
EFFICIENT DECODER FOR OPTICAL TRANSPORT NETWORKS ACHIEVING NEAR

CAPACITY PERFORMANCE

A Thesis

by

SUSHRUT KAUL

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Krishna Narayanan
Committee Members, Gwan Choi

Scott Miller
Duncan Walker

Head of Department, Miroslav M. Begovic

August 2019

Major Subject: Electrical and Computer Engineering

Copyright 2019 Sushrut Kaul

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M University

https://core.ac.uk/display/266561615?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

Today’s optical transport networks (OTNs) support a plethora of services such as video stream-

ing, cloud computing, social networking and many more. To make such a wide assortment of

services possible, a tremendous amount of data needs to be carried over the internet backbone sup-

ported by these optical transport networks. In order to cope with this increase in traffic, data rate

on OTNs has increased significantly. Product codes (PC) are a class of codes that provide good

coding gain at reasonable decoding complexity and, hence, have been a popular choice for OTNs

in recent times.

The key goal of this thesis is to implement a decoder for a Product Code (PC) on a Virtex-

7 Field Programmable Gate Array(FPGA). The product code of choice for this project is based

on a (1023,993) BCH code as a component code. The conventional decoder for BCH codes has

a computationally expensive step for finding the roots of error locator polynomial. The BCH

decoder implemented as a part of this project is optimized to speed up the decoding process while

at the same time also simplifying the hardware complexity of the design. The implementation

is parallelized and pipelined to achieve high throughputs. This provides a hardware platform to

evaluate the performance of product codes at low bit error rates that is infeasible using software

simulations.

ii

DEDICATION

To my mother for her ongoing love and support and to my father who could not see this thesis

completed.

iii

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Krishna Narayanan, for guiding and supporting me, not

only for this project but during the entire course of my graduate studies. I am grateful to Dr. Gwan

Choi for extending a helping hand and sharing his expertise with me. I would also like to thank Dr.

Duncan Walker and Dr. Scott Miller for serving on my thesis committee.

I would also like to express my gratitude towards all the current and past members of my

research group for their support and valuable inputs.

I would like to extend a special thanks to my friends and family for their constant support and

motivation. I would also like to thank Dr. Parimal Saraf for his unwavering belief in me during the

course of my graduate studies.

iv

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis committee consisting of Dr. Krishna Narayanan, Dr.

Scott Miller and Dr. Gwan Choi of the Department of Electrical and Computer Engineering and

Dr. Duncan Walker of the Department of Computer Science and Engineering.

The idea for the implementation of product code decoder with an optimized BCH code decoder

as the component code decoder was given by Dr. Krishna Narayanan. All other work conducted

for the thesis was completed by the student independently.

Funding Sources

This project was supported by National Science Foundation(NSF) Grant 1611285 titled "Ad-

vanced Coding Techniques for Next Generation Optical Communications"

v

NOMENCLATURE

OTN Optical Transport Networks

LDPC Low Density Parity Check

PC Product Codes

FPGA Field Programmable Gate Array

IP Intellectual Property

BCH Bose Chaudhari Hocquenghem

XST Xilinx Synthesis Tool

HDL Hardware Description Language

DUT Design Under Test

RTL Register Transfer Level

CLB Configurable Logic Block

MT Mersenne Twister

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGMENTS . iv

CONTRIBUTORS AND FUNDING SOURCES . v

NOMENCLATURE . vi

TABLE OF CONTENTS . vii

LIST OF FIGURES . ix

LIST OF TABLES. xi

1. INTRODUCTION, MOTIVATION AND OBJECTIVE . 1

1.1 Thesis contributions . 2

2. BACKGROUND AND RELATED WORK . 4

2.1 Introduction to product codes . 4
2.1.1 Product code construction. 5
2.1.2 Minimum distance and code rate for product codes . 5

2.2 Iterative decoder for product codes . 7
2.2.1 Product code decoding example . 7

2.3 Stopping set conditions . 9
2.4 Introduction to BCH codes . 11

2.4.1 Algebraic decoding of BCH codes . 11
2.4.2 Syndrome computation. 13
2.4.3 Error locator polynomial . 14
2.4.4 Solving error locator polynomials of degree 2 and 3 . 14

2.4.4.1 Error locator polynomials of degree 2 . 14
2.4.4.2 Error locator polynomials of degree 3 . 16

3. IMPLEMENTATION DETAILS . 17

3.1 Field Programmable Gate Array . 17
3.1.1 FPGA design flow . 18

vii

3.2 BCH implementation details. 19
3.2.1 Data generator block . 20
3.2.2 Syndrome computer block . 21

3.2.2.1 Example of syndrome computation and simulation diagram. 23
3.2.3 Error locator finder block . 24

3.2.3.1 Example of finding the coefficients of error locator polynomial 25
3.2.4 Error locator solver block . 28

3.2.4.1 Second degree solver . 28
3.2.4.2 Third degree solver . 28

3.2.5 Complete BCH decoder implementation . 29
3.2.6 BCH decoder performance comparisons . 32

3.3 Product code implementation details . 35
3.3.1 Product code 10000 feet view. 35
3.3.2 Product code detailed architecture . 35

4. SUMMARY AND CONCLUSIONS . 39

4.1 Challenges . 39
4.2 Future work. 39

REFERENCES . 41

viii

LIST OF FIGURES

FIGURE Page

2.1 The Product Code construction . 4

2.2 A product codeword with (7,4,3) BCH code as the component code. The red dots
represent the errors introduced due to noise.. 8

2.3 Product codeword after one round of row decoding. The red dots represent the
errors that could not be corrected. The blue dots shown in the figure represent the
errors that have been corrected by the decoder. 8

2.4 Product codeword after one round of column decoding. The blue dots represent
the errors that have been corrected by the decoder.. 9

2.5 Stopping set condition. The figure depicts a minimum stopping set for the product
code based on (7,4,3) BCH code. 10

2.6 BCH decoder module. 12

3.1 Generic FPGA architecture. 17

3.2 BCH decoder design flow. 19

3.3 BCH decoder implemented design. The figure depicts a high level design for the
BCH decoder implemented in Verilog. 20

3.4 Data Generator simulated design. This figure shows the simulation output for data
generator block. 21

3.5 Syndrome computation architecture. The received vector is divided into 33 streams
of 31 bits each. 22

3.6 Simulation of syndrome computation block . 24

3.7 Schematic for error locator finder. This figure shows elaborated design for the error
locator finder block in Vivado . 25

3.8 Format Conversion from polynomial format to exponential format in Matlab. 26

3.9 Λ2 computation in Matlab. 27

ix

3.10 Vivado simulation for error locator finder block. The simulation shows the coeffi-
cients of the error locator polynomial. 28

3.11 Vivado simulation for error locator solver block. 29

3.12 Block diagram of the complete BCH decoder.. 30

3.13 Utlization report of a BCH decoder.. 31

3.14 Power utilization of a BCH decoder. 32

3.15 Timing summary of a BCH decoder. 32

3.16 BCH decoder in Matlab. This decoder uses the in-built gftuple function. 33

3.17 BCH decoder in Matlab. This decoder does not use the in-built gftuple function. 33

3.18 Bit Error Rate(BER) vs cross over probability(p). 34

3.19 10000 ft view of product code decoder architecture. 35

3.20 Detailed product code decoder architecture. 36

3.21 Product code decoder state diagram. 37

3.22 Product code decoder utilization report. 38

x

LIST OF TABLES

TABLE Page

2.1 Ai for standard basis. Here, Ai is one root of equation x2 + x + αi = 0 where
i ∈ 0, 1, 2,, 9 . 15

xi

1. INTRODUCTION, MOTIVATION AND OBJECTIVE

Modern optical transport networks (OTNs) support a wide array of applications ranging from

video streaming and cloud computing to social networking applications like Whatsapp and Face-

book. The popularity of these applications has led to an unprecedented increase in the amount of

data being carried over the internet backbone. Internet protocol (IP) traffic has seen a five fold

increase from 2011. CISCO, a leading networking equipment company, predicts that global con-

sumer IP traffic will reach 233 exabytes/month by 2021. In order to cope with this increase in

traffic, the data rate on OTNs that constitute the internet backbone has increased commensurately.

With increase in the data rates, effects of optical impairments such as non-linearities, chromatic

dispersion, noise due to amplified spontaneous emission become more pronounced. To ensure

reliable data delivery at such high data rates is a challenging task and good forward error correction

schemes that deliver large coding gains with minimum redundancy are needed.

Over the past few decades, a number of coding schemes like turbo codes, Low Density Parity

Check (LDPC) codes and their spatially-coupled cousins have been shown to achieve near capacity

performance for several applications. However, these existing coding schemes are not very attrac-

tive for optical transport networks because of the differences in the inherent nature of OTNs from

other applications. A few such differences are noted below :

• The decoders for next generation OTNs must achieve throughput of the order of 100 Gbps -

10 Tbps.

• The target code rate is 0.942 and the bit error rate is 10−15 which is very small. This requires

that the coding scheme of choice should maintain large gains at very high rates and should

not exhibit floors above 10−15.

• At the mentioned rates, memory bandwidth is a big bottleneck in the implementation of the

existing capacity achieving coding schemes. For example, a high-rate message passing de-

coder needs considerable memory bandwidth to pass messages from one iteration to another.

1

• Soft decision decoding is not commonplace in OTNs as soft decision decoders do not work

well with hard decision channels. The trend is to use hard decision decoders at very high

rates with very few bits of soft decision at lower code rates.

As is evident from the above mentioned constraints, popular coding solutions such as LDPC,

polar codes, turbo codes are not attractive solutions to OTNs. It turns out that Product Codes (PC)

are well suited for Optical Transport Networks. Product codes are a class of codes that provide

good coding gain at reasonable decoding complexity and hence, have been a popular choice in re-

cent times. FPGA based implementation provides a hardware platform to evaluate the performance

of product codes at low bit error rates that is infeasible using software simulations. Inherent paral-

lelism of hardware designs allows us to instantiate several decoders in parallel as each row/column

can be thought off as an independent component codeword and can be decoded in parallel with

several other component codewords. The number of such instantiations possible is directly propor-

tional to the complexity of the individual component decoder. A part of this work is also dedicated

to implementing an efficient algorithm for Bose Chaudhuri Hocquenghem(BCH) codes decoding

which avoids the computationally complex Chein Search algorithm.

1.1 Thesis contributions

The main contributions of this work can be summarized as follows :

• Designing a hardware based architecture for an error correction coding scheme based on

product codes that can provide high throughput of the order of 10 Gbps.

• Implementing a highly pipelined and fast decoder for the underlying BCH code with AXI

complaint custom IPs.

• Implementing a decoder for a (1023, 993) turbo product-code on a Virtex-7 FPGA after

functionally verifying each of the custom IPs using a simulator.

• Instantiating multiple BCH decoders to improve the overall throughput of the design. It

is possible to instantiate 50-60 such decoder blocks for faster and parallel product code

2

decoding.

The implementation of the mentioned coding scheme on FPGA enables us to study the error

floors which are hard to study using software simulations. The hardware implementation provides

significant speed up over the software based implementations saving a lot of simulation time as

well.

3

2. BACKGROUND AND RELATED WORK

2.1 Introduction to product codes

Product codes were introduced by Elias(1954) [1]. Given two linear block codes, C1 and C2,

with dimensions (N1, K1) and (N2, K2) respectively, a product code is a :

• Collection of codewords where each codeword is a matrix.

• The rows of this matrix are codewords of the component code C1.

• The columns of this matrix are codewords of the component code C2.

Essentially, a product code can be thought of as a transformation from K1K2 information bits

to N1N2 coded bits. The product code construction is shown in 2.1.

Figure 2.1: The product code construction. Rows are codewords from (N1, K1) code C1 and
columns are codewords from (N2, K2) code C2.

4

2.1.1 Product code construction

Given two systematic linear block codes, C1 (N1, K1) and C2 (N2, K2), a product code,P , with

C1 and C2 as the component codes is a (N1N2, K1K2) code. A codeword of product code, P , can

be constructed in the following way :

• The information bits are arranged in form of a sub array with K2 rows and K1 columns.

• Each row is encoded using the codeC1 and each column is encoded using the codeC2. There

are (N1 −K1) parity checks on rows formed using code C1 and (N2 −K2) parity check on

columns form using code C2 as shown in figure 2.1.

• The bottom right rectangle contains parity on parity checks. It can be formed by encoding

the rows to get the parity checks on the rows using code C1 and then encoding these checks

on row parities using code C2. Another way to get these parity on parity checks is to encode

the columns first using code C2 and then encoding the checks on the column parities using

code C1. Either method will lead to the same set of (N1 −K1)(N2 −K2) checks.

2.1.2 Minimum distance and code rate for product codes

The minimum distance, dmin, of a block code, C is the minimum Hamming distance between

two distinct codewords of C.

dmin = min{dH(c1, c2) : c1, c2 ∈ C and c1 6= c2}

where dH is the Hamming distance. The minimum distance of a product code, d∗, can be derived

from the minimum distance of the component codewords. Given two linear block codes, C1 and

C2, with minimum distances d1 and d2 respectively, it can be shown that the minimum distance of

the product code with C1 and C2 as the component codes is given by,

d∗ = d1d2 (2.1)

5

The component codes, C1 and C2, selected for this work are both (1023,993) BCH codes having a

minimum distance,d , of 7. The minimum distance of the product code with (1023,993) BCH code

as the component code is given by,

d∗ = d1d2 = d2 = 49 (2.2)

Code rate is a very useful parameter when quantifying the redundancy in a coded stream. The

code rate of a linear block code, R, is the ratio of information bits to the coded bits given by

R = K/N

where K is the number of information bits and N is the length of code word obtained after

encoding the K information bits. For product codes, the information bits KP is given by K1K2.

The number of coded bits, NP is given by N1N2. The code rate for the product code, RP is given

by

RP = KP/NP .

For this work, C1 and C2 are both (1023,993) codes. So, the rate of the chosen coding scheme

is given by,

RP = (993)2/(1023)2 = 0.942 (2.3)

This is in line with the requirements of next generation OTNs.

6

2.2 Iterative decoder for product codes

Product codes can be decoded using an iterative decoder. The decoding process involves the

following steps :

• Decode rows of the received matrix with the decoder for the row code, C1. Correct the errors

in each row and continue the decoding process. If a decoding failure occurs at any row, move

to the next row.

• Decode columns of the received matrix with the decoder for the column code, C2. Correct

the errors in each row and continue the decoding process. If a decoding failure occurs at any

column, move to the next column.

• Repeat the cascaded decoding process for a fixed number of iterations.

2.2.1 Product code decoding example

Consider the decoding process for a product code with (7,4,3) BCH code as the component

code. The (7,4,3) BCH code represents 4 bits of information using 7 coded bits. The third param-

eter in the specification of the coding scheme (7,4,3) is the minimum distance of the code, dmin.

We can use this minimum distance to give an upper bound on the error correction capability, t, of

the code. The error correction capability is given by

t ≤ (dmin − 1)/2

(7,4,3) BCH code has an error correction capability, t, of 1 which means that it can correct upto

one bit error in the rows or columns. Figure 2.2 shows a sample received product code word after

noise has been added. The complete decoding process is shown in the following figures.

7

Figure 2.2: A product codeword with (7,4,3) BCH code as the component code. The red dots
represent the errors introduced due to noise.

Figure 2.3: Product codeword after one round of row decoding. The red dots represent the errors
that could not be corrected. The blue dots shown in the figure represent the errors that have been
corrected by the decoder.

8

Figure 2.4: Product codeword after one round of column decoding. The blue dots represent the
errors that have been corrected by the decoder.

The first row has 2 errors which is more than the error correction capability of the component

code. So, this leads to a decoding failure. However, all the single errors are corrected by the

decoder. This is shown in Fig 2.3. The blue circles in the figure represents the bit errors that the

decoder has been successful in correcting. The first row, however, still contains two red circles

representing the bit errors which could not be corrected by the decoder as a decoding failure has

occurred.

After decoding all the rows of the matrix, we decode all the columns. As we can see in Fig 2.3 ,

we have two single error code words which can be corrected by the decoder. The column decoding

process is shown in Fig 2.4

2.3 Stopping set conditions

A stopping set is an arrangement of errors such that each row has x errors and each column has

x errors such that x ≥ t, where t is the error correction capability of the code. Consider a product

9

code, P , with component code C having an error correction capability t. The cardinality of the

minimum stopping set is given by

smin = (t+ 1)2.

For our example, component code has an error correction capability of 1. So, the minimum stop-

ping set consists of 4 errors. This is depicted in Fig 2.5

Figure 2.5: Stopping set condition. The figure depicts a minimum stopping set for the product
code based on (7,4,3) BCH code.

10

2.4 Introduction to BCH codes

The decoder for product codes relies on the component code decoder to decode individual rows

and columns. To achieve high throughput for the product code decoder, it is imperative to optimize

the component code decoder. The optimizations need to be done in such a way that a balance is

maintained between the decoding latency and the area requirements. Optimizing the area is crucial

as lesser resource utilization would allow us to instantiate multiple such decoder modules which

can then work in parallel. Usually, decoding latency and area have an inverse relationship and this

trade-off has to be exploited carefully. In this work, we have selected a (1023,993) BCH code as

the component code. This section is dedicated to a brief discussion and introduction of BCH codes.

BCH codes are a class of cyclic error correction codes. A BCH code of length n which can

correct atleast t errors can be constructed as follows :

• Find the smallest m such that GF(qm) has a primitive nth root of unity β.

• Find the minimal polynomial in GF(q) for 2t consecutive powers of β i.e βb, βb+1, · · · , βb+2t−1.

If b is 1, the BCH code is said to be narrow-sense.

• The least common multiple of these minimal polynomials gives the generator polynomial

g(x) for the code.

Two Galois fields are involved in the construction of BCH codes. The coefficients of the gen-

erator polynomial are derived from the smaller field GF(q). The roots of the generator polynomial

are present in the larger field GF(qm). Binary BCH codes are the codes where the coefficients of

the generator polynomial and the elements of the codeword are binary in nature. For this work, we

will be working with (1023,993) binary BCH code. The primitive polynomial for this BCH code

is x10 + x3 + 1 = 0.

2.4.1 Algebraic decoding of BCH codes

Algebraic decoding of BCH codes follows the following steps :

11

• The first step in algebraic decoding of BCH codes involves finding the syndromes from the

received vector. A codeword from the BCH code will always have zero syndromes. Non

zero syndrome values is an indication that an error has occured.

• The second step involves finding the error locator polynomial. The roots of the error locator

polynomial provide an indication of where the errors are. Some of the popular algorithms

for finding the error locator polynomial are Peterson’s algorithm, Berlekamp and Massey

algorithm, Euclidean algorithm etc.

• The third step is to find the roots of the error locator polynomial. This is usually done using

the Chien search algorithm. Chien search involves an exhaustive search over the elements

of the field to determine the roots. This method is computationally very expensive for larger

fields. The decoder implemented for this project follows the approach proposed in [1].

• The final step involves inverting the roots of the elements in the field which gives the error

locations in the received vector.

An outline of a typical BCH decoder is shown in 2.6.

Figure 2.6: BCH decoder module.

12

2.4.2 Syndrome computation

For a BCH code, the generator polynomial, g(x) has 2t roots namely α, α2, α3 · · ·α2t where α

is a primitive element of the field. If follows that,

g(α) = g(α2) = g(α3) = · · · = g(α2t) = 0. (2.4)

Any codeword from the BCH code can be expressed as,

c(x) = m(x)g(x). (2.5)

This shows that for any codeword from the BCH code,

c(α) = c(α2) = · · · = c(α2t) = 0. (2.6)

Define the received polynomial, r(x) = c(x) + e(x) , where e(x) =
∑n−1

j=0 ejx
j . For a received

polynomial r(x), the kth syndrome Sk is defined as Sk := r(αk) and is given by,

Sk = r(αk) = c(αk) + e(αk) = e(αk) =
n−1∑
j=0

ejα
jk, k = 1, 2, · · · , 2t. (2.7)

Suppose the received vector, r, has v errors at locations i1, i2, i3, · · · , iv. Since we are dealing

with binary BCH codes, the error values at these locations will be 1. This implies,

Sk =
v∑

m=1

(αim)k. (2.8)

Let Ym = αim .Then,

Sk =
v∑

m=1

Y k
m, k = 1, 2, · · · , 2t (2.9)

Here Y1, Y2, · · · , Yv are called error locators.

13

2.4.3 Error locator polynomial

The error locator polynomial, Λ(x), is defined as

Λ(x) :=
v∏

m=1

(1− Ymx) = Λvx
v + Λv−1x

v−1 + · · ·+ Λ1x+ Λ0 (2.10)

Clearly, x = Y −1
m is the root of the error locator polynomial which implies that the roots of the

error locator polynomial are reciprocals of the error locators.

Peterson’s algorithm provides a way to compute the error locator polynomial using the syn-

dromes. For small number of errors, we can provide explicit formulas for coefficients of the error

locator polynomial. Since (1023,993) BCH code is a 3 error correcting code, we list here the

formulas for the coefficients of error locator polynomial for 3 error correcting BCH code.

Λ1 = S1, Λ2 = (S2
1S3 + S5)/(S

3
1 + S3), Λ3 = (S13 + S3) + S1Λ2 (2.11)

2.4.4 Solving error locator polynomials of degree 2 and 3

As mentioned in the previous section, Chien search algorithm which involves an exhaustive

search is computationally complex for large fields. For a field of size q, Chien search requires

q polynomial evaluations. The approach followed in this work uses the closed form solutions

presented in [2] to find the roots of the error locator polynomial.

2.4.4.1 Error locator polynomials of degree 2

An error locator polynomial of degree 2 is of the form,

Λ(y) = Λ2y
2 + Λ1y + Λ0 (2.12)

This second degree equation can be converted to the form x2 + x + k = 0 by making the

substitution y = (Λ1/Λ2)x. For any k in GF(2m), one can construct the solution from the solutions

on any GF(2)-basis for GF(2m). This is because x2 + x is a GF(2)-linear function on GF(2m) as

14

x2 + x+ j = 0 and y2 + y + k = 0 together imply that,

(x+ y)2 + (x+ y) + (j + k) = 0 (2.13)

This is helpful because we can decompose k in terms of a basis for the field and compute

the root of the polynomial as the linear combination of the roots pre- computed for the basis

elements and stored in a look-up table. This greatly reduces the complexity of implementing

the standard solver for second degree error locator polynomials. During the design phase, we

choose the standard basis for GF(210) which is 1,α,α2,· · · , α9. Let Ai be the root of the equation

x2 + x + αi = 0 for i ranging from 0 to 9. These roots are fixed constants and can be computed

during the design phase. It is important to note that for some values of k, roots may not be in

GF(2m). In general, roots are present in GF(2m) if and only if trace-2, T2(k) is 0 where T2(k) is

defined as,

T2(k) :=
9∑

i=0

k2
i

(2.14)

It can be proved that exactly half of the k values satisfy this equation. Table 2.1 shows the values

of one root Ai for standard basis in GF(2m).

Ai Element
A0 α341

A1 α255

A2 α515

A3 α549

A4 α1020

A5 α903

A6 α75

A7 N/A
A8 α14

A9 α607

Table 2.1: Ai for standard basis. Here, Ai is one root of equation x2 + x + αi = 0 where i ∈
0, 1, 2,, 9

15

Given one root of the equation x2 + x+ k = 0, finding the other root of this equation is trivial.

If Ar1 is one root of the equation, then Ar1 + 1 also satisfies the equation. This is because,

(Ar1 + 1)2 + (Ar1 + 1) + k = A2
r1

+ 1 + Ar1 + 1 + k = A2
r1

+ Ar1 + k (2.15)

But since Ar1 is the root of the equation, A2
r1

+Ar1 + k = 0. This shows that Ar1 + 1 is a root

of the equation as well.

2.4.4.2 Error locator polynomials of degree 3

An error locator polynomial of degree 3 is of the form,

Λ3y
3 + Λ2y

2 + Λ1y + Λ0 = 0. (2.16)

The error locator polynomial of the form shown in equation 2.16 can be written as[2],

y3 + (Λ2/Λ3)y
2 + (Λ1/Λ3) + Λ0/Λ3 = 0. (2.17)

This can then be converted into a standard equation of the form x3 + x + k = 0 by making the

substitution y = (Λ2/Λ3) + x((Λ2/Λ3)
2 + Λ1/Λ3)

1/2.

Setting x = w + 1/w, we get,

w3 + 1/w3 + k = 0. (2.18)

Substitute w3 = z. This gives us, z2 +kz+ 1 = 0. This quadratic equation can be solved using

the method presented in the previous section.

In this section, a brief overview of BCH codes and algebraic decoding of BCH codes was

presented. Computationally, it is beneficial to avoid Chien search and a more efficient solution was

reviewed [2]. In the next section, we will present the implementation details of the BCH decoder.

16

3. IMPLEMENTATION DETAILS

3.1 Field Programmable Gate Array

Field Programmable Gate Arrays (FPGAs) are re-configurable semiconductor devices. Basi-

cally, FPGAs are based around a matrix of configurable logic blocks and these configurable logic

blocks are then connected via programmable interconnects. The programming of these intercon-

nects is done depending upon the logic that needs to be realized on the FPGA, hence making the

FPGA re-configurable. FPGAs offer considerable speed up over software based approaches. Un-

like processors, FPGAs are truly parallel in nature as each independent task/function is assigned

to dedicated section of the chip which can function autonomously. A generic FPGA architecture

is shown in Fig 3.1.

Figure 3.1: Generic FPGA architecture.

17

3.1.1 FPGA design flow

A typical FPGA design flow is shown in Fig 3.2. The first step in the FPGA design flow

is to describe the hardware structure using a Hardware Description Language (HDL). The most

commonly used HDLs are VHDL and Verilog. The hardware description for this work is written

in Verilog. The next step involves simulating the design to verify that behavior described in the first

step matches the expected behavior as per project requirements. This involves writing testbenches

for the Design Under Test (DUT). The high level description of hardware needs to be mapped into a

gate-level netlist. This translation from RTL description to gate-level netlist is done in step 3 which

is Synthesis. Synthesis is done using a tool called synthesizer. In this project, Xilinx Synthesis Tool

(XST) is used for converting HDL based design to gate-level netlist. After generating the gate-level

netlist, the design needs to be mapped into technology specific logic units like the Configurable

Logic Blocks (CLBs) on the FPGA. This is done by combining all netlists and constraints into

one large netlist which is stored in a native generic database file(.ngd). The resources specified

in the native generic database file are compared with available resources on the target FPGA and

the large netlist present in the .ngd file is broken down into sub-blocks which can fit the FPGA

logic blocks. These sub-blocks are then mapped to available FPGA logic units by the placement

tool. The signals between these logic blocks on the FPGA are routed by the routing tool in such

a way that the timing constraints are met. Finally, a bitstream in generated which contains the

programming information for the FPGA. This includes programming the interconnect resources

and Input/Output (I/O) blocks. This bitstream is then programmed on the FPGA.

18

Figure 3.2: BCH decoder design flow.

3.2 BCH implementation details

The implementation of the BCH decoder is broken down into a number of custom Intellectual

Property (IP) blocks as shown in fig 3.3. The IP blocks are as follows :

• Data Generator block

• Syndrome computer block

• Error locator finder block

• Error locator solver block

19

Figure 3.3: BCH decoder implemented design. The figure depicts a high level design for the BCH
decoder implemented in Verilog.

3.2.1 Data generator block

This block generates pseudo random data for decoding by the BCH decoder. The pseudo

random number generator used for this work is Mersenne twister (MT). Mersenne twister has a

period of 219937 − 1. The MT block generates a 64 bit random number at every clock cycle. The

simulated output of Mersenne Twister is shown in figure 3.4.

20

Figure 3.4: Data Generator simulated design. This figure shows the simulation output for data
generator block.

We are interested in generating errors with a specific probability. To get errors in a bit stream

with probability p,we follow the following steps :

• We break down the 64 bit random number generated by the Mersenne twister into four 16

bit vectors.

• Compute scaling factor, S, given by,

S = dp× 65535e (3.1)

• If the 16 bit number is less than S, map it to a 1. Otherwise, map it to a zero.

Following the above mentioned approach, we get 4 bits every clock cycle and 1 pseudo random

data sequence of 1023 bits with a specific error probability, p, is generated in 256 clock cycles.

3.2.2 Syndrome computer block

Syndrome computation in the first step in the decoding process for BCH codes. Syndromes are

an indication of one or more errors in the received vector. For binary BCH codes,

S2i = S2
i (3.2)

21

As a consequence of equation 3.2, we only need to compute the odd numbered syndromes. The

syndrome computation architecture implemented in this project is shown in fig 3.5

Figure 3.5: Syndrome computation architecture. The received vector is divided into 33 streams of
31 bits each.

Syndrome computation block takes a 1023 bit vector as an input. This vector is broken down

into q streams. Here, q is the parallelization factor of the syndrome computation block. In con-

trast to the sequential circuit for computing the syndromes which needs 1023 clock cycles, this

architecture needs only s clock cycles for computing the syndromes which is given by,

s = 1023/q (3.3)

22

In this work, we have chosen a parallelization factor of 33 which allows us to compute the

syndromes in 31 clock cycles.

3.2.2.1 Example of syndrome computation and simulation diagram

We consider a received vector of 1023 bits, r. Suppose r in polynomial format is given by,

r(x) = 1 + x+ x2

Since we are working with a 3 error correcting BCH code, we need 6 syndromes. However, since

it is a binary code, we compute only the odd numbered syndromes S1, S3, S5. The syndromes are

given by,

S1 = r(α) = 1 + α + α2

S3 = r(α3) = 1 + α3 + α6

S5 = r(α5) = 1 + α5 + α10 = 1 + α5 + α3 + 1 = α3 + α5

Here, S1, S3, S5 are 10 bit vectors. Converting the syndromes from polynomial form to vectors,

we get,

S1 = [0 0 0 0 0 0 0 1 1 1]

S3 = [0 0 0 1 0 0 1 0 0 1]

S5 = [0 0 0 0 1 0 1 0 0 0]

Finally converting these 10 bit vectors to decimal, we get,

S1 = 710

S3 = 7310

23

S5 = 4010

Syndromes shown in figure 3.6 match the results we computed in this section.

Figure 3.6: Simulation of syndrome computation block

3.2.3 Error locator finder block

The error locator finder block finds the coefficients of the error locator polynomial. There

are many ways to compute the error locator polynomial. For small error correction capability,

t, Peterson’s algorithm provides closed form formulas for computing the coefficients of the error

locator polynomial. Since we are working with 3 error correcting (1023,993) BCH code, we use

the results presented in 2.11. The schematic for the error locator finder block is shown in figure

3.7. Coefficients of error locator polynomial give us some indication of number of errors that have

occurred. If Λ3 and Λ2 are zero but Λ1 is not zero, then a one error has occurred in the received

vector. On the other hand, if Λ3 is zero but Λ2 and Λ1 are non zero, then we can conclusively say

that 2 errors have occurred. If all three coefficients are non-zero, then ≥ 3 errors have occurred.

In general,multiplication of elements in the Galois field is simpler in exponential format (simple

addition of powers) whereas addition of Galois field elements in simpler in polynomial format

(simple xor). Error locator finder block uses the polynomial to exponential format and exponential

to polynomial format converters to do the computations efficiently.

24

Figure 3.7: Schematic for error locator finder. This figure shows elaborated design for the error
locator finder block in Vivado

3.2.3.1 Example of finding the coefficients of error locator polynomial

In this section, we will find the error locator polynomial for received vector, r, given by,

r(x) = 1 + x+ x2

In section 3.2.2.1, we computed the syndromes for this received vector. The computed syndromes

were as follows :

S1 = 710, S3 = 7310, S5 = 4010

The error locator finder block takes these syndrome values as input and gives us the coefficients of

the error locator polynomial as output. The formulas for coefficients of error locator polynomial

for a 3 error correcting code are given by,

Λ1 = S1

25

Λ2 = (S2
1S3 + S5)/(S

3
1 + S3) (3.4)

Λ3 = (S3
1 + S3) + S1Λ2 (3.5)

Using these results,

Λ1 = S1 = 7

The terms S2
1S3 andS3

1 in the formula for the computation of Λ2 are easier to compute in

exponential format. Converting S1, S3 andS5 to exponential format, we get,

Sexp1 = 956, Sexp3 = 157, Sexp5 = 314 (3.6)

This format conversion is shown in figure 3.8.

Figure 3.8: Format Conversion from polynomial format to exponential format in Matlab

26

Substituting the exponential format of S1, S3 and S5 in equation 3.4 , we get,

Λ2 = ((α956)2α314 + α157)/((α956)3 + α314) =⇒ Λ2 = (α2226 + α157)/(α2868 + α314) (3.7)

Since α1023 = 1, we take the modulus of the powers by 1023. This gives us,

Λ2 = (α180 + α157)/(α822 + α314) (3.8)

Matlab provides a gfadd function with the Communications toolbox that allows us to add ele-

ments in exponential format. This is shown below in figure 3.9

Figure 3.9: Λ2 computation in Matlab.

As shown in figure 3.9, Λ2 is 14.

27

Substituting in equation 3.5, we have,

Λ3 = (α822 + α314) + α956α957 (3.9)

Solving 3.9, we get Λ3 = 8. Vivado simulation results are shown in figure 3.10.

Figure 3.10: Vivado simulation for error locator finder block. The simulation shows the coefficients
of the error locator polynomial.

3.2.4 Error locator solver block

3.2.4.1 Second degree solver

As we saw in section 2.4.4.1, α7 has no roots in the field GF(1024). To find the roots of a

standard second degree equation of the form x2 + x + k = 0, we decompose the element k in

terms of the standard basis. If the coefficient of α7 after the decomposition is 1, we declare that no

roots can be found in the field. Otherwise, using Table 2.1, we do a simple xor of the roots of the

standard basis elements which have a coefficient 1.

3.2.4.2 Third degree solver

As we saw in section 2.4.4.2, any error locator polynomial of degree 3 can be converted into a

standard equation of the form x3+x+k = 0. During the design phase, we compute the roots for all

28

the values of k that have 3 roots in the field GF(2m). This number is of the order of 128 elements

for the field GF(1024). We create a Read Only Memory (ROM) based look-up-table to store these

roots. Simulation of the error locator polynomial block for 3 errors is shown in figure 3.11. In this

simulation, three errors were introduced in the received vector at locations 0,1,2. As can be seen in

the figure, the error locator block correctly reports that the errors are at locations 0,1,2. The error

locator block also returns the number of errors that have been corrected in the received stream. A

decoding complete signal notifies that the error locator solver block has finished its computation.

Figure 3.11: Vivado simulation for error locator solver block.

3.2.5 Complete BCH decoder implementation

The block diagram of the complete BCH decoder is shown in 3.12. Vc-709 board does not

provide hard IP processors. To work around that issue, we instantiate a Microblaze soft IP proces-

sor. Microblaze functions as a AXI Master for all the other custom IP blocks which act as a slave.

This means that Microblaze can initiate AXI transactions with any of these modules. This is very

useful when debugging the design.

29

Figure 3.12: Block diagram of the complete BCH decoder.

Resource utilization and power utilization are very useful parameters for characterizing the per-

formance of a decoder on the FPGA. Lower resource utilization enables us to instantiate multiple

decoders running in parallel leading to higher throughput. Utilization report for a (1023,993) BCH

decoder is shown in figure 3.13.

30

Figure 3.13: Utlization report of a BCH decoder.

As a general rule of thumb, 80 percent LUT utilization is considered to be an upper limit and

it is generally not advisable to go beyond this threshold. Assuming a maximum LUT utilization of

80 percent, we can instantiate N decoder modules, where N is given by,

N = 80/2.41 ≈ 33

.

Each decoder module gives a throughput of ≈ 200 Mbps. With 33 such decoder modules, a

throughput of 6.6 Gbps can be achieved on an FPGA.

The total power utilization of the decoder is 0.509W. This is shown in the figure 3.14.

31

Figure 3.14: Power utilization of a BCH decoder.

The timing summary of the design is shown in the figure 3.15.

Figure 3.15: Timing summary of a BCH decoder.

3.2.6 BCH decoder performance comparisons

We implemented 3 versions of BCH decoder. The first version of the BCH decoder was imple-

mented in Matlab and used Matlab’s in-built gftuple function. This decoder was run over a set of

1000 codewords and timed using Matlab’s tic-toc. The results are shown in figure 3.16.

32

Figure 3.16: BCH decoder in Matlab. This decoder uses the in-built gftuple function.

This second flavor BCH decoder that was implemented without using Matlab’s in-built gftuple

function. This decoder was also run over a set of 1000 codewords. The results of Matlab’s tic-toc

are shown in figure 3.17.

Figure 3.17: BCH decoder in Matlab. This decoder does not use the in-built gftuple function.

While the two versions presented above were software based, the third variant of the decoder

was implemented in Verilog. This decoder completed decoding 1000 codewords in 75000 clocks.

33

We are using a 75 MHz clock. This means that a single clock period, T , is given by,

T = 1/(75× 106) = 13.33 ns

So, the time taken for decoding 1000 codewords is 75000T = 999750 ns = 10−3 s. This

implies that we can decode 107 codewords in 1s.

This hardware based BCH decoder was then run over a set of 100 million codewords for each

probability p, where p ranges from 0.003 to 0.001 in steps of 0.001. The Bit Error Rate(BER)

vs cross over probability curve generated is shown in figure 3.18. Generally, it is possible to

mathematically compute the bit error rate for BCH code. However, computing the probability of

miscorrections and decoding failure is much harder to compute analytically. Figure 3.18 presents

graphs for miscorrection probability and decoding failure probability as well.

Figure 3.18: Bit Error Rate(BER) vs cross over probability(p).

34

3.3 Product code implementation details

3.3.1 Product code 10000 feet view

A schematic of product code decoder architecture is presented in figure 3.19.

Figure 3.19: 10000 ft view of product code decoder architecture.

Microblaze is a soft IP processor and acts as an AXI master for the decoder module. Microblaze

initiates the decoding by writing to the registers on decoder block. Microblaze also handles the

task of gathering data from the registers of the decoder when decoding is complete and displays the

results for the user. The highlighted block in the figure 3.19 represents the product code decoder.

We discuss a more detailed version of this decoder in the following sections.

3.3.2 Product code detailed architecture

Detailed product code architecture is shown in figure 3.20

35

Figure 3.20: Detailed product code decoder architecture.

Initially, the decoder starts in IDLE state. Microblaze initiates the decoding operation by writ-

ing to the registers of the product code decoder. This write operation triggers the Mersenne twister

random number generator and the state of the decoder changes to LOADING. In the loading stage,

Twister generates 64 bits every clock cyle which get mapped to 4 bits. This way we get a com-

plete 1023 bit recieved vector in 256 clock cycles. As soon as the first vector becomes ready for

decoding, it is pushed to the BCH decoder. The BCH decoder returns the error locations and the

number of errors if the decoding succeeds. Otherwise, a decoding failure is declared. Separate

block RAM instances are maintained to store the corrected rows and columns after the decoding

operation. The corrected vector is then written to the rows block RAM. After loading the rows,

we derive column information from the corrected row and make subsequent writes to the column

block RAM. A queue based architecture is used for loading the column information in block RAM.

As the loading gets completed, the state of the decoder is changed to column decoding stage. In

36

this stage, a column is fetched from the column BRAM and forwarded to the BCH decoder for

decoding. The corrected column codeword is then written to the column block RAM. The row in-

formation is derived from the corrected column and writes are performed on the row block RAM.

After the column decoding stage is complete, we transition to an intermediate stage where a check

is performed on the iteration count for the rows and column decoding. If the iteration count is 0 for

both rows and columns, we transition back to the loading state and start the complete cycle again.

Product code state diagram is shown in figure 3.21.

Figure 3.21: Product code decoder state diagram.

37

A utilization report for the product code decoder is presented in figure 3.22. The results pre-

sented here are simulation results of the Product code decoder in Xilinx Vivado.

Figure 3.22: Product code decoder utilization report.

38

4. SUMMARY AND CONCLUSIONS

The goal of the thesis was to implement a full product code decoder on FPGA. The efficiency

of the full-product code decoder relies heavily on the efficiency of the component code decoder.

For this work, a (1023,993) BCH code was selected as a component code. BCH decoder has a

computationally expensive step for finding the roots of the error locator polynomial. In this thesis,

we have implemented an efficient method to solve the error locator polynomial which is simpler

to implement in hardware. A light-weight design for the BCH decoder allows us to instantiate

multiple such decoder blocks without overloading the FPGA. These multiple instantiations enable

us to decode multiple rows and columns in parallel. The BCH decoder presented was synthesized

and run on a Virtex-7 FPGA. The results shown for the product code decoder are simulation results.

4.1 Challenges

A codeword from the product code with a BCH(1023,993) code as a component code has nearly

a million bits. It is very convenient and relatively simpler to have a design where a 2 dimensional

array with instant access to rows and columns is available. Here instant access implies an access

which is not synchronized with the clock. However such a "custom" design for a memory construct

forces the FPGA to use distributed RAMs and the logic utilization blows up. In reality, all forms

of dedicated memories on FPGA allow only synchronous accesses which adds an extra layer of

latency to the design. The final implementation for the product code decoder uses the dedicated

Block RAM resource available on the FPGA to store the data.

Also, since each codeword comprises of a million bits, it becomes considerably difficult to

analyze the data manually. Several scripts were written in Matlab to validate the design and func-

tionality of the decoder.

4.2 Future work

The next step for this work involves implementing the complete design on an Application

Specific Integrated Circuit(ASIC). ASIC fabricated using the same process can run at a much

39

higher frequency than FPGA and hence, yields better throughput. An ASIC design is much more

power efficient than implementing the same design on FPGA. Power consumption of ASICs can

be very minutely controlled and optimized.

The work presented in this thesis involves a single instance of BCH decoder which is respon-

sible for decoding the rows and columns. The design of BCH decoder presented in this thesis is

very light-weight in terms of logic utilization. Infact, it only uses 2.41 percent of the actual logic

units on the FPGA. We can include several instances of the BCH decoder which can operate in a

parallel fashion. Along with instantiating multiple decoders, design for each decoder module can

be pipelined more to add register stages.

40

REFERENCES

[1] P. Elias, “Error free coding,” IRE Trans. on Information Theory, vol. PGIT:4, pp. 29–37,

2006.

[2] C. L. Chen, “Formulas for solutions of quadratic equations over GF(2m),” IEEE Trans. In-

formation Theory, vol. IT-28, pp. 792–794, 1982.

[3] E. Berlekamp, H. Rumsey, and G. Solomon, “On the solutions of algebraic equations over

finite fields,” Information and Control, vol. 10, pp. 553–564, 1967.

[4] J. Guajardo, T. Güneysu, S. S. Kumar, C. Paar, and J. Pelzl, “Efficient hardware implementa-

tion of finite fields with applications to cryptography,” Acta Appl. Math, vol. 93, pp. 75–118,

2006.

[5] H. Pfister, S. Emmadi, and K. Narayanan, “Symmetric product codes,” 2015 Information

Theory and Applications Workshop(ITA), pp. 282–290, 2015.

[6] F. Chang, K. Onohara, and T. Mizuochi, “Forward error correction for 100g transport net-

works,” IEEE Communications Magazine, vol. 48, pp. S48–S55, 2010.

[7] G. Tzimpragos, C. Kachris, I. B. Djordjevic, M. Cvijetic, D. Soudris, and I. Tomkos, “A

survey on fec codes for 100 g and beyond optical networks,” IEEE Communications Surveys

Tutorials, vol. 18, pp. 209–221, Firstquarter 2016.

[8] J.-Y. Qin, Z.-P. Huang, J.-Y. Wei, Z. Dong, and Z. Zuo, “Efficient fec decoding algorithm for

100gbps optical transport networks in fpga,” pp. 19–27, 05 2017.

[9] X. Zhang and Z. Wang, “A low-complexity three-error-correcting bch decoder for optical

transport network,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 59,

pp. 663–667, Oct 2012.

41

[10] D. A. Morero, M. A. Castrillon, F. A. Ramos, T. A. Goette, O. E. Agazzi, and M. R. Hueda,

“Non-concatenated fec codes for ultra-high speed optical transport networks,” in 2011 IEEE

Global Telecommunications Conference - GLOBECOM 2011, pp. 1–5, Dec 2011.

[11] D. Kim, I. Yoo, and I. Park, “Fast low-complexity triple-error-correcting bch decoding archi-

tecture,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, pp. 764–768,

June 2018.

[12] Y. Krainyk, V. Perov, M. Musiyenko, and Y. Davydenko, “Hardware-oriented turbo-product

codes decoder architecture,” in 2017 9th IEEE International Conference on Intelligent Data

Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS),

vol. 1, pp. 151–154, Sep. 2017.

[13] R. Le Bidan, C. Leroux, C. Jego, P. Adde, and R. Pyndiah, “Reed-solomon turbo product

codes for optical communications: From code optimization to decoder design,” EURASIP

Journal on Wireless Communications and Networking, vol. 2008, p. 658042, May 2008.

[14] N. Abramson, “Cascade decoding of cyclic product codes,” IEEE Transactions on Commu-

nication Technology, vol. 16, pp. 398–402, June 1968.

[15] C. Yang, Y. Emre, and C. Chakrabarti, “Product code schemes for error correction in mlc

nand flash memories,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 20, pp. 2302–2314, Dec 2012.

42

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction, Motivation and Objective
	Thesis contributions

	BACKGROUND AND RELATED WORK
	Introduction to product codes
	Product code construction
	Minimum distance and code rate for product codes

	Iterative decoder for product codes
	Product code decoding example

	Stopping set conditions
	Introduction to BCH codes
	Algebraic decoding of BCH codes
	Syndrome computation
	Error locator polynomial
	Solving error locator polynomials of degree 2 and 3
	Error locator polynomials of degree 2
	Error locator polynomials of degree 3

	IMPLEMENTATION DETAILS
	Field Programmable Gate Array
	FPGA design flow

	BCH implementation details
	Data generator block
	Syndrome computer block
	Example of syndrome computation and simulation diagram

	Error locator finder block
	Example of finding the coefficients of error locator polynomial

	Error locator solver block
	Second degree solver
	Third degree solver

	Complete BCH decoder implementation
	BCH decoder performance comparisons

	Product code implementation details
	Product code 10000 feet view
	Product code detailed architecture

	SUMMARY AND CONCLUSIONS
	Challenges
	Future work

	REFERENCES

