 3

Key Value2 2

HF

HTBin#

2
1
0

3
Key

n−1
n−2

4
Index
Bin Key Valuep p

Key Value4

. . . .

Figure 1.7: Hashing in computer systems

pair, as shown in Figure 1.7. Hashing consists of two major parts: a hash function (HF) and a hash

table (HT). The hash function (HF) takes a Key as an input to produce a Bin Index that refers to

one of the bins in the hash table (HT). The hash table (HT) stores the (Key, Value) pair entry in the

10



corresponding bin. In software-based hashing, each bin is typically implemented as a linked list,

with a search time that is O(m), where m is the number of entries in a linked list, where m ∼ p

n
,

assuming that the HF selects each bin index with equal probability.

1.6.1 The Hash Function (HF)

The hash function (HF) is typically used for the hash table data structure, to speedup data entry

lookups (hash lookups). The hash function performs a logical or mathematical computations on

a Key (hash function input), to produce a Bin Index to one of the bins in the hash table, as shown

in Figure 1.7. For general purpose hash applications, universal classes of hash functions [19] are

utilized. One of the best candidates for hardware-based hash applications is a hash function of

class H3 [5]. This class of hash functions perform logical AND and XOR operations on a Key

input of the hash function, which perform a fast hash operation.

Also, hash functions are used for different kind of applications, such as cryptography and

message authentication. In our work, we will implement a hardware-based hashing for use in

modern microprocessors. Therefore, we will focus on universal hash functions of class H3 [5].

These hash functions perform a fast hash operation, which is a perfect match for a hardware-based

hashing application.

1.6.2 The Hash Table (HT)

The hash table (HT) is the data structure storage part of a hash operation. It stores (Key, Value)

pairs in its bins. In the software-based hashing, the hash table bins are typically implemented as

a linked list, as shown in Figure 1.7. In each bin of the hash table, the time complexity of a hash

lookup entry is O(m), where m is the number of entries in the linked list. Hash tables are typically

stored in a dynamic random access memory (DRAM) in modern microprocessors.

In our work, we will implement a hardware-based hash unit, which consists of a hash function

and a hash table. A content-addressable memory (CAM) [20] is mostly used in fast cache memory

applications. In our hardware-based implementation of the hash unit, we choose a CAM to realize

each bin. This provides O(1) search time when the entry is in the CAM.

11



2. THESIS OUTLINE

Hardware Hash Unit (HU)

Coprocessor

FPGA−basedCircuit

Level Design

Microarchitecture

Level Design

Circuit

Level Design

Microarchitecture

Level Design

Programmable Arithmetic Unit (PAU)

Figure 2.1: Thesis outline diagram

In this thesis, we study the possibility of implementing a hardware hash unit and a programmable

arithmetic unit for use in modern microprocessors, as new SFUs. The hardware hash unit is used to

speed up hash operations, while the programmable arithmetic unit is used to accelerate a sequence

of arithmetic operations.

12



For the hardware hash unit (HU), we present a detailed study at the microarchitecture level and

at the circuit level, as illustrated in the top portion of Figure 2.1. In the HU microarchitecture level

design, we present a detailed structure of the HU and how to embed it in modern microprocessors.

We compare the number of cycles of the HU over a software-based implementation. We observe

a significant speedup of the HU over the software-based hash. In the HU circuit level design,

we present a detailed circuit design of the HU. We verify the correctness of all hash operations

in the hash unit. We measure the delay, area and power of the HU, and compare them with a

traditional CAM design. Furthermore, based on our HU at microarchitecture level and at circuit

level, we implement an FPGA-based coprocessor for virus checking applications. We compare

the speedup of our FPGA-based virus checking application with a software-based implementation.

We demonstrate a good speedup of the FPGA-based virus checking application over the software-

based implementation.

For the programmable arithmetic unit (PAU), we present a detailed study at the microarchitec-

ture level and at the circuit level, as illustrated in the bottom portion of Figure 2.1. In the PAU

microarchitecture level design, we present a general structure of the PAU and how to use it in mod-

ern microprocessors. We compare the speedup of the PAU (over three examples that use arithmetic

operations heavily) over a software-based implementation. We demonstrate a significant speedup

of the PAU for different arithmetic applications over the software-based implementation. In the

PAU circuit level design, we present a circuit design of the PAU, and its design flow. We measure

the delay, area and power of each arithmetic application in the PAU. We compare the area of the

PAU with a 32kB level one data cache (L1D) in a 16nm technology. Also, we compare the power

increase of the PAU with the average power of an Intel [21] i7 processor.

In the remainder of this chapter, we will describe each part of this thesis in more details.

2.1 Hardware Hash Unit (HU)

In this section, we will briefly describe our hardware hash unit (HU) at the microarchitecture

level and at the circuit level. Also, we describe briefly our FPGA-based coprocessor for virus

checking applications.

13



2.1.1 Design of a Hardware HU at Microarchitecture Level

In Chapter 3, we describe the implementation of our hardware hash unit (HU) at the microar-

chitecture level. We show the HU structure in detail and describe how to use it in modern micro-

processors. The hash unit (HU) consists of two major parts: a hash function (HF) and a hash table

(HT). The hash function (HF) is constructed from AND and XOR gates, to perform a high speed

hash operation. The hash table (HT) in the HU consist of multiple bins. Each bin in the hash table

is realized as a content-addressable memory (CAM), which can perform a single clock cycle hash

search (lookup). We evaluate the performance of our HU and compare it with the performance

of a software-based implementation. We demonstrate a significant speedup of our HU over the

software-based implementation.

2.1.2 Design of a Hardware HU at Circuit Level

In Chapter 4, we describe the implementation of our hardware hash unit (HU) at the circuit

level. We show the HU components in detail, and describe how to perform hash operations on it.

As we mentioned earlier in the previous section, the hash unit (HU) consists of the hash function

(HF) and the hash table (HT). In addition, we describe the control signal unit (CSU) in the HU and

how to perform different hash operations. For the hash table (HT), we implement each bin using

CAM cells (for keys) and SRAM cells (for values). We measure the delay, area and power of the

HU and compare it with a traditional CAM design. We demonstrate a significant average power

reduction of the HU compared to a traditional CAM, with a minimal area increase.

2.1.3 An FPGA-based Coprocessor for Virus Checking Applications

In Chapter 5, we describe the implementation of our FPGA-based coprocessor for virus check-

ing applications, based on the ideas of Chapter 3 and Chapter 4. The FPGA-based coprocessor

communicates with a CPU via the PCI Express (PCIe) bus. In the FPGA, we implement our HU,

with each hash table bin in separate BRAMs, to implement a CAM-based structure. We perform

a burst hash lookup operations (message-digest5 (MD5) virus signatures), so that we achieve a

better utilization of the PCIe interface and increase the overall performance of our FPGA-based

14



coprocessor for the virus checking applications. Also, we implement our FPGA-based coproces-

sor in a pipelined structure. We compare the performance of our FPGA-based coprocessor with a

software-based implementation.

2.2 Programmable Arithmetic Unit (PAU)

In this section, we describe our programmable arithmetic unit (PAU) at microarchitecture level

and at circuit level (in Chapter 6).

We show the PAU general structure in detail and describe how to use it for multiple arithmetic

applications. The PAU consists of three major parts: tiles (IP blocks), a control logic (FPGA

controller) and a fast ring data fabric. The tiles in the PAU can be any common IP block such

as adders, subtractors, multipliers and comparators. The PAU can have one or more of the same

tile. Each tile can be implemented using a register-transfer level (RTL) synthesis tool. The control

logic (FPGA controller) in the PAU is FPGA-based. The FPGA controller enables different arith-

metic applications to be embedded on the PAU. The FPGA controller is programmed for different

applications. The reconfigurable logic of the FPGA controller is based on a LUT design like a

traditional FPGA. We extract the control logic of the FPGA controller using one of the FPGA syn-

thesis tools. The FPGA controller and the tiles in the PAU communicate via a fast ring data fabric.

The ring data fabric operates at a high speed of up to 20× of the FPGA controller and the tile in the

PAU. We study three arithmetic benchmarks in the PAU and measure their delay, area and power.

We compare the performance of the PAU with a software-based implementation. We demonstrate

a significant speedup of the PAU over the software-based implementation. We compare the area of

the PAU with a 32kB of L1D cache of the same technology node. Also, we calculate the increase

of power consumption of the PAU compared to an average power of an Intel [21] i7 processor.

15



3. MICROARCHITECTURE LEVEL DESIGN OF HARDWARE HASH UNIT FOR USE IN

MODERN MICROPROCESSORS 1

In this chapter, we present a hardware hash unit at the michroarchitecture level for use in

modern microprocessors. We start with a background in Section 3.1. Then, in Section 3.2, we

discuss the previous work. In Section 3.3, we present our proposed hardware hash unit at the

michroarchitecture level design. After that, we present our experimental results in Section 3.4. We

conclude in Section 3.5.

3.1 Background

Modern microprocessors are required to execute a complex and diverse set of applications. His-

torically, their performance has been optimized for integer and floating point benchmarks. Today’s

applications perform more diverse tasks such as those used in cloud computing, web-based search,

networking, and social media. Therefore, modern microprocessors are required to perform high

speed computation for an increasingly diverse set of tasks, while being constrained by memory

utilization and fabrication technology. As a result, new techniques need to be explored to achieve

high performance for applications that place diverse demands on modern microprocessors.

There have been many Special Function Units (SFUs) introduced to speedup commonly occur-

ring tasks in the typical application set. Some of these include cryptographic units, floating point

units and memory management units. To the best of our knowledge, there has been no work on a

general purpose hash unit. In order to implement such hashing-intensive algorithms, microproces-

sors simply compile the application code and run the resulting instructions. As we demonstrate in

this chapter, implementing a hardware hash unit (HU) can improve performance significantly. The

proposed hash unit includes a special hash table memory, to speedup hashing operations. Hashing

is one of the most important and commonly employed technique to store and lookup data. Design-

1 Part of the data (including some figures and tables) reported in this chapter is reprinted with permission from [3]

“A Novel Hardware Hash Unit Design for Modern Microprocessors” by A. Fairouz, M. Abusultan and S. P. Khatri, in

2016 IEEE 34th International Conference on Computer Design (ICCD), pp. 412–415, Oct 2016., Copyright 2016 by

IEEE.

16



ing a special function unit to accelerate hashing-intensive algorithms can yield significant speedups

for a wide class of applications.

As an example, several networking applications focus on hashing approaches to increase net-

work packets’ throughput. Fast internet protocol (IP) lookup is a significant application in net-

working. In order to achieve a high throughput for IP lookup, hashing is commonly employed.

Such hashing implementations are done in software, and require the design of hash function as

well as software-based hash tables. Another common use of hash functions involves search and

membership checks.

Modern microprocessors do not have a hardware-based hash unit. In this chapter, we propose

a new Hash Unit (HU) as a special function unit for modern microprocessors. The hash unit

uses a special hash table memory, to store hash operations. The hash table memory module uses

a content-addressable memory (CAM) to enable fast memory access. Our HU is embedded in

the architecture pipeline of a modern microprocessors. Our HU obtains a speedup of up to 15×

compared to a software-based hash application, with minimal increase in the area.

The key contributions of this chapter are:

• Design a hardware hash unit (HU) to speedup hash operations in modern microprocessors.

To the best of our knowledge, this has not been undertaken to date.

• We simulated the design using GEM5 [22] (a Computer Architecture Platform) in the x86

ISA (augmented with our hash instructions) and verified the correctness of all hash opera-

tions.

• We observe a speedup of up to 15× while varying the size of the hardware hash table, CPU

speed, cache size, memory technology and DRAM latency.

• We report the effect on cache misses when the HU is used, and also quantify the scaling of

the speedup of the HU when multiple applications are run in parallel. The HU reduces cache

misses for non-hash intensive benchmarks and increase the performance of these applica-

tions.

17



• Our approach supports multiple applications running hash operations in parallel, without

affecting the correctness of any of the applications.

The rest of the chapter is organized as follows. In Section 3.2, we discuss related previous

work. Section 3.3 describes our approach, and Section 3.4 presents experimental results. We

summarize the chapter in Section 3.5.

3.2 Previous Work

Several prior research efforts has been focused on hash functions implementations in hard-

ware [23, 24, 25, 26]. These hardware hash functions are useful for checking the identity of two

copies of large data files on different nodes in the network. Hash functions are heavily used in

networking applications, for tasks such as hashing internet protocol (IP) addresses [27] and for

message authentication [28]. The SHA-3 hash function has been simulated and implemented on

an FPGA in [29] for cryptographic network applications. They proposed a pipelined model to in-

crease the performance of hash operations. There are some attempts to provide a dynamic perfect

hash table [30] for embedded devices.

The hash table data structure provides a fast means to perform the lookup operation. A high-

throughput online hash table implementation on an FPGA platform has been proposed in [31]. The

authors of [31] increased the throughput of network applications using a pipeline architecture for

hash operations. Their design has been implemented on an FPGA, using external DRAM for the

hash table. A solution for packet processing using a hashing scheme design has been proposed

in [32]. The authors propose a set-associative CAM memory hash table for packet processing

in an internet router, and simulated this structure in C++ for different hash functions. They also

implemented their hash table accesses using multiple hash functions, to reduce the collision list of

hashed entries. In [33], the authors proposed an FPGA implementation of an extended bloom filter

using a CAM memory module, for fast IP lookup in networking applications. The key idea is to

store the collision list of hash entries in a CAM memory module instead of a linked list.

All the above referenced efforts have attempted to only accelerate the hashing operation. In

18



contrast, the design of a hardware hash unit and its associated hash table has not been addressed as

part of modern microprocessors. There has been no previous efforts, in modern microprocessors,

to include a special function unit for hashing (including hash function as well as dedicated memory

to store hash table). Therefore, our work stands apart from the previous research by focusing on

the design of a hash unit in modern microprocessors, and quantifying the resulting performance

gains.

3.3 The HU Microarchitecture Design

In this section, we discuss our proposed hash unit (HU) in modern microprocessors, at the

microarchitecture level design. We start with an overview discussion of our HU. Then, we present

a brief overview of the hash function (HF). After that, we introduce the hardware structure of the

hardware hash table (HT) used in our approach. Next, we discuss the overall functionality of the

HU. After that, we discuss the latency of our hash table implementation, along with cache and

main memory latencies. Then, we discuss the hash lookups distribution. After that, we discuss the

HU replacement operation. Finally, we discuss the benchmarks used for quantifying the usefulness

of the HU.

3.3.1 Overview: Hash Unit (HU)

The hash unit (HU) is designed to accelerate the hash table operations in a modern micropro-

cessor. The HU consists of two blocks – the hash function (HF) block and the hash table (HT) as

shown in Figure 3.1. The figure shows the usual CPU pipeline flow, starting from the instruction

fetch stage to the instruction issue stage. The HF and the HT are added in the execution stage of

the pipeline.

The role of the HF is to perform hash insert, lookup, and delete instructions. The HT is a

memory module that holds key and value pairs. The HT performs fast hash operations since it is

implemented as a CAM [34, 35]. We implement one CAM per bin of the HT. We will discuss the

HF in Section 3.3.2 and the HT in Section 3.3.3.

19



Int Registers

Function
(HF)

Hash
Table
(HT)

L1 D−CacheD−TLB

Instruction Fetch Buffer

Instruction Decode

Rename/Dispatch

Issue Queue

MMUIntU VMXFPU

FP + VSX Registers

L1 I−CacheI−TLB

L2 Cache

Predecode

Hash

Figure 3.1: Proposed Hash Unit (HU) for Modern Microprocessors (Modified [3])

20



3.3.2 Hash Function (HF)

The hash function performs a hash operation based on the key of a (key, value) pair. The HF

takes a key as an input to produce a bin index as shown on the left side of Figure 3.2. The hash

value points to the intended bin number in the HT. Hash functions vary in complexity. Our main

purpose is to reduce the number of cycles to perform hash operation, therefore, we select a hash

function that performs integer operations. This is easily generalized to perform hashes on pointers.

Our hash function is of class H3 [36, 5]. H3 utilizes bit-wise AND and bit-wise XOR operations

only. Thus, it yields a fast hash function operation which completes well within one clock cycle.

The associated logic in such hash functions is minimal, and adding support for hashing pointers or

strings is applicable.

3.3.3 Hash Table (HT) Configuration

In order to provide fast memory access, we design our HT using CAM memory blocks [37, 38].

Each bin in the HT is realized as a CAM, CAMs provide fast memory access, allowing a one-cycle

lookup of a HT bin. We use a CAM to store the contents of the HT bin in order to enable searching

of the whole bin in parallel, yielding fast hashing operation times. As mentioned in Section 3.3.2,

the bin index produced by the HF will point to a bin in the HT. If an entire bin is full, the next

available entry in the insert operation will go to DRAM, to effectively extend the bin. Each bin

consists of control registers and entry memory module (these store key and value pairs). The HT

bin holds the entries corresponding to the collision chain as shown in Figure 3.2. The fields of each

bin are as follows:

• PID: This is a register that stores a process ID of the running process that owns this bin of

the HT. This register enables the HU to support multiple processes that are simultaneously

performing hash operations, to run in parallel and avail of the HU functionality.

• Bin Pointer: This is a register that stores the pointer of the HT bin in DRAM. The entire

contents of the HT are stored in DRAM, and hence we have to keep track of DRAM location

of each bin of the HT, in order to maintain the consistency of the data entries. Each bin of

21



HT

is implemented
Each bin

Entry0

Key 0 Value0

Bin#

2
1
0

3

n−1
n−2

. . .

Valuem−1Key m−1

Entry 0

V D Key Value V D Key Value

Index
Bin

Entrym−1

. . .

. . .

Hash Table (HT) Bin

PID
Bin

Pointer
Next

Pointer

Entry m−1

Key
HF

as a CAM

Figure 3.2: HF, HT, and HT Bin Configuration (Modified [3])

the HT can be replaced, in real-time by another bin belonging to a different application that

is simultaneously performing hash operations.

• Next Pointer: This is a register that stores the pointer to the first entry of the extended bin in

DRAM. In general, if there are m entries per bin, and the bin pointer address is A, then the

next pointer address will be A +m, where A is the DRAM address for the start of this bin.

This pointer helps reducing the latency of accessing the extended bin in DRAM, by skipping

any entries in DRAM that are already stored in the HT bin.

• Key: This is a CAM cell that holds the key used as an input to the HF. The key is a unique

value, and uniqueness in maintained by the insert operation, which first checks membership

before insertion, and does not perform insertion if the key already exists.

• Value: This is an SRAM cell that holds the value corresponding to each key. It is not

necessary that values are unique.

22



• Valid bit (V): This is a bit that represents the validity of the (key, value) pair in each entry in

the HT bin. If the valid bit is 0, it means that the (key, value) pair entry is empty. Otherwise,

the entry is valid and occupied.

• Dirty bit (D): This is a bit that is used to keep the data in HT updated in DRAM. If a (key,

value) pair entry is modified in the HT bin and not yet mirrored in DRAM, the dirty bit is

set to 1. Once the (key, value) pair copied back to DRAM, the dirty bit is set to 0 again. The

updated entry has to be reflected through all cache levels starting from level one data cache

(L1D).

During HT initialization, all valid and dirty bits are set to logic ‘0’. This indicates that the HT

is empty.

3.3.4 HU Functionality

The HU performs three major operations: Lookup, Insert, and Delete. These operations are

provided by the HU as new instructions in the microprocessor instruction set. Since our HT is

constructed using CAMs [34, 35], HT lookups take one clock cycle, unless the bin data does not

fit in the HT bin. These operations are described as follows:

• Lookup: This is an important operation of the HU. All other hash operations rely on the

lookup operation. After the key is hashed by the HF to produce a bin index, the lookup

operation will be performed on the bin whose index matches the bin index. Then the key

is looked-up in parallel within the matched bin of the HT (recall that each HT bin is im-

plemented as a CAM). If the key is in the HT bin, then the (key, value) pair is returned. If

the key does not exist in the HT bin and the next pointer register is null, then the lookup

operation would conclude that the key is not found. Otherwise, the next pointer points to the

remaining portion of the bin in DRAM, where the lookup operation continues the search.

Since the HT is part of the processor’s pipeline execution, the different levels of cache are

used during this phase of lookup. Thus, many of the remaining bin entries can be cached in

one or more of the cache levels.

23



• Insert: Before an insert, a lookup operation is executed. If the key exists in the HT, the

insert operation will be averted. Otherwise, the new (key, value) pair will be added to the

HT bin. If the HT bin is fully occupied, the insert operation uses the next pointer register

to continue the insert operation at the end of the linked list data structure in DRAM, for the

corresponding bin.

• Delete: This operation is preceded by a lookup operation. If the lookup operation succeeds,

the delete operation simply sets the valid bit of the corresponding entry of the HT bin to 0.

Otherwise, the delete operation is aborted.

3.3.5 Memory Latency

The main hash table data is stored in DRAM. The HT copies an HT bin from DRAM upon

context switch between multiple processes that use the HU. Each process has its own process ID

(PID). If an HT bin belongs to a hash process (x), and another hash process (y) accesses that bin,

then we effectively have an HT bin miss. In this case, we request the HT bin that belongs to process

(y) from DRAM. This context switch between HT bins incurs a DRAM latency in the worst case,

or the latency of one of the cache levels if the HT bin is available in cache.

3.3.6 Hash Lookups Distribution

We implement our hash function of class H3 [5], as discussed in Section 3.3.2. This type of

hash function distributes hash input entries uniformly in hash table bins. Therefore, each bin in the

hash table has almost equal number of entries. Hash lookups can have a uniform or a non-uniform

input distribution. Our hash function guarantees that each bin in the hash table will have the same

distribution of hash lookups. Therefore, we conduct a simple experiment in our hash function with

uniform and normal distributions of hash lookups.

In our experiment, we applied a 100K hash lookups to our hash function of class H3. The hash

function produces a 2-bit Bin Index for 4 bins. The range of hash lookups is from 0 to 100. For

uniform hash lookups, the distribution of the hash lookups input appears in all 4 bins, as shown in

Figure 3.3. For normal hash lookups (σ = 20, µ = 50), the normal distribution appears in each

24



0

0.0005

0.001

0.0015

0.002

0.0025

0.003

 0  20  40  60  80  100

P
ro

b.

Key

bin 0

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

 0  20  40  60  80  100

P
ro

b.

Key

bin 1

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

 0  20  40  60  80  100

P
ro

b.

Key

bin 2

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

 0  20  40  60  80  100

P
ro

b.

Key

bin 3

Figure 3.3: Hash table bin entries for Uniform distribution hash lookups

bin, as shown in Figure 3.4.

3.3.7 Replacement Operation in the HU

In a lookup operation in the HU, a replacement operation occurs when there is a HT miss and

a DRAM hit. In this situation, the hash lookup entries will be placed in the HT, and the rest of

the entries will be placed in the DRAM (a golden copy of the hash table entries will be always

in the DRAM). As shown in Figure 3.5, the Bin Pointer refers to the beginning of the bin in

the DRAM, while the Next Pointer refer to the first entry stored in the HT. Therefore, a lookup

operation in the DRAM starts at the Bin Pointer entry, and skips the entries from the Next Pointer

entry to the Next Pointer entry plus (m − 1) entries (where m is the number of entries in the HT

bin). In the DRAM, the hash table entries are allocated in blocks of 10kB for each bin, as shown

25



0.0025

0.003

0.0035

0.004

0.0045

0.005

25 30 35 40 45 50 55 60 65 70 75

P
ro

b.

Key

bin 0

0.0025

0.003

0.0035

0.004

0.0045

0.005

25 30 35 40 45 50 55 60 65 70 75

P
ro

b.

Key

bin 1

0.0025

0.003

0.0035

0.004

0.0045

0.005

25 30 35 40 45 50 55 60 65 70 75

P
ro

b.

Key

bin 2

0.0025

0.003

0.0035

0.004

0.0045

0.005

25 30 35 40 45 50 55 60 65 70 75

P
ro

b.

Key

bin 3

Figure 3.4: Hash table bin entries for Normal distribution hash lookups

j0
0

Entry

. . .

m−1
Entry

PID

HT

. . .

Pointer
Bin

Pointer
Next

DRAM

10KB

xx xm−10x . . . 

. . . 

x x

HF
Key

Index
Bin

Bin#

n−1

j j+m−1 j+m−1

Figure 3.5: Replacement operation in the HU – in case of a HT miss and a DRAM hit of a lookup

operation

in Figure 3.5. An Extra 10kB of DRAM memory block will be allocated whenever the current

10kB DRAM memory is fully utilized. In a replacement operation, if the DRAM hit occurs at

26



the first half of the 10kB DRAM block (let’s say it occurs at the jth location in the 10kB DRAM

block), then the replacement of the entries from the DRAM to the HT will start from the jth

location to the (j + (m− 1))th location in the 10kB DRAM block (where j is the DRAM hit entry

index). Otherwise, the replacement of the entries from the DRAM to the HT will start from the

(j − (m− 1))th location to the jth location in the 10kB DRAM block.

3.3.8 Benchmarks Used

We created three hash benchmarks that provides both insert and lookup operations with random

entries:

1. BHy: we use Yahoo! Cloud Serving Benchmark (YCSB) [39], for hash operations.

2. BHu: we use uniform distribution for hash operations.

3. BHn: we use normal distribution for hash operations.

In YCSB benchmark, we use a read only YCSB Core Package workload with a zipfian dis-

tribution. In the YCSB workload, we configure each entry in the hash table as a 32-bit key and a

32-bit value (we apply the same key and value configurations in BHu and BHn). For constructing the

hash benchmark BHy, we use Memcached [40] as a backend in the DRAM to get YCSB workload

traces.

The total number of entries is varied in our simulations, but it is chosen to be much larger

than the size of the HT. Once the HT has been fully occupied, the rest of the hash table entries

reside in the DRAM. This allows us to test how the performance of the HU scales for hash tables

that are much larger than the size of the HT. In our experiments, we increase the number of hash

table entries up to 5× the size of the HT. We also study the performance of the HU as the number

of parallel instances of BHy, BHu, or BHn is increased. We also use programs from the PARSEC

benchmarks suite [41, 10] to test the performance of the HU under a diverse configuration of

other applications running in parallel with the BHy, BHu, or BHn benchmarks. We use simsmall

simulations in PARSEC benchmarks. We refer to the PARSEC benchmark as BP. By varying the

27



ratio of the number of BP instances versus the number of BHy, BHu, or BHn instances, we can study

the HU performance under varying system loads.

The BHy, BHu, and BHn benchmarks performs only hash operations. In order to create bench-

marks in which a user-defined fraction of instructions are hash operations, we modified a Noise-

based Boolean Satisfiability (NBSAT) [42] benchmark. In this benchmark, we injected hash in-

structions, to obtain benchmarks (BHVy, BHVu, and BHVn) with a user-defined fraction of hash

instructions. Assume that the original NBSAT benchmark has P instructions, as shown in Fig-

Figure 3.6: Percentage of Hash Instructions in NBSAT Benchmark (Reprinted [3])

ure 3.6. We inject k hash instruction bundles into the NBSAT code, with each hash instruction

bundle containing H instructions. Then, the percentage of hash instructions in BHVy, BHVu, and

BHVn (%Hashinst) is shown in Equation 3.1. By varying k, we vary the density of hash instructions

in BHVy, BHVu, and BHVn, and test the performance of the HU while varying k.

%Hashinst =
H.k

P + (H.k)
(3.1)

28



In Section 3.4, we will quantify the performance of the HU, and compare it with a software-

based hashing approach.

3.4 Experimental Results

In this section, we present our experimental results of the HU for use in modern microproces-

sors at the microarchitecture level. We discuss our simulation environment in Section 3.4.1. In

Section 3.4.2, we discuss the simulation parameters and groups. Finally, we present our simulation

results along with a discussion in Section 3.4.3.

3.4.1 Simulation Environment

We implement the HU in GEM5 [22] (a Computer Architecture Simulator). We use x86 ISA as

our base instruction set. In case the DRAM is not involved, it is assumed that a lookup operation

on the HU takes one cycle. The insert operations takes one cycle if the entry is available in the

hash table, otherwise it takes two cycles. The delete operations takes one cycle if the entry is not

available in the hash table, otherwise it takes two cycles. We augment the x86 ISA in GEM5 with

our hash instructions. In GEM5, we use the O3 detailed CPU model in full system (FS) mode

and MOESI_hammer ruby memory model. In all our simulations, we verify the correctness of all

hash operations in the HU and the validity of the HT entries. We use uniform distribution (UNIF),

normal distribution (NORM) and YCSB workload (YCSB) to create our hash benchmarks: (BHu,

BHn, and BHy) and (BHVu, BHVn, and BHVy), as discussed in Section 3.3.8.

The basic configurations of the system and HT in our simulations are as follows:

• CPU: single core 1GHz.

• DRAM: 1GB DDR3 1600MHz x64 (64-bit bus width).

• L1 instruction cache (L1I): 32kB, 64 byte per block size, 8-way set associative, PSEUDO_LRU

replacement policy.

• L1 data cache (L1D): 64kB, 64 byte block size, 8-way set associative, PSEUDO_LRU re-

placement policy.

29



• L2 cache: 2MB, 64 byte block size, 8-way set associative, PSEUDO_LRU replacement

policy.

• L3 cache: 16MB, 64 byte block size, 16-way set associative, PSEUDO_LRU replacement

policy.

3.4.2 Simulation Parameters and Groups

In our simulations of the HU, we vary several parameters:

• Number of entries – This is varied from 4K to 80K entries, each entry is a size of 4 bytes.

• CPU speed – This is varied from 1GHz to 5GHz, in steps of 1GHz.

• HT size – This is varied from 8kB to 124kB in our experiments.

• DRAM technology – We perform our experiments on LPDDR3, DDR3, and DDR4 DRAM

technologies.

• DRAM latency – We perform our experiments with a DRAM latency of 30ns, 60ns, 90ns,

120ns, and 150ns.

• L1D cache size – In our simulations, we test the HU with an L1D cache of size 32kB, 64kB,

and 128kB. These values are based on L1D cache sizes from processors offered by Intel,

AMD, and IBM. The L1D cache sizes of Intel processors are 32kB [21], while some AMD

Athlon parts have L1D of size 128kB [43]. The IBM Power8 processors use an L1D cache

of size 64kB [44].

We partition our simulations into two groups:

1. The first group (G1): the size of (L1D + HT) stays the same as the size of (L1D) that we use

in the software-only implementation. This group, in effect, models the scenario where the

total CAM area stays fixed when we implement the HU.

30



2. The second group (G2): the size of (L1D) stays fixed, and in the HU implementation, the

size of (L1D + HT) is greater than the size of (L1D) for the software-only implementation.

Essentially, G1 assumes that the CPU area is fixed (i.e. area conservative), while G2 relaxes

this assumption.

The speedup of the HU is computed by the ratio of number of cycles when hashing is done in

software without the HU (SWcycles) versus the number of cycles when hashing is done with the HU

(HWcycles), as shown in the following equation:

Speedup =
SWcycles

HWcycles

(3.2)

We refer to a simulation with the HU as HWhash, while SWhash refer to a software-only simula-

tion (using a software-based hashing).

For the HT, 64kB results in 16K entries (i.e. key-value pairs), since each key is 4 bytes long.

3.4.3 Results and Analysis

In this section, we present and analyze our experimental results. We divide our experiments

into four major subsections: uniform distribution (UNIF), normal distribution (NORM), HU re-

placement, and YCSB benchmark (YCSB). First, we present the results for uniform distribution

hash operations experiments. Then, we present the results for normal distribution hash operations

experiments. After that, we compare the uniform and normal distribution experiments with/without

HU replacement. Finally, we present and discuss the results of our hash operations experiments

using YCSB benchmark.

3.4.3.1 Uniform Distribution (UNIF)

In this section, we use the uniform distribution to generate our hash benchmarks BHu and BHVu

for our experiments, without a replacement operation between the HT and the DRAM. We will

discuss the results using the replacement operation later in Section 3.4.3.3. The experiments in this

section will be in the following order:

31



1. Vary CPU speed.

2. Vary the HT size.

3. Vary the main memory (DRAM) technology.

4. Vary the DRAM latency.

5. Run multiple hash benchmark (BHu) instances in parallel with multiple PARSEC benchmarks

(BP).

6. Run multiple BHu instances alone.

7. Vary a fraction of hash instructions in the benchmark BHVu.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

 0  10  20  30  40  50  60  70  80

S
pe

ed
up

 (
X

)

# of entries (k)

CPU 1GHz
CPU 2GHz
CPU 3GHz
CPU 4GHz
CPU 5GHz

Figure 3.7: (UNIF) Speedup as CPU Speed is Varied – HWhash: HT=64kB, L1D=64kB. SWhash:

L1D=128kB. DRAM: DDR3 1600MHz x64. (Reprinted [3])

32



The CPU speed plays an important role for SWhash. In Figure 3.7, we vary the CPU speed

to study its effect on the performance. The application run is a single instance of BHu, and the

simulation is of type G1. We note that the peak speedup is between 9.5× and 12×. The speedup

is maximum when the entire hash table fits in the HT (i.e. when the hash table has ∼16K entries).

As the CPU speed increases, the relative speedup of HWhash is reduced, since SWhash can perform

its operations faster (with fixed HU operation times).

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

 0  10  20  30  40  50  60  70  80

S
pe

ed
up

 (
X

)

# of entries (k)

HT=64KB, L1D=64KB
HT=96KB, L1D=32KB

HT=112KB, L1D=16KB
HT=120KB, L1D=8KB
HT=124KB, L1D=4KB

Figure 3.8: (UNIF) Tradeoff of HT and L1D Sizes – SWhash: L1D=128kB. DRAM: 1GB DDR3

1600MHz x64. CPU=1GHz. (Reprinted [3])

Figure 3.8 illustrates the tradeoff between the size of the HT and the L1D size, for a simula-

tion of type G1. The L1D size for the software-only implementation is 128kB, and for the HU

implementation, size (L1D + HT) is fixed at 128kB. We note that the peak speedup is about 12.3×.

The speedup of hash operations in the HU implementation increases as the HT size increased up

to 124kB. Since the L1D size gets progressively smaller as the HT size increases, it reduces the

33



speed of the non-hash instructions. Therefore, the sweet spot is when the HT size is the same as

the L1D size, or slightly greater.

0

2

4

6

8

10

12

14

 0  10  20  30  40  50  60  70  80

S
pe

ed
up

 (
x)

# of entries (k)

DDR3 1600MHz LPDDR3 1600MHz DDR4 2400MHz

Figure 3.9: (UNIF) Vary Memory Types – HWhash: HT=64kB, L1D=64kB. SWhash: L1D=128kB.

CPU=1GHz.

Figure 3.9 illustrates the effect of main memory (DRAM) technologies on the HU implementa-

tion. There is a minimal effect on the speedup of the HU implementation, as the DRAM technology

changes, since the DRAM is utilized in both HU and software-based implementations. As a result,

both implementations benefit from the performance of the DRAM technology.

To illustrate the effect of caching and DRAM latency on the HU performance, we turned off

caching in Figure 3.10. Of course this would not be done in practice, but we did this experiment

to check the contributions of caching and DRAM latency. We note that without L1D cache, the

HU provides peak speedups between 40× and 87× for a single instance of BHu, This speedup is

substantially inversely proportional to DRAM latency.

34



0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

 0  10  20  30  40  50  60  70  80

S
pe

ed
up

 (
X

)

# of entries (k)

DRAM latency=30ns
DRAM latency=60ns
DRAM latency=90ns

DRAM latency=120ns
DRAM latency=150ns

Figure 3.10: (UNIF) Vary DRAM Latency – No Caches. HWhash: HT=64kB, L1D=0kB. SWhash:

L1D=0kB. CPU=1GHz. (Reprinted [3])

The experiments so far were run for a single instance of BHu. In the experiments that follow,

we report the performance for a diverse computational load, with multiple BHu and BP processes

running in parallel. This would result in cache and HT pollution, providing a more realistic idea

of the value of the HU. For all these experiments, we compare the time required to complete the

entire set of applications, and compare the speedup of HWhash over SWhash. In these experiments,

we run several instances of our hash benchmark (BHu) along with several PARSEC benchmarks

(BP), to observe the effect of context switches of a total of 10 benchmarks, we vary the number

of BHu and BP instances as shown in Table 3.1. The percent of hash benchmarks is therefore

the number of BHu instances divided by 10. This value varies between 10% and 90%. As the

percentage of hash benchmarks increases, the performance of the hash benchmarks increases as

shown in Figures (3.11,3.12). Figure 3.11, shows the G2 configuration group, while Figure 3.12,

shows the G1 results. For both Figures 3.11 and 3.12, for each plot, we note that the speedup

35



Percentage of

Hash

benchmarks (%)

PARSEC benchmarks (BP) Number of

instances of

(BHu, BHn, or BHy)

b
o

d
y

track

can
n

eal

d
ed

u
p

facesim

ferret

fl
u

id
an

im
ate

freq
m

in
e

v
ip

s

x
2

6
4

10 1

20 2

30 3

40 4

50 5

60 6

70 7

80 8

90 9

Table 3.1: PARSEC [10] Benchmarks Utilization in Parallel with Hash Benchmarks BHu, BHn, or

BHy (Reprinted [3])

increases as the HT size increases, and also as the fraction of hash benchmarks increases. Also for

each figure, the speedup is higher when the total amount of CAM memory is higher. The speedups

for configuration G2 (Figure 3.11) is higher than for configuration G1 (Figure 3.12), as expected,

since the total amount of CAM in G2 is larger. The speedup reaches up to 5.1×, in Figure 3.11,

when size(HT)=64kB and size(L1D)=128kB, and running 9 instances of BHu.

Figures 3.13 and 3.14 report the results from our experiments to quantify the effect of sharing

the hardware HT among several BHu instances. We observe each G2 plot achieves a greater speedup

than the corresponding G1 plot, as expected. For each of the 6 plots in Figures 3.13 and 3.14, the

speedup is slightly higher for a larger size(HT). In each of the 6 plots, the speedup is highest when

there are fewer instances of BHu contending for the HT resource. When 9 instances of BHu are

running, the speedup for all 6 plots is ranges from 50% to 10%. The 50% speedup is obtained for

size(HT)=64kB and size(L1D)=128kB (Figure 3.13). For a single instance of BHu, the speedup

is as high as 13.3× (Figure 3.13), in which size(HT)=64kB and size(L1D)=128kB. For up to 3

instances of BHu, in both plots, the speedup is higher than 80%, reducing gradually as the number

36



1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

 10  20  30  40  50  60  70  80  90

S
pe

ed
up

 (
X

)

Percentage of Hash benchmarks with PARSEC (%)

HT=64KB, L1D=128KB
HT=32KB, L1D=128KB
HT=32KB, L1D=64KB
HT=16KB, L1D=64KB
HT=16KB, L1D=32KB

HT=8KB, L1D=32KB

Figure 3.11: (UNIF) Hash and PARSEC Benchmarks in Parallel (BHu and BP) –

Simulation Type G2 (size(L1D) in SWhash = size(L1D) in HWhash) (Modified [3])

of BHu instances increases.

Finally, we perform an experiment to test the speedup due to the HU, for a single benchmark, as

the fraction of hash instructions in the benchmark (%Hashinst) varies, as discussed in Section 3.3.8

and illustrated in Figure 3.6. The benchmark we chose was NBSAT, and the results are shown in

Figures 3.15 and 3.16. We note that the speedup of the single NBSAT instance (with injected hash

instructions) increases as %Hashinst increases, in all 6 plots of Figures 3.15 and 3.16. For each

plot in Figure 3.15, the corresponding plot of Figure 3.16 exhibits greater speedup, as expected.

These plots suggest that for all the HT and L1D sizes studied, including the HU enhances the

performance of any application, even if it has a relatively small fraction of hash operations. For

a %Hashinst value of 10%, the speedup ranges between 22% and 6%. A speedup value of 18% is

obtained for size(HT)=64kB and size(L1D)=64kB (Figure 3.16).

37



1.00

1.50

2.00

2.50

3.00

3.50

4.00

 10  20  30  40  50  60  70  80  90

S
pe

ed
up

 (
X

)

Percentage of Hash benchmarks with PARSEC (%)

HT=96KB, L1D=32KB
HT=64KB, L1D=64KB
HT=48KB, L1D=16KB
HT=32KB, L1D=32KB

HT=24KB, L1D=8KB
HT=16KB, L1D=16KB

Figure 3.12: (UNIF) Hash and PARSEC Benchmarks in Parallel –

Simulation type G1 (size(L1D+HT) in HWhash = size(L1D) in SWhash) (Modified [3])

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

 1  2  3  4  5  6  7  8  9

S
pe

ed
up

 (
X

)

# of Hash benchmarks running in parallel

HT=64KB, L1D=128KB
HT=32KB, L1D=128KB
HT=32KB, L1D=64KB
HT=16KB, L1D=64KB
HT=16KB, L1D=32KB

HT=8KB, L1D=32KB

Figure 3.13: (UNIF) Multiple BHu Instances –

Simulation Type G2 (size(L1D) in SWhash = size(L1D) in HWhash) (Modified [3])

38



0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

 1  2  3  4  5  6  7  8  9

S
pe

ed
up

 (
X

)

# of Hash benchmarks running in parallel

HT=96KB, L1D=32KB
HT=64KB, L1D=64KB
HT=48KB, L1D=16KB
HT=32KB, L1D=32KB

HT=24KB, L1D=8KB
HT=16KB, L1D=16KB

Figure 3.14: (UNIF) Multiple BHu Instances –

Simulation Type G1 (size(HT+L1D) in HWhash = size of (L1D) in SWhash) (Modified [3])

0.00

2.00

4.00

6.00

8.00

10.00

12.00

 10  20  30  40  50  60  70  80  90

S
pe

ed
up

 (
X

)

Percentage of Hash instructions in NBSAT benchmark (%)

HT=64KB, L1D=128KB
HT=32KB, L1D=128KB

HT=32KB, L1D=64KB
HT=16KB, L1D=64KB
HT=16KB, L1D=32KB
HT=8KB, L1D=32KB

Figure 3.15: (UNIF) NBSAT Benchmark with %Hashinst Varying –

Simulation Type G2 (size(L1D) in SWhash = size(L1D) in HWhash) (Modified [3])

39



1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

 10  20  30  40  50  60  70  80  90

S
pe

ed
up

 (
X

)

Percentage of Hash instructions in NBSAT benchmark (%)

HT=96KB, L1D=32KB
HT=64KB, L1D=64KB
HT=48KB, L1D=16KB
HT=32KB, L1D=32KB

HT=24KB, L1D=8KB
HT=16KB, L1D=16KB

Figure 3.16: (UNIF) NBSAT Benchmark with %Hashinst Varying –

Simulation type G1 (size(L1D+HT) in HWhash = size(L1D) in SWhash) (Modified [3])

40



3.4.3.2 Normal Distribution (NORM)

In this section, we use the normal distribution to generate our hash benchmarks BHn and BHVn

for our experiments, without a replacement operation between the HT and the DRAM. For the

normal distribution hash lookup operations, we use: Range = [1 : 100k], µ = 50k, and σ = 20k.

The experiments in this section will be in the following order:

1. Vary CPU speed.

2. Vary the HT size.

3. Vary the main memory (DRAM) technology.

4. Vary the DRAM latency.

5. Run multiple hash benchmark (BHn) instances in parallel with multiple PARSEC benchmarks

(BP).

6. Run multiple BHn instances alone.

7. Vary a fraction of hash instructions in the benchmark BHVn.

In Figure 3.17, we vary the CPU speed to study its effect on the performance. The application

run is a single instance of BHn, and the simulation is of type G1. We note that the peak speedup is

between 9.7× and 11.2×. The speedup is maximum when the entire hash table fits in the HT (i.e.

when the hash table has ∼16K entries). As CPU speed increases, the relative speedup of HWhash

is reduced, since SWhash can perform its operations faster (with fixed HU operation times).

Figure 3.18 illustrates the tradeoff between the size of the HT and the L1D size, for a simulation

of type G1. The L1D size for the software-only implementation is 128kB, and for the HU imple-

mentation, size (L1D + HT) is fixed at 128kB. We note that the peak speedup is about 11.76×.

The speedup of hash operations in the HU implementation increases as the HT size increased up

to 124kB. Since the L1D size gets progressively smaller as the HT size increases, it reduces the

41



0.00

2.00

4.00

6.00

8.00

10.00

12.00

 0  10  20  30  40  50  60  70  80

S
pe

ed
up

 (
X

)

# of entries (k)

CPU 1GHz
CPU 2GHz
CPU 3GHz
CPU 4GHz
CPU 5GHz

Figure 3.17: (NORM) Speedup as CPU Speed is Varied – HWhash: HT=64kB, L1D=64kB. SWhash:

L1D=128kB. DRAM: DDR3 1600MHz x64.

speed of the non-hash instructions. Therefore, the sweet spot is when the HT size is the same as

the L1D size, or slightly greater.

Figure 3.19 illustrates the effect of main memory (DRAM) technologies on the HU imple-

mentation. There is a minimal effect on the speedup of the HU implementation, as the DRAM

technology changes, since the DRAM is utilized in both HU and software-based implementations.

As a result, both implementations benefit from the performance of the DRAM technology.

To illustrate the effect of caching and DRAM latency on the HU performance, we turned off

caching in Figure 3.20. Of course this would not be done in practice, but we did this experiment to

check the contributions of caching and DRAM latency. We note that without L1D cache, the HU

provides speedups between 60× and 77× for a single instance of BHn, This speedup is substantially

inversely proportional to DRAM latency.

The experiments so far were run for a single instance of BHn. In the experiments that follow,

42



0.00

2.00

4.00

6.00

8.00

10.00

12.00

 0  10  20  30  40  50  60  70  80

S
pe

ed
up

 (
X

)

# of entries (k)

HT=64KB, L1D=64KB
HT=96KB, L1D=32KB

HT=112KB, L1D=16KB
HT=120KB, L1D=8KB
HT=124KB, L1D=4KB

Figure 3.18: (NORM) Tradeoff of HT and L1D Sizes – SWhash: L1D=128kB. DRAM: 1GB DDR3

1600MHz x64. CPU=1GHz.

we report the performance for a diverse computational load, with multiple BHn and BP processes

running in parallel. As we mentioned in Section 3.4.3.1, this would result in cache and HT pollu-

tion, providing a more realistic idea of the value of the HU. For all these experiments, we compare

the time required to complete the entire set of applications, and compare the speedup of HWhash

over SWhash. In these experiments, we run several instances of our hash benchmark (BHn) along

with several PARSEC benchmarks (BP), to observe the effect of context switches of a total of 10

benchmarks, we vary the number of BHn and BP instances as shown in Table 3.1. The percent

of hash benchmarks is therefore the number of BHn instances divided by 10. This value varies

between 10% and 90%. As the percentage of hash benchmarks increases, the performance of the

hash benchmarks increases as shown in Figures 3.21 and 3.22. Figure 3.21 shows the G2 config-

uration group, while Figure 3.22 shows the G1 results. For both Figures 3.22 and 3.22, for each

plot, we note that the speedup increases as the HT size increases, and also as the fraction of hash

43



0

2

4

6

8

10

12

 0  10  20  30  40  50  60  70  80

S
pe

ed
up

 (
x)

# of entries (k)

DDR3 1600MHz LPDDR3 1600MHz DDR4 2400MHz

Figure 3.19: (NORM) Vary Memory Types – HWhash: HT=64kB, L1D=64kB. SWhash:

L1D=128kB. CPU=1GHz.

benchmarks increases. Also for each figure, the speedup is higher when the total amount of CAM

memory is higher. The speedups for configuration G2 (Figure 3.21) is higher than for configuration

G1 (Figure 3.22), as expected, since the total amount of CAM in G2 is larger. The speedup reaches

up to 4.6×, in Figure 3.21, when size(HT)=64kB and size(L1D)=128kB, and running 9 instances

of BHn.

Figures 3.23 and 3.24 report the results from our experiments to quantify the effect of sharing

hardware HT among several BHn instances. We observe each G2 plot achieves a greater speedup

than the corresponding G1 plot, as expected. For each of the 6 plot in Figures 3.23 and 3.24, the

speedup is slightly higher for a larger size(HT). In each of the 6 plots, the speedup is highest when

there are fewer instances of BHn contending for the HT resource. When 9 instances of BHn are

running, the speedup for all 6 plots is ranges from 43% to 10%. The 43% speedup is obtained for

size(HT)=64kB and size(L1D)=128kB (Figure 3.23). For a single instance of BHn, the speedup

44



0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

 0  10  20  30  40  50  60  70  80

S
pe

ed
up

 (
X

)

# of entries (k)

DRAM latency=30ns
DRAM latency=60ns
DRAM latency=90ns

DRAM latency=120ns
DRAM latency=150ns

Figure 3.20: (NORM) Vary DRAM Latency – No Caches. HWhash: HT=64kB, L1D=0kB. SWhash:

L1D=0kB. CPU=1GHz.

is as high as 11.4× (Figure 3.23), in which size(HT)=64kB and size(L1D)=128kB. For up to 3

instances of BHn, in all 6 plots, the speedup is higher than 62%, reducing gradually as the number

of BHn instances increases.

Finally, we perform an experiment to test the speedup due to the HU, for a single benchmark, as

the fraction of hash instructions in the benchmark (%Hashinst) varies, as discussed in Section 3.3.8

and illustrated in Figure 3.6. The benchmark we chose was NBSAT, and the results are shown in

Figures 3.25 and 3.26. We note that the speedup of the single NBSAT instance (with injected hash

instructions) increases as %Hashinst increases, in all 6 plots of Figures 3.25 and 3.26. For each

plot in Figure 3.25, the corresponding plot of Figure 3.26 exhibits greater speedup, as expected.

These plots suggest that for all the HT and L1D sizes studied, including the HU enhances the

performance of any application, even if it has a relatively small fraction of hash operations. For

a %Hashinst value of 10%, the speedup ranges between 20% and 4%. A speedup value of 16% is

45



1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

 10  20  30  40  50  60  70  80  90

S
pe

ed
up

 (
X

)

Percentage of Hash benchmarks with PARSEC (%)

HT=64KB, L1D=128KB
HT=32KB, L1D=128KB

HT=32KB, L1D=64KB
HT=16KB, L1D=64KB
HT=16KB, L1D=32KB
HT=8KB, L1D=32KB

Figure 3.21: (NORM) Hash and PARSEC Benchmarks in Parallel (BHn and BP) –

Simulation Type G2 (size(L1D) in SWhash = size(L1D) in HWhash)

obtained for size(HT)=64kB and size(L1D)=64kB (Figure 3.26).

46



1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

 10  20  30  40  50  60  70  80  90

S
pe

ed
up

 (
X

)

Percentage of Hash benchmarks with PARSEC (%)

HT=96KB, L1D=32KB
HT=64KB, L1D=64KB
HT=48KB, L1D=16KB
HT=32KB, L1D=32KB

HT=24KB, L1D=8KB
HT=16KB, L1D=16KB

Figure 3.22: (NORM) Hash and PARSEC Benchmarks in Parallel –

Simulation type G1 (size(L1D+HT) in HWhash = size(L1D) in SWhash)

0.00

2.00

4.00

6.00

8.00

10.00

12.00

 1  2  3  4  5  6  7  8  9

S
pe

ed
up

 (
X

)

# of Hash benchmarks running in parallel

HT=64KB, L1D=128KB
HT=32KB, L1D=128KB

HT=32KB, L1D=64KB
HT=16KB, L1D=64KB
HT=16KB, L1D=32KB

HT=8KB, L1D=32KB

Figure 3.23: (NORM) Multiple BHn Instances –

Simulation Type G2 (size(L1D) in SWhash = size(L1D) in HWhash)

47



0.00

2.00

4.00

6.00

8.00

10.00

12.00

 1  2  3  4  5  6  7  8  9

S
pe

ed
up

 (
X

)

# of Hash benchmarks running in parallel

HT=96KB, L1D=32KB
HT=64KB, L1D=64KB
HT=48KB, L1D=16KB
HT=32KB, L1D=32KB

HT=24KB, L1D=8KB
HT=16KB, L1D=16KB

Figure 3.24: (NORM) Multiple BHn Instances –

Simulation type G1 (size(L1D+HT) in HWhash = size(L1D) in SWhash)

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

 10  20  30  40  50  60  70  80  90

S
pe

ed
up

 (
X

)

Percentage of Hash instructions in NBSAT benchmark (%)

HT=64KB, L1D=128KB
HT=32KB, L1D=128KB

HT=32KB, L1D=64KB
HT=16KB, L1D=64KB
HT=16KB, L1D=32KB
HT=8KB, L1D=32KB

Figure 3.25: (NORM) NBSAT Benchmark with %Hashinst Varying –

Simulation Type G2 (size(L1D) in SWhash = size(L1D) in HWhash)

48



1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

 10  20  30  40  50  60  70  80  90

S
pe

ed
up

 (
X

)

Percentage of Hash instructions in NBSAT benchmark (%)

HT=96KB, L1D=32KB
HT=64KB, L1D=64KB
HT=48KB, L1D=16KB
HT=32KB, L1D=32KB

HT=24KB, L1D=8KB
HT=16KB, L1D=16KB

Figure 3.26: (NORM) NBSAT Benchmark with %Hashinst Varying –

Simulation type G1 (size(L1D+HT) in HWhash = size(L1D) in SWhash)

49



3.4.3.3 HU Replacement

In this section, we compare the speedup of the HU for the uniform distribution and the normal

distribution of the hash lookup operations, with and without HU replacement.

First, we compare the use of the HU replacement in the uniform distribution of hash lookup

operations. As shown in Figure 3.27, the HU without replacement has a better speedup than the

0.0

2.0

4.0

6.0

8.0

10.0

12.0

 0  10  20  30  40  50  60  70  80

S
pe

ed
up

 (
X

)

# of entries (k)

HU
HUWR

Figure 3.27: HWhash: HT=64kB, L1D=64kB. SWhash: L1D=128kB. CPU=1GHz. DRAM: DDR3

1600MHz x64.

HU with replacement. The reason is that it has an extra overhead for replacing entries back-and-

forth between the HT and the DRAM. As a result, for uniform distribution hash lookup operations,

the HU without replacement is a better implementation than the HU with replacement.

Second, we compare the use of the HU replacement in the normal distribution of hash lookup

operations. In the normal distribution, we use a Range = [1 : 100k] and µ = 50k. We vary the σ

in the normal distribution. As shown in Figures (3.28, 3.29, and 3.30), the HU with replacement

50



0.0

2.0

4.0

6.0

8.0

10.0

12.0

 0  10  20  30  40  50  60  70  80

S
pe

ed
up

 (
X

)

# of entries (k)

HU
HUWR

Figure 3.28: (σ = 12k) HWhash: HT=64kB, L1D=64kB. SWhash: L1D=128kB. CPU=1GHz.

DRAM: DDR3 1600MHz x64.

has a better speedup than the HU without replacement. The reason is the HU replacement brings

the highly lookup entries in the normal distribution into the HT, and increasing the HT lookup hits.

As a result, for normal distribution hash lookup operations, the HU with replacement is a better

implementation than the HU without replacement.

In the next section, we will study the performance of the HU (with HU replacement) using

YCSB benchmark [39].

51



0.0

2.0

4.0

6.0

8.0

10.0

12.0

 0  10  20  30  40  50  60  70  80

S
pe

ed
up

 (
X

)

# of entries (k)

HU
HUWR

Figure 3.29: (σ = 16k) HWhash: HT=64kB, L1D=64kB. SWhash: L1D=128kB. CPU=1GHz.

DRAM: DDR3 1600MHz x64.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

 0  10  20  30  40  50  60  70  80

S
pe

ed
up

 (
X

)

# of entries (k)

HU
HUWR

Figure 3.30: (σ = 20k) HWhash: HT=64kB, L1D=64kB. SWhash: L1D=128kB. CPU=1GHz.

DRAM: DDR3 1600MHz x64.

52



3.4.3.4 YCSB benchmark (YCSB)

In this section, we use YCSB benchmark [39] to generate our hash benchmarks BHy and BHVy.

As we mentioned in the Section 3.4.3.3, the HU replacement increases the performance of hash

operations for normally distributed hash lookups. Therefore, for the experiments in this section,

we use a HU replacement between the HT and the DRAM. The experiments in this section will be

in the following order:

1. Vary CPU speed.

2. Vary the HT size.

3. Vary the main memory (DRAM) technology.

4. Vary the DRAM latency.

5. Run multiple hash benchmark (BHy) instances in parallel with multiple PARSEC benchmarks

(BP).

6. Run multiple BHy instances alone.

7. Vary a fraction of hash instructions in the benchmark BHVy.

In Figure 3.31, we vary the CPU speed to study its effect on the performance. The application

run is a single instance of BHy, and the simulation is of type G1. We note that the peak speedup is

between 10.8× and 11.8×. The speedup is maximum when the entire hash table fits in the HT (i.e.

when the hash table has ∼16K entries). As CPU speed increases, the relative speedup of HWhash

is reduced, since SWhash can perform its operations faster (with fixed HU operation times).

Figure 3.32 illustrates the tradeoff between the size of the HT and the L1D size, for a simu-

lation of type G1. The L1D size for the software-only implementation is 128kB, and for the HU

implementation, size (L1D + HT) is fixed at 128kB. We note that the peak speedup is about 15×.

The speedup of hash operations in the HU implementation increases as the HT size increased up

to 124kB. Since the L1D size gets progressively smaller as the HT size increases, it reduces the

53



0

2

4

6

8

10

12

 0  10  20  30  40  50  60  70  80

S
pe

ed
up

 (
x)

# of entries (k)

CPU = 1GHz
CPU = 2GHz

CPU = 3GHz
CPU = 4GHz

CPU = 5GHz

Figure 3.31: (YCSB) Speedup as CPU Speed is Varied – HWhash: HT=64kB, L1D=64kB. SWhash:

L1D=128kB. DRAM: DDR3 1600MHz x64.

speed of the non-hash instructions. Therefore, the sweet spot is when the HT size is the same as

the L1D size, or slightly greater.

Figure 3.33 illustrates the effect of main memory (DRAM) technologies on the HU imple-

mentation. There is a minimal effect on the speedup of the HU implementation, as the DRAM

technology changes, since the DRAM is utilized in both HU and software-based implementations.

As a result, both implementations benefit from the performance of the DRAM technology.

To illustrate the effect of caching and DRAM latency on the HU performance, we turned off

caching in Figure 3.34. Of course this would not be done in practice, but we did this experiment to

check the contributions of caching and DRAM latency. We note that without L1D cache, the HU

provides speedups between 36× and 61× for a single instance of BHy, This speedup is substantially

inversely proportional to DRAM latency.

The experiments so far were run for a single instance of BHy. In the experiments that follow,

54



0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

 0  10  20  30  40  50  60  70  80

S
pe

ed
up

 (
X

)

# of entries (k)

HT=64KB, L1D=64KB
HT=96KB, L1D=32KB

HT=112KB, L1D=16KB
HT=120KB, L1D=8KB
HT=124KB, L1D=4KB

Figure 3.32: (YCSB) Tradeoff of HT and L1D Sizes – SWhash: L1D=128kB. DRAM: 1GB DDR3

1600MHz x64. CPU=1GHz.

we report the performance for a diverse computational load, with multiple BHy and BP processes

running in parallel. As we mentioned in Section 3.4.3.1, this would result in cache and HT pollu-

tion, providing a more realistic idea of the value of the HU. For all these experiments, we compare

the time required to complete the entire set of applications, and compare the speedup of HWhash

over SWhash. In these experiments, we run several instances of our hash benchmark (BHy) along

with several PARSEC benchmarks (BP), to observe the effect of context switches of a total of 10

benchmarks, we vary the number of BHy and BP instances as shown in Table 3.1. The percent

of hash benchmarks is therefore the number of BHy instances divided by 10. This value varies

between 10% and 90%. As the percentage of hash benchmarks increases, the performance of the

hash benchmarks increases as shown in Figures 3.35 and 3.36. Figure 3.35 shows the G2 configu-

ration group, while Figures 3.36 shows the G1 results. For for each plot in both Figures 3.35 and

3.36, we note that the speedup increases as the HT size increases, and also as the fraction of hash

55



0

2

4

6

8

10

12

14

 0  10  20  30  40  50  60  70  80

S
pe

ed
up

 (
x)

# of entries (k)

DDR3 1600MHz LPDDR3 1600MHz DDR4 2400MHz

Figure 3.33: (YCSB) Vary Memory Types – HWhash: HT=64kB, L1D=64kB. SWhash:

L1D=128kB. CPU=1GHz.

benchmarks increases. Also for each figure, the speedup is higher when the total amount of CAM

memory is higher. The speedups for configuration G2 (Figure 3.35) is higher than for configuration

G1 (Figure 3.36), as expected, since the total amount of CAM in G2 is larger. The speedup reaches

up to 5.7×, in Figure 3.35, when size(HT)=64kB and size(L1D)=128kB, and running 9 instances

of BHy. The hash benchmarks running purely in software incur more L1D cache misses, since they

share the L1D cache with other PARSEC benchmarks. The HU reduces the L1D cache misses

(and accesses) as shown in Figure 3.37. In Figure 3.37, the first 3 bars show the cache misses for 9

PARSEC benchmarks, for varying L1D sizes. As expected, the cache misses increase as the L1D

size reduces. When this application set is run with the HU (HWhash), the cache misses are reported

in the fourth bar. In the fifth bar, we simulate the same 9 PARSEC benchmarks along with one

instance of BHy, in the software-only (SWhash). Note that the HU reduces the cache misses by about

2×.

56



0

10

20

30

40

50

60

70

 0  10  20  30  40  50  60  70  80

S
pe

ed
up

 (
x)

# of entries (k)

DRAM latency = 30ns
DRAM latency = 60ns
DRAM latency = 90ns

DRAM latency = 120ns
DRAM latency = 150ns

Figure 3.34: (YCSB) Vary DRAM Latency – No Caches. HWhash: HT=64kB, L1D=0kB. SWhash:

L1D=0kB. CPU=1GHz.

Figures 3.38 and 3.39 report the results from our experiments to quantify the effect of sharing

hardware HT among several BHy instances. We observe each G2 plot achieves a greater speedup

than the corresponding G1 plot, as expected. For each of the 6 plots in Figures 3.38 and 3.39, the

speedup is slightly higher for a larger size(HT). In each of the 6 plots, the speedup is highest when

there are fewer instances of BHy contending for the HT resource. When 9 instances of BHy are

running, the speedup for all 6 plots is ranges from 4.15× to 81%. The 4.15× speedup is obtained

for size(HT)=64kB and size(L1D)=128kB (Figure 3.38). For a single instance of BHy, the speedup

is as high as 12.6× (Figure 3.38), in which size(HT)=64kB and size(L1D)=128kB. For up to 3

instances of BHy, in all 6 plots, the speedup is higher than 3.25×, reducing as the number of BHy

instances increases.

Finally, we perform an experiment to test the speedup due to the HU, for a single benchmark, as

the fraction of hash instructions in the benchmark (%Hashinst) varies, as discussed in Section 3.3.8

57



1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

 10  20  30  40  50  60  70  80  90

S
pe

ed
up

 (
x)

Percentage of Hash benchmarks with PARSEC (%)

HT=64kB, L1D=128kB
HT=32kB, L1D=128kB

HT=32kB, L1D=64kB
HT=16kB, L1D=64kB

HT=16kB, L1D=32kB
HT=8kB, L1D=32kB

Figure 3.35: (YCSB) Hash and PARSEC Benchmarks in Parallel (BHy and BP) –

Simulation Type G2 (size(L1D) in SWhash = size(L1D) in HWhash)

and illustrated in Figure 3.6. The benchmark we chose was NBSAT, and the results are shown in

Figures 3.40 and 3.41. We note that the speedup of the single NBSAT instance (with injected hash

instructions) increases as %Hashinst increases, in all 6 plots of Figures 3.40 and 3.41. For each

plot in Figure 3.40, the corresponding plot of Figure 3.41 exhibits greater speedup, as expected.

These plots suggest that for all the HT and L1D sizes studied, including the HU enhances the

performance of any application, even if it has a relatively small fraction of hash operations. For a

%Hashinst value of 10%, the speedup ranges between 2.37× and 28%. A speedup value of 2.01×

is obtained for size(HT)=64kB and size(L1D)=64kB (Figure 3.41).

In the next chapter, we will discuss our HU at the circuit level for use in modern microproces-

sors.

58



1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

 10  20  30  40  50  60  70  80  90

S
pe

ed
up

 (
x)

Percentage of Hash benchmarks with PARSEC (%)

HT=96kB, L1D=32kB
HT=64kB, L1D=64kB

HT=48kB, L1D=16kB
HT=32kB, L1D=32kB

HT=24kB, L1D=8kB
HT=16kB, L1D=16kB

Figure 3.36: (YCSB) Hash and PARSEC Benchmarks in Parallel –

Simulation type G1 (size(L1D+HT) in HWhash = size(L1D) in SWhash)

1e+08

2e+08

3e+08

4e+08

5e+08

6e+08

7e+08

8e+08

PARSEC L1D=128KB

PARSEC L1D=64KB

PARSEC L1D=32KB

HW
hash L1D=64KB

SW
hash L1D=128KB

L1
D

 m
is

se
s

L1D Cache misses in benchmarks

Figure 3.37: (YCSB, HWhash: HT=64kB) First Three Bars: 9 PARSEC Benchmarks with Varying

L1D. Fourth Bar: 9 PARSEC + 1 BHy Running on HWhash. Fifth Bar: 9 PARSEC + 1 BHy Running

on SWhash.

59



2

4

6

8

10

12

14

 1  2  3  4  5  6  7  8  9

S
pe

ed
up

 (
x)

# of Hash benchmarks running in parallel

HT=64kB, L1D=128kB
HT=32kB, L1D=128kB

HT=32kB, L1D=64kB
HT=16kB, L1D=64kB

HT=16kB, L1D=32kB
HT=8kB, L1D=32kB

Figure 3.38: (YCSB) Multiple BHy Instances –

Simulation Type G2 (size(L1D) in SWhash = size(L1D) in HWhash)

0

2

4

6

8

10

12

14

 1  2  3  4  5  6  7  8  9

S
pe

ed
up

 (
x)

# of Hash benchmarks running in parallel

HT=96kB, L1D=32kB
HT=64kB, L1D=64kB

HT=48kB, L1D=16kB
HT=32kB, L1D=32kB

HT=24kB, L1D=8kB
HT=16kB, L1D=16kB

Figure 3.39: (YCSB) Multiple BHy Instances –

Simulation type G1 (size(L1D+HT) in HWhash = size(L1D) in SWhash)

60



1

2

3

4

5

6

7

8

 10  20  30  40  50  60  70  80  90

S
pe

ed
up

 (
x)

Percentage of Hash instructions in NBSAT benchmark (%)

HT=64kB, L1D=128kB
HT=32kB, L1D=128kB

HT=32kB, L1D=64kB
HT=16kB, L1D=64kB

HT=16kB, L1D=32kB
HT=8kB, L1D=32kB

Figure 3.40: (YCSB) NBSAT Benchmark with %Hashinst Varying –

Simulation Type G2 (size(L1D) in SWhash = size(L1D) in HWhash)

1

2

3

4

5

6

7

8

 10  20  30  40  50  60  70  80  90

S
pe

ed
up

 (
x)

Percentage of Hash instructions in NBSAT benchmark (%)

HT=96kB, L1D=32kB
HT=64kB, L1D=64kB

HT=48kB, L1D=16kB
HT=32kB, L1D=32kB

HT=24kB, L1D=8kB
HT=16kB, L1D=16kB

Figure 3.41: (YCSB) NBSAT Benchmark with %Hashinst Varying –

Simulation type G1 (size(L1D+HT) in HWhash = size(L1D) in SWhash)

61



3.5 Chapter Summary

In this chapter, we proposed a novel hardware hash unit (HU) design for modern microproces-

sors. We embedded the HU in the modern microprocessor’s execution pipeline. The hash table

entries of the HU are stored in a CAM structure. The HU can be shared among multiple applica-

tions, and still enable significant speedups. The HU reduces the L1D cache misses for non-hash

applications as well. We have implemented (at the micro-architecture level) and verified the oper-

ation of the HU. We showed that the HU obtains a speedup of up to 15× over the software hash

implementation with a reduced cache miss rate.

62



4. CIRCUIT LEVEL DESIGN OF A HARDWARE HASH UNIT FOR USE IN MODERN

MICROPROCESSORS 2

In this chapter, we present our hardware hash unit design at the circuit level. In Section 4.1, we

start with a background. Then, we discuss previous work in Section 4.2. In Section 4.3, we present

our proposed hardware hash unit at the circuit level design. In Section 4.4, we present and discuss

our experimental results. We conclude in Section 4.5.

4.1 Background

In Chapter 3, we proposed a new special function unit (SFU) to speedup hashing operations

in modern microprocessors. This SFU was called a hardware hash unit (HU). We conducted our

study at the architectural level, with no discussion on the circuit realization aspects of the design.

This chapter presents the circuit level details of a HU which is based on the system architecture

presented in Chapter 3.

In a software-based hashing implementation, each bin is typically implemented as a linked list,

with a search time that is O(k) where k is the number of entries in the bin. In our hardware-based

implementation of the HU, we chose a CAM to realize each bin. This provide O(1) search time

when the entry is in the CAM.

A content-addressable memory (CAM) [20] is mostly used in fast cache memory applications.

The HU design utilize a hash function of class H3 [5] and a CAM-based implementation of the

hash table bins. Architectural simulations of this HU were reported in Chapter 3. In this chapter,

we implement our ideas of Chapter 3 in a 45nm technology, demonstrating a HU circuit design

that obtains an average power reduction of 5.48× compared to a CAM circuit design, and a clock

frequency of up to 1.39 GHz.

The key contributions of this chapter are:

2 Part of the data (including some figures and tables) reported in this chapter is reprinted with permission from [4]

“Circuit Level Design of a Hardware Hash Unit for Use in Modern Microprocessors” by A. Fairouz, M. Abusultan

and S. P. Khatri, in Proceedings of the on Great Lakes Symposium on VLSI (GLSVLSI) 2017, pp. 101–106, ACM,

May 2017., Copyright 2017 by ACM.

63



• We implement a hardware hash unit (HU) circuit design for modern microprocessor based

on Chapter 3.

• We simulated the HU circuit design in Synopsys VCS and HSPICE [45], using a 45nm

PTM [46] and verified the correctness of lookup, insert and delete hash operations. RC

parasitic are extracted using Synopsys Raphael [47].

• We demonstrate an average power reduction of 5.48× using HU over the traditional CAM

circuit design. The power reduction arises from the fact that our approach disables all but

one bin in any clock cycle.

• Our circuit-level simulations show that the design can operate at a maximum frequency of

1.39 GHz.

The rest of the chapter is organized as follows. In Section 4.2, we discuss related previous work.

Section 4.3 presents our approach and design details, while Section 4.4 presents and discusses our

experimental results. We summarize the chapter in Section 4.5.

4.2 Previous Work

In this work, we present a hardware-based realization of a hash function and a hash table.

In this section, we discuss previous research in which the focus was on implementing hash

functions and hash tables. Hardware hash function implementations have been proposed in [23,

24, 25, 26]. These implementations were used to check the equivalence of a pair of large files on

different nodes in a network. Networking applications often benefit from the use of hash func-

tions. Such applications are IP addresses hashing schemes [27] and detect and authenticate mes-

sages [28]. A hashing technique has been proposed in [48] for high speed networks. In [29], the

authors simulated and implemented the SHA-3 on FPGA for cryptographic network applications

using a pipeline model to speed up hash operations. An efficient SHA-256 hash function imple-

mentation has been proposed in [49]. All these efforts reported work on hardware based hash

functions. Other software-based hash functions have been reported as well. Real-time facial iden-

64



tification can benefit from the use of hashing to increase performance [50]. Image compression

techniques use hashing in [51] to speed up data compression. Unlike these techniques, our work

implements both a hash function as well as a hash table in hardware and can be integrated into a

modern microprocessor as an SFU.

There has been some previous work in implementing hash tables as well. In [31], the authors

proposed an online hash table implementation on an FPGA using a hash table on external DRAM.

A hash join engine using hardware hash table was proposed in [52]. A hashing scheme design

has been utilized in [32] for packet processing. The authors implemented the hash table as a

set-associative memory module. They simulated their design with various hash function in C++.

Furthermore, they proposed a multiple hash functions to reduce collision list in hash table. A key

difference of [31, 52, 32] from our approach is that in [31, 52, 32], the hash table bins are not

implemented using CAMs, thus sacrificing performance.

In contrast to the previous work, we present a hardware hash function and hash table SFU (with

CAM-based bins), for use in modern microprocessors.

4.3 The HU Circuit Design

In Chapter 3, we discussed the hash unit (HU) microarchitecture design. In this section, we

discuss our circuit implementation of the HU for use as a new SFU in modern microprocessors.

The block diagram of the HU is shown in Figure 4.1. We start with a top-level discussion of the

HU circuitry. Next, we discuss the design of the hash function (HF) of class H3 [5] (as shown in

Figure 4.2) and the design of the Bin Selector circuit. Then, we introduce the control signals unit

(CSU) circuit design as shown in Figure 4.3. Finally, we discuss the hash table (HT) circuit design

as shown in Figure 4.6.

4.3.1 Hardware Hash Unit (HU)

The hash unit (HU) is an SFU that can be used in modern microprocessors to speedup hash

table operations. The HU consists of 3 units: the control signals unit (CSU), the hash function

(HF) and the Bin Selector, and the hash table (HT) as shown in Figure 4.1. This figure shows the

65



Bin Index

Bin_EN0

1023Bin_EN

C1

C2

C1

C2

HF

CSU

32 32

Value_Out

W1

W2

CLK

CLK

32

32

EN

W2

W1

32 32

Exist

Value_In

1032

Exist

CLK

Hash Unit (HU)

HT

Key

B
in

 S
el

ec
to

r

Figure 4.1: Hardware Hash Unit (HU) Block Diagram (Reprinted [4])

flow of hash operation. It takes a (key, value) pair as an input and return a result based on the

operation requested. There are 3 major operations, which are encoded by the W2 and W1 inputs:

• Lookup: it takes a key as an input and searches for it in the HT. If the key found, it returns

the value associated with the key in the HT, and drives Exist low. If the key is not found, it

drives Exist high.

• Insert: it takes a (key, value) pair as an input. It first performs a lookup operation in the HT.

If there is a match in the HT, it aborts the insert. Otherwise, it inserts the new (key, value)

pair in the HT.

• Delete: it takes a key as the input. First, it executes a lookup operation in the HT. If the key

is found, it deletes this entry. This is accomplished by invalidating the entry and writing a

’0’ to the valid bit of the entry.

As shown in Figure 4.1, the inputs and outputs of the HU are:

66



• Value_In: it is the value associated with a (key, value) pair that is input to the HT.

• Key: it is the key in a (key, value) pair that is input to the HT.

• EN: it is the enable signal that enables the HU.

• CLK: main clock signal.

• W2 & W1: op-code signals which encode the micro-instruction to the HT.

The outputs of the HU are the Value_Out and Exist. The Value_Out signal is the output of a

lookup operation. The Exist signal indicates the outcome of a lookup operation.

4.3.2 Hash Function (HF) and Bin Selector

The hash function (HF) takes a key as an input, and generates a Bin Index, as shown in Fig-

ure 4.1. The Bin Index is fed to a Bin Selector to generate several Bin_ENi signals. The Bin

Selector is a decoder, that decodes a Bin Index to generate one of n Bin_ENi signals (n = 1024

in Figure 4.1, where n is the number of bins in the HT). The Bin_ENi signals are one-hot. If the

Bin Index value (in decimal) is k, then the Bin_ENk signal is high, and all other Bin_ENj signals

are low. The HF is of class H3 [5]. It performs hash operations based on AND and XOR logic as

shown in Figure 4.2. The AND and XOR operations result in a fast hash operation. Hashing is

performed using a Q matrix which is stored in latches. This Q matrix is a random number of class

H3 [5]. The Q matrix values are stored during the HU initialization. The HF can be changed for

different applications, by changing the Q matrix contents.

4.3.3 Control Signals Unit (CSU)

The control signals unit (CSU) generates the C1 and C2 signals to perform the appropriate

sequence of atomic operations in the HT, as shown in Figure 4.1. The CSU takes 4 input signals

CLK, W1, W2, and Exist and generates C1 and C2, the output control signals. The operations

of the HU (encoded by (W2,W1)) require a sequence of atomic operations (encoded by (C2,C1))

to be done. For example, the insert operation (W2,W1 = 11) requires a lookup atomic operation

67



Bin Index

Q0,0 Q31,0

Q31,1

Q31,9

0,1

Q0,9

Q

Bin Index

Bin Index

9

Key Key310

1

0

Figure 4.2: Hardware Hash Function (HF) of Class H3 [5] (Reprinted [4])

(C2,C1 = 01) to be performed, and then possibly an insert atomic operation (C2,C1 = 11). The

CSU encodes the W1, W2 and Exist signals to perform the sequence of atomic operations on

the HT (indicated by the CSU outputs (C2,C1)). Table 4.1 illustrates the mapping between the

operations and the values of (W2,W1) and the (C1,C2) signals.

Note that for every operation (i.e. every op-code on (W2,W1)), the HU has to perform a lookup

operation, except for the 00 op-code (no-op operation). As a result, the delete and insert operations

can take two cycles in the worst case. In the first cycle, the CPU drives (W2,W1) to 11 (insert) or

10 (delete). In the second cycle, (W2,W1) are driven to 00 in both cases. For example, when the

68



Operation W2 W1 Exist C2 C1

Insert 1 1 1 1 1

Delete 1 0 0 1 0

Lookup 0 1 x 0 1

no-op 0 0 x 0 0

Table 4.1: CSU op-codes for the HT operations

B2

W2

W1

B1

E

B1

E

W2

W1

CLK

C2

C1

W2

CLK

B2D Q

FF

W1

CLK

B1D Q

FF

CLK

EExist D Q

FF

Figure 4.3: Control Signals Unit (CSU) (Reprinted [4])

insert operation (W2,W1=11) is issued, a lookup atomic operation is performed in the first cycle

by driving (C2,C1 = 01). If Exist = 1 results, an insert atomic operation is performed in the

next cycle by driving (C2,C1 = 11). If Exist = 0, then (C2,C1 = 00) in the second cycle. Note

that, in the second cycle, (W2,W1) are driven to 00. Similarly for the delete operation, the CPU

will first issue a (W2,W1 = 10) op-code in the first cycle. Then, it will issue a (W2,W1 = 00)

op-code in the second cycle. In the first cycle, the CSU will drive (C2,C1 = 01) to perform the

lookup atomic operation. In the second cycle, the CSU generates the C2 and C1 signals based on

the value of Exist signal. If Exist = 1, then the CSU generates 00 for (C2,C1) and performs a

69



no-op. Otherwise, the CSU drives 10 for (C2,C1) to delete the (key, value) pair in the HT. The

CSU implements the state machine which produces the values of (C2,C1) based on the values of

(W2,W1) and Exist. This state machine is shown in Figure 4.3.

4.3.4 Hash Table (HT)

We design each bin of our Hash Table (HT) using a basic 9-T NOR-type CAM cell [20] (Fig-

ure 4.4) to store a key, and a conventional 6-T SRAM cell [53] (Figure 4.5) to store a value. Each

HT bin is implemented as a CAM in order to perform fast hash operations.

ML

CWL CWL

CBLCBL

Figure 4.4: 9-T NOR-type CAM cell

The HT has 6 inputs and 2 outputs as shown in Figure 4.1. The inputs of the HT are: key,

Value_In, Bin_ENi, CLK, C2, and C1. The key and Value_In inputs are the (key, value) pair. The

70



SBL SBL

SWL SWL

Figure 4.5: 6-T SRAM cell

31

31

310

0

C

M
at

ch
 L

in
e 

P
re

−
C

ha
rg

e 
C

irc
ui

t CAM Cell CAM Cell

C C

Read/Write Circuit

Bit Line Pre−charge Circuit

S S S S

CAM Cell
(Valid)

C

C

C C C

Buffers0

0

32

3231

31
SRAM Cell SRAM Cell

WE WE

Exist

Match/Write Circuit

S

BL32BL32BL31BL31BL0BL0

ML0

WL 0

ML15

WL 15

MLSA 15

MLSA 0

ML 0 ML 15

SWL 15

WL 0

BL0 BL0 BL31 BL

Figure 4.6: Hardware Hash Table (HT) for a Single Bin [3] (Reprinted [4])

71



HT stores an extra valid bit along with the key, to indicate if the corresponding (key, value) pair is

valid. This bit is written to zero during a delete operation. During an insert operation, it is driven

to a logic 1. During a lookup, this bit must be a 1, otherwise the lookup fails. The Bin_ENi signals

are the outputs of Bin Selector which only enables a single bin of the HT in any clock cycle. The

C2 and C1 inputs are the outputs of the CSU, which indicate the atomic operation to be performed

(lookup, delete or insert) in the HT. As shown in Figure 4.6, there are two major blocks of memory

in a HT bin. The first block is 33 CAM cells wide (32 bit of key and one valid bit) and the second

is 32 SRAM cells wide (32 bit of value). The number of rows m represents the number of entries

in a HT bin (m = 16 in Figure 4.6). There is a match line pre-charge circuit to pre-charge ML0,

..., MLm. Also, there is a bit line pre-charge circuit to pre-charge the SRAM bit lines (SBLi
, SBLi

).

There is a Match/Write circuit for CAM (since the polarity of CBLi
and CBLi

are reversed during

a write to the CAM as opposed to a lookup) and a Read/Write circuit for SRAM cells (since the

SBLi
and SBLi

lines are pre-charged during lookup and driven during a write to the SRAM). The

Match/Write and Read/Write circuits are enabled by a write enable signal (WE). The WE signal

is set to 1 for the delete or insert atomic operations (i.e. when (C2,C1) = 11 or 10). The key

input is driven on the CBLi
lines using the Match/Write circuit in all HT atomic operations. In the

Read/Write circuit, the Value_In input is driven on the SBLi
lines in the insert atomic operation,

while the SBLi
lines are driven on the Value_Out output in the lookup atomic operation.

During a lookup operation, all CWLi
lines are driven to a zero value. All ML lines are pre-

charged, and at most one (say MLi) stays high (indicating a match). This MLi is amplified by the

sense amplifier MLSAi, and results in the Exist line being driven to a zero value. If no MLi stays

high (a mis-match condition), then Exist ends up being driven to a 1. When MLi is high, then

SWLi
is also driven high, and the value is read out from the SRAM.

SWLi
is also set high if CWLi

is driven high, in a delete or insert operation (which requires the

SRAM to be updated). We discuss the delete operation next.

For a delete operation, we first perform a lookup atomic operation ((C2,C1) = 01). The MLi

which is found to match during the lookup is latched in the Qi signal of the ith D-latch in Figure 4.7.

72



0

D_Latch

QD

EN
C1

C2

C1
D_C

C2

D_Latch

QD

EN
C1

C2

C1

C2

D_C

WL 15

WL 0

ML 15

ML

Figure 4.7: Determining WL for Deletion (Reprinted [4])

At most one Qi signal is high after the lookup operation. During the delete atomic operation

((C2,C1) = 10), the corresponding D_CWLi
is driven high, which drives CWLi

high (see Figure 4.9).

Hence the deletion is performed on the ith row of the CAM, as required.

0

Encoder
Priority

Decoder

EN

C2 C1

I_C

I_C

Valid

Valid15

WL0

WL15

Figure 4.8: Determining WL for Insertion (Reprinted [4])

For an insert operation, we use a priority encoder to find the index of the first row which is not

73



15

...

C

C WL 15

WL 0

I_C

D_C

I_C

D_C

WL 0

WL 0

WL 15

WL

Figure 4.9: Deriving CWLi
(Reprinted [4])

valid. Such a row can be written into since it is invalid. This is shown in Figure 4.8. The valid bits

are stored in latches as well as in the CAM cells. During the insert operation (C2,C1 = 11), we

decode the index of the first invalid entry (Figure 4.8) and drive a single I_CWLi
line high. This

causes CWLi
to be driven high (Figure 4.9), resulting in an insertion in the first invalid entry as

desired.

In Section 4.4, we will present our experimental results of the HU, at the circuit level.

74



4.4 Experimental Results

In this section, we present the simulation results of the HU at the circuit level. First, we present

the simulation environment used to implement the proposed design of the hash unit. Then, we

discuss the procedure we used to determine that the design operates correctly. Finally, we present

the circuit-level simulation results along with a discussion.

4.4.1 Simulation Environment

Since our proposed hardware-based HU engine is based on the use of a CAM per bin of the HT,

we compare our design with a traditional CAM of the same total size as the HU. One can conceive

of a design in which the CAM of a microprocessor can be dynamically split between the cache

and the HU. In such a scenario, the power and area comparison between the HU and the traditional

CAM is an important figure of merit to consider.

We compare two design implementations: the HU and a traditional CAM. In the traditional

CAM, the whole memory is enabled, while the HT in the HU design enables a single bin. We

simulated both designs using Synopsys HSPICE [45] and 45nm PTM [46] high-performance pro-

cess model card. We used custom Perl [54] scripts to generate both designs. We synthesized the

HF, the Bin Selector, and the CSU from Verilog and simulated them in HSPICE while the HT and

traditional CAM were custom designed, and simulated in HSPICE.

The ratio of the width of the pull-down NMOS device in the SRAM (and CAM) cell to the

width of the NMOS access transistor of the same cell was chosen to be 1.25 [55]. Also, we choose

minimum size for the pull-up transistors in the SRAM and CAM cells [55] in order to obtain

minimum size, read stability and writeability.

We also generated the layout of the CAM and SRAM cells as shown in Figure 4.10(a and

b). These layouts are based on the 45nm design rules [6] and are generated using the Cadence

Virtuoso [56] layout tool. We then used Synopsys Raphael [47] to extract the parasitic capacitance

between wires (such as bit lines, world lines, and match lines) in the SRAM and CAM cells. We

used the parasitic resistance and capacitance results in our HSPICE simulation for both the HT

75



(a) SRAM cell layout (b) CAM cell layout

Figure 4.10: SRAM and CAM cell layouts in 45nm design rules [6] (Reprinted [4])

and traditional CAM. We sized the memory (CAM and SRAM) drivers and buffers based on the

number of entries in the HT bin as well as wire parasitics. In our design, we pre-charge the bit-lines

of the SRAM cells and the match lines of the CAM cells to VDD.

4.4.2 Design Verification

We designed the HF, the Bin Selector, and the CSU in structural Verilog and then generated a

HSPICE netlist using Synopsys V2S [57]. Then, we simulated and verified the logical correctness

of these units using Synopsys VCS [58].

After that, we simulated the HF, Bin Selector, and CSU in HSPICE to verify their correctness,

and determine their delay, power and area requirements.

We simulated the HT and the traditional CAM circuits with custom scripts in HSPICE to verify

their correct functionality. These scripts performed lookup, delete and insert operations.

Finally, we integrated all the blocks of the HU design (HF, Bin Selector, CSU and HT) and

verified the correctness of all operations (lookup, insert and delete) using HSPICE. The same

HSPICE level verification was performed for the traditional CAM as well.

76



4.4.3 Results and Analysis

We simulated both the HU and the traditional CAM designs in HSPICE [45] to measure their

delays, dynamic power and static power.

Entries/Bin Operation
Pre-chg Delay (ps) Evaluate Delay (ps) Bin Dynamic

CAM SRAM CAM SRAM Power (mW )

4

Insert

206.15 249.24

217.17 268.21 10.46

Lookup 122.74 135.01 9.32

Delete 202.73 NA 9.37

8

Insert

245.12 273.42

258.48 294.11 20.67

Lookup 122.66 134.93 18.51

Delete 245.90 NA 19.01

12

Insert

261.29 289.13

276.32 310.13 31.21

Lookup 122.47 134.71 27.84

Delete 262.81 NA 28.42

16

Insert

265.13 291.41

302.34 331.41 40.74

Lookup 122.37 134.84 37.40

Delete 289.27 NA 37.53

Table 4.2: Delay and Dynamic Power analysis of Insert, Delete, and Lookup operations in HT

(Modified [4])

Table 4.2 reports the results as the number of entries per bin are varied (Column 1). Results are

shown for each operation (lookup, insert, and delete). The dynamic power increases proportionally

as the number of entries per bin increases. The evaluation delay of SRAM cells in the delete

operation (Column 6) is not applicable, since the delete operation writes a logic ’0’ to the valid bit

of the corresponding CAM entry only (if the lookup atomic operation is successful). The SRAM

entry is not written to in this case.

We note that the insert operation has the highest dynamic power consumption and the longest

evaluation delay, compared to the lookup and delete operations, and as such, determines the worst

case delay and power of the HU. For 16 entries/bin, the clock period of an insert operation (after

77



adding a 15% guard-band due to PVT variations) is slightly lower than 720 ps. Hence the HU can

be operated at a maximum frequency of about 1.39 GHz.

HT
Bins Entries

Area µ2 HU Operating

(kB) HU Tr.CAM HU/Tr.CAM Speed (GHz)

8 128 16 120223.11 120117.25 1.0009× 1.39

16 256 16 240347.12 240234.50 1.0005× 1.39

24 512 12 360472.84 360351.74 1.0003× 1.45

32 512 16 480590.09 480468.99 1.0003× 1.39

48 1024 12 720830.96 720703.49 1.0002× 1.45

64 1024 16 961065.45 960937.98 1.0001× 1.39

96 2048 12 1441545.64 1441406.98 1.0001× 1.45

Avg. 1.00033×

Table 4.3: Area and Delay analysis of the HU for different configuration of the HT (Modified [4])

In Table 4.3, we report results for different HT sizes that were used in the architectural simu-

lations of Chapter 3. The different HUs utilize 12 or 16 entries per bin, with the number of bins

varying from 128 to 2048.

We determine our worst case power and delay numbers assuming that one bin performs an

insert operation (which was shown in Table 4.2 to be the slowest and most power hungry operation)

and all other bins are not enabled, and consume static power.

From Table 4.3, we note that the area (Column 4) of the different HU designs is roughly propor-

tional to the total HT size (Column 1). Also, the ratio of the HU area to the area of the traditional

CAM (Column 6) is almost unity, indicating that the total overhead of the HF, Bin Selector and

CSU blocks is very small compared to the HT area. In other words, the size of the HU (on average)

is only 0.033% larger than that of the traditional CAM.

Column 7 of Table 4.3 shows the worst case operating speed of the HU (with a 15% guard-band

for PVT variations included). Note that due to the fact that we size the drivers and buffers based

on the HT size, these numbers are relatively constant.

78



HT
Bins Entries

Total Power (mW ) Dyn Power (mW )

(kB) HU Tr.CAM Tr.CAM/HU HF+BS CSU

8 128 16 82 389 4.74× 0.2578

0.0242

16 256 16 136 750 5.51× 0.2963

24 512 12 224 1141 5.09× 0.3329

32 512 16 246 1477 6.00× 0.3329

48 1024 12 426 2261 5.31× 0.3699

64 1024 16 464 2921 6.30× 0.3699

96 2048 12 831 4501 5.42× 0.4143

Avg. 5.48×

Table 4.4: Power analysis of the HU for different configuration of the HT (Modified [4])

In Table 4.4, we note that on average, the power consumption of the HU (Column 8) is about

5.48× lower than the traditional CAM (Column 9). This is because in the HU design, exactly one

bin consumes active power, and the remaining bins are static. In the traditional CAM, however,

the entire CAM consumes dynamic power.

Columns 11 and 12 report the power consumption of the HF and Bin Selector units (Column

11) and the CSU unit (Column 12). We note that these power numbers are significantly smaller

than the corresponding HT power numbers, as expected.

79



4.5 Chapter Summary

In this chapter, we proposed the circuit design for a hardware hash unit (HU) for use as a new

SFU in modern microprocessors. Each bin of the HU was implemented as a CAM. We verified

the correctness of all hash operations at the logic as well as the circuit level. We demonstrated an

average power improvement of 5.48× for our HU design compared to a traditional CAM design.

We also quantify the area, delay, and power for different HT sizes. We showed that the HU can be

operated at 1.39 GHz after guard-banding for PVT variations.

80



5. AN FPGA-BASED COPROCESSOR FOR VIRUS CHECKING APPLICATIONS 3

In this chapter, we present our FPGA-based coprocessor for virus checking applications. We

start with a background in Section 5.1. In Section 5.2, we discuss the previous work. In Section 5.3,

we present our proposed approach. Then, we present our experimental results in Section 5.4.

Finally, we conclude in Section 5.5.

5.1 Background

In order to speedup hashing intensive applications, we proposed a hardware hash unit (HU) at

the michroarchitecture level in Chapter 3. Furthermore, a custom VLSI circuit level realization

(using a 45nm fabrication process) of the HU was presented in Chapter 4. The HU in Chapter 3

and 4 showed an impressive speedup for algorithms that utilize hashing operations. This chapter

focuses, instead, on an FPGA realization of a HU, acting as a coprocessor to a computer system,

and communicating over a PCIe interface. In situations where it is not cost-effective to build a HU

as an SFU on the microprocessor die as in Chapter 3 and 4, one can build the HU as a coprocessor

to the CPU. This is what we explore in the current chapter.

FPGA-based coprocessors are a commonly deployed re-configurable hardware platform today.

Many datacenters use FPGA accelerators to speedup cloud applications like search [59] or ma-

chine learning [60, 61]. In this chapter, we validate the conjecture that an FPGA-based HU would

increase the performance of hashing-intensive applications for a computing platform.

Computer system security has been a concern for decades in the computing community. To

check for system integrity, many virus checking applications are utilized, for different operating

systems. Virus checking applications operate by computing the hash signatures (usually MD5 hash

based) for all files in the computer system. These signatures are then tested against a database of

signatures of all known viruses. Virus checking applications require heavy computations, thereby

3 Part of the data (including some figures and tables) reported in this chapter is reprinted with permission from [7]

“An FPGA-based Coprocessor for Hash Unit Acceleration” by A. Fairouz and S. P. Khatri, in 2017 IEEE International

Conference on Computer Design (ICCD), pp. 301– 304, Nov 2017., Copyright 2017 by IEEE.

81



reducing the performance of the computer system. We expect that implementing an FPGA-based

HU will increase the performance of such applications.

n−2

Index
Bin

Key Key1 3 Key7

HF

HT

Key

Bin#

2
1
0

. . . . . .

. . . . . .

Key

Key

Key0 2

4 Key Key Key

Key5

6

3
8 9

n−1

Figure 5.1: Software-based hash table implementation (Reprinted [7])

In this chapter, we implement the idea of the HU architectural model proposed in Chapter 3 in

an FPGA-based HU design. We utilize a hash function of class H3 [5] and a hash table bins of

CAM-based [20] implementation. Our FPGA-based HU design obtains a speedup of up to 5.37×

for a hash-based virus checking application.

The key contributions of this chapter are:

• We implement an FPGA-based hardware hash unit (HU) design for virus checking applica-

tion. The HU supports membership checks, using a hardware-based hash function and hash

table.

82



is implemented

Bin
HFKey

Bin#

2
1
0

. . . . . .

. . . . . .

3

n−1
n−2

. . . . . .

0 1 HT

. . . . . .

m−1

as a CAM

Each bin

Index

Figure 5.2: Hardware-based FPGA hash table implementation (Reprinted [7])

• Our FPGA-based HU implementation is flexible and can be used for other applications as

well. We use the virus checking application as a candidate.

• Our hash table bins are implemented as CAMs on the FPGA, for O(1) lookup. If the entries

of a bin do not fit in the CAM, they spill over into DRAM, which stores the complete hash

table contents.

• We use Xilinx ISE Design Suite [62] for our FPGA design flow, and verified the correctness

of lookup, insert and delete hash operations.

• We observe a speedup of up to 5.37× while varying the size of the hardware hash table, the

number of lookups per burst, and the database (DB) size. We obtain our HT database from

VirusShare [63].

• We quantify the scaling of the speedup of the HU when we vary the design parameters (DB

size, hash table size, and number of lookups per burst).

83



• Our FPGA-based HU implementation supports streaming hash operations.

The rest of the chapter is organized as follows. In Section 5.2, we discuss related previous

work. Section 5.3 describes our approach, and Section 5.4 presents experimental results. We

summarize this chapter in Section 5.5.

5.2 Previous Work

In this chapter, we present an FPGA-based implementation of a hash function and a hash table.

This FPGA-based implementation focus on streaming data applications, such as virus checking

applications.

Virus checking applications has been an important part in computer systems for years. There

have been many efforts to improve the performance of such applications. In [64], the authors

propose hashing smaller amounts of data to reduce the runtime for virus checking. An MD5

checksum lookup scheme has been proposed by [65], to increase the virus checking performance.

An automatic virus checking model has been proposed by [66] to generate virus signatures.

Unlike previous techniques, we propose a hardware-based hash unit for such applications. The

hash unit consists of a hash function and a hash table. Some prior approaches have been described

in Chapter 3. Unlike previous implementations, we implement both a hash function and a hash

table in an FPGA-based coprocessor. Our FPGA-based HU is based on the architectural model

proposed in Chapter 3 and the circuit level design presented in Chapter 4, while being realized in

a Linux-based operating system as an FPGA-based HU coprocessor.

5.3 CPU-FPGA Hash Unit

In this section, we start with a top-level discussion of the HU using an FPGA as a coprocessor.

Next, we discuss the Hash Function (HF) of class H3 [5]. Then, we discuss the FPGA-based design

of the Hash Table (HT). Finally, we describe the pipeline structure of the FPGA-based HU design.

5.3.1 Hash Unit (HU) on an FPGA

The block diagram of the FPGA-based HU is shown in Figure 5.3. The HU is implemented on

an FPGA, and operates as a CPU coprocessor, to speedup hash table operations (insert, delete and

84



32−bit

Drivers
Hash

Benchmark
PCIe

IP core

FPGACPU
XilinxIntel x86 Linux Kernel 3.16

HU

RD FIFO

WR FIFO

Opcode

KeyKey

ExistExist

FullFull

k−bit

No_entries

3−bit

Done

PCIe

k−bit

Linux OS

Figure 5.3: Hash Unit CPU-FPGA through PCIe implementation (Modified [7])

lookup). The HU is implemented on the FPGA and communicates with the CPU through a PCIe

interface. The CPU runs a virus checking benchmark. Once the CPU reaches a hash operation

subroutine call, it sends the hash operation request (in a batch) to the FPGA. The FPGA processes

the batch virus check operation and sends the results back to the CPU.

The HU consists of two units: the hash table (HT) and the hash function (HF), as shown in

Figure 5.2. It takes a key as an input and returns a result based on the hash operation requested

(i.e. lookup, insert, or delete). The HU has three inputs and three outputs, as shown in Figure 5.3.

Since we focus on a HU that only supports membership queries, the value field in not required.

The inputs of the HU are:

• Key: A unique value that can be searched and stored in the HT.

• Opcode: A three bit value that indicates the hash operation to be performed in the HU, as

shown in Table 5.1.

• No_entries: A 32-bit value that indicates the number of streamed (burst) hash operations to

85



be performed in the HU.

The outputs of the HU are:

• Done: A signal that indicates the end of streamed (burst) hash operations in the HU.

• Exist: This signal is an output from the HT. It is an outcome signal from a lookup operation.

It indicates if the entry exists in the HT.

• Full: It is an output signal from the HT. It indicates that the HT bin is full. We will discuss

the details of the Exist and Full signals in the HT in Section 5.3.3.

Operation Opcode

Replace 100

Insert 011

Delete 010

Lookup 001

no-op 000

Table 5.1: Opcodes for the HT operations (Reprinted [7])

The HU performs four operations:

• Lookup: This operation is performed before insert or delete hash operations, to avoid du-

plicate entries during insertion, and to confirm membership before deletion. The lookup

operation takes a key as an input, and queries its membership in the HT. First, it hashes the

key using the HF to produce a Bin Index. The Bin Index refers to the bin in the HT where key

will be located if it is present in the HT. After that, the key is searched among all bin entries

in parallel. This O(1) operation is possible since the HT bins are implemented as CAMs. If

the key is found, the lookup operation will report the existence of the key. If the key is not

found, the lookup operation will continue the search in the DRAM (where the complete bin

86



data resides). If the key is not present in DRAM, the lookup operation returns that the key

does not exist.

• Insert: Before an insert operation, a lookup operation will be executed first. If the key is

found, the insert operation will be aborted, so as to avoid duplication. Otherwise, the new

key will be inserted in the HT bin. If the HT bin is full, the key will be inserted to the

corresponding HT bin in the DRAM, at the end of the linked list.

• Delete: Before a delete operation, a lookup operation will be performed for the key. This is

done to make sure that the key indeed exists in the hash table. If the key does not exists, the

delete operation reports that the key does not exist in the hash table. Otherwise, deletion is

performed by setting the valid bit (associated with the entry in the HT bin) to 0.

• Replace: a replace operation occurs when there is a HT miss and a DRAM hit, in a HT bin.

The replace operation resets all the valid bits in a HT bin to ’0’. Then, it performs multiple

insert operations, to insert the replaced keys from the DRAM into the corresponding HT bin.

5.3.2 Hash Function (HF) of class H3

A key is the input of the hash function (HF), and a Bin Index is the output of the HF, as shown

in Figure 5.2. The Bin Index will point to the bin in the HT where the key will reside. Also, it

represents the address of the Block RAM (BRAM) memory in the FPGA, as shown in Figure 5.4

and discussed in Section 5.3.3. The Bin Index has log2(n) bits, where n is the number of bins in

the HT. We choose the HF to be of class H3 [5], since it is a good candidate for hardware hash

operations. The HF operation is based on the AND and XOR logic, hence it has a fast, efficient

implementation. The HF performs a hash operation on an input (the key in our design), and a

Q matrix with random numbers of class H3 [5]. This Q matrix is stored in latches as shown

in Figure 4.2, and is initialized during the HU initialization. The Q matrix can be changed for

different applications, resulting in a flexible HF.

87



k−bit

k x n
BRAM
k x n

Bin
Index

2log  (n)−bit

. . . . . . . . . . . .

m−1

. . . . . .

. . . . . .

Key

Opcode

Exist

Full

HT

. . . . . .

0 Valid0 Validm−1Bin#

n−1

0

Key Key

3−bit

BRAM

Figure 5.4: Hash Table (HT) structure in the FPGA (Modified [7])

5.3.3 Hash Table (HT)

Typically, software-based hash table (HT) designs use a linked list to store the hash table entries

of each bin, as shown in Figure 5.1. We design our HT using CAM memory blocks [20] to provide

fast access. We use the FPGA Block RAM (BRAM) memory to design our HT, as shown in

Figure 5.4. Each bin in the HT can provide a one-cycle lookup operation, since the whole bin is

stored as a CAM as can be searched in parallel. Each entry in the HT bin is stored in separate

BRAM memory in the FPGA as shown in Figure 5.4. As we mentioned in Section 5.3.2, the HF

generates the Bin Index to point to a bin in the HT. The Bin Index is the address for all BRAM

memory blocks in Figure 5.4. We use the DRAM to extend a HT bin, in case the HT bin is full.

As shown in Figure 5.4, there are four inputs and three outputs in the HT. The inputs of the HT

are:

• Key: It is the k-bit input entry to the HT. This input will be stored in one of the FPGA BRAM

memory blocks in the HT.

• Opcode: It is the 3-bit opcode which indicates the hash operation to be performed, as shown

in Table 5.1.

88



• Bin Index: It is the log2(n) bit address of the FPGA BRAM memory blocks in the HT. This

address is the output of the HF as shown in Figure 5.2.

The outputs of the HT are:

• Exist: It is the outcome of the lookup operation. It indicates whether the input key exists in

the HT bin.

• Full: This output signal is set to high, in case the HT bin is full.

We use a valid bit associated with each entry in the HT bin, to indicate the validity of each entry

in the HT bin, as shown in Figure 5.4. We store these valid bits in D Flip-Flops in the FPGA for

fast hash operations. In the next paragraphs, we will discuss the hash table operations.

In the lookup operation (the Opcode is 01), the HT takes the key as its input. Then, the HT

searches for key in all the FPGA BRAM memory blocks at the Bin Index address in parallel. This

is performed by looking up all m entries (located at address HF(key) in the m BRAMs) in parallel.

These entries (if valid) are compared in parallel, to the lookup key. If the key is found, the Exist

signal is set to high. Otherwise, the lookup operation continues the search in the corresponding bin

in the DRAM, if the pointer to the bin is not null, and the Full signal is high.

In the insert operation, the HT first performs a lookup operation. If the key is found, the insert

operation will be aborted, to avoid duplication. Otherwise, the key will be added to the HT bin, at

the Bin Index address of one of the BRAMs whose valid bit is ’0’. The position of the inserted key

in the bin is pre-computed using a priority encoder. The priority encoder operates in parallel with

the lookup operation, prior to the insert operation. It takes all the valid bits of the m entries of the

HT bin as an input, and provides the correct insert location (which is one of the BRAM memory

blocks). The insertion is performed by writing the key to the HF(key) location of this BRAM block,

and also writing a ’1’ in its valid bit. In case the HT bin is full, the HT sets the Full signal to high,

and the insert operation inserts the key in the linked list of the DRAM bin.

For the delete operation, the HT first performs a lookup operation for the input key. This is to

ensure that the key actually exists in the HT. If the key is found, the delete operation simply sets the

89



corresponding valid bit to 0, to effectively clear the entry. Otherwise, if the corresponding DRAM

bin pointer in not null and the Full signal is high, the lookup operation continues the search in the

DRAM bin. If the key is found in the DRAM bin, the delete operation removes the entry from the

linked list in the DRAM.

3

Benchmark

WR
Thread

Req.
aggregation0

Req.
aggregation

Req.
aggregation

FPGACPU

HU

RD FIFO

WR FIFO

Thread
RD

PCIe

PCIe

1

Req.
de−aggregation4

2

Req.
de−aggregation

Hash

Figure 5.5: Hash operations burst structure in our CPU-FPGA implementation (Modified [7])

In case of a HT miss and DRAM hit, the replace operation takes place in the HT. First, it sets

all the valid bits in the corresponding bin to ’0’ value. After that, it inserts the replaced keys from

the DRAM to the HT.

5.3.4 Hash Unit Pipeline Structure

The HU is implemented on an FPGA to provide fast hash operation through a PCIe bus. The

PCIe protocol has a latency overhead. Hence we implement our HU in a pipelined manner in the

FPGA, to increase the overall performance of hash operations. The pipeline structure is shown in

Figure 5.6.

90



Execute

RD FIFO WR FIFO

Read Result

HU

Figure 5.6: Hash operation pipeline stages in the FPGA (Reprinted [7])

The HU pipeline has three major stages:

• Read stage "Read FIFO (RD FIFO)": This stage reads the stream of hash operations (referred

as Req. aggregation in Figure 5.5) sent from the CPU and stores them in-order in a RD FIFO

as shown in Figure 5.5

• Execute stage "HU": This stage reads the hash operations from the RD FIFO and executes

the hash operations.

• Result stage "Write FIFO (WR FIFO)": This stage writes the results (referred as Req. de-

aggregation in Figure 5.5) from the Execute stage into a WR FIFO as shown in Figure 5.5.

These hash operations will be send back to the CPU at the same order as they were received.

We have implemented these pipeline stages to allow data streaming, and efficient operation.

The CPU streams a burst of hash operations. Each burst has multiple hash operations transmitted

in each PCIe payload, to offset the PCIe protocol latency. Therefore, the pipeline structure will

increase the performance of the FPGA-based coprocessor. This pipeline implementation is found

to be a suitable match for virus checking applications.

As shown in Figure 5.5, the hash benchmark on the CPU runs two threads: the write thread

(WR Thread) and the read thread (RD Thread).

The WR Thread sends multiple hash operations in a single burst message as shown in Fig-

91



ure 5.5. In this way, it utilizes the PCIe bus bandwidth effectively, resulting in an increase of the

overall performance of the FPGA-based HU implementation.

The RD Thread continuously pulls the results of hash operations from the PCIe bus, as shown

in Figure 5.5. Once all the results of hash operations are received, the RD Thread is terminated.

5.4 Experimental Results

In this section, we first present the simulation environment used to validate the FPGA-based

coprocessor for the hash unit (HU). Then, we discuss the benchmark setup used for our design

verification. Finally, we present the CPU-FPGA simulation results along with a discussion.

5.4.1 Simulation Environment

We implement our design using a CPU and an FPGA, which communicate with each other

through a PCIe interface.

We implement our HU on a Xilinx Kintex-7 XC7K325T FPGA board [67] with ’-1’ speed

grade. We use the Xilinx ISE Design Suite [62] for our FPGA design flow. We generate the PCIe

IP core using Xilinx CORE Generator System [68]. We use custom Perl [54] scripts to generate

Verilog modules for different HU design configurations.

We run our hash benchmarks on an x86 Intel [21] host machine (2GHz Core 2 Duo CPU with

4MB Cache and 4GB DDR2-800MHz DRAM). We use the Linux (Kernel 3.16) [69] operating

system (OS) on the CPU. We use Xillybus [70] Linux drivers to read and write to the FPGA board

through the PCIe bus. These drivers are included in Ubuntu [71] distributions.

5.4.2 Benchmark Setup

To construct a hash benchmark for a virus checking application, we need to model the hash

lookup operations for the virus checking application. The YCSB benchmark uses a zipfian dis-

tribution. The zipfian distribution is not a good model for the virus checking application, since it

has high occurrences for many viruses in our virus checking application. Therefore, we need to

construct a new model (based on the zipfian distribution) for the virus checking application in a

file system.

92



In our virus checking application model, we need to make sure that each file system (including

viruses) has been checked at least once. So, a function for the number of occurrences (NOCC) of

any file system can be expressed as follows (α and β are constants):

NOCC(x) = 1 +
β

xα
(5.1)

Let L be the total number of occurrences, and n is the database size for the file system. We can

solve β from Equation 5.1, since L is the integration of NOCC(x) function:

L =

∫ n

1

NOCC(x)dx =

∫ n

1

(1 +
β

xα
)dx

Once we solve β, the final Equation of the NOCC(x) function will be as follows (we call it as

modified zipfian (m-Zipf) model):

NOCC(x) = 1 +
(L− n)(1− α)

(n1−α − 1)
.
1

xα
(5.2)

We vary α in Equation 5.2, to get a good model for the file systems in our experiments. As

shown in Figure 5.7(α = 0.9), the NOCC has a high maximum value of 29727 for the first file

index, and a value of 60 after the 1000th file index. This value of α is not a good representation for

the file systems, since a typical file system will not have ∼ 30, 000 copies of a file. For a value of

α = 0.1 (Figure 5.8), the NOCC has a high maximum value of 10 for the first file index, which is a

reasonable representation of the file systems, but more than 50,000 files have 4 occurrences, which

is not typical in file systems as well. As a result, we choose α = 0.5 and multiply (and round) the

first 1000 files by 0.1, to reduce the number of occurrences of the first 1000 file systems (as shown

in Figure 5.9). In this case, the maximum occurrence count (for the first file) is 72 and the 1000th

file index has 2 occurrence, which are reasonable values for a typical file system.

We use the Intel [21] Performance Monitoring Unit (PMU) to measure the system performance.

We compute the speedup of the HU performance by the ratio of the x86 time stamp counter (TSC)

93



0 50000 100000 150000 200000 250000
File Index

0

5000

10000

15000

20000

25000

30000
Oc

cu
ra
nc

es
29727

60

α = 0.9

Figure 5.7: Plot of NOCC(x): L = 1M , n = 262144, and α = 0.9

when hashing is done in software, without the HU (SWTSC), versus the x86 TSC when hashing in

done with the HU (HWTSC).

Speedup =
SWTSC

HWTSC

(5.3)

For our HU simulations, we vary the following parameters:

• The number of lookups per a single burst in the PCIe bus: this is varied from 1 to 256 lookups

in our experiments. Each lookup Key contains 128 bits (MD5 hash virus signature size).

• HT size: this is varied from 512kB to 1520kB, the maximum value supported by the board.

• Database (DB) size: this is varied from 65,536 to 262,144 MD5 hash signatures. The

94



0 50000 100000 150000 200000 250000
File Index

4

5

6

7

8

9

10
Oc

cu
ra
nc

es
10

5

α = 0.1

Figure 5.8: Plot of NOCC(x): L = 1M , n = 262144, and α = 0.1

MD5 hash signatures are obtained from VirusShare [63]. We used VirusShare_00147.zip

(131,072 MD5 hash signatures), VirusShare_00148.zip (131,072 MD5 hash signatures), and

VirusShare_00149.zip (65,536 MD5 hash signatures) files for our simulations. These are ac-

tual representative virus definition files. The length of each MD5 virus signature is 128-bit.

As mentioned in Section 5.3.4, the PCIe protocol has a latency overhead. This latency is about

8K clock cycles on our host machine (Intel 2GHz Core 2 Duo) for a single lookup operation. The

latency stays constant till 32 lookup operations (i.e. 512B, since each lookup is 16B in length).

After 32 lookup operations, there is a minimal increase of about 2% in the latency compared to a

single lookup operation. The latency stays constant again for another 32 lookup operations. In this

manner, after every 32 lookup operations, there is another small increase in the latency. Therefore,

increasing the number of lookup operations per burst is expected to increase the performance.

95



0 50000 100000 150000 200000 250000
File Index

0

10

20

30

40

50

60

70
Oc

cu
ra
nc

es
72

2

α = 0.5

Figure 5.9: Plot of NOCC(x): L = 1M , n = 262144, and α = 0.5

Next, we present our simulation performance results along with a discussion.

5.4.3 Results and Analysis

In our results, we compute the average speedup of each experiment over 100 runs. Results are

shown in Figures 5.10, 5.14, 5.15, 5.16, 5.17, and 5.18.

In the following experiments, we apply lookup hash operations for MD5 hash virus signatures,

that have a 100% of virus hits (except for the last experiment, where we vary the percentage of

virus hits). Therefore, we can measure the performance of the FPGA-based HU in the worst case,

where the HT replacement is applied.

In Figure 5.10, the HT size is chosen to be 512kB. We vary the number of bins (n) and the

number of entries per bin (m) in the HT. In this experiment, we explore the effect of different

96



0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

 0  50  100  150  200  250  300

S
pe

ed
up

 (
X

)

# of hash lookups sent in a single burst

n=4096, m=8
n=2048, m=16

n=1024, m=32
n=512, m=64

n=256, m=128

Figure 5.10: Lookup hash operations for DB = 65,536 MD5 virus signatures, the HT size is 512kB

– Varying: the number of bins (n) and the number of entries/bin (m) in the HT. (Modified [7])

combinations of n and m for the same HT size. The HT has more DRAM accesses when n < 1024,

because collisions increase. Also, the HT utilizes less number of BRAMs in the FPGA, which

optimizes the locality of the BRAMs. When n > 1024, the ith key of all bin in the HT (keyi)

will be stored into two or more BRAMs in the FPGA, which will increase the routing delay in

the FPGA. As a result, it will increase the hash lookup delay. Therefore, the sweet spot is when

n = 1024. In general, the performance does not have a strong dependency on n and m. For larger

values of HT size, some of the (n,m) values caused the FPGA to run out of LUT resources. In the

following experiments, we use n = 1024 for our HT.

From the previous experiment, we notice that the performance of the HU with larger number

of bins (n) is slightly better than the performance of the HU with smaller number of bins. Bad

97



Figure 5.11: Hash table (HT) occupancy for DB=65k entries and HT=512kB (n = 1024 bins and

m = 32 entries).

Figure 5.12: Hash table (HT) occupancy for DB=65k entries and HT=512kB (n = 512 bins and

m = 64 entries).

occupancy4 of the hash entries between different bins in the hardware HT can be a reason for

that. Therefore, we analyze the occupancy of the hardware HT bins for different number of the

HT bins of the same DB size of 65k entries. Figures 5.11, 5.12, and 5.13 report bin occupancy.

The x-axis represents bin number and the y-axis represents the number of entries in each bin. As

4We define occupancy as the number of entries in each hash table bin.

98



Figure 5.13: Hash table (HT) occupancy for DB=65k entries and HT=512kB (n = 256 bins and

m = 128 entries).

shown in Figures (5.11, 5.12, and 5.13), the occupancy of each bin in the hardware HT is 100%

(the hardware HT is full). Therefore, the occupancy each HT bin will be 100% for larger DB sizes

as well. As a result, the HF used in our HU is a good fit for hash operations.

In Figure 5.14, we use a DB size of 65,536 of MD5 hash virus signatures. For a HT size

of 1520kB and 256 lookups in a single burst, we demonstrate a maximum speedup of 5.37×.

Note that a speedup of ∼5× is obtained even for 64 lookups per burst. In the case when HT

sizes are 1520kB, 1280kB, and 1024kB, the DB entries almost entirely fit in the HT. Hence the

speedup is high. For a HT size of 512kB and 768kB, there are more DRAM accesses, and hence

the speedup is reduced. In the 768kB size, we still demonstrate a healthy maximum speedup of

92% over the software-based hashing. We notice that the performance of our FPGA-based HU

implementation for a single hash lookup operation (burst size is 1) is worse than the software-

based implementation, (for HT sizes of 512kB, 768kB and 1024kB) as expected. This is due to the

latency overhead of the PCIe protocol. Therefore, implementing a pipelined structure with burst

lookups achieves better performance for hash operations.

For the DB size of 131,072 of MD5 hash virus signatures (as shown in Figure 5.15), the DB

size is larger than all the HT sizes. For the HT size of 1520kB, the maximum speedup is 2.42×,

99



0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

 0  50  100  150  200  250  300

S
pe

ed
up

 (
X

)

# of hash lookups sent in a single burst

HT=1520kB
HT=1280kB

HT=1024kB
HT=768kB

HT=512kB

Figure 5.14: Lookup hash operations for MD5 hash virus signatures – Varying burst and HT sizes.

DB = 65,536 MD5 virus signatures (Modified [7])

while the maximum speedup is 79% for the HT size of 768kB. This shows that our scheme scales

well even when the DB cannot fit in the HT.

As shown in Figure 5.16, we demonstrate a maximum speedup of 89% for a HT size of 1520kB

(and a DB size of 196,608 MD5 hash virus signatures). This speedup is achieved for 256 lookup

hash operations per burst. For the HT size of 768kB, a maximum speedup of 36% is obtained.

When the DB size is higher, most of the MD5 hash virus signatures will be stored in the extended

DRAM bins, reducing the speedup. However, the speedups are still healthy, and are achieved for

modest (32 or higher) burst sizes.

In Figure 5.17, we use a DB size of 260,144 MD5 hash virus signatures. We achieve a maxi-

mum speedup of 54% when we transmit 256 hash lookup operations in a single burst, with a HT

of size 1520kB. For a HT size of 768kB, the maximum speedup is 31%. For this HT size, the DB

size is 5.33× larger than the HT size. This demonstrate that even for large number of DB entries,

the FPGA-based HU implementation can achieve good speedups compared to the software-based

100



0.00

0.50

1.00

1.50

2.00

2.50

 0  50  100  150  200  250  300

S
pe

ed
up

 (
X

)

# of hash lookups sent in a single burst

HT=1520kB
HT=1280kB

HT=1024kB
HT=768kB

HT=512kB

Figure 5.15: Lookup hash operations for MD5 hash virus signatures – Varying burst and HT sizes.

DB = 131,072 MD5 virus signatures (Modified [7])

hashing implementation. Using more advanced FPGA boards with larger BRAM can further im-

prove our results.

In previous experiments, we have applied lookup hash operations for MD5 hash virus signa-

tures, that have a 100% of virus hits. In the following experiment, we vary the percentage of virus

hits in the hash lookup operations. In Figure 5.18, we use a DB size of 260,144 MD5 hash virus

signatures, and a HT size of 1520kB. We achieve a maximum speedup of 2.01×, when the virus

hit is 1%. Also, the speedup is more than 30% when the hash lookups in a single burst is 64.

101



0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

 0  50  100  150  200  250  300

S
pe

ed
up

 (
X

)

# of hash lookups sent in a single burst

HT=1520kB
HT=1280kB

HT=1024kB
HT=768kB

HT=512kB

Figure 5.16: Lookup hash operations for MD5 hash virus signatures – Varying burst and HT sizes.

DB = 196,608 MD5 virus signatures (Modified [7])

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

 0  50  100  150  200  250  300

S
pe

ed
up

 (
X

)

# of hash lookups sent in a single burst

HT=1520kB
HT=1280kB

HT=1024kB
HT=768kB

HT=512kB

Figure 5.17: Lookup hash operations for MD5 hash virus signatures – Varying burst and HT sizes.

DB = 262,144 MD5 virus signatures (Modified [7])

102



0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

2.20

 0  50  100  150  200  250  300

S
pe

ed
up

 (
X

)

# of hash lookups sent in a single burst

Virus hit = 100%
Virus hit = 50%

Virus hit = 10%
Virus hit = 5%

Virus hit = 1%

Figure 5.18: Lookup hash operations for MD5 hash virus signatures – Varying the percentage of

virus hits. DB = 262,144 MD5 virus signatures. HT size = 1520kB.

103



5.5 Chapter Summary

In this chapter, we present an FPGA-based hardware hash unit (HU) design for hashing opera-

tions. We implement each bin of the hash table (HT) as a CAM. We have verified the correctness

of all hash operations in the real-time system design. We demonstrate a speedup of up to 5.37×

for the FPGA-based HU implementation over the software-based hashing implementation, in the

context of a virus checking application. Higher speedups are expected with more advanced FPGA

boards.

104



6. PAU: A PROGRAMMABLE ARITHMETIC UNIT FOR USE IN MODERN

MICROPROCESSORS

In this chapter, we present a programmable arithmetic unit (PAU) for use in modern micropro-

cessors. We start with a background in Section 6.1. Then, in Section 6.2, we discuss the previous

work. In Section 6.3, we present our proposed PAU design. After that, we present our experimental

results in Section 6.4. We conclude in Section 6.5.

6.1 Background

Modern microprocessors are designed for general purpose applications. Today’s applications

require complex arithmetic computations such as signal processing, image processing, scientific

computation, along with data-intensive applications like networking, cloud computing and web-

based search. Arithmetic applications are implemented in high-level languages, and run in soft-

ware. Arithmetic applications require different kind of mathematical computations. The perfor-

mance of arithmetic applications in modern microprocessors are limited by memory accesses,

instruction execution latencies and data dependencies. As a result, new techniques need to be

explored to enhance the speed of arithmetic computations in modern microprocessors.

Arithmetic applications in today’s applications comprise a lot of operations. These opera-

tions require a high memory utilization and a high number of CPU cycles in modern micropro-

cessors. Many special function units (SFUs) in modern microprocessors are used to speedup

common algorithms or operations for applications such as memory management, integer oper-

ations, floating point operations and vector operations. In order to run applications containing

different arithmetic computations, modern microprocessors compile these applications and run

their instructions. As we demonstrate in the chapter, implementing a flexible arithmetic unit in

modern microprocessors can improve the performance of the arithmetic applications significantly.

We propose a programmable arithmetic unit that includes multiple intellectual property blocks

(IPs), a programmable control logic and a fast Network-on-Chip (NoC) data fabric. The proposed

105



programmable arithmetic unit can yield a significant speedup for a series of arithmetic-intensive

applications.

As an example, multimedia content are heavily used in the internet and storage space [72].

Therefore, efficient image and video compression is required, using formats such as Joint Photo-

graphic Experts Group (JPEG). JPEG is widely used in lossy image compression [73], and em-

ploys a discrete cosine transform (DCT) engine. The DCT is an arithmetic-heavy computation that

decomposes an image into different frequency components. Typically, the DCT computation is

done in software, which reduces the performance of JPEG compression and increases the memory

utilization.

Modern microprocessors do not have a flexible programmable arithmetic unit. In this chapter,

we propose a novel programmable arithmetic unit (PAU) as a new SFU for use in modern mi-

croprocessors. The programmable arithmetic unit consists of three major blocks: arithmetic tiles

(IP blocks), an FPGA controller (control logic) and a fast ring-based network-on-chip (NoC) data

fabric [8]. The IP blocks in the PAU can be adders, subtractors, multipliers, comparators, etc.

The PAU can have one or more of the same tile. The FPGA controller implements programmable

control logic. It allows different arithmetic application to be embedded in the PAU. We build the

reconfigurable logic of the FPGA controller using a LUT-based design, like a traditional FPGA.

The FPGA controller and the tiles communicate via a fast ring NoC data fabric [8]. We design

our ring NoC data fabric to run at a speed of up to 20GHz, that is about 20× the FPGA controller

and tiles speeds. This speed of the ring NoC provides a high bandwidth compared to a state of the

art mesh-based NoC [8]. We test the PAU with three applications and measure their delay, area

and power. We compare the performance of the PAU with a software-based implementation. We

demonstrate a significant speedup of up to 832.3× using the PAU over the software-based imple-

mentation. We compare the area of the PAU with a 32kB of L1D cache of the same technology

node. Also, we calculate the increase of power consumption of the PAU compared to an average

power of an Intel [21] i7 processor.

The key contributions of this chapter are:

106



• Design a programmable arithmetic unit (PAU) for use in modern microprocessors. The PAU

is flexible and can be programmed for different arithmetic applications. The PAU enables

different arithmetic applications to be embedded in the modern microprocessors. To the best

of our knowledge, this has not been undertaken to date.

• We implement three arithmetic application examples in the PAU and measure their delay,

area and power. Also, we compare the performance of the PAU with a software-based im-

plementation. We demonstrate a significant speedup of the PAU of up to 832.3× over the

software-based implementation, with a minimal power increase and an acceptable area in-

crease, while varying the configuration of the number of tiles, the FPGA controller and the

ring NoC size in the PAU.

• We simulate our fast ring NoC data fabric in Synopsys HSPICE [45] in a 16nm technology,

using PTM [46] high-performance model card. RC parasitics of the ring NoC are modeled as

well, and extracted using Synopsys Raphael [47]. We design the arithmetic tiles (IP blocks)

of the PAU using a 45nm technology library [6] in Synopsys DC [74] RTL synthesizer and

scale the delay, area, and power to the 16nm technology.

• We design our FPGA controller (control logic) in Xilinx Vivado [75] using Kintex Ultra-

Scale+ FPGA boards (using a 16nm technology).

• We compare the area of the PAU with the area of a 32kB L1D cache in 16nm, and the power

of the PAU to the average power of the Intel i7-5600U processor.

The rest of the chapter is organized as follows. In Section 6.2, we discuss related previous

work. Section 6.3 describes our PAU design approach. Then, we present our experimental results

in Section 6.4. We summarize the chapter in Section 6.5.

6.2 Previous Work

A survey paper on coarse grained reconfigurable architectures (CGRAs) has been presented

in [76]. In [76], the authors focused on architectures that have either (or both) temporal or spa-

107



tial granularity. They considered architectures that have granularity in spatial reconfiguration at

fixed functional unit or above, and architectures that have granularity in temporal reconfiguration

at region level or above. In the CGRA study, there is a list of reconfigurable architectures. The

reconfigurable architectures most related to our work (a programmable arithmetic unit, PAU) in the

CGRA study are the works presented in [77, 78, 79]. In the Colt [77] architecture, homogeneous

functional units (FUs) connected in a mesh network that perform integer operations. The Colt

architecture provides a simple reconfigurable control flow for applications that require complex

looping structures and conditional execution. The authors of [78] presented a specialized recon-

figurable architecture for mobile wireless protocols, which makes it application specific. In their

architecture, there are multiple reconfigurable processing units (RPUs) grouped in clusters of four.

The communication between clusters is configurable using SRAM-based switches. In [79], the

authors proposed a polymorphic pipeline array (PPA) that has groups of four processing elements

(PEs). Each group is called a core. The PEs in a core share a cache, a loop-buffer and a register

file. In each PE, there is an arithmetic unit (as an FU) for integer operations. The FUs communi-

cate through a mesh network. The PEs are connected via n columns of shared memory-bus. Each

column memory-bus is configurable, and used to reduce the load latency for applications that do

not need core sharing.

Unlike [78], the PAU is general, and not application specific. In contrast to [77], the PAU allows

complex control and flexible operations in the tiles. Finally, the PAU uses extremely low-latency

interconnect unlike [79]. The PAU is programmed for different arithmetic applications. The PAU

uses a fast ring-based NoC to connect different tiles (IP blocks) with an FPGA controller.

There is a reconfigurable arithmetic processor (RAP) proposed by [80], that can be used for

multiple-instructions/multiple-data (MIMD) computations. RAP uses multiple add and multiply

units that communicate via a crossbar switch. RAP uses a serial input implementation to the

crossbar switch, which reduces the data bandwidth. A reconfigurable modular arithmetic FPGA

implementation has been proposed by [81] for public-key cryptosystems, by changing connections

between carry-save adders. In [82], a dynamically reconfigurable multi-operation arithmetic unit

108



is proposed, basing on multiply-add-fused unit for matrix algorithms.

In contrast to [80] and [82], the PAU uses different type of tiles (IP blocks) such as adders, sub-

tractors, multipliers, comparators. The PAU is programmable using an FPGA-like control logic

(FPGA controller), using a mesh-like network instead of the cross-bar of [81]. The FPGA con-

troller and the tiles in the PAU communicate through a fast ring NoC data fabric that provides a

high data throughput than a state of the art mesh NoC [8] or a cross-bar switch.

6.3 The PAU Design Approach

In this section, we discuss our proposed programmable arithmetic unit (PAU) for use in modern

microprocessors. First, we start with an overview of the PAU. After that, we discuss the PAU

components: the tiles, the FPGA controller and the ring NoC data fabric. Then, we discuss the

PAU design flexibility. Finally, we discuss the arithmetic applications used to benchmark the PAU.

6.3.1 Overview: PAU

Our programmable arithmetic unit (PAU) is designed to accelerate arithmetic application that

use intensive arithmetic operations in a modern microprocessor. We embed the PAU in modern

microprocessors as a new SFU, as shown in Figure 6.1. The PAU consists of three major blocks

– the tiles (IP blocks), the FPGA controller (we refer to it as FC) and the ring NoC data fabric

(Ring), as shown in Figure 6.2. We refer to a tile as Ti. There are n total tiles in the PAU.

The figure shows that the FC and the tiles communicate via the Ring NoC (which can be can be

alternatively replaced by a m × m ring-based mesh NoC). The tiles in the PAU can be adders,

subtractors, multipliers, comparators, or any complex IP block. We can have multiple tiles of the

same type in the PAU. The tiles in the PAU can operate simultaneously. The FC is the control logic

in the PAU. We use a LUT-based design like a traditional FPGA, to construct our FC . The FC can

be programmed for different arithmetic applications. The Ring NoC [8] is used to connect the FC

with the tiles in the PAU. Our Ring NoC runs at a high speed, providing a much higher bandwidth

than the state of the art mesh NoC. We will discuss in details the tile, the FC and the Ring NoC in

Section 6.3.2, Section 6.3.3 and Section 6.3.4, respectively.

109



(PAU)

IntU

VMX

FPU

MMU

Programmable
Arithmetic

Unit

Figure 6.1: CPU units with the PAU

6.3.2 Tiles

The tiles Ti in the PAU (as shown in Figure 6.2) are custom-designed IP blocks designed

for efficiency. These tiles can be any common arithmetic IP block (such as adders, subtractors,

multipliers, comparators). We can have one or more instance of the same tile Ti in the PAU. For

example, in the PAU, we can have 5 multipliers (T1 through T5) and 7 adders (T6 through T12) for

a total of n = 12 tiles. Each tile Ti in the PAU can perform an operation in the same clock cycle

as any other tile, to increase the performance of an arithmetic application. The order of operations

of the tiles is specified by the FC in the PAU, to implement a general arithmetic application. In an

arithmetic application, the number of available tiles (resources) in the PAU determines the number

of cycles required to produce a final result for an arithmetic computation.

110



FPGA Controller

n

Ring(        )

CF(      )

TiT1

address
+

+

Rclk

data
+

valid

d−bit

r−bit
+

+

1−bit

+
1−bit

Ring Data Fabric

.....

.....
Ti+1 T

Figure 6.2: The PAU General Architecture showing Single Ring

6.3.3 The FPGA Controller (FC)

We design our FPGA controller (FC) using a LUT-like traditional FPGA fabric. Hence the FC

is reconfigurable and can be programmed for different arithmetic applications. The reconfigura-

bility feature in the FC enables different arithmetic applications to be embedded in the PAU. The

FC is the state-machine, which sequences the operations of the tiles in the PAU, for any arithmetic

application. The FC can assign at most n tiles during any cycle, for any arithmetic application.

The FC also controls the data flow between the tiles in the PAU, via the fast Ring NoC data fabric.

If the number of hops between two tiles is h, we assume it takes h cycles to route data between the

two tiles. Usually a larger number of LUTs in the FC allows the PAU to perform more complex

arithmetic computations that span a large number of cycles.

111



6.3.4 The Ring NoC Data Fabric (Ring)

Our fast ring NoC data fabric in the PAU, is based on the idea presented in [8]. We use a two

dimensional m × m mesh-based NoC to communicate between the FC and the tiles in the PAU

(as shown in Figure 6.3 for m = 4). Each ring in our mesh NoC has a clock (Rclk), destination

address (r-bit), data (d-bit) and one valid wires (bits). The Rclk operates at a speed of up to

20GHz, which is much faster than the speed of the tiles in the PAU. In the NoC, there are three types

of stations: insertion/extraction stations (IES, represented as × in Figure 6.3), junction stations (JS,

represented as in Figure 6.3) and repeater stations (RPT, represented as in Figure 6.3). Each

IES in the NoC is connected to a tile Ti. The IESk station (marked as × in Figure 6.3) inserts

or extract data from the NoC to a tile located at the (i, j)th location in the mesh NoC. The JS

station (marked as in Figure 6.3) transfers data from a vertical NoC segment to a horizontal

NoC segment (or vice versa). The RPT station (marked as in Figure 6.3) is a buffer that forwards

a data on vertical rings. It ensures that horizontal and vertical data segments have the same length.

The rings in our NoC are unidirectional [8]. Therefore, without loss of generality, we assume

in each ring that the data, the address and the valid bits flows in a counter-clockwise manner.

The distance between two adjacent stations (both the vertical and horizontal directions of the IES)

in the NoC is fixed, as shown in Figure 6.3.

6.3.4.1 The Ring Clock (Rclk)

Our ring-based NoC is based on the idea presented in [8]. We run our ring clock (Rclk) at

a speed of up to 20GHz. The data flows in each ring of the NoC source-synchronously using a

ring-based standing wave resonant oscillator (SWO) [8, 9], as shown in Figure 6.4. The ring clock

is based on two parallel wires, that cross at the end by mobius crossing, to ensure that we get the

same phase of the clock signal at any point in the ring. In [9], the authors use a single inverter

to sustain the oscillation the ring, as shown in Figure 6.4. In our work, as mentioned in [8], we

utilize an odd number of inverter pairs (3 in particular). We extract a full amplitude clock signal at

any desired point in the ring using a clock recovery circuit, except for the Dead-Zone (where the

112



vertical rings

horizontal
rings

IESJS

RPT

Figure 6.3: A 4×4 Ring-based NoC Architecture [8] in the PAU

amplitude of the ring signals is very small), as shown in Figure 6.4. The extracted full amplitude

clock signal operates at a speed of up to 20GHz. We use the extracted clock signal to run our IES,

JS and RPT stations in the NoC.

Next, we will discuss the IES, the JS and the RPT stations in the NoC, which were first de-

113



Dead−Zone

Single

pair
Inverter

Clock

ckt
recovery

+
_

amplitude
clock

Full

Clock

ckt
recovery

+
_

Mobius
Crossing

amplitude
clock

Full

Virtual "zero" crossing (phase change)

Figure 6.4: Single wave ring clock [8, 9]

scribed in [8].

6.3.4.2 The Insertion/Extraction Station (IES)

Each insertion/extraction station (IES) in the NoC in connected to some tile Ti. The IES

(marked as × in Figure 6.3) extracts data from the NoC and delivers it to a tile Ti (if the data

is valid and has the right address of the tile Ti). Also, the IES can insert data from a tile Ti into

the NoC (when an empty slot is available). Figure 6.6 shows the circuit structure of the IES in the

NoC in the PAU. The address (r-bit) signal consists the horizontal address of the IES, as well as

114



its vertical address. Figure 6.5 shows the cross-section of the address wires modeled in the NoC.

Shield Shield

Address wires

Bottom GND

2.0µ

0.5µ0.5µ 1.0µ 1.0µ 1.0µ

1.5µ1.5µ2.0µ 2.0µ1.0µ

Figure 6.5: Address wires cross-section

In IESi, there are three input signals coming from the mesh NoC (as shown in Figure 6.6): the

IEaddressin, the datain and the validin. All these input signals are latched in latches that are oper-

ated by the Ring clock (Rclk). IESi compares the IEaddressin with its own address IEaddressi. If

there is a match and the data is valid (validin is high), the datain is inserted into the asynchronous

fifo (Din FIFO), then the tile Ti will consume the data from the Din FIFO. Otherwise, the input

signals will be forwarded to the output signals (the IEaddressout, the dataout and the validout) on the

Ring NoC to the next station. In the other case, if a tile Ti has a data to be send to another tile Tj

in the Ring NoC, then the tile Ti writes its output data (dataNext) into the asynchronous fifo (Dout

FIFO) and the next target tile Tj address (addressNext) into the asynchronous fifo (Aout FIFO), to

be forwarded to the output signals of the IESi station (the IEaddressout, the dataout and the validout).

The operation of the IES in the PAU is substantially the same as in [8].

6.3.4.3 The Junction Station (JS)

The junction station (JS, marked as in Figure 6.3) is the junction point between a horizontal

ring and a vertical ring, that forwards the address, the data and the valid bits from a horizontal ring

115



l

1

0

sel

acc

acc

d−bits

sel

d−bits

k−bits

1

0

sel

empty_fifo

La
tc

he
s

accacc

d−bits

addressNext

dataNext

d−bits
data

Comparator
k−bits

k−bits

k−bits
k−bits

Tile (IP Block)
Ti

IEaddressi

IEaddress

Rclk

FIFO
Aout

FIFO
Din

FIFO
Dout

data
in

in
valid

IEaddress
in

valid

valid

out

out

out

valid
l

Figure 6.6: Insertion/Extraction Station (IES) in the NoC in the PAU

to a vertical ring (or vice versa) in the Ring NoC. As shown in Figure 6.7, the JS compares the input

vertical address (which is included in the packet header) with the current horizontal address. If

there is a match (Vselring is high), the JS inserts the data bits (the address and the valid bits as well)

116



in

VselringVselring
Hselring

Hselring

Vselring

Vselring

VerticalLink
From

Current
Horizontal

Ring

From
HorizontalLink

Current
Horizontal

Ring

Comparator

La
tc

he
s

FIFOHor

Comparator

La
tc

he
s

0

1

FIFOVer

d−bits

d−bits

d−bits

d−bits

h−bits

h−bits

h−bits

h−bits

Rclk

Rclk

0

1

HselringHselring

Vdata

Hdata

out

out

in
Vdata

Hdata

Figure 6.7: Junction Station (JS) in the NoC in the PAU

into the synchronous fifo (Hor FIFO), which the JS transfer the data to the current horizontal ring

in the Ring NoC. Otherwise, the data will stay in the current vertical ring (Vdataout). In the other

hand, the JS compares the input horizontal address with the current horizontal address. If there is

not a match (Hselring is low), the JS inserts the data bits (the address and the valid bits as well)

into the synchronous fifo (Ver FIFO), which the JS transfers the data bits to the current vertical

ring in the Ring NoC. Otherwise, the data will stay in the current horizontal ring (Hdataout). The

operation of the JS in the PAU is substantially the same as in [8].

6.3.4.4 The Repeater (RPT) Station

The repeater station (RPT, marked as in Figure 6.3) forwards the data on the vertical rings

in the Ring NoC using buffers, as shown in Figure 6.8. The RPTs in the Ring NoC are used to

have a fixed distance between each adjacent stations in vertical rings.

117



out

La
tc

he
s

d−bits d−bits

r−bitsr−bits

Rclk

data

valid

address

data

valid

address
in

in

in out

out

Figure 6.8: Repeater (RPT) Station in the NoC in the PAU

6.3.5 The PAU Design Flexibility

The control logic FC in the PAU is realized by a reconfigurable FPGA like structure. This

structure utilizes LUTs similar to an FPGA to allow programmability for different arithmetic ap-

plications in modern microprocessors. The reconfigurable feature of FC provides the PAU the

flexibility to embed different arithmetic application in modern microprocessors. For each arith-

metic application, the FC can be programmed to assign the required tiles, and the order of each tile

in the arithmetic application computation order. In addition, the control logic FC is utilized as a

means for overall control of the PAU design.

6.3.6 Arithmetic Applications used in the PAU

We use three arithmetic application examples in the PAU, to compare it with a software-

based implementation: the finite impulse response (FIR) filter [83], the discrete cosine transform

(DCT) [73] and the Viterbi decoder [84]. The FIR filter (Figure 6.9) operates on discrete-time

signals, whose impulse response is of finite duration [83]. In Figure 6.9, the input to the FIR filter

118



x(t−1)

x xx x

+

h0 1h

x(t)

y(t)+ +

.....

.....

n−1h2h

x(t−2) x(t−n+1)

Figure 6.9: A discrete form of the FIR filter in the time domain.

at a discrete time is x(t), and y(t) is the output at a discrete time as well, where [h0 : hn−1] are

constants. The output y(t) of the FIR filter can be calculated in the following formula:

y(t) =
n−1
∑

0

hi × x(t− i) (6.1)

The FIR filter arithmetic operations consists of multiple addition and multiplication operations.

The DCT is used in signal and image processing, and widely used in JPEG compression [73],

which is lossy. For example, as shown in Figure 6.10, a DCT is applied on an image that is first

converted into 16×16 macroblocks. Each macroblock consists of 16×16 pixels (each pixel is 8-

bit). In each macroblock, an 8×8 pixels block is converted to a frequency domain using the DCT

(8-point DCT in Figure 6.10). Each converted point (D(i, j)) in the frequency domain is calculated

by the following formula [73] (n = 8 in Figure 6.10):

D(i, j) =
1√
2n

C(i)C(j)

n−1
∑

x=0

n−1
∑

y=0

cos(
(2x+ 1)iπ

2n
)cos(

(2y + 1)jπ

2n
) (6.2)

119



Figure 6.10: An example of an 8-point DCT used in JPEG.

where the scaling function C(k) is:

C(k) =















1
√

2
if k = 0

1 if k > 0

(6.3)

The DCT arithmetic operations consists of multiple addition, subtraction and multiplication oper-

ations. The cosine functions in the DCT can be pre-calculated and used as coefficients.

The Viterbi decoder used for decoding a bitstream that has been encoded using convolution

code or trellis code [84]. The Viterbi decoder is widely used in wireless communication and hard

drives (HDDs) error-correction codes (ECC). An example of the Viterbi decoder is shown in Fig-

120



c) Example of a decoded code

+

+

State 00

State 01

State 10

State 11

State 00

State 01

State 10

State 11

State 00

State 01

State 10

State 11

Encoding in= 0 1 0 1 1 1 0 0 1 0

Encoding out= 00 11 10 00 01 10 01 11 11 10

FF FF

C0

C1

S0 S1

in

00

11

00

11

10

01

01

10

b) State machine in Viterbi decoder (receiver)a) Convolution encoder rate=1/2 (sender)

t= 0 1 2 3 4 5 6 7 8 9 10

Figure 6.11: An example of a convolution encoder with a rate of 1

2
and the Viterbi decoding trellis.

ure 6.11. In this example, the convolution encoder in the sender side of a two-way communication

(Figure 6.11(a)) has an input (in) and two outputs (C0 and C1) and hence a rate (r) of 1

2
. The con-

strained length (l) is 3 in this example. The state machine of the Viterbi decoder for the receiver is

shown in Figure 6.11(b). An encoded example by the Viterbi decoder is shown in Figure 6.11(c).

The Viterbi decoder arithmetic operations consists of multiple addition, subtraction, multiplication

and comparison operations.

In the next section, we will present the experimental results of the previous arithmetic applica-

tion examples in the PAU.

121



6.4 Experimental Results

In this section, we present our experimental results of the PAU, using three arithmetic applica-

tion examples: the FIR filter, the DCT and the Viterbi decoder. First, we discuss our PAU design

flow in Section 6.4.1. Then, we discuss our simulation environment in Section 6.4.2. Finally, we

present our simulation results along with a discussion in Section 6.4.3.

6.4.1 The PAU Design Flow

Each block in the PAU has a different design flow (as shown in Figure 6.12). The first is the tile

design flow, the second is the FPGA controller (FC) design flow and the third is the fast ring NoC

data fabric design flow. In the tiles design flow, we describe the design process for each tile that will

be connected to the PAU architecture, as determined by the arithmetic applications requirements.

Then, we write the hardware description language (HDL) in Verilog for each tile Ti. We can have

multiple instances of the same tile Ti in the PAU. As shown in the top part of Figure 6.12, we

synthesize the Verilog code of each tile Ti using Synopsys Design Compiler (DC) [74] using cells

from the the Nangate standard cell library [6] in the 45nm technology node. We extract the delay,

the area and the power for each tile Ti. We next scale the delay, area and power from the 45nm

to the 16nm technology node. To do this, we measure the delay, area and power of a 32-bit adder

with random input vectors using Synopsys HSPICE [45] and PTM [46] high-performance process

model card for the 16nm and 45nm technologies. After that, we calculate the scaling ratios of the

delay, the area and the power, for the transitions from the 45nm to the 16nm technology nodes.

Finally, we use these scaling ratios to extract the delay (DTi
), the area (ATi

) and the power (PTi
) of

each tile Ti in the 16nm technology node.

In the FPGA controller (FC) design flow, the first step is a generation of the application in a

language such as SystemC. Then, as shown in the middle part of Figure 6.12, we use Cadence

Stratus HLS [85], high-level synthesis (HLS) tool to perform operation sequencing, scheduling

and control logic generation for the PAU control logic. The HLS tool provides behavioral Verilog

code of the application. After that, we use custom Perl [54] scripts to extract the control logic from

122



FPGA controller (        )

* Power:
− dynamic
− static

* Area

sunthesis
HLS

tool

Extract control
logic script synthesis

tool

FPGA

* Utilization:
− LUTs & REGs

+

FPGA

sheets
data

script

Area and
static power

Area and
parts data

Area and

− LUTs
− REGs

PcontAcontDcont

Ring NoC
requirements simulation

tool

Circuit

* Delay
* Power:
− dynamic
− static

* Area

PringAringDring

Tiles (IP Blocks)

FC

DTi
PTi

ATi

IP blocks
(Verilog)

RTL
synthesis

tool

Verilog Verilog

* Delay
* Power:

− dymaic

− static

* Area
static power:

(controller)

Application
(in SystemC)

RC parasitics
tool

Ring NoC Data Fabric

* Delay

Figure 6.12: The PAU Design Flow

123



the Verilog code of the application (we refer to it as controller in Figure 6.12). We use the Xilinx

Vivado [75], FPGA synthesis tool to generate a bitstream that configures the FPGA controller (FC)

to implement the control logic indicated by the HLS engine. From the FPGA synthesis tool, we

extract the delay and the dynamic power of the FC , and the utilization of the number of LUTs

and the number of registers (REGs) in the FC . Moreover, we the Xilinx Kintex UltraScale+ [86],

FPGA device data sheet and a custom Python [87] script to extract the approximate area and static

power of a single LUT. We obtain the area and the static power of a single register from a 45nm

Nangate standard cell library [6], and scale them to a 16nm technology node. Finally, we extract

the delay (Dcont), the area (Acont) and the power (Pcont) of the FC .

The bottom part of Figure 6.12 describes the fast NoC data fabric design flow. The first step

is to identify the number of components (tiles and the FC) that are going to utilize the NoC in

the PAU. Then, we model the wires of the NoC using Synopsys Raphael [47], to extract the RC

parasitics. After that, we utilize the RC parasitics in the circuit simulation of the NoC using

Synopsys HSPICE [45], with a 16nm PTM [46] high-performance process model card. Finally,

we extract the delay (Dring), the area (Aring) and the power (Pring) of the Ring NoC. For a data

transfer from ring location (x1, y1) to (x2, y2), the ring is assumed to take Dring = Dlink × (|x2 −

x1|+ |y2 − y1|), where Dlink is the delay to traverse one link in the NoC.

We calculate the final delay, area and power of the PAU as follows:

Power(PAU) = Pcont + Pring +
n

∑

i=1

PTi

Area(PAU) = Acont + Aring +

n
∑

i=1

ATi

Delay(PAU) = Dcont +Dring +max(DT1
, ..., DTn

)

(6.4)

Next, we will discuss the simulation environment of the arithmetic applications (the FIR filter,

the DCT and the Viterbi decoder) used in the PAU.

124



6.4.2 Simulation Environment

We implement three arithmetic applications in the PAU (the FIR filter, the DCT and the Viterbi

decoder) and compare the performance of the PAU with a software-based implementation written

in the C language and compiled and run on an Intel i7 3.6GHz (with 32GB DDR3-1600MHz). We

use the Intel [21] Performance Monitoring Unit (PMU) to measure the system performance. For

the software-based implantation, we compute the number of cycles of each arithmetic application

using the Intel x86 time stamp counter (TSC). We refer to this as SWcycles. For the PAU imple-

mentation, we use the delay measured for each PAU arithmetic application in Section 6.4 in the

performance comparison (we refer to it as PAUcycles), to estimate the speedup using the PAU over

the software-based version. The speedup of the PAU in each arithmetic application is calculated as

follows:

Speedup =
SWcycles

PAUcycles

(6.5)

We compare the power increase of the PAU to the average power of the Intel i7-5600 proces-

sor (15W ). We compare the area of the PAU with the area of a 32kB L1D cache in 16nm

(∼ 60740.6µ2). We estimate the area of the 32kB L1D cache in 16nm by scaling the area of

the 32kB L1D cache in 45nm (Chapter 4, Table 4.3) to the 16nm technology node.

In the PAU, we vary the tiles configurations, by varying the number of cycles to produce a

single result in each PAU arithmetic application. The number of cycles is varied from 1 to 16

cycles to generate different configurations of the PAU. Furthermore, we vary the configuration of

each arithmetic application (the FIR filter, the DCT and the Viterbi decoder) used in the PAU. In

the FIR filter, we vary the number of taps from 64 to 128, and the number of input bits from 8 to

64 bits. In the DCT, we present the 4-point and 8-point DCT, and we vary the number of parallel

inputs from 1 to 4. In the Viterbi decoder, we vary the input/output rate (r) from 1

2
to 9

10
, and the

constraint length (l) from 4 to 6.

Next, we present our simulation performance results along with a discussion.

125



6.4.3 Results and Analysis

In this section, we present and analyze our experimental results. For the tiles (IP blocks) in the

PAU, we refer to an adder as (A), a multiplier as (M), a subtractor as (S) and a comparator as (C).

The experimental results of the arithmetic applications in the PAU will be in the following order:

the FIR filter, the DCT and the Viterbi decoder.

6.4.3.1 The FIR filter in the PAU

The FIR filter has been implemented in a graphical processing unit (GPU) to speedup its arith-

metic operations [88, 89]. The GPU achieves a maximum speedup of up to 4× compared to a

software-based implementation [88], while the PAU demonstrates a speedup of up to 666× com-

pared to a software-based implementation, as we will present in this Section. In addition, tradi-

tional GPUs have an overhead PCIe latency for the data transfer between the GPU and the DRAM.

As a result, we can use the PAU to speedup the FIR filter arithmetic operations. We use the PAU

to implement the FIR filter arithmetic application with a 100K inputs. We vary the number of taps

in the FIR filter from 64 to 128, and the number of input bits from 8 to 64 bits. We vary the tiles

configuration of the PAU from 4M-6A to 128M-127A. When we increase the number of tiles used

in the PAU, the delay to produce a single result in the PAU decreases. The speedup of the FIR

filter in the PAU is shown in Figure 6.13. We demonstrate a significant speedup of the FIR filter

in the PAU of up to 666.8× (tiles of 128M-127A in the FIR filter of 128 taps and 32 bits), with

an area increase of 115.8% (as shown in Figure 6.14) and a power increase of 0.68% (as shown

in Figure 6.15). The minimum speedup achieved is 21.4× (tiles of 4M-6A in the FIR filter of 64

taps and 16 bits), with an area increase of 42.2% and a power increase of 1.43%. As shown in Fig-

ure 6.14, the area increase of the FIR filter in the PAU ranges from 13.8% to 545.3%. The power

increase of the FIR filter in the PAU ranges from 0.24% to 7.56%, as shown in Figure 6.15. In

Tables 6.1, 6.2 and 6.3, we show the area breakdown of different parts in the PAU for the largest

area size of the 64, 96 and 128 taps of the FIR filter. The area of the FC in the PAU increases as

the number of tiles decreases, as expected, because the control logic is larger for a lower number

126



0 20 40 60 80 100
PAU delay (ns)

0

100

200

300

400

500

600

700
Sp

ee
du

p 
(x

)
FIR: speedup using PAU

FIR 8 bits / 64 taps
FIR 16 bits / 64 taps
FIR 8 bits / 96 taps
FIR 16 bits / 96 taps
FIR 32 bits / 96 taps
FIR 64 bits / 96 taps
FIR 32 bits / 128 taps
FIR 64 bits / 128 taps

Figure 6.13: FIR filter – the PAU speedup compared to a software-based implementation.

of resources to perform the computation for the FIR filter arithmetic application.

127



0 20 40 60 80 100
PAU delay (ns)

0

100

200

300

400

500

Ar
ea

 in
cr
ea

se
 c
om

pa
re
d 
to
 a
 3
2k

B 
L1

 c
ac

he
 (%

)

FIR: area increase using PAU
FIR 8 bits / 64 taps
FIR 16 bits / 64 taps
FIR 8 bits / 96 taps

FIR 16 bits / 96 taps
FIR 32 bits / 96 taps
FIR 64 bits / 96 taps

FIR 32 bits / 128 taps
FIR 64 bits / 128 taps

Figure 6.14: FIR filter – the PAU area increase compared to a 32kB L1D cache.

Tiles Ring Tiles FC Total

configuration µ2 % µ2 % µ2 % (µ2)

64M-63A 2789.1 18.79 10943.5 73.73 1109.4 7.47 14842.0

32M-33A 1936.7 11.52 5507.7 32.76 9365.7 55.71 16810.1

16M-18A 1239.3 6.46 2789.8 14.54 15159 79 19188.1

8M-11A 696.9 3.04 1442.8 6.28 20820.3 90.68 22960.0

4M-6A 309.6 1.21 733.4 2.86 24573.9 95.93 25616.9

Table 6.1: Area Breakdown of the PAU for the FIR filter of 64 Taps / 16 Bits (A: adders, M:

multipliers)

128



0 20 40 60 80 100
PAU delay (ns)

0

1

2

3

4

5

6

7

Po
we

r i
nc

re
as
e 
(%

)
FIR: power increase using PAU

FIR 8 bits / 64 taps
FIR 16 bits / 64 taps
FIR 8 bits / 96 taps
FIR 16 bits / 96 taps
FIR 32 bits / 96 taps
FIR 64 bits / 96 taps
FIR 32 bits / 128 taps
FIR 64 bits / 128 taps

Figure 6.15: FIR filter –

the PAU power increase compared to Intel i7-5600U average power.

Tiles Ring Tiles FC Total

configuration µ2 % µ2 % µ2 % (µ2)

96M-95A 4958.9 3.47 132734.2 92.82 5305.5 3.71 142998.7

48M-50A 2789.1 1.60 66573.7 38.17 105036.0 60.23 174398.7

24M-28A 1239.3 0.64 33534.7 17.45 157424.7 81.91 192198.7

12M-13A 696.9 0.32 16684.7 7.78 197116.4 91.90 214498.1

6M-8A 696.9 0.30 8466.3 3.60 226034.8 96.10 235198.1

Table 6.2: Area Breakdown of the PAU for the FIR filter of 96 Taps / 64 Bits (A: adders, M:

multipliers)

129



Tiles Ring Tiles FC Total

configuration µ2 % µ2 % µ2 % (µ2)

128M-127A 6477.3 3.42 177006.5 93.56 5714.7 3.02 189198.5

64M-66A 2789.1 1.25 88709.8 39.7 131933.3 59.05 223432.2

32M-34A 1936.7 0.78 44437.5 17.84 202747.2 81.38 249121.4

16M-17A 1239.3 0.44 22218.8 7.83 260339.7 91.73 283797.8

8M-11A 696.9 0.21 11315.9 3.42 319228.7 96.37 331241.5

Table 6.3: Area Breakdown of the PAU for the FIR filter of 128 Taps / 64 Bits (A: adders, M:

multipliers)

130



6.4.3.2 The DCT in the PAU

The DCT has been implemented in a GPU to speedup its arithmetic operations [72, 90]. The

GPU achieves a maximum speedup of up to 21× compared to a software-based implementa-

tion [72], while the PAU demonstrates a speedup of up to 696× compared to a software-based

implementation, as we will present in this Section. As a result, we can use the PAU to speedup

the DCT arithmetic operations. We use the PAU to implement the DCT arithmetic application in

a 32×32 pixels input. We implement the 4-point and the 8-point DCT, and we vary the number

of parallel inputs in the DCT. We vary the tiles configuration of the PAU from 1M-2A-1S to 24M-

50A-14S. When we increase the number of tiles used in the PAU, the delay to produce a single

result in the PAU decreases. The speedup of DCT in the PAU is shown in Figure 6.16. We demon-

strate a significant speedup of the DCT in the PAU of up to 696.5× (tiles of 24M-50A-14S in the

8-point DCT of 4 parallel input), with an area increase of 50.1% (as shown in Figure 6.17) and

a power increase of 0.59% (as shown in Figure 6.18). The minimum speedup achieved is 36.1×

(tiles of 2M-4A-2S in the 4-point DCT of 1 parallel input), with an area increase of 66.2% and a

power increase of 2.86%. As shown in Figure 6.17, the area increase of the DCT in the PAU ranges

from 10.8% to 95.6%. The power increase of the DCT in the PAU ranges from 0.18% to 3.84%,

as shown in Figure 6.18. In Tables 6.4 and 6.5, we show the area breakdown of different parts in

Tiles Ring Tiles FC Total

configuration µ2 % µ2 % µ2 % (µ2)

24M-50A-14S 1936.7 6.37 9233.06 30.35 19252.3 63.28 30422.1

14M-26A-8S 1239.3 3.26 3744.34 9.86 32982.4 86.87 37966.0

7M-14A-6S 696.9 1.54 1908.15 4.22 42658.9 94.24 45264.0

4M-8A-4S 309.6 0.6 954.08 1.84 50478.3 97.56 51742.0

2M-4A-2S 309.6 0.53 477.04 0.82 57269.4 98.65 58056.0

Table 6.4: Area Breakdown of the PAU for the 8-point DCT with 4 parallel inputs (A: adders, M:

multipliers, S: subtractors)

the PAU for the largest area size of the 4-point and 8-point DCT.

131



0 500 1000 1500 2000 2500
PAU delay (ns)

100

200

300

400

500

600

700

Sp
ee

du
p 

(x
)

DCT: speedup using PAU
DCT8 - 4 parallel inputs
DCT8 - 2 parallel inputs
DCT8 - one input
DCT4 - 4 parallel inputs
DCT4 - 2 parallel inputs
DCT4 - one input

Figure 6.16: DCT – the PAU speedup compared to a software-based implementation.

Tiles Ring Tiles FC Total

configuration µ2 % µ2 % µ2 % (µ2)

6M-12A-6S 696.9 7.08 2388.9 24.26 6762.2 68.67 9848.0

4M-6A-4S 696.9 6.2 1520.6 13.54 9016.5 80.26 11234.0

2M-3A-2S 309.6 2.29 760.3 5.61 12472.1 92.1 13542.0

1M-2A-1S 309.6 2 398.1 2.58 14753.3 95.42 15461.0

Table 6.5: Area Breakdown of the PAU for the 4-point DCT with 4 parallel inputs (A: adders, M:

multipliers, S: subtractors)

132



0 500 1000 1500 2000 2500
PAU delay (ns)

20

40

60

80

Ar
ea
 in
cr
ea
se
 c
om

pa
re
d 
to
 a
 3
2k
B 
L1
 c
ac
he
 (%

)

DCT: area increase using PAU
DCT8 - 4 parallel inputs
DCT8 - 2 parallel inputs
DCT8 - one input
DCT4 - 4 parallel inputs
DCT4 - 2 parallel inputs
DCT4 - one input

Figure 6.17: DCT – the PAU area increase compared to a 32kB L1D cache.

133



0 500 1000 1500 2000 2500
PAU delay (ns)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Po
we

r i
nc

re
as

e 
(%

)

DCT: power increase using PAU
DCT8 - 4 parallel inputs
DCT8 - 2 parallel inputs
DCT8 - one input
DCT4 - 4 parallel inputs
DCT4 - 2 parallel inputs
DCT4 - one input

Figure 6.18: DCT – the PAU power increase compared to Intel i7-5600U average power.

134



6.4.3.3 The Viterbi Decoder in the PAU

The Viterbi decoder has been implemented in a GPU to speedup its arithmetic operations [91,

92]. The GPU achieves a maximum speedup of up to 145× compared to a software-based imple-

mentation [91], while the PAU demonstrates a speedup of up to 832.3× compared to a software-

based implementation, as we will present in this Section. As a result, we can use the PAU to

speedup the Viterbi decoder arithmetic operations. We use the PAU to implement the Viterbi de-

coder arithmetic application to decode a 1152 bytes message. We vary the number of input/output

rate (r) in the Viterbi decoder from 1

2
to 9

10
, and the constrained length (l) from 4 to 6. We vary

the tiles configuration of the PAU from 1M-2A-3S-1C to 38M-55A-83S-29C. When we increase

the number of tiles used in the PAU, the delay to produce a single result in the PAU decreases.

The speedup of the Viterbi decoder in the PAU is shown in Figure 6.19. We observe a significant

speedup of the Viterbi decoder in the PAU of up to 832.3× (tiles of 28M-45A-71S-24C in the

Viterbi decoder of r = 7

8
and l = 6), with an area increase of 54.8% (as shown in Figure 6.20)

and a power increase of 0.99% (as shown in Figure 6.21). The minimum speedup achieved is 3.3×

(tiles of 1M-2A-3S-1C in the Viterbi decoder of r = 1

2
and l = 4), with an area increase of 91%

and a power increase of 2.25%. As shown in Figure 6.20, the area increase of the Viterbi decoder

in the PAU ranges from 47.4% to 104.1%. The power increase of the Viterbi decoder in the PAU

ranges from 0.69% to 3.21%, as shown in Figure 6.21. In Tables 6.6, 6.7, 6.8 and 6.9, we show

Tiles Ring Tiles FC Total

configuration µ2 % µ2 % µ2 % (µ2)

28M-45A-71S-24C 3796.5 11.51 4267.5 12.93 24933.4 75.56 32997.4

14M-24A-36S-12C 1239.3 3.22 1293.4 3.36 35945.5 93.42 38478.2

8M-12A-18S-6C 696.9 1.52 666.0 1.45 44508.5 97.03 45871.4

4M-6A-10S-3C 696.9 1.39 333.0 0.66 49126.3 97.95 50156.2

2M-3A-5S-2C 309.6 0.52 166.5 0.28 58995.5 99.20 59471.6

Table 6.6: Area Breakdown of the PAU for the Viterbi decoder of r = 1

2
and l = 6 (A: adders, M:

multipliers, S: subtractors, C: comparators)

135



500 1000 1500 2000 2500 3000 3500 4000
PAU delay (ns)

0

200

400

600

800

Sp
ee

du
p 

(x
)

VITERBI: speedup using PAU
VIT r=1/2, l=4
VIT r=1/2, l=6
VIT r=1/3, l=4
VIT r=1/3, l=6
VIT r=7/8, l=4
VIT r=7/8, l=6
VIT r=9/10, l=4
VIT r=9/10, l=6

Figure 6.19: Viterbi decoder – the PAU speedup compared to a software-based implementation.

the area breakdown of different parts in the PAU for the largest area size of the r = 1

2
, r = 1

3
, r = 7

8

and r = 9

10
in the Viterbi decoder.

136



500 1000 1500 2000 2500 3000 3500 4000
PAU delay (ns)

50

60

70

80

90

100

Ar
ea

 in
cr
ea

se
 c
om

pa
re
d 
to
 a
 3
2k

B 
L1

 c
ac

he
 (%

)

VITERBI: area increase using PAU
VIT r=1/2, l=4
VIT r=1/2, l=6
VIT r=1/3, l=4
VIT r=1/3, l=6
VIT r=7/8, l=4
VIT r=7/8, l=6
VIT r=9/10, l=4
VIT r=9/10, l=6

Figure 6.20: Viterbi decoder – the PAU area increase compared to a 32kB L1D cache.

Tiles Ring Tiles FC Total

configuration µ2 % µ2 % µ2 % (µ2)

38M-55A-83S-29C 4958.9 14.45 5470.9 15.95 23879.1 69.6 34308.9

20M-28A-42S-16C 2789.1 6.54 2845.6 6.67 37022.4 86.79 42657.1

10M-14A-21S-8C 1239.3 2.55 1422.8 2.93 45898.9 94.52 48561.0

6M-8A-12S-4C 696.9 1.27 832.3 1.52 53364.8 97.21 54894.0

3M-4A-6S-2C 696.9 1.1 416.1 0.66 62100.9 98.24 63213.9

Table 6.7: Area Breakdown of the PAU for the Viterbi decoder of r = 1

3
and l = 6 (A: adders, M:

multipliers, S: subtractors, C: comparators)

137



500 1000 1500 2000 2500 3000 3500 4000
PAU delay (ns)

1.0

1.5

2.0

2.5

3.0

Po
we

r i
nc
re
as
e 
(%

)

VITERBI: power increase using PAU

VIT r=1/2, l=4
VIT r=1/2, l=6
VIT r=1/3, l=4
VIT r=1/3, l=6
VIT r=7/8, l=4
VIT r=7/8, l=6
VIT r=9/10, l=4
VIT r=9/10, l=6

Figure 6.21: Viterbi decoder – the PAU power increase compared to Intel i7-5600U average power.

Tiles Ring Tiles FC Total

configuration µ2 % µ2 % µ2 % (µ2)

28M-45A-71S-24C 3796.5 11.41 4267.5 12.82 25218.4 75.77 33282.4

14M-24A-36S-12C 1239.3 3.14 1293.4 3.28 36945.4 93.58 39478.1

8M-12A-18S-6C 696.9 1.46 666.0 1.39 46508.3 97.15 47871.2

4M-6A-10S-3C 696.9 1.31 333.0 0.63 52221.9 98.07 53251.8

2M-3A-5S-2C 309.6 0.50 166.5 0.27 60995.2 99.23 61471.3

Table 6.8: Area Breakdown of the PAU for the Viterbi decoder of r = 7

8
and l = 6 (A: adders, M:

multipliers, S: subtractors, C: comparators)

138



Tiles Ring Tiles FC Total

configuration µ2 % µ2 % µ2 % (µ2)

28M-45A-71S-24C 3796.5 11.28 4267.5 12.68 25584.1 76.03 33648.1

14M-24A-36S-12C 1239.3 3.06 1293.4 3.20 37945.4 93.74 40478.1

8M-12A-18S-6C 696.9 1.43 666.0 1.37 47208.3 97.19 48571.2

4M-6A-10S-3C 696.9 1.29 333.0 0.62 52807.0 98.09 53836.9

2M-3A-5S-2C 309.6 0.50 166.5 0.27 61995.2 99.24 62471.3

Table 6.9: Area Breakdown of the PAU for the Viterbi decoder of r = 9

10
and l = 6 (A: adders, M:

multipliers, S: subtractors, C: comparators)

139



6.5 Chapter Summary

In this chapter, we proposed a programmable arithmetic unit (PAU) for use in modern micro-

processors, as a new SFU. The PAU can be programmed for a specific arithmetic algorithm and

used for different arithmetic applications. The tiles (IP blocks) and the FPGA controller in the

PAU communicate via a high speed ring NoC data fabric. We designed three arithmetic applica-

tions (the FIR filter, the DCT and the Viterbi decoder) in the PAU, and compared their speedup

with a software-based implementation. Also, we compared their area with a 32kB L1D cache, and

their power with the Intel i7-5600U average power. The PAU achieves a significant speedup of up

to 832.3× with a minimal power increase and an acceptable area increase.

140



7. FUTURE WORK

The work presented in this thesis is the first work to discuss the use of a hardware hash unit

and a programmable arithmetic unit for use in modern microprocessors. In this chapter, we discuss

some ideas that can be implemented in the future to further improve the hardware hash unit and

the programmable arithmetic unit design approaches presented in this thesis.

7.1 Coherent Hash Tables

In Chapter 3, we have presented a hardware hash unit that has CAM-based bins in the hash

table. The hash table has been studied in a single core setting. Multi-core systems can have a

significant gains using hash tables (with CAM-based bins). Multiple hash tables can increase

the performance of hash applications and non-hash applications as well significantly, as shown in

Chapter 3 for a single core system. Therefore, we need to study coherent hash tables to be used in

multi-core microprocessors.

7.2 Flash-based CAM Cells in Hash Tables

In Chapter 4, we have presented our hardware hash unit at the circuit level, using the 9-T

CAM CMOS-based cell [20], to implement our hash table. An area efficient hash table can be

implemented using floating-gate (flash) transistors to construct flash-based CAM cells [93]. The

flash-based CAM design can have a lower area of up to 8× and a lower power of up to 1.64×

compared to the CMOS-based CAM design [93]. The delay of flash-based CAM design is 2.5×

more than the CMOS-based CAM design, but the link speed of the flash-based CAM design is

about 4× faster than the CMOS-based CAM design routers [93]. As a result, we can have a

more dense hash tables using flash-based CAM cells with a better link speed and a lower power

consumption compared to the CMOS-based CAM cells.

141



7.3 The HU and the PAU using Coherent Memory CPU-FPGA System

Recently, most leading companies in the technology industry [21, 94, 95] have been focusing

in the heterogeneous CPU-FPGA coherent memory systems. The CPU-FPGA memory coherent

systems can increase the performance of most of today’s applications such as cloud computing.

Also, they provide a better hardware flexibility and reduce the hardware implementation costs.

Therefore, we can implement our HU and PAU in the CPU-FPGA memory coherent systems, to

speedup hashing and arithmetic applications.

142



8. THESIS SUMMARY AND CONCLUSIONS

Today’s applications demand high performance computation for applications such as cloud

computing, web-based search engines, network applications, signal and medial processing and so-

cial media tasks. These software applications perform an extensive use of hashing and arithmetic

operations in their computation. In this thesis, we presented a hardware hash unit (HU) and a pro-

grammable arithmetic unit (PAU) for use in modern microprocessors as new Special Function Units

(SFUs). We proposed the HU at the microarchitecture level, the circuit level and an FPGA-based

coprocessor for virus checking applications. Also, we proposed the PAU at the microarchitecture

level and the circuit level.

For the HU at the microarchitecture level and the circuit level, we embedded the HU in the

modern microprocessor’s execution pipeline. Each bin in the hash table of the HU is stored in a

CAM structure. We design our HU to be shared by multiple hash applications, and still demonstrate

significant speedup. The HU reduces the L1D cache misses for the overall system. We have

implemented and verified the operation of the HU at the microarchitecture level and the circuit

level. We showed that the HU achieves a speedup of up to 15× over the software-based hash

implementation with a reduced cache miss rate. We demonstrated an average power improvement

of 5.48× for our HU design compared to a traditional CAM design. We varied the HT sizes

and reported their area, delay, and power. Our HU can be run at 1.39 GHz after guard-banding

for PVT variations. Also, we have implemented an FPGA-based coprocessor for virus checking

applications, based on the idea of our HU. We implement each bin of the hash table (HT) as a

CAM, using the BRAMs in the FPGA. We have verified the correctness of all hash operations

in the real-time system design. We achieved a speedup of up to 5.37× for the FPGA-based HU

implementation over the software-based hashing implementation, in the context of a virus checking

application. We can achieve a higher speedup using more advanced FPGA boards.

We embedded the PAU as a new SFU (at the microarchitecture and circuit levels) for use in

modern microprocessors. The PAU can be programmed for a variety of arithmetic applications. We

143



use a high speed ring NoC data fabric in the PAU to transfer data from the control logic and different

IP blocks. The PAU can have multiple IP blocks of the same type. The control logic in the PAU

is constructed using a LUT design like a traditional FPGA, and can be reconfigured for different

arithmetic applications. We have applied three arithmetic application examples in the PAU at 16nm

technology node, and compared their performance with software-based implementations. The PAU

achieved speedups ranges from 3.3× to 832.3× compared to a software-based implementation.

The PAU demonstrated minimal power increase ranging from 0.18% to 7.56% compared to the

Intel i7-5600U processor. The PAU has an area increase ranging from 10.7% to 545.3% compared

to a 32kB L1D cache. In a Viterbi decoder, the PAU design with r = 7

8
and l = 6, achieved a

speedup of 832.3×, an area increase of 54.8% and a power increase of 0.99%.

Today’s applications require new SFUs in modern microprocessors to meet the high demand in

their performance computations. Using our HU and PAU designs in modern microprocessors can

increase the performance significantly, as we demonstrated in this thesis, with a minimal power

increase and an acceptable area increase in the die area.

144



REFERENCES

[1] Our World in Data, “https://ourworldindata.org/technological-progress.”

[2] N. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems Perspective. USA:

Addison-Wesley Publishing Company, 4th ed., 2010.

[3] A. Fairouz, M. Abusultan and S. P. Khatri, “A Novel Hardware Hash Unit Design for Modern

Microprocessors,” in 2016 IEEE 34th International Conference on Computer Design (ICCD),

pp. 412–415, Oct 2016.

[4] A. Fairouz, M. Abusultan and S. P. Khatri, “Circuit Level Design of a Hardware Hash Unit

for Use in Modern Microprocessors,” in Proceedings of the on Great Lakes Symposium on

VLSI (GLSVLSI) 2017, pp. 101–106, ACM, May 2017.

[5] M. V. Ramakrishna, E. Fu, and E. Bahcekapili, “Efficient Hardware Hashing Functions for

High Performance Computers,” IEEE Transactions on Computers, vol. 46, pp. 1378–1381,

Dec 1997.

[6] NCSU EDA, “http://www.eda.ncsu.edu/wiki/FreePDK45:Contents.”

[7] A. Fairouz and S. P. Khatri, “An FPGA-based Coprocessor for Hash Unit Acceleration,” in

2017 IEEE International Conference on Computer Design (ICCD), pp. 301–304, Nov 2017.

[8] A. Mandal, S. P. Khatri, and R. N. Mahapatra, “A Fast, Source-Synchronous Ring-based

Network-on-Chip Design,” in 2012 Design, Automation Test in Europe Conference Exhibition

(DATE), pp. 1489–1494, March 2012.

[9] V. H. Cordero and S. P. Khatri, “Clock Distribution Scheme using Coplanar Transmission

Lines,” in 2008 Design, Automation and Test in Europe, pp. 985–990, March 2008.

[10] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark Suite: Characteriza-

tion and Architectural Implications,” in Proceedings of the 17th International Conference on

Parallel Architectures and Compilation Techniques, October 2008.

145



[11] G. E. Moore, “Cramming more Components onto Integrated Circuits,” IEEE Solid-State Cir-

cuits Society Newsletter, vol. 11, pp. 33–35, Sep. 2006.

[12] A. Fairouz, M. Abusultan, A. Elshennawy and S. P. Khatri, “Comparing Leakage Reduction

Techniques for an Asynchronous Network-on-Chip Router,” Journal of Low Power Electron-

ics (JOLPE), vol. 14, pp. 414–427, Sept 2018.

[13] G. M. Amdahl, “Validity of the Single Processor Approach to Achieving Large Scale Com-

puting Capabilities,” in Proceedings of the April 18-20, 1967, Spring Joint Computer Con-

ference, AFIPS ’67 (Spring), (New York, NY, USA), pp. 483–485, ACM, 1967.

[14] D. A. Patterson and J. L. Hennessy, Computer Organization and Design: The Hard-

ware/Software Interface. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,

5th ed., 2013.

[15] S. D. Brown, R. J. Francis, J. Rose, and Z. G. Vranesic, Field-programmable Gate Arrays.

Norwell, MA, USA: Kluwer Academic Publishers, 1992.

[16] S. M. Trimberger, Field-Programmable Gate Array Technology. Norwell, MA, USA: Kluwer

Academic Publishers, 1994.

[17] A. Sangiovanni-Vincentelli, “The Tides of EDA,” IEEE Des. Test, vol. 20, pp. 59–75, Nov.

2003.

[18] I. Kuon and J. Rose, “Measuring the Gap Between FPGAs and ASICs,” Trans. Comp.-Aided

Des. Integ. Cir. Sys., vol. 26, pp. 203–215, Feb. 2007.

[19] J. Carter and M. N. Wegman, “Universal classes of hash functions,” Journal of Computer and

System Sciences, vol. 18, no. 2, pp. 143 – 154, 1979.

[20] K. Pagiamtzis and A. Sheikholeslami, “Content-Addressable Memory (CAM) Circuits and

Architectures: A Tutorial and Survey,” IEEE Journal of Solid-State Circuits, vol. 41, pp. 712–

727, March 2006.

[21] Intel Corporation, “http://www.intel.com.”

146



[22] GEM5 Simulator: A Modular Platform for Computer Architecture Research,

“http://www.gem5.org.”

[23] F. Yamaguchi and H. Nishi, “Hardware-based Hash Functions for Network Applications,” in

2013 19th IEEE International Conference on Networks (ICON), pp. 1–6, Dec 2013.

[24] N. Hua, E. Norige, S. Kumar, and B. Lynch, “Non-crypto Hardware Hash Functions for High

Performance Networking ASICs,” in Architectures for Networking and Communications Sys-

tems (ANCS), 2011 Seventh ACM/IEEE Symposium on, pp. 156–166, Oct 2011.

[25] B. Baldwin, A. Byrne, L. Lu, M. Hamilton, N. Hanley, M. O’Neill, and W. P. Marnane, “A

Hardware Wrapper for the SHA-3 Hash Algorithms,” in Signals and Systems Conference

(ISSC 2010), IET Irish, pp. 1–6, June 2010.

[26] A. Satoh, “ASIC Hardware Implementations for 512-bit Hash Function Whirlpool,” in 2008

IEEE International Symposium on Circuits and Systems, pp. 2917–2920, May 2008.

[27] R. Dobai and J. Korenek, “Evolution of Non-Cryptographic Hash Function Pairs for FPGA-

based Network Applications,” in Computational Intelligence, 2015 IEEE Symposium Series

on, pp. 1214–1219, Dec 2015.

[28] Y. k. Lai and G. T. Byrd, “Stream-based Implementation of Hash Functions for Multi-Gigabit

Message Authentication Codes,” in 2006 Seventh International Conference on Parallel and

Distributed Computing, Applications and Technologies (PDCAT’06), pp. 150–155, Dec 2006.

[29] L. Ioannou, H. E. Michail, and A. G. Voyiatzis, “High Performance Pipelined FPGA Im-

plementation of the SHA-3 Hash Algorithm,” in 2015 4th Mediterranean Conference on

Embedded Computing (MECO), pp. 68–71, June 2015.

[30] D. Pao, X. Wang, and Z. Lu, “Design of a Near-minimal Dynamic Perfect Hash Function on

Embedded Device,” in Advanced Communication Technology (ICACT), 2013 15th Interna-

tional Conference on, pp. 457–462, Jan 2013.

147



[31] D. Tong, S. Zhou, and V. K. Prasanna, “High-Throughput Online Hash Table on FPGA,” in

Parallel and Distributed Processing Symposium Workshop (IPDPSW), 2015 IEEE Interna-

tional, pp. 105–112, May 2015.

[32] M. Hanna, S. Demetriades, S. Cho, and R. Melhem, “Progressive Hashing for Packet Pro-

cessing Using Set Associative Memory,” in Proceedings of the 5th ACM/IEEE Symposium

on Architectures for Networking and Communications Systems, ANCS ’09, (New York, NY,

USA), pp. 153–162, ACM, 2009.

[33] Y. Li, “Non-collision Hash Scheme Using Bloom Filter and CAM,” in Web Mining and Web-

based Application, 2009. WMWA ’09. Second Pacific-Asia Conference on, pp. 55–58, June

2009.

[34] T. Kohonen, “Content-Addressable Memories,” 2nd ed. New York: Springer-Verlag, 1987.

[35] L. Chisvin and R. J. Duckworth, “Content-addressable and Associative Memory: Alternatives

to the Ubiquitous RAM,” IEEE Computer, vol. 22, pp. 51–64, July 1989.

[36] M. V. Ramakrishna and G. A. Portice, “Perfect hashing functions for hardware applications,”

in Data Engineering, 1991. Proceedings. Seventh International Conference on, pp. 464–470,

Apr 1991.

[37] S. C. Liu, F. A. Wu, and J. B. Kuo, “A Novel Low-voltage Content-addressable-memory

(CAM) Cell with a Fast Tag-compare Capability using Partially Depleted (PD) SOI CMOS

Dynamic-threshold (DTMOS) Techniques,” IEEE Journal of Solid-State Circuits, vol. 36,

pp. 712–716, Apr 2001.

[38] E. Shen and J. B. Kuo, “0.8 V CMOS Content-addressable-memory (CAM) Cell Circuit with

a Fast Tag-compare Capability using Bulk PMOS Dynamic-threshold (BP-DTMOS) Tech-

nique Based on Standard CMOS Technology for Low-voltage VLSI Systems,” in Circuits

and Systems, 2002. ISCAS 2002. IEEE International Symposium on, vol. 4, pp. IV–583–IV–

586 vol.4, 2002.

148



[39] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Benchmarking Cloud

Serving Systems with YCSB,” in Proceedings of the 1st ACM Symposium on Cloud Comput-

ing, SoCC ’10, (New York, NY, USA), pp. 143–154, ACM, 2010.

[40] D. Interactive, “Memcached.” https://memcached.org.

[41] The PARSEC Benchmark Suite, “http://parsec.cs.princeton.edu.”

[42] P. C. K. Lin, A. Mandal, and S. P. Khatri, “Boolean Satisfiability using Noise Based Logic,”

in Design Automation Conference (DAC), 2012 49th ACM/EDAC/IEEE, pp. 1256–1257, June

2012.

[43] Advanced Micro Devices, Inc. (AMD), “http://www.amd.com/en-gb/products/server.”

[44] International Business Machines Corp. (IBM), “http://www-

03.ibm.com/systems/power/hardware/.”

[45] Synopsys HSPICE, “https://www.synopsys.com/verification/ams-verification/circuit-

simulation/hspice.html.”

[46] Predictive Technology Model, “http://ptm.asu.edu.”

[47] Synopsys Raphael, “https://www.synopsys.com/silicon/tcad/interconnect-

simulation/raphael.html.”

[48] Y. Du, G. He, and D. Yu, “Efficient Hashing Technique Based on Bloom Filter for High-Speed

Network,” in 2016 8th International Conference on Intelligent Human-Machine Systems and

Cybernetics (IHMSC), vol. 01, pp. 58–63, Aug 2016.

[49] F. Kahri, H. Mestiri, B. Bouallegue, and M. Machhout, “Efficient FPGA Hardware Imple-

mentation of Secure Hash Function SHA-256/Blake-256,” in 2015 IEEE 12th International

Multi-Conference on Systems, Signals Devices (SSD15), pp. 1–5, March 2015.

[50] Y. Vizilter, V. Gorbatsevich, A. Vorotnikov, and N. Kostromov, “Real-Time Face Identifica-

tion via CNN and Boosted Hashing Forest,” in 2016 IEEE Conference on Computer Vision

and Pattern Recognition Workshops (CVPRW), pp. 146–154, June 2016.

149



[51] J. Lin and O. Morére and J. Petta and V. Chandrasekhar and A. Veillard, “Tiny Descriptors for

Image Retrieval with Unsupervised Triplet Hashing,” in 2016 Data Compression Conference

(DCC), pp. 397–406, March 2016.

[52] B. Salami, O. Arcas-Abella, and N. Sonmez, “HATCH: Hash Table Caching in Hardware for

Efficient Relational Join on FPGA,” in 2015 IEEE 23rd Annual International Symposium on

Field-Programmable Custom Computing Machines, pp. 163–163, May 2015.

[53] D. K. Shedge and V. Agey, “Different Types of SRAM Chips for Power Reduction: A Sur-

vey,” in 2016 3rd International Conference on Computing for Sustainable Global Develop-

ment (INDIACom), pp. 974–979, March 2016.

[54] Perl, “http://www.perl.org.”

[55] M. I. Rahman, T. Bashar, and S. Biswas, “Performance evaluation and read stability enhance-

ment of SRAM bit-cell in 16nm CMOS,” in 2016 5th International Conference on Informat-

ics, Electronics and Vision (ICIEV), pp. 713–718, May 2016.

[56] Cadence Design Systems, Inc, “Virtuoso Layout Suite.” http://www.cadence.com.

[57] “Synopsys Verilog to Spice (V2S).” www.synopsys.com.

[58] “Synopsys VCS.” https://www.synopsys.com/verification/simulation/vcs.html.

[59] Large-Scale Reconfigurable Computing in a Microsoft Datacenter,

“https://www.microsoft.com/en-us/research/wp-content/uploads/2014/06/HC26.12.520-

Recon-Fabric-Pulnam-Microsoft-Catapult.pdf.”

[60] Q. Yanghua, N. Kapre, H. Ng, and K. Teo, “Improving Classification Accuracy of a Machine

Learning Approach for FPGA Timing Closure,” in 2016 IEEE 24th Annual International

Symposium on Field-Programmable Custom Computing Machines (FCCM), pp. 80–83, May

2016.

150



[61] M. Hadi, R. T. Widodo, and A. H. Alasiry, “Implementation of FPGA Technology as Human-

Machine Interface to Z80 Microprocessor Learning Module,” in 2016 International Electron-

ics Symposium (IES), pp. 180–184, Sept 2016.

[62] Xilinx ISE Design Suite, “http://www.xilinx.com/products/design-tools/ise-design-

suite.html.”

[63] VirusShare, “http://www.virusshare.com.”

[64] C. Hudel and M. Shehab, “Optimizing Search for Malware by Hashing Smaller Amounts of

Data,” in World Congress on Internet Security (WorldCIS-2013), pp. 112–117, Dec 2013.

[65] N. F. Huang, C. N. Kao, and R. T. Liu, “A Novel Software-based MD5 Checksum Lookup

Scheme for Anti-virus Systems,” in 2011 7th International Wireless Communications and

Mobile Computing Conference, pp. 207–212, July 2011.

[66] L. Wu and Y. Zhang, “Automatic Detection Model of Malware Signature for Anti-virus Cloud

Computing,” in 2011 10th IEEE/ACIS International Conference on Computer and Informa-

tion Science, pp. 73–75, May 2011.

[67] Xilinx NetFPGA-1G-CML Kintex-7 FPGA Development Board,

“http://www.xilinx.com/products/boards-and-kits/1-4le3gu.html.”

[68] Xilinx CORE Generator System, “http://www.xilinx.com/products/design-

tools/coregen.html.”

[69] Linux Kernel Organization, Inc., “http://www.kernel.org.”

[70] Xillybus Ltd., “http://www.xillybus.com.”

[71] Canonical Ltd., “http://www.ubuntu.com.”

[72] M. K. A. Shatnawi and H. A. Shatnawi, “A Performance Model of Fast 2D-DCT Parallel

JPEG Encoding using CUDA GPU and SMP-Architecture,” in 2014 IEEE High Performance

Extreme Computing Conference (HPEC), pp. 1–6, Sep. 2014.

151



[73] A. B. Watson, “Image Compression Using the Discrete Cosine Transform,” Mathematica

Journal, vol. 4, pp. 81–88, 1994.

[74] Synopsys Design Compiler (DC): RTL Synthesis, “https://www.synopsys.com/support/training/rtl-

synthesis/design-compiler-rtl-synthesis.html.”

[75] Xilinx Vivado Design Suite, “https://www.xilinx.com/products/design-tools/vivado.html.”

[76] M. Wijtvliet, L. Waeijen, and H. Corporaal, “Coarse Grained Reconfigurable Architectures

in the Past 25 Years: Overview and Classification,” in 2016 International Conference on

Embedded Computer Systems: Architectures, Modeling and Simulation (SAMOS), pp. 235–

244, July 2016.

[77] R. A. Bittner, P. M. Athanas, and M. D. Musgrove, “Colt: An Experiment in Wormhole

Run-Time Reconfiguration,” Proceedings of SPIE - The International Society for Optical

Engineering, vol. 2914, 08 1998.

[78] A. Alsolaim, J. Becker, M. Glesner, and J. Starzyk, “Architecture and Application of a Dy-

namically Reconfigurable Hardware Array for Future Mobile Communication Systems,” in

Proceedings 2000 IEEE Symposium on Field-Programmable Custom Computing Machines

(Cat. No.PR00871), pp. 205–214, April 2000.

[79] H. Park, Y. Park, and S. Mahlke, “Polymorphic Pipeline Array: A Flexible Multicore Ac-

celerator with Virtualized Execution for Mobile Multimedia Applications,” in 2009 42nd

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pp. 370–380,

Dec 2009.

[80] S. Fiske and W. J. Dally, “The Reconfigurable Arithmetic Processor,” in [1988] The 15th An-

nual International Symposium on Computer Architecture. Conference Proceedings, pp. 30–

36, May 1988.

[81] K. Sakiyama, N. Mentens, L. Batina, B. Preneel, and I. Verbauwhede, “Reconfigurable Mod-

ular Arithmetic Logic Unit Supporting High-Performance RSA and ECC Over GF( p ),”

International Journal of Electronics, vol. 94, no. 5, pp. 501–514, 2007.

152



[82] W. Wang, Y. Ding, S. Cao, and X. Zhao, “Design of a Dynamically Reconfigurable Arith-

metic Unit for Matrix Algorithms,” in 2015 IEEE 11th International Conference on ASIC

(ASICON), pp. 1–4, Nov 2015.

[83] P. M. Grant, “Digital Signal Processing. 1. Digital Filters and the DFT,” Electronics Commu-

nication Engineering Journal, vol. 5, pp. 13–21, Feb 1993.

[84] G. D. Forney, “The Viterbi Algorithm,” Proceedings of the IEEE, vol. 61, pp. 268–278,

March 1973.

[85] Cadence Design Systems, Inc, “Stratus High-Level Synthesis (HLS).”

http://www.cadence.com.

[86] Xilinx Kintex UltraSCALE+, “https://www.xilinx.com/products/silicon-devices/fpga/kintex-

ultrascale-plus.html.”

[87] Python, “https://www.python.org.”

[88] P. S. Battiato, “High Performance Median Filtering Algorithm Based on NVIDIA GPU Com-

puting,” International Symposium for Young Scientists in Technology, pp. 1–10, 2016.

[89] A. Smirnov and T. cker Chiueh, “An Implementation of a FIR Filter on a GPU,” Experimental

Computer Systems Lab, Stony Brook University, Tech. Rep.

[90] M. Masoumi and H. Ahmadifar, “Performance of HEVC discrete cosine and sine transforms

on GPU using CUDA,” in 2017 IEEE 4th International Conference on Knowledge-Based

Engineering and Innovation (KBEI), pp. 0857–0861, Dec 2017.

[91] R. Li, Y. Dou, and D. Zou, “Efficient Parallel Implementation of Three-Point Viterbi De-

coding Algorithm on CPU, GPU, and FPGA,” Concurrency and Computation: Practice and

Experience, vol. 26, no. 3, pp. 821–840, 2014.

[92] D. Zhang, R. Zhao, L. Han, T. Wang, and J. Qu, “An Implementation of Viterbi Algorithm

on GPU,” in Proceedings of the 2009 First IEEE International Conference on Information

153



Science and Engineering, ICISE ’09, (Washington, DC, USA), pp. 121–124, IEEE Computer

Society, 2009.

[93] V. V. Fedorov, M. Abusultan, and S. P. Khatri, “FTCAM: An Area-Efficient Flash-Based

Ternary CAM Design,” IEEE Transactions on Computers, vol. 65, pp. 2652–2658, Aug 2016.

[94] IBM: Coherent Accelerator Processor Interface (CAPI),

“https://developer.ibm.com/linuxonpower/capi/.”

[95] Microsoft Azure, “https://azure.microsoft.com/.”

154


	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Design of Modern Microprocessors
	Modern Microprocessor Performance Metrics
	Delay
	Power Dissipation
	Area

	Modern Microprocessor Design Challenges and Solutions
	Scalability of CMOS
	Hardware Acceleration

	Special Function Units (SFUs) in Modern Microprocessors
	Field Programmable Gate Array (FPGA)
	Hashing in Computer Systems
	The Hash Function (HF)
	The Hash Table (HT)


	Thesis Outline
	Hardware Hash Unit (HU)
	Design of a Hardware HU at Microarchitecture Level
	Design of a Hardware HU at Circuit Level
	An FPGA-based Coprocessor for Virus Checking Applications

	Programmable Arithmetic Unit (PAU)

	Microarchitecture Level Design of Hardware Hash Unit for use in Modern Microprocessors
	Background
	Previous Work
	The HU Microarchitecture Design
	Overview: Hash Unit (HU)
	Hash Function (HF)
	Hash Table (HT) Configuration
	HU Functionality
	Memory Latency
	Hash Lookups Distribution
	Replacement Operation in the HU
	Benchmarks Used

	Experimental Results
	Simulation Environment
	Simulation Parameters and Groups
	Results and Analysis
	Uniform Distribution (UNIF)
	Normal Distribution (NORM)
	HU Replacement
	YCSB benchmark (YCSB)


	Chapter Summary

	Circuit Level Design of a Hardware Hash Unit for use in Modern Microprocessors
	Background
	Previous Work
	The HU Circuit Design
	Hardware Hash Unit (HU)
	Hash Function (HF) and Bin Selector
	Control Signals Unit (CSU)
	Hash Table (HT)

	Experimental Results
	Simulation Environment
	Design Verification
	Results and Analysis

	Chapter Summary

	An FPGA-based Coprocessor for Virus Checking Applications
	Background
	Previous Work
	CPU-FPGA Hash Unit
	Hash Unit (HU) on an FPGA
	Hash Function (HF) of class H3
	Hash Table (HT)
	Hash Unit Pipeline Structure

	Experimental Results
	Simulation Environment
	Benchmark Setup
	Results and Analysis

	Chapter Summary

	PAU: A Programmable Arithmetic Unit for use in Modern Microprocessors
	Background
	Previous Work
	The PAU Design Approach
	Overview: PAU
	Tiles
	The FPGA Controller (FC)
	The Ring NoC Data Fabric (Ring)
	The Ring Clock (Rclk)
	The Insertion/Extraction Station (IES)
	The Junction Station (JS)
	The Repeater (RPT) Station

	The PAU Design Flexibility
	Arithmetic Applications used in the PAU

	Experimental Results
	The PAU Design Flow
	Simulation Environment
	Results and Analysis
	The FIR filter in the PAU
	The DCT in the PAU
	The Viterbi Decoder in the PAU


	Chapter Summary

	Future Work
	Coherent Hash Tables
	Flash-based CAM Cells in Hash Tables
	The HU and the PAU using Coherent Memory CPU-FPGA System

	Thesis Summary and Conclusions
	REFERENCES

