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ABSTRACT

Netlist decomposition and candidate generation is a non-conventional approach in the routing

stage of the place and route (PnR) flow. While there has been significant research and advance-

ment in the digital domain for automation with respect to this as well as other techniques, very

little work has been done in the analog domain due to its complex constraints and specific require-

ments. With this proposed method, the most common requirements of Analog circuits are taken

into consideration to provide candidate routes for netlists of analog Integrated Chips (IC).

Netlist decomposition is an important stage of breaking down multi-pin nets into two-pin nets

by adding additional nodes for each net. The proposed method takes into account blockages and

constraints such as symmetry and bends to develop a new algorithm using Steiner trees and Hanan

grids to generate optimal Steiner points. This method also breaks down multi-pin nets to 3-pin nets

which reduces the wirelength and computations significantly. The decomposed net segments are

run through Dijkstra algorithm to generate multiple candidates and an Integer Linear programming

(ILP) solver is used to pick the best candidates that follow all the constraints and design rules.

The experimental results show that overall wirelength is reduced by 5.16% while using 3-pin

net decomposition when compared to 2-pin net decomposition. There is also a reduction in the

number of metal layers used and the number of Steiner points generated. The method shows lesser

computations when compared to other decomposition techniques as it avoids multiple reroutes to

obtain Design Rule Check (DRC) clean routes.

ii



DEDICATION

To my parents.

iii



ACKNOWLEDGMENTS

My journey in pursuing my Master’s degree at Texas A&M University has been exciting and

life changing. I am very grateful for the various opportunities and experiences throughout the

course of this degree. I would like to express my gratitude towards my advisor, Dr. Jiang Hu, whom

I worked under for the last year and a half. He provided me with great research opportunities and

patiently guided me throughout. I received great support and mentoring from him as he challenged

me to try and learn new things. I am forever indebted to him for the help and suggestions that he

gave me and for trusting me through the good and difficult times from the day I joined his research

group. I would also like to thank Dr. Hank Walker and Dr. Jose Silva-Martinez who are on my

committee and gave me useful insights throughout my thesis.

I would like to thank my fellow teammates Jinhyun So, Wenbin Xu and Yaguang Li with whom

I worked closely throughout and learnt a lot from their respective areas of expertise. I would also

like to thank the teammates from University of Minnesota and from Intel who also worked with

me on this project and providing helpful feedback on my work. I would also like to thank former

student Chia-Yu Wu, who provided valuable inputs based on his thesis work while I worked on my

research.

I would like to thank my mother whose life and career inspired me to explore the field of

research and has been my unwavering support. I also thank my father who has been my pillar

of support throughout and encouraged me to challenge myself everyday. I thank my friends in

College Station Sanjana, Megha and Pranitha who are my family here and have been by my side

through everything. I also thank my dearest friends Nupur, Ramya, Mahathy and Siddharth who

have been my greatest emotional support through this journey.

iv



CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis committee consisting of Professor Jiang Hu and Professor

Jose Silva-Martinez of the Department of Electrical and Computer Engineering and Professor Hank

Walker of the Department of Computer Science and Engineering.

The work related to placement was carried out by Wenbin Xu and Yaguang Li. The work on

Candidate selection and ILP solver was done by Jinhyun So,

All other work conducted for the thesis was completed by the student independently.

Funding Sources

Graduate study was supported by a scholarship from the Department of Electrical and Com-

puter Engineering at Texas A&M University.

v



NOMENCLATURE

PnR Place and Route

IC Integrated Chips

ILP Integer Linear Programming

DRC Design Rule Check

LVS Layout vs Schematic

RST Rectilinear Steiner Tree

RSMT Rectilinear Steiner Minimum Tree

MST Minimum Spanning Tree

LUT Look up Table

FLUTE Fast Look up Table Estimation

VLSI Very Large Scale Integration

EDA Electronic Design Automation

CAD Computer Aided Design

PDK Physical Design Kit

CN Critical Nets

WM Wirelength Matching

MS Mirror Symmetry

BM Bend Matching

OM Orientation Matching

TM Topology Matching

vi



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

CONTRIBUTORS AND FUNDING SOURCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1. INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Grid Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Netlist Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Candidate Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. PREVIOUS WORK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3. NETLIST DECOMPOSITION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Hanan Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Construction of Steiner tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Blockage Avoidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4. CANDIDATE GENERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.1 Mapping Pins, Terminals and Steiner points to Routing Grids . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Dijkstra’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Obtaining Multiple Candidates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4 Annotation of Candidates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.5 Candidate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

vii



5. 3-PIN NET DECOMPOSITION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Critical Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 Wirelength Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.4 Mirror Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.5 Bend Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.6 Orientation Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.7 Topology Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6. EXPERIMENTAL RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.1 3-pin Decomposition vs 2-pin Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7. CONCLUSION AND FUTURE SCOPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

viii



LIST OF FIGURES

FIGURE Page

1.1 Design flow for routing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Grid Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 Example of a net of degree = 4. Points A, B, C and D represent the pins and the
circles are the Steiner nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Hanan Grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Steiner Tree Construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 Iterative 1-Steiner method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.5 Blockage Avoidance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Candidate Generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.1 Simplified Flow.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2 3-pin Decomposition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.3 Wirelength Matching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.4 Mirror Symmetry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.5 Bend Matching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.6 Orientation Matching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.1 Wirelength Calculated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.2 Number of Steiner Points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.3 Number of Metal Layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.4 Average Candidate Generation tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

ix



LIST OF TABLES

TABLE Page

6.1 Grid Pitch for each Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.2 Average Wirelength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6.3 Candidate Generation usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

x



1. INTRODUCTION

Analog circuit design has been a challenging field over years. Due to the specific requirements

and uniqueness of each type of analog circuit, it is very difficult to automate the PnR flow for

them. There are many challenges to be taken into account such as multi-pin connections, matching

with respect to symmetry, bends, wirelengths as well as parasitics and timing. This especially gets

complex when the blocks are of varied sizes and the wires have multiple destinations. This leads

to the necessity for a powerful algorithm to decompose the nets and generate candidates.

Unlike the digital domain, there is no straightforward objectives to be met such as the meeting

timing constraints and minimizing wirelength. These are not the top priorities for analog circuits.

The routing constraints have greater importance. Another big difference is that analog circuits tend

to have very few blocks that need to be placed and routed whereas digital circuits have thousands

of blocks. This implies that data size for analog circuits are much lesser and hence the run-time of

the tool is not very crucial.

Focusing more on the routing phase of the PnR flow, it can be categorized into the following

stages as shown in Figure 1.1.

• Placed blocks, net connection and constraints are usually the main inputs required for rout-

ing.

• Grids are generated based on the design rules of metal and via spacing for different metal

layers to obtain tracks on which the nets can be routed.

• The nets are then decomposed from multiple pins to 2-pin "segments" which has a single

source and destination that can be used for shortest path algorithms.

• Candidates are generated for each segment which gives multiple viable route options for

each segment based on shortest path algorithms and constraints.

1



Figure 1.1: Design flow for routing.

• Metal and Via annotation is performed for each candidate and the optimal candidate is se-

lected.

• The final routing is the sent to Design Rule Check (DRC) and Layout vs Schematic (LVS)

to verify if the results are satisfied.

The main focus in this design flow is done on the grid generation, netlist decomposition and

candidate generation stages. The innovation in this work that is different from other work that

2



have used various different PnR flow to find an optimal solution for routing nets lies in the de-

composition phase. The improvements in this work is a new form of netlist decomposition that

decomposes large degree netlists to 3-pin nets while being mindful of the design constraints to

provide a simplified solution for candidate generation.

1.1 Grid Generation

This is the first stage of the routing flow. Here, taking into consideration all the design rules

of metal and via spacing for each layer, routing pitch is calculated. Based on the estimated die

size, grid vertices are calculated for each layer and edges are added. Also, based on the internal

metal information obtained from the placed block metal overlaps are checked and certain edges

are prohibited from routing. From the values of grid pitches for each metal layer a minimal Hanan

grid pitch is calculated which is required if additional Hanan points needed to avoid blockages.

Hanan grid is defined as a grid that contains coordinates of all combinations of x and y coordinates

of the pins that need to be connected. This is a necessary feature for netlist decomposition.

1.2 Netlist Decomposition

Netlist decomposition has been used in VLSI routing over the last three decades using a very

popular NP- complete problem called Steiner trees. Unlike other minimum spanning tress prob-

lems that connect all nodes using the shortest path possible, Steiner trees create additional nodes

in the given region called Steiner nodes or Steiner points that is added to the original nodes in the

tree such that the overall length is minimized.

This is the key idea required for converting the multi-pin connections into 2-pin connections.

Once each segment of the net contains a source and a destination coordinate, it is simplified into

a simple shortest path problem. The grids created in the previous stage act as the nodes and edges

of the graph G=(V,E). In this case, the rectilinear distance between the vertices act as the weights

to the E = (u,v).

The proposed method decomposes multi-pin nets into 3-pin nets groups which simplifies the

constraints and the complexity of candidate generation. It also reduces the number of segments that

3



Figure 1.2: Grid Generation.

need to be re routed. This form of decomposition is also capable of blockage avoidance and hence

the final routes of certain parts of the net are already estimated. This helps in tackling complex

constraints such as symmetry and bend matching by breaking it down into simpler constraints in

this stage and then in the candidate generation stage.

1.3 Candidate Generation

This is a novel methodology in determining the routes of nets. Instead of the standardized

method of using global and detailed router, candidate generation and selection is used. Usually in

most commercial tools, global router estimates the arbitrary path for the nets by only taking into

4



consideration the placement of the blocks and pins. Then this is followed by the detailed router

which takes all the physical information such as metal layers, widths and parasitics to make actual

connections in the layout.

On the other hand, for candidate generation, all the metal and physical information is taken into

consideration along with the location of the decomposed net segments and the constraints available

for each net. Based on this information, a number of viable candidates for each net is generated.

Each of these candidates satisfy all the constraints and can be used as a final route.

Followed by this is candidate selection where the candidate information is fed into an Inte-

ger Linear Programming (ILP) solver such that it picks the best of each candidate and there is no

overlap or mismatch between the nets. This methodology proves to be faster and efficient than

using global and detailed router simply because the application is for analog circuits. As opposed

to digital circuits, the main objective is not to minimize only wirelength but also to satisfy the

complex constraints. If this was implemented using global router there would be a lot of incorrect

estimations and the detailed router will have to iteratively correct each route such that the con-

straints are satisfied. The trade off is that this method would be more complex than the general

approach but due to analog circuits containing significantly lesser blocks and nets, the complexity

is manageable.

1.4 Our Contribution

The main motivation of this thesis is to develop an algorithm that decomposes netlists suitable

for analog circuit routing which is inclusive of the matching constraints to get suitable candidates

for each net. To achieve this, the problem can be broken down into the following:

• To implement the Rectilinear Steiner Minimum tree using the iterative 1-Steiner algorithm

which generates the RSMT to minimize the wirelength with the help of Hanan grids to

reduce the decomposition from multi-pin nets to three-pin nets.

• To develop a method for Steiner tree generation that is aware of blockages and can be avoided

using Hanan grids with the help of penalty in the cost function.

5



• To create routing grids for various metal layers that honors the design rules of the PDK, the

matching and symmetry constraints and implement the Dijkstra algorithm.

• To obtain candidates for each net that can be used by an ILP solver to get final routes for the

layout.

The rest of the thesis is organized according to this. Section 2 is a background study of previous

work and other methodologies in this work. Section 3 is a detailed explanation of the Netlist

Decomposition stage of the PnR flow. Section 4 focuses on the details of Candidate Generation

and Selection. Section 5 goes into the details of our methodology of 3-pin netlist decomposition

and the new simplified PnR flow. Section 6 shows the experimental results and the performance of

this methodology. Section 7 gives the conclusion of the thesis and presents some ideas for future

work on this topic.
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2. PREVIOUS WORK

Netlist decomposition is an important step in routing flow which is used to simplify multi-pin

nets into simpler nets. These nets that are generated from decomposition are fed into any shortest

path algorithm for achieving shortest distance between each set of pins[1]. Unlike digital rout-

ing, analog routing has many objectives apart from finding the shortest distance. Constraints such

as length matching, symmetry, common centroid as well as topology are some of the common

constraints that are seen in analog layouts[2][3]. The most efficient methodology for netlist de-

composition is using Steiner trees. Steiner trees can be extended for this application by trying to

avoid blockages[4]. When a Steiner node that is generated by the Steiner algorithm is on a block-

age such as active regions or internal metals, using a penalty or slack the node is moved outside

the blockage. The node on the Hanan grid with the least penalty is the chosen as the new Steiner

node. This re-adjusts the Steiner tree generated for decomposition.

The first paper solely devoted to RSMT problem was written by Hanan [5] in 1966. In addition

to characterizing optimal solutions for small instances of the problem, Hanan gave the fundamental

structural definition. Draw horizontal and vertical lines through every terminal. The obtained grid

is called the Hanan grid. In rectilinear Steiner minimum tree with obstacles (RSMTO) problem[6],

the Hanan grid is modified as the extended Hanan grid. The proposition of extended Hanan grid

transforms the routing problem into a graph problem, and the weighted Hanan grid transforms the

computing scale from routing area into the input size of terminals and obstacles.

Extending the concept of Hanan grids[5], the large netlists are decomposed to three-pin netlists

instead two-pin netlists. This greatly reduces the number of segments that the net is broken down

to which directly impacts the run time. The implementation of Steiner trees which uses buffer

insertion for blockages is proposed in [4]. This uses a Steiner-tree heuristic generation and uses

maze routing methodology. With an iterative approach a new subpath is created for the generated

Steiner tree and is then reconnecting using maze routing. A grid graph is created for sparsification

which impacts the computational efficiency of the algorithm. Arora [7] found a polynomial time
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approximation scheme (PTAS). The PTAS is mainly based on dynamic programming, and provides

a balance between the computation time and performance ratio. Another PTAS was proposed [8],

but it still cannot satisfy the demand of integrated circuit production. So people turn to seek effi-

cient heuristic algorithms to get the sub-optimal solutions. Many algorithms have been proposed

focusing on RSMTO problem [9], but there is little consideration of boundary. The boundary can-

not be regarded as an obstacle, because the wires cannot pass through the boundary on both sides.

It brings new hardness to the problem, but the maze routing method such as Lee algorithm could

overcome this difficulty. Lee [10] presented maze algorithm to route two-terminal nets optimally.

Some improvements on Lee algorithm proposed later. Lee algorithm can be applied not only on

the grid of rectilinear plane (i.e., there are no more than 4 neighbors for each grid), but also can

deal with a graph in the general sense of graph theory.

The iterative approach of Rectilinear Steiner Minimum Tree (RSMT) generation from Mini-

mum Spanning Tree (MST) is proposed in [11][12][13]. It optimally finds out each Steiner point

that needs to be added to the tree to arrive at the right RSMT. This algorithm also limits the num-

ber of Steiner points that are added to a value k which is arbitrarily calculated in the cost function.

The Hanan grid created for each point in every iteration is used to find the optimal set of points

keeping in mind the cost of adding vias and worst-case scenarios. Thus, several fast algorithms

have been proposed in the literature to construct an RSMT for a given set of pin locations [14], [9],

[10]. However, the RSMT construction problem is NP-hard[8], so several papers also proposed

Rectilinear Spanning Tree or RST construction algorithms for practical use.

An ILP based analog circuit routing [15] proposes sequential routing with the help of integer

linear programming (ILP) solver. Here, a number of possible candidates are generated using the A*

search algorithm for each net in the analog circuit. The candidate decomposition is then performed

using FLUTE[16] to obtain two-pin nets. The available candidates are the fed into an ILP solver

with constraints and the objective function is minimized. This work also features bend matching

and weighted grids.

A highly scalable Steiner tree problem is proposed in[17]. This work uses a greedy triple
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contraction algorithm or the Zelikovsky algorithm[18]. It has also been implemented as the Fast-

SteinerUM software available at the VLSI GSRC bookshelf [19][20]. It solves the Steiner tree

problem for 100 terminals. The algorithm is an extension of [11] which uses a set size of O(n log

n) in pre-processing. It makes the process cheaper by decomposing the nets into 3-restricted Steiner

tree instead of 2-restricted Steiner tree. One of the applications heavily using RSMT construction

is global routing in which RSMTs are used for routing topologies. For example, BoxRouter [21],

DpRouter [22], Archer[23], MaizeRouter[24], FastRoute [25], GRIP [26], and NTHU-Route [27]

use FLUTE for routing topology generation. However, FLUTE constructs only one RSMT for a

net. [28] prposes an efficient algorithm to construct all RSMTs on the Hanan grid for given pin

locations. The algorithm builds a database (called ARSMT DB) of all potentially optimal Steiner

trees (POST) on the Hanan grid for each potentially optimal wirelength vector (POWV) so that

applications can quickly obtain all RSMTs from the ARSMT DB.

9



3. NETLIST DECOMPOSITION

Decomposing nets into smaller segments is an important process in determining the routes of

nets in the layout. There are multiple approaches to achieving this but the most common approach

is by constructing Steiner trees.

Figure 3.1: Example of Steiner Node.

3.1 Background

Steiner Tree problems in graphs are NP- complete in nature. As they are usually simplified into

smaller variants, they can be estimated and solved in polynomial time using simple modifications

such as look up tables (LUT) and so on. For the case of VLSI routing, the class of Steiner trees that

are used are Rectilinear Steiner Trees (RST) which uses the rectilinear geometric space rather than

euclidian. Rectilinear or Manhattan distances calculated are minimized to obtain Steiner points

and can be defined as Minimum Rectilinear Steiner Trees or (RSMT) as shown in an example in

Figure 3.1. The scope for obtaining Steiner trees are limited to the region of the Hanan Grids.
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3.2 Hanan Grid

Hanan Grid is defined as H(n) which is a finite set of points obtained by drawing horizontal

and vertical lines across each vertex n. Therefore, the Hanan Grid always contains n2 points as

shown in Figure 3.2. This proves to be the key region of interest for each net where the routing

occurs. The Hanan grid created must also match the routing grids that are created which have

the routing tracks. Also, the Hanan Grid is modified and flexible to accommodate blockages that

require rerouting.

Figure 3.2: Hanan Grid for n=4. The black circles represent the location of pins on the Hanan grid
and the remaining white circles are the possible locations for a Steiner node to be generated.

3.3 Construction of Steiner tree

For the construction of Steiner tree, the points are grown from an initial Minimum Spanning

tree (MST). This is done using the iterative 1-Steiner tree approach. A Steiner tree is defined as

an MST on the union of the original pins of the net in a set P and a set of Steiner points S[1].
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This approach is to iteratively calculate optimum 1-Steiner points and include them into S. Let

c be the cost of the MST which is the length in this case. The length of the MST over P ∪ S

will decrease with each additional point, and we terminate the construction if there is no x such

that c(MST (P ∪ S ∪ {x})) < c(MST (P ∪ S)). The figure illustrates the execution of iterative

1-Steiner on a four-point example.

Figure 3.3: Steiner Tree Construction.

By the result of Hanan, we can find a 1-Steiner point by constructing a new MST on n + 1

points for each element in the Steiner candidate set, then picking the candidate which results in

the shortest MST. Each MST computation can be performed in O(nlogn) time[15], yielding an

O(n3logn) time bound. This is the time required to find just one 1-Steiner point, and that the

Steiner tree may contain up to n - 2 Steiner points [7]. As it turns out, a new 1-Steiner point may

be added in O(n2) time. A linear number of Steiner points can thus be found efficiently with a

total of O(n3) effort, and finding heuristic solutions with k Steiner points, in a region with high

via costs, can be accomplished in O(kn2) time. There are also 4 rules that govern the selection of

each Steiner point iteratively. They are:

• A point p cannot have two neighbors in the MST which lie in the same octant of the plane

with respect to p. Thus eight "orientations" at 45◦intervals can be fixed, each of which

induces a Voronoi-like partition (the oriented Dirichlet cells) of the plane.

• These eight partitions can be overlaid into a "coarsest common partition" within O(n2) time.

The resulting O(n2) regions of this partition are isodendral and introducing any point from

within a given region will result in a constant MST topology.
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Figure 3.4: Iterative 1-Steiner method.

• The minimum spanning tree on the n points is constructed, and preprocessing is performed

in O(n2) time such that whenever a new point is added to the point set, updating the MST to

include the new point requires constant time.

• Iterate through the O(n2) regions of the overlaid partitions and determine, in constant time

per region, the optimal Steiner point in each region. Each such point will induce an MST on

n + 1 points that can be computed in constant time using the information obtained from the

preprocessing. Comparing the costs of these trees and selecting the smallest one will give

the minimum-length MST on n + I points. The total time for all phases is O(n2).

The performance ratio of c(MST )/c(RSMT ) ≤ 3/2. Now, another key feature to take into

consideration is the active regions and internal metals due to block placement which leads to block-
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ages in the area of the Hanan Grid. This is another issue that must be tackled in the stage of netlist

decomposition.

3.4 Blockage Avoidance

Figure 3.5: Blockage Avoidance.

When the Steiner point is formed in a forbidden region which can be due to active regions or

internal pins and metals in layout, the Steiner tree is readjusted by accounting for the blockages and

adding a penalty to the cost function. These algorithms are implemented on routing grids which

are not uniform but take into account the design rules of the Process Design Kit (PDK) used for

the layout. They consider the minimum width and length for each metal layer along with the worst

case spacing between two metals side to side and end to end to create the grid pitch in the x and y-

axes.
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Thus, the Hanan grids are mapped onto the routing grids and if any edge or vertex is blocked

due to a certain blockage, then the vertices and edges surrounding the blockage is activated and is

translated to the Hanan grid to get a modified Hanan. Now, this is a new space that is input for the

Iterative 1-Steiner to find new points and move the original Steiner.
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4. CANDIDATE GENERATION

Candidate generation is a novel approach to routing in the PnR flow when compared to the

standard global and detailed router. After the stage of candidate decomposition, the Steiner points

are obtained. Now, this goes through various steps to find the final routing for each net as shown

in Figure 4.1.

Figure 4.1: Candidate Generation.
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4.1 Mapping Pins, Terminals and Steiner points to Routing Grids

This is the stage immediately after netlist decomposition. Here, the nets are mapped onto the

routing grids. Essentially, the minimal grid pitch is calculated for both vertical and horizontal

metal layers. It is also a common rule from most commercial PDKs that metal layers are strictly

used either for vertical or horizontal routing. Using the design rules of ASAP7 PDK (Arizona State

Predictive PDK) [29]as reference, it can be determined that metals M1, M3, M5 and M7 are used

for vertical routing and metals M2, M4, M6, M8 are used for horizontal routing.

The pins or Steiner points obtained need not coincide with the grid pitch. Hence, it is moved

onto the closest location and that node is selected as the source or node of each 2-pin segment

which can be used for Dijkstra’s algorithm. Also, the internal metal information need to be taken

into account and certain edges and or nodes are marked as forbidden such that it doesn’t cause

DRC violations.

4.2 Dijkstra’s Algorithm

Dijkstra’s algorithm is a very popular shortest path finding algorithm which can be used for

estimating routes. The routing grids are converted to a two dimensional graph G=(V,E) and the

region of each segment is extracted. The edges are weighted and for each candidate when the edge

is selected the weight is incremented and a penalty is added such that various options of candidates

can be generated for the ILP solver.

4.3 Obtaining Multiple Candidates

Based on the area of each segment and the rectilinear distance of the the source and destination

the number of candidates are calculated. In some cases, the distance between source and destina-

tion is a few grid points away and there can be only a few possible candidates possibly generated.

But there are also cases where there can be multiple candidates generated. Based on these values,

a simple estimation is conducted to get multiple Dijkstra solutions as candidates. These contain

information of the grid points being used and the direction of each the path to get information

regarding the number of bends as well as symmetry which are later necessary for the constraints.
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4.4 Annotation of Candidates

So far, the physical distance and metal information have been considered while finding the

candidate routes but the candidate themselves are yet to be annotated. The annotation occurs in

this stage. Based on the direction and grid point, the metal layer to be used can be found out

easily. Then the physical information of the metal is mapped onto the candidate. The following

information is added:

1 Length of metal based on coordinates.

2 Minimum width of metal as per design rule.

3 Vias at the vertex to connect to next metal pices.

4 Via enclosures as per design rule.

5 Additional vias and metal segments to complete connection to original location of pins and

Steiner points.

4.5 Candidate Selection

Once, the candidates are refined and translated they are introduced as inputs to an ILP solver

that needs to pick a candidate for each segment of the net that satisfies all the symmetry and

bend matching constraints as well as the overlap between different segments of nets. Once the

final selected candidates are obtained it can be written in GDS format to obtain an actual layout.

Though all the design rule constraints are met, it can be verified if the obtained layout is DRC clean

and if the LVS is matched. This is usually the last stage of a PnR flow that completes the routing.
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5. 3-PIN NET DECOMPOSITION

3-pin net decomposition is a novel variant to the original flow of netlist decomposition and

candidate generation. The main ideology for this form of decomposition is to take care of the

various routing constraints in the initial stages such that those segments of the nets are fixed. Also,

by including the blockage avoidance feature in this stage, the 3-pin segments will not require

candidates. Only the additional segments that are required to complete the routing of the net will

go through candidate generation. This makes all the symmetry and matching constraints easily

solvable and reduces the runtime and complexity of the flow drastically.

5.1 Methodology

This follows the original flow of generating routing grids followed by the iterative 1-Steiner

method of constructing the RSMT. Once, the RSMT is created, the blockage avoidance is im-

plemented and the constraints are added. If there is any matching or symmetry constraint with

another net then both nets are parallely solved. The constraints of both nets say N = (n1, n2) are

considered at the same time where n1 and n2 are the pair of nets in the netlist with a matching

constraint.

Based on the constraints the Steiner points are readjusted and the Hanan grid is modified. Now,

to avoid multiple 2-pin segments, the net region for 3-pin that is of minimal area and doesn’t fall

into the region of other nets are grouped as a 3-pin net and is fixed. This 3-pin net segment is

essentially pre-processed with all the constraints and other possible DRC violations, it is mapped

onto the routing grids, metal and via annotated and, stored as a final route.

Now, the remaining routing is completed and then checked if all the constraints are met. If

there is any issue with matching or possible overlap violation, then these 2-pin segments of the

nets are sent for candidate generation. Else, the segment is directly sent to the ILP solver as a

segment with just one candidate that is guaranteed to be picked. This naturally eliminates many

unnecessary iterations in candidate generation and multiple estimations of the routes in more than
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Figure 5.1: Simplified Flow when 3-pin decomposition is used.
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1 stages of the PnR flow.

Figure 5.2: Example of 3-pin decomposition.

As illustrated in Figure 5.2, the highlighted path is the Steiner tree constructed on the Hanan

grid. After iterative 1-Steiner construction, there are five 2-pin segments (A,S1), (B,S1), (S1,S2),

(C,S2) and (D,S2). The candidate generation tool needs to be run five times. After grouping into

3-pin groups (A,B,S1), (C,D,S2) and a remaining segment (S1,S2), the 3-pin groups are mapped

and fixed. The tool needs to be run at most once for (S1,S2) if the constraints are not satisfied.

The main advantage of this method is satisfying the main geometric and analog constraints that

are crucial to the circuits. There are six main constraints that are taken into consideration for this

method. They are:
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1 Critical Nets

2 Wirelength Matching

3 Mirror Symmetry

4 Orientation Matching

5 Bend Matching

6 Topology Matching

Each of these constraints are explained in detail in the next sections.

5.2 Critical Nets

This is a constraint usually given to nets that connect cascades or those that carry signals and

need to be minimized as much as possible. It is defined as CN where the key function is to minimize

wirelength above everything else. During netlist decomposition, it neglects all blockages and other

possible violations as it can simply use higher metal layers to achieve the shortest distance.

When the candidates are generated, there is very high penalty given to candidates with longer

wirelength. Another important consideration is that in the ILP solver stage, the shortest candi-

dates are given least cost and very high priority such that it is guaranteed to be picked unless it is

infeasible to do so.

5.3 Wirelength Matching

This is a constraint that is usually given to clocking circuits or heavily time sensitive nets. It

is represented as WM. The pair of nets need to have similar wirelengths with only 10 mismatch

allowed overall. It uses a wirelength balance between the pair. As each segment, is constructed

in the Steiner and offset is indicated for the other net which needs to be met. The objective is to

maintain the wirelength balance at 0 when there is no mismatch at all as shown in the example in

Figure 5.3.
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When the candidates are generated, the paths in the Dijkstra algorithm that match wirelength

are given reduced costs while the others are given a penalty. These candidates have a much higher

priority than the rest and are more probable to be picked. Usually, these nets have a much longer

wirelength than the minimal feasible wirelength.

Figure 5.3: Wirelength Matching.

5.4 Mirror Symmetry

This type of symmetry is usually for symmetric circuits with components such as differential

pairs. It is represented as MS. Here, the distance between each pin and the length of each segment

during decomposition is perfectly matched. The die is figuratively folded along the line of sym-

metry and the blockages and internal metal information is mapped onto each side. After this, the

net is decomposed and is replicated and flipped onto the other side to get matching pairs.

In the stage of candidate generation the similar process is followed to get symmetric candidate

pairs. In the candidate selection, if any candidate is not selected due to violations or overlaps, the

corresponding symmetry candidate is also eliminated to guarantee a feasible solution.
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Figure 5.4: Mirror symmetry of a 3-pin segment.

5.5 Bend Matching

This is a constraint to maintain the same amount of signal reflection in both the nets. It is

represented as BM. Here, the wirelength need not be minimized or equal. The only constraint is

that the number of bends in the overall net should be matched. Similar to wirelength matching,

a bend balance parameter is introduced. When a bend occurs in a net during decomposition, an

offset is indicated on the other net. In this case, thee is no relaxation. The bend balance must result

to a 0 for the condition to be satisfied.

In the candidate generation, the edges that are perpendicular to the current path have reduced

costs such that they are selected to equalize the number of bends for both nets. Similar to MS, the

pairs sent to ILP solver, but if a candidate for a net is eliminated its pair is eliminated only if no

other candidate of that same number of bends exist.

5.6 Orientation Matching

This is a constraint to maintain the same direction of signal in both the nets or parallel routing

like common mode inputs or outputs and opamps. It is represented as OM. Here, the wirelength

need not be minimized or equal. The only constraint is that the bends are in same direction.
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Figure 5.5: Bend Matching.

Similar to wirelength matching, a bend direction parameter is introduced. When a bend occurs in

a net during decomposition, an enum is introduced (0,1,2,3) to represent the four possible bends

which needs to be matched in the other net as well.

In the candidate generation, the edges are forced to move in a particular direction to match the

bend to satisfy the constraint. Similar to MS, the pairs sent to ILP solver, if any candidate is not

selected due to violations or overlaps, the corresponding matching candidate is also eliminated to

guarantee a feasible solution.

Figure 5.6: Orientation Matching.
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5.7 Topology Matching

This is a constraint to maintain the parasitics of the nets equivalently. This means that the same

type of metal layers need to be used which is crucial for electrical and RC delay sensitive circuits.

It is represented as TM. Here, the wirelength needs to be equal with some relaxation similar to

WM. The other constraint is that the metal segments are matched. Similar to wirelength matching,

a metal parameter is introduced. When a routing grid is used, the same layer of grid is used for its

counterpart pair. This is done to ensure that the same metal layers will be used.

In the candidate generation, the edges of other metal layers are set to infinity which forces

the algorithm to use the same metal layer. Similar to MS, the pairs sent to ILP solver, if any

candidate is not selected due to violations or overlaps, the corresponding matching candidate is

also eliminated to guarantee a feasible solution.
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6. EXPERIMENTAL RESULTS

For the implementation of this methodology, a Linux environment was used and run on the

servers. The basic design flow of placement and routing was taken from the Analog Layouts

using Intelligently Generated Netlists (ALIGN) project of the IDEA challenge by DARPA. The

key idea of input files were created based on GSRC benchmarks to test. Over 115 nets were tested

for different constraints and blockages. As a comparative study for the 3-pin net decomposition,

Steiner tree softwares FLUTE[16] and FastSteinerUM[20] were used. LPSolve software was used

as the ILP solver in the candidate selection stage of the design flow.

Based on the design rules of ASAP7 PDK, the following values are used to obtain grid pitch

for each metal layer using the equation.

GridP itch =MinWidth+Max {MinSpacingsidetoside,MinSpacingT iptoT ip,MinV iaSpacing}

+ 2× V iaenclosure

Metal Direction of Route Grid Pitch
M1 Vertical 50
M2 Horizontal 50
M3 Vertical 100
M4 Horizontal 100
M5 Vertical 150
M6 Horizontal 150
M7 Vertical 200
M8 Horizontal 200

Table 6.1: Grid Pitch for each Layer

Based on these calculations, eight layers of routing grid was used for routing tracks. The 3-
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pin net decomposition method with candidate generation was compared with the regular 2-pin net

decomposition method. They are represented as 3P Decompose and 2P Decompose in the various

results obtained.

6.1 3-pin Decomposition vs 2-pin Decomposition

For the test cases, multi-pin nets were used ranging from 3 pins to as high as 12 pin nets.

The test cases also included different bends, wirelengths and blockages in various combinations

to verify all the possible constraints. Based on the final candidates obtained the following results

were obtained. One of the key objective of routing is the minimization of wirelength. Table 6.2.

Net Degree 3P Decompose 2P Decompose
3 333.33 372.4
4 564.8 588.27
5 590 612.5
6 645.3 649.67
7+ 780.25 841.25

Table 6.2: Average Wirelength for 3P and 2P decompose for various net degrees

represents the average Wirelength for 3P and 2P decompose for various net degrees over the 115

test cases. It can be generally observed that for all degrees of nets, the average wirelength is lesser

for 3P decompose when compared to 2P decompose as the constraints are taken into account

and optimally fixed as 3-pin segments early on. This has a more evident impact for lower net

degrees that have lesser rerouting segments such as nets with degree 3 and 4. This minimization

of wirelength is less evident as the degree increases. This can also be observed in Figure 6.1. For

very large net degrees of 7+ and extreme cases, the 3P decompose provides a better solution for

wirelength minimization.

Another key observation that can be made is the number of Steiner points generated which is

an important metric. There are multiple iterations in generating a Steiner point. The computations

increase marginally in the whole flow when Steiner points increase. The results as shown in Figure
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Figure 6.1: Average Wirelength for 3P and 2P decompose for various net degrees.

6.2 represent that the 3P decompose creates more Steiner points in average when compared to 2P

decompose for various net degrees. This is because the 3P decompose method tries to solve con-

straints such as bend matching and symmetry while decomposing along with blockage avoidance.

There are many cases where by choosing a Steiner point, there is a more rerouting to avoid block-

ages and to complete connections. This implies that the matching constraints cannot always be met

and the wirelength on the whole net may not be minimized. In such cases, generating a sub opti-

mal Steiner point along with another point solves the problem. The trade off to meeting all these

constraints is the increase in computations which does not have a huge impact on performance of

the router as the number of blocks and nets in analog circuits are very less.

As the bend and wirelength are matched and minimized much more in 3P decompose when

compared to 2P decompose, the results have shown that lesser metal layers are used in 3P decom-

pose for various net degrees. This proves to be an advantage as this minimizes the number of vias

used that translates to lesser DRC errors. Also, the RC delay will be reduced as the lower metals

layers have lesser resistance that higher metal layers. Generally, in industrial tools the higher metal

layers are preferred to be exclusive for Shielding and Power routing which can be easily achieved

with the 3P decompose method.

The main advantage of the 3P decompose method is that it reduces the number of segments
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Figure 6.2: Average Number of Steiner Points generated for 3P and 2P decompose for various net
degrees.

Figure 6.3: Average Number of Metal Layers used for 3P and 2P decompose for various net
degrees.

Figure 6.4: Average Number of times the Candidate Generation tool was used for 3P and 2P
decompose for various net degrees.
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Net Degree 3P Decompose 2P Decompose
3 0.35 1.93
4 1.6 4.66
5 2.15 7.18
6 2.46 8.05
7+ 2.95 10.33

Table 6.3: Average Number of times the Candidate Generation tool was used for 3P and 2P de-
compose for various net degrees

that the net is decomposed to and fixes the 3-pin segments by considering all net constraints in the

decomposition stage itself. By doing this, very few segments that connect the 3-pin segments need

to be rerouted. Only these segments require the Candidate generation tool. Based on the results in

Table 6.3, it is very clear that the Candidate Generation tool is called lesser in 3P decompose than

2P decompose as expected. By observing the trend in Figure 6.4, it can be said that instead of a

linear increase in Candidate Generation usage with increase in degree as seen for 2P decompose

the usage is almost constant with very little increase as the net degree increases. From this the main

inference that can be made is that the number of computations is drastically reduced by eliminating

the usage of the Candidate generation tool for many segments.
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7. CONCLUSION AND FUTURE SCOPE

The 3-pin net decomposition and candidate generation is a novel approach to tackling the

problems of Analog IC routing. By taking advantage of the analog domain and its small scale

of netlists, Netlist Decomposition, Candidate Generation and Selection is a simple yet effective

approach when compared to Global and Detailed routing. 3-pin net decomposition is a smart

approximation that considers both blockages and constraints on nets to pre-process them while

constructing the Steiner tree. Experimental results show that this method significantly reduces

computations while minimizing the wire length and accurately satisfying the unique constraints of

analog circuits.

This work has scope for other variations as well. This work considers only signal routing with

critical net constraints and matching, symmetry and bend constraints for pairs. Work can be done

to include shielding constraints and power routing as well. Also, another key factor is that analog

blocks are of mixed sizes and hence a minimal grid pitch will create huge grids and increase the

complexity exponentially. Work can be done to recognize the sizing constraints and create dynamic

routing grids. Another variation that can be considered is multi-contact routing for nets with large

pins.
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