
RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG

MASTER THESIS

Platform to Assist Medical Experts in
Training, Application, and Control of

Machine Learning Models Using Patient
Data from a Clinical Information System

Author:
Matthias GREINER

Supervisors:
Prof. Barbara PAECH

Prof. Artur ANDRZEJAK

Anja KLEEBAUM

PD Dr. Klaus MAIER-HEIN

Dr. Marco NOLDEN

Jasmin METZGER

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Software Engineering Group
Applied Computer Science

2019-08-20

https://www.uni-heidelberg.de/
https://se.ifi.uni-heidelberg.de/home.html
https://www.uni-heidelberg.de

iii

Declaration of Authorship
I, Matthias GREINER, declare that this thesis titled, “Platform to Assist Medical
Experts in Training, Application, and Control of Machine Learning Models Using
Patient Data from a Clinical Information System” and the work presented in it are
my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research
degree at this University.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed
myself.

Signed:

Date:

v

Abstract
Platform to Assist Medical Experts in Training, Application, and Control of
Machine Learning Models Using Patient Data from a Clinical Information

System

In recent years, clinical data scientists achieved major breakthroughs advancing
machine learning models for the medical domain, which have great potential assist-
ing medical experts. Machine learning models can be leveraged to assist medical
experts in tasks such as analyzing and diagnosing patient data, for example, from
computed tomography scans. However, it is a challenge to translate the latest ad-
vancements in academic research fields such as computer sciences and physics into
clinical practice. For this purpose, clinical data scientists and medical experts need
to closely collaborate. This thesis tackles challenges of accessibility and usability of
state-of-the-art machine learning models as well as designing a scalable computing
architecture. Hence, conceptual ideas of possible strategies, as well as a prototype of
such a machine learning platform, are presented.

A systematic literature review was conducted on the current approaches to create
medical machine learning platforms, the management of machine learning models,
and the version management of large data sets. Afterward, the functional and non-
functional requirements of the new machine learning platform were elicited as part
of the requirements analysis. Two streamlined workflows for clinical data scientists
and medical experts were derived from the requirement analysis. The workflow for
the clinical data scientists includes steps to define, train, and share machine learning
methods, including pre- and postprocessing modules, and management of data sets.
Medical experts are able to analyze patient data using pre-defined machine learning
methods. Building on the result of these analyses, the architecture of the platform was
derived. The architecture consists of a scalable infrastructure stack, a lightweight and
easy-to-use web interface, as well as a backend component to provide the required
functionalities. The final design decisions solve the issue of efficiently standardizing,
parallelizing, and applying machine learning workflows within a scalable computing
infrastructure.

The proposed platform was evaluated with 22 participants, consisting of clinical
data scientists (N=12) and medical experts (N=10). Both groups were asked to rate
specific workflows of the platform, as well as the platform as a whole, and to provide
additional ideas and feedback. 92% of the medical experts and 90% of the clinical data
scientists rated their overall impression of the platform as very good. Furthermore,
medical experts and clinical data scientists strongly agreed that the platform facilitates
method development and collaborations with 92% and 90%, respectively.

The conducted expert survey suggests that the here proposed platform could
be used to develop, optimize, and apply machine learning methods in the medical
domain and beyond, thereby easing the collaboration between medical experts and
clinical data scientists.
The prototypical implementation is published on GitHub, accessible using the follow-
ing link: https://github.com/magreiner/MMLP.

https://github.com/magreiner/MMLP

vi

Zusammenfassung:

Klinische Datenwissenschaftler haben in den letzten Jahren große Durchbrüche im
Bereich des medizinischen maschinellen Lernens erzielen können. Diese Durchbrüche
haben großes Potential, Mediziner in ihrer Arbeit zu unterstützen. Beispielsweise kön-
nen Algorithmen des maschinellen Lernens genutzt werden, um Mediziner bei der
Analyse von Patientendaten zu unterstützen. Eine Beispielanwendung ist die Ana-
lyse von computertomographischen Bilddaten. Jedoch ist es eine Herausforderung,
den neusten Stand der akademischen Forschung in Natur- und Computerwissen-
schaften in die klinische Praxis zu überführen; eine enge Zusammenarbeit zwischen
Datenwissenschaftlern und Medizinern ist daher essentiell. Das Ziel dieser Arbeit ist
es, die Entwicklung, Zugänglichkeit und Anwendbarkeit modernster Algorithmen
des maschinellen Lernens zu verbessern. Dafür wird in dieser Arbeit eine Plattform
entworfen, die Mediziner und Datenwissenschaftler im Bereich des maschinellen
Lernens im klinischen Kontext unterstützt. In der Arbeit werden Anforderungen,
mögliche Lösungsansätze, sowie ein Prototyp einer solchen Plattform vorgestellt.

Als Grundlage wurde eine systematische Literaturrecherche zu aktuellen Lö-
sungsansätzen durchgeführt. Dabei werden Strategien zur Erstellung einer solchen
Plattform, zur Verwaltung von Algorithmen des maschinellen Lernens, sowie für
die Versionierung und Datenverwaltung von sehr großen Datensätzen untersucht.
Anschließend werden im Rahmen der Anforderungsanalyse funktionale und nicht-
funktionale Anforderungen an die Plattform ermittelt. Der Arbeitsablauf eines klini-
schen Datenwissenschaftlers umfasst das Definieren, Trainieren, und das Teilen der
Algorithmen des Maschinellen Lernens. Wohingegen der Fokus des Arbeitsablaufs
für Mediziner darin liegt, neue Patientendaten mithilfe der zuvor erstellen Algo-
rithmen in der Plattform zu analysieren. Die aus den Anforderungen abgeleitete
Architektur der Plattform beinhaltet eine skalierbare Infrastruktur, eine leichtge-
wichtige und benutzerfreundliche Web-Schnittstelle, sowie ein Backend, welches die
Funktionen der Plattform umsetzt.

Die vorgeschlagene Plattform wurde mit 22 Teilnehmern evaluiert, die sich aus
klinischen Datenwissenschaftlern (N=12) und medizinischen Experten (N=10) zusam-
mensetzten. Die Teilnehmer wurden gebeten, sowohl bestimmte Prozesse innerhalb
der Plattform, als auch die Plattform als Ganzes zu bewerten. Des Weiteren wur-
den die Teilnehmer gebeten weitere Verbesserungsvorschläge, Rückmeldungen und
Anmerkungen zu geben. 92% der Mediziner und 90% der Datenwissenschaftler be-
werteten ihren Gesamteindruck der Plattform als sehr gut. Darüber hinaus äußerten
92% der Mediziner und 90% der Datenwissenschaftler eine starke Zustimmung zu
der Aussage, dass die Plattform die Methodenentwicklung und Zusammenarbeit
erleichtert.

Die durchgeführte Evaluierung legt nahe, dass die in dieser Arbeit erstellte Platt-
form zur Entwicklung, Optimierung und Anwendung von Algorithmen des maschi-
nellen Lernens im medizinischen Kontext verwendet werden und somit insbesondere
die Zusammenarbeit zwischen Datenwissenschaftlern und Medizinern erleichtern
könnte.
Die prototypische Implementierung wurde auf GitHub, unter dem Link:
https://github.com/magreiner/MMLP, veröffentlicht.

https://github.com/magreiner/MMLP

vii

ix

Acknowledgements
Throughout the writing of my master thesis, I have received a great deal of support
and assistance.

Foremost I would like to thank my supervisors Prof. B. Paech, Prof. A. Andrzejak,
Dr. K. Maier-Hein, and Dr. M. Nolden, who spend much effort to make it possible to
write a thesis in the medical context of the German Cancer Research Center Heidel-
berg (DKFZ).

I would especially like to acknowledge my direct contacts Anja Kleebaum, Jasmin
Metzger, and Dr. Marco Nolden, for all the hours they invested in me and my thesis,
always trying to answer my questions quickly, and all the interesting meetings we
had. Thank you for listening to my ideas, and all the advice and support you gave
me to conduct my research, I was able to learn a lot about academic and scientific
work.

In addition, I would like to give a special thank you to my friends Venelin Petkov,
Bünyamin Pekdemir, and Dr. Mohammadreza Ghanavati, for providing me with
exceptional technical and emotional support. Your support enabled me to achieve
more powerful and sophisticated results.

Further, I want to thank my colleagues from the DKFZ, especially Gregor Ramien,
Sebastian Gruber, Farhan Rasheed, Hafiz Fahad, Tobias Stein, and Silvia Seidlitz.
Thank you for all the support, especially during more difficult times, and the great
time we had together.

I am also grateful to each of the various testers of my platform and the 22 participants
of my evaluation. I really appreciate that you spend so much time to support my
thesis, even when your schedule was already very tight. Thank you especially for all
the ideas and feedback you provided, it helped me a lot to improve my results.

Besides I want to thank the people working in the background, such as the admin-
istrative and technical staff from the University Heidelberg, especially Frau Anke
Sopka, and from the DKFZ, especially Michaela Gelz, Janina Dunning, and Stefanie
Strzysch.

Finally, I would like to express my very profound gratitude to my family for all their
unfailing support, wise counsel, and sympathetic ear throughout my studies and my
life in general. Especially while writing the thesis it helped me a lot to always have
someone to talk to and find solutions I did not see immediately.

xi

Contents

Declaration of Authorship iii

Abstract v

Zusammenfassung vi

Acknowledgements ix

Table of Contents xii

List of Figures xiii

List of Tables xiv

1 Introduction 1
1.1 Motivation and Domain-Specific Challenges 1
1.2 Research Methodology . 2
1.3 Goals and Contributions . 3
1.4 Outline . 4

2 Background 5
2.1 Program Isolation Strategies . 5
2.2 Cloud Compute Cluster Fundamentals 7
2.3 Cloud-Native Services Approach . 10
2.4 Machine Learning . 11

3 Literature Research 13
3.1 Methodology . 13
3.2 Literature Results . 16
3.3 Literature Synthesis . 24
3.4 Takeaway . 31

4 Requirements Analysis 33
4.1 Requirements Elicitation . 33
4.2 Domain Data Description . 34
4.3 Primary Personas . 35
4.4 Functional Requirements . 37
4.5 Single-User Workflow . 53
4.6 Multi-User Collaboration Workflow . 55
4.7 Non-Functional Requirements . 58
4.8 User-Interface Structure Design . 61

xii

4.9 Takeaway . 64

5 Design and Implementation 67
5.1 Overview . 67
5.2 Frontend . 68
5.3 Backend . 71
5.4 Computation Environment . 73
5.5 Infrastructure Stack . 77

6 Quality Assurance 81
6.1 Quality Assurance during Development 82
6.2 Backend Development and Testing . 83
6.3 Frontend Development and Testing . 84

7 Evaluation 87
7.1 Evaluation Strategy . 87
7.2 Results and Discussion . 91
7.3 Threats to Validity . 97

8 Conclusion and Outlook 99
8.1 Conclusion . 99
8.2 Outlook . 100

A Appendix: Evaluation Questionnaires 105

B Appendix: Detailed Evaluation Feedback 111
B.1 Additional Feedback from Medical Experts 111
B.2 Additional Feedback from Clinical Data Scientist 113

C Appendix: Further Details of Design and Implementation 117
C.1 Data Sets . 117
C.2 Machine Learning Models and Snapshots 118
C.3 Machine Learning Methods and Results 120

Bibliography 123

xiii

List of Figures

2.1 Overview over different virtualization concepts 6
2.2 Generic cloud computing cluster architecture 8

3.1 Systematic literature research results, summary graph 20

4.1 Domain data diagram . 35
4.2 Sub-Tasks: Persona centered overview 46
4.3 Activity diagram for the medical expert 53
4.4 Activity diagram for the clinical data scientist 54
4.5 Multi-user collaboration workflow design 58
4.6 User interface structure diagram for the clinical data scientist 61
4.7 User interface structure diagram for model training 62
4.8 User interface structure diagram for the medical expert 63
4.9 User interface structure diagram for the method application 63

5.1 Main components of the platform . 68
5.2 Frontend: Generic component diagram 69
5.3 Frontend sample screenshot . 71
5.4 Backend: Generic component diagram 72
5.5 Activity diagram: Model training . 74
5.6 Activity diagram: Method application 75
5.7 Standardized computation environment for model training 76
5.8 Standardized computation environment for method application 76
5.9 Proposed infrastructure stack . 78
5.10 Envisioned architecture of fully deployed platform 79
5.11 Platform deployment diagram . 80

7.1 Clinical data scientist: Evaluation platform useability and purpose . . 92
7.2 Clinical data scientist: Evaluation platform overall rating 93
7.3 Medical expert: Evaluation platform useability and purpose 95
7.4 Medical expert: Evaluation platform overall rating 96

8.1 Multi-institute method development life-cycle 101

xiv

List of Tables

1.1 Goals of this thesis . 3
1.2 Design goals required to achieve goal GO-2 3

3.1 Research questions for systematic literature research 13
3.2 Derived search queries for the research questions 15
3.3 Criteria for publications to be considered relevant 15
3.4 Digital library search result-precision . 16
3.5 Backward and forward snowballing results 17
3.6 Systematic literature research results . 18
3.7 Comparison of most relevant publications 21
3.8 Literature synthesis: Research question 1 27
3.9 Literature synthesis: Research question 2 29
3.10 Literature synthesis: Research question 3 31

4.1 Persona: Medical expert . 36
4.2 Persona: Clinical data scientist . 37
4.3 Description of user-tasks . 38
4.4 Description of sub-tasks categories . 39
4.5 Sub-Tasks: Data set management . 40
4.6 Sub-Tasks: Model management . 41
4.7 Sub-Tasks: Method management . 43
4.8 Sub-Tasks: Computation environment management 43
4.9 System function: List data sets . 47
4.10 System function: Import data set . 47
4.11 System function: Update data set . 47
4.12 System function: Edit data set metadata 47
4.13 System function: Remove data set . 47
4.14 System function: List models . 48
4.15 System function: Import model . 48
4.16 System function: Update model . 48
4.17 System function: Edit model metadata 49
4.18 System function: Remove model . 49
4.19 System function: List model snapshots 49
4.20 System function: Remove snapshot . 49
4.21 System function: List methods . 50
4.22 System function: Create method . 50
4.23 System function: Remove method . 50
4.24 System function: Import patient data . 50
4.25 System function: Subscribe to process updates 51

xv

4.26 System function: Automated method application 51
4.27 System function: Monitor and terminate processes 51
4.28 System function: Show and offer download of results 51
4.29 System function: Perform model training 52
4.30 System function: Track progress . 52
4.31 System function: Customize processing pipeline 52
4.32 System function: Initialize training using model snapshot 52
4.33 System function: Customize model hyperparameters 52
4.34 NFR: Functional compatibility . 59
4.35 NFR: Functional completeness . 59
4.36 NFR: Functional correctness . 59
4.37 NFR: Time-behavior . 59
4.38 NFR: Interoperability . 60
4.39 NFR: User-interface . 60
4.40 NFR: Fault tolerance . 60
4.41 NFR: Modularity . 60
4.42 NFR: Reusability . 60
4.43 Requirements analysis: Requirements overview 64

6.1 QA: Cyclomatic complexity classes . 84
6.2 QA: Backend code metrics . 84
6.3 QA: Frontend code metrics . 85

7.1 Governing evaluation questions . 87

1

Chapter 1

Introduction

1.1 Motivation and Domain-Specific Challenges

Machine learning models can be leveraged to assist medical experts in various tasks
such as analyzing and diagnosing patient-related data such as images, video, audio,
and text. These models are used to teach a computer to iteratively improve on a
specific set of tasks, such as detecting areas of interest in a large number of patient
images. The results are compared with the real area of interest, the ground truth
annotation created by a medical professional. The differences between the output of
the models and the ground truth annotation are used to update the models, and the
entire process is repeated until the prediction accuracy is sufficient. In the medical
field, machine learning models are, for example, used for segmentation of patient
images. Segmentation approaches are able to predict if a tumor presence and location
in a patient image.

Working with patient data requires a large amount of storage and computation
power. Therefore, distributed cloud-native computing environments such as Ku-
bernetes [18] and Apache Mesos [42] are frequently leveraged. Furthermore, they
provide medical experts with the ability to scale compute resources as needed. These
environments can manage application containers such as Linux Containers [99] and
Docker [16] across multiple computing machines. Application containers enable the
use of various tools such as machine learning and services required to operate the ma-
chine learning platform. Such service containers are utilized to add new components
to the platform. Since multiple clinical data scientists may collaborate in developing
state-of-the-art custom machine learning solutions, the concept should allow parallel
work, training, and inference of machine learning models.

The application of state-of-the-art machine learning models in the medical field
goes along with significant challenges. Sometimes it can take a long time before
machine learning models are applied in the clinical research environment. One
explanation for this could be that there are no simple ways to share these models.
Further, the medical expert may feel overwhelmed by technical details while trying to
apply state-of-the-art machine learning models on their patient data. The clinical data
scientist, who is not a domain expert, may work in the meantime on other projects.
Therefore, the developed machine learning model is not maintained or finalized, as
it is not applied in medical practice. On the other side, the medical expert may not
know that new models exist that could help with her work. If later they want to use
the model, the developer might not be available anymore. Much knowledge could
be lost, which makes it much more difficult to reactivate the model, especially if the

2 Chapter 1. Introduction

hardware and software versions changed and the source code needs to be rewritten
or the model needs to be re-trained.

In summary, extensive knowledge in the machine learning domain and the med-
ical area is required to achieve the meaningful application of models, making col-
laboration between experts in different fields essential. Medical experts have little
knowledge of how to utilize the models created by the clinical data scientist. Since
data scientists are focussing on solving crucial problems, they greatly benefit from the
input of the first-hand experience from the medical domain, thus nurturing tailored
solutions. Therefore, both parties would greatly benefit from a standardized platform
to support developing and applying models, enabling the broad application.

1.2 Research Methodology

In this thesis, we aim to follow the approach described in the book Design Science
Methodology for Information Systems and Software Engineering [93]. To solve the
problem at hand, we divide the tasks into the following four parts:

1.2.1 Part 1: Research Problem

In the first part, the research problem is analyzed. The research problem of this thesis
is the design of a platform to assist medical experts in training, application, and
control of machine learning models using patient data from a clinical information
system.

1.2.2 Part 2: Problem Investigation

In the second part, we aim to learn more about the state-of-the-art and state-of-the-
practice of machine learning in the medical context. The resulting research questions
from the first part are investigated in two steps. In the first step, we conducted an
extensive literature review, in which we searched multiple scientific databases to find
matching publications. On these publications, we applied snowballing techniques to
additionally find and analyze related research literature in this field. To further gain
information about the medical context, experts in the field and potential users of the
potential platform were interviewed, using contextual and one-on-one interviews.

1.2.3 Part 3: Treatment Design

Based on the knowledge collected in the problem investigation stage, we finalized
the requirements analysis. We then propose a design and a prototype of a platform to
tackle these requirements.

1.2.4 Part 4: Treatment Validation

In the last part, we ask potential users to evaluate the proposed platform. This
completes the design cycle, and we discuss the results of the evaluation, with the
focus on how good our proposed platform, i.e. the treatment design, solved the
researched problem solved the beforehand introduced researched problem. This
could be the starting point of a new design cycle to improve the platform further.

1.3. Goals and Contributions 3

1.3 Goals and Contributions

The main goals of the thesis are summarized in Table 1.1. Goal GO-2 is more precisely
specified by defining the required design goals shown in Table 1.2 to achieve it. The

TABLE 1.1: Goals of this thesis

Goal Description

GO-1 Overview of state-of-the-art by conducting a systematic literature review
and overview of state-of-the-practice by performing interviews and field
studies

GO-2 Requirements analysis, design and implementation of a prototypical medi-
cal machine learning platform

GO-3 Evaluation of the platform

TABLE 1.2: Design goals required to achieve goal GO-2

Design Goals Description

DG-1 Support for viewing, storing, sharing, importing, and training of
machine learning models

DG-2 Support for analyzing patient data using machine learning meth-
ods

DG-3 Storage service for various types of custom data sets
DG-4 Export of newly generated predictions and training results
DG-5 Integrability into a medical distributed computing environment

overall goal is to simplify and therefore, further integrate the application of models
into the daily work of medical experts and clinical data scientists. The first goal GO-1
is to perform a systematic literature research to examine current state-of-the-art and
state-of-the-practice in the context of a medical machine leaning platform. The second
goal GO-2, yields a requirements analysis, a design, and a prototypical platform as
the treatment described in Section 1.2. In addition, the approach should be designed
in a way that automates many of the necessary steps of machine learning and works
in an iterative fashion, where models are trained on annotated medical data and then
inferred on non-annotated medical data. Finally, the third goal GO-3 is to evaluate
and discuss the envisioned platform.

The major contributions of this thesis are the thorough accomplishment of before-
hand mentioned goals. Additionally, we plan to open-source the thesis and additional
resources to allow the community to use and further develop the proposed platform.

The novel contribution of the platform is the combined ability to provide a compre-
hensive feature set with almost no restrictions, in, e.g., machine learning frameworks
or data types, while offering a standardized way to share models as a packaged,
out-of-the-box functional method within an easy-to-use webinterface. Notably, the
frontend, backend, computing environment, and infrastructure stack are designed
with scalability in mind, resulting in a future-proof architecture of core components
of the platform.

4 Chapter 1. Introduction

Therefore, the proposed platform can provide the foundation for a productive
collaboration hub for data scientists and medical experts.

1.4 Outline

This thesis is structured in the following way: The Introduction chapter describes the
motivation of this work, the goals, the research methodology, and the outline of this
thesis. In the Background chapter, the context of this work, i.e., machine learning
techniques, as well as infrastructure and cloud-native development approaches, are
explained. It is followed by the Literature Research chapter, which reviews current
approaches to apply machine learning techniques in the medical field and seeking
answers for multiple research questions. Next the Requirements Analysis chapter
defines which requirements are needed for the envisioned platform. After defining
the requirements, the Design and Implementation chapter presents the envisioned
platform, its components, and interfaces. Within the Quality Assurance chapter, a
plan on how to ensure the quality of the platform is focussed. The Evaluation chapter
explicate how this work is evaluated and discusses the results. In the last chapter,
Conclusion and Future Directions, the content of this thesis and how this work is
evaluated and discusses the results is summarized.

5

Chapter 2

Background

The background chapter describes the theoretical concepts on which this thesis builds
upon. Section 2.1 deals with differences between strategies to isolate applications
running on a single machine. Three different isolation strategies are discussed to
support the design of a larger platform. The larger platform builds on a (cloud)
compute cluster, which is explained in detail in Section 2.2. The way of designing
cloud-native applications and services to work efficiently on larger platforms is
explained in Section 2.3. This thesis aims to virtualize machine learning approaches.
Therefore, machine learning is introduced in Section 2.4.

2.1 Program Isolation Strategies

Program isolation is necessary to ensure that multiple programs are able to run on
a machine simultaneously, without interfering with each other. There are various
methods for isolating programs on a machine [82]. Non-virtualized environments
provide direct access to the underlying hardware, which is often used in traditional
setups, as shown in Figure 2.1(a). This may be a significant advantage for applications
requiring direct hardware access but poses lots of challenges such as scalability,
handling of resource heterogeneity, incompatible dependencies, efficiency, and cost
for diverse applications.

2.1.1 Hardware-Level Virtualization (Hypervisor)

Another approach is to use hardware-level virtualization to encapsulate applications
into separate virtual machines. Hardware-Level virtualization adds an additional
hardware abstraction layer, which allows running multiple virtual operating systems
on a single physical machine. Each virtual machine has its own virtual hardware
resources such as CPU, memory, storage, as well as networking and is completely
isolated from other virtual machines. Further advantages are better scalability and
higher efficiency, which leads to lower cost of the system.

Virtualization was introduced in the early ’70s to improve sharing and utilization
of expensive resources. The core of this technique is an abstraction layer, the hypervi-
sor, which is added on top of the bare metal hardware (or alternatively on top of the
host operating system) and handles the connection between the hardware and the
virtual machines, also known as full hardware virtualization. With the hypervisor,
it is possible to run multiple independent operating systems (guests) on the same

6 Chapter 2. Background

FIGURE 2.1: Overview over different virtualization concepts

physical machine (host) without any interference between them [61]. The architecture
of full hardware virtualization can be seen in Figure 2.1(b).

When using hardware virtualization, the guest operating system is encapsulated
in a virtual machine (VM) on the host machine. It defines the virtual hardware the
guest system can use such as CPU cores, amount of memory, and network interfaces.
This may increase efficiency since virtual machines can share the resources from a
host. Virtual machines support a lot of additional features compared to physical
machines [61], which are described in the following paragraphs.

Consolidation: Various services running on different operating systems can each be
installed inside a virtual machine and run on the same physical machine. With
multiple services running on the same machine, resources such as CPU cores,
memory, and network can be multiplexed and shared between them. This is a
significant advantage assuming that different services on a host will not show
peak usage of the same resource at the same time.

Isolation: Each virtual machine is independent of other virtual machines, even from
those on the same host. It allows increased reliability and availability for
multiple services, since a problem in one virtual machine may not affect other
virtual machines.

Virtual Environment: The state of the virtual machine can be exported to a file
(called snapshot), even during runtime. It can be used to, for example, debug
a service, without having to use a separate development machine, since the
virtual environment can be replicated and used multiple times This feature is
especially useful to archive the changes made during runtime, for example,
archiving the results of a machine learning model training pipeline.

2.2. Cloud Compute Cluster Fundamentals 7

Scalability: Changing of service demand often requires to adjust the allocated re-
sources to ensure an excellent service experience and effective resource utiliza-
tion.

Independence: Since each virtual machine is defined via software, it can run on any
physical machine supporting virtualization.

Unfortunately, there are still many drawbacks in terms of application performance,
latency, portability, and life-cycle management [32]. These drawbacks are especially
severe for compute-intensive tasks such as training of machine learning models.

2.1.2 System-Level Virtualization (Application Container)

Lightweight process encapsulation (containerization) tackles the issues mentioned
above. Instead of running the application inside its own virtual operating system,
only the application itself is deployed, inside its own virtual environment, sharing
the host operating system kernel. Similar ideas were already implemented in Solaris
Zones, BSD jails, AIX Workload Partitions, and Linux-based containers projects [77].
The support for namespaces (process isolation) and cgroups (resource management)
were added to the Linux Kernel in version 3.8 (February 2013), which made it possible
to encapsulate processes on a system-level instead of using fully virtualized operating
systems.

This approach was developed further to application containers, which allows en-
capsulating an entire application, including its dependencies [85]. Instead of running
a full operating system inside each virtual machine, which decreases performance
and increases resource usage, containers can access the host’s kernel directly. Addi-
tionally, libraries which are needed by multiple applications can be shared globally,
instead of replicating them into each virtual environment.

These changes result in much faster start-up times of applications, add nearly
no overhead on processing and storage usage and are more portable, compared to
virtual machines. The architecture of software-level virtualization using application
containers can be seen in Figure 2.1(c).

The most common solutions are Linux Containers [77] (LXC, set of userspace tools
and utilities – used by Docker and LXD [82]), OpenVZ [99, 52] (used for providing
host and cloud services), and Linux-VServer (soft partitioning concept based on
Security Contexts) [85].

2.2 Cloud Compute Cluster Fundamentals

Machine learning-related tasks may require substantial computing resources, exceed-
ing the processing power of a single workstation and GPU. Therefore, it may be
advantageous to use a scalable compute cluster as a foundation for the environment
platform. A compute cluster infrastructure consists of multiple workstations, con-
nected to accumulate the available resources for larger tasks, as shown in Figure 2.2.
The infrastructure can be installed locally, dynamically rented from a cloud provider,
or partly installed locally combined with resources from a cloud provider. Fully run-
ning the computing environment in the cloud is the trending solution since it offers

8 Chapter 2. Background

much more possibilities, higher efficiency, and lower cost, but also faces significant
challenges in terms of data security and privacy, especially in the medical domain.

Infrastructure as a Service (IaaS) is the most basic service model in the cloud. It
does offer a virtual place, where the tenant can freely select and configure
IT resources of nearly any kind such as computing nodes, networking parts,
security policies, other services such as databases and elastic storage. The
provider will only provide the services / hardware selected without managing
or regulating the usage.

Compute Cluster as a Service (CaaS) is a service managed by the cloud provider
which offers a fully operational compute cluster. The tenant has access to the
managing console and tailors the cluster configuration to his needs. Since the
cloud provider manages the cluster, the user has much fewer customization
options but does not have to spend time on updating and maintaining the
cluster itself.

The most popular cloud providers to offer IaaS and CaaS are Amazon Web Ser-
vices [96], Google Cloud Platform [54] and Microsoft Azure [94].

FIGURE 2.2: Generic cloud computing cluster architecture

2.2.1 Provisioning the Infrastructure

The open-source cloud operating system OpenStack [79] is frequently used for on-
premises cloud offerings. OpenStack provides cloud computing functionalities on
top of large pools of commodity hardware such as compute resources, GPUs, storage,
and networking. It was founded in July 2010 by Rackspace Hosting and NASA and
can now be seen as the de-facto open standard cloud computing platform.

2.2. Cloud Compute Cluster Fundamentals 9

2.2.2 Base Operating System

The first actual steps to create a cluster is to set up the single nodes and prepare them
to be integrated into a larger system. Within the single node, a specialized operating
system is used, which should be as minimal and resource-friendly as possible. This
is essential because the system is always running and lays the groundwork for all
functionality of the cluster. The base operating system should be battle-proven
(really stable), provide a safe way to apply updates fast, include a fail-over strategy,
consumes a minimal amount of resources and increased security for task isolation
and protect against all kinds of attacks.

Therefore a modern, lightweight operating system is beneficial, which is de-
signed primarily for running containerized applications as a base of a large cluster.
CoreOS [66] is such a base operating system. CoreOS is a small Linux system that only
includes a minimal set of tools and the essential tools to run Docker [16] containers.
There is no package manager since the applications can be installed by downloading
and running a container. The system size and resource consumption profits from the
minimal system, so that the running applications show increased performance.

2.2.3 Distributed Operating System

The basic operating system manages one single node and its resources. To connect the
nodes and aggregate over their resources, a distributed operating system is needed.
Two of the most popular ones are Kubernetes [13] and Apache Mesos [42, 46], which
are currently used by a lot of big companies such as Google, Twitter, and Facebook.

Kubernetes runs on top of the base operating system of each node and integrates
many features into a large cluster managing platform. It adds a layer on top of the
nodes, which combines their resources to a single resource pool, and allows containers
to allocate and use the resources of the desired node. The most important features
are a distributed operating system, resource manager, and a container orchestration
platform. Application container can use features such as high availability deployment,
service discovery within the namespace, and advanced service health monitoring
and control.

2.2.4 Containerized Applications

There are multiple ways to isolate applications on an operating-system-level. One
approach is to use container environments such as Docker. Docker [16] is a popular
containerizer, which is supported by most cloud providers. It is based on Linux
Containers (LXC), open-source and provides a rich tool-set to work with containers.
LXC is a set of user-space and utilities to encapsulate applications, including their
dependencies. Most Linux based systems support LXC, which makes it possible
to run the same application container on multiple systems. Additionally, Docker
provides tools for a fast build process and to slimline application definitions to be
able to distribute them in a fast and consistent way.

The main advantage is the newly introduced Dockerfile, which is the core of a
Docker container. Instead of saving the whole virtual environment, Docker separates
the actual application code from the actual runtime-data. Usually, the application

10 Chapter 2. Background

code is much smaller than the full environment, which is a significant advantage
for saving, sharing, and debugging containers. The application code defines what
will happen after the Docker container is started, containing all the installation and
configuration procedures. Docker provides three tools to run, build, and control
containers.

Docker Daemon provides the docker container functionality. It is running in the
background and manages the running containers. The Docker client can be
used to control its behavior and monitor the processes.

Docker Client provides the command-line tool to access, build, and manage Docker
container. It communicates with the Docker daemon to be able to fulfill the
requests.

Docker Registry stores and manages Docker container images. Each Docker con-
tainer uses a basic system image, on top of which the commands from the
Dockerfile are executed. Every command from the Dockerfile creates a new
layer on the image, which can be stored in a new image and used as a base im-
age in another container. This architecture behaves similar to an onion, having
the base image in the core and adding the command-layers on top of it.

2.3 Cloud-Native Services Approach

Cloud-native services are used to perform specialized tasks, such as providing the
background functionality required for larger websites. In general, services are run-
ning in the background and await requests from users or other services. In this work,
services should provide cloud-native functionality. According to [95], the ten critical
factors to make a service cloud-native are the following:

1. Encapsulated into a lightweight virtual environment
All components and requirements for the service are well defined and running
in a lightweight virtual environment. The environment is usually based on a
system-level application container. Multiple containerizers are available. The
most common containerizer is Docker [16]. These containers can scale rapidly,
based on the current demand of the service and also increase infrastructure
utilization.

2. Optimized programming language and framework for each service
Large monolithic are written in a single programming language or framework.
Due to the tightly coupled structure of these services, it is not possible to use
the best-suited language or framework for each task. Containers are very
flexible and capable of running multiple services, using different programming
languages easily. Therefore it is possible to optimize the tasks by deploying
them into their own container and using the optimal environment to fulfill the
desired job.

3. Loose coupling between services
A larger service often requires multiple smaller functionalities. By combining

2.4. Machine Learning 11

small functions, a more sophisticated service can handle more complex tasks.
Decoupling of the smaller functions into separate containers help to optimize
each function, maintain them independently, and share them with other services
which use them. Scaling is possible on a very fine-graded level, further reducing
bottlenecks of broader services.

4. APIs for interaction with the services
The communication between the containers are based on protocols such as the
representational state transfer (REST) [9] and remote procedure calls (RPC) [81].
This simplifies and standardizes how the components communicate with each
other and allow single components to be easily replaced by others.

5. Separation of stateless and stateful services
The stateful service stores information of each request and customizes the
functionality accordingly. The ideal service, on the other hand, behaves stateless,
thus does not retain session information or status of a request. Stateless services
are much easier to maintain and scale since the stored information do not need
to be considered.

6. Isolated from the operating system and hardware
Hardware components and operating systems can vary depending on various
factors. Cloud-native services run in virtualized environments and do not rely
on specific hardware or software components. However, it is possible to reserve
specific resources, e.g., storage or the number of CPU cores. Additionally,
specific components may be required, such as solid-state drives and graphics
processing units (GPUs).

7. Deployed in a cloud environment
The infrastructure for cloud-native applications is virtualized, shared between
multiple users.

8. Leveraging common DevOps tools for managing the services
Continues integration and delivery pipelines are usually managing services,
reducing the workload of the programmer.

9. Advanced automation
Automation plays an essential role for cloud-native application. They can scale
based on the current demand, are re-deployed after code changes. Multiple
environments are used to test changes and run services for production.

10. On-demand resource allocation and scaling
Due to the usage of virtual environments, it is possible to monitor and scale
small functions. By defining rules on the availability and the responsibility, the
services can scale themselves based on their current needs.

2.4 Machine Learning

In traditional computing, a specific problem is solved by defining exactly what the
computer should do. However, machine learning uses another approach. Instead of

12 Chapter 2. Background

defining exactly what the computer should do, the developer aims to create a generic
solution, and iteratively tries to improve the outcome of the generic approach until
the problem is solved sufficiently.

This generic solution is called a machine learning model. The model is represented
as an algorithm with a high number of of variables. Depending on the values of
the variables (called parameters), the outcome changes. Therefore the developer
aims to (1) find a good architecture to solve this problem and (2) to find a set of
parameters which lead to a good outcome. The process of creating a model consists
of obtaining a data set, choosing a network architecture tailored to the problem
and training this architecture on the selected data set. Choosing a specific network
architecture matching the task and the data set is crucial. Depending on the task at
hand, many different architecture types are available. In the case of computer vision,
for example, often convolutional neural networks are chosen, which have been very
successful [55].

Training is commonly done either supervised or unsupervised. Supervised refers
to the process of showing the network an example, along with a label corresponding
to the desired network prediction. Iteratively, as more examples are shown the param-
eters converge towards values that are able to describe the presented examples, but
in theory, are also able to make reasonable predictions on unseen data. Unsupervised
training does the same, but will not show the correct label alongside the training
examples, but another optimization goal is defined, that tunes the network to the
desired outcome. This can refer to various goals, such as merely finding clusters
within the data. The process of using the network to make predictions on unseen
data is called inference or application. For this process, the network parameters are
frozen, and the input is fed into the model. The network then makes a prediction
according to its prior training.

To simplify these tasks of finding the matching network architecture and opti-
mizing the parameters for specific tasks, various frameworks offer abstractions and
specialized functionalities. Popular machine learning frameworks are Tensorflow [5]
and Pytorch [75]. Each framework has its own requirements and specifics, making it
very difficult to generalize the environment to support multiple frameworks.

Leveraging machine learning for computer-aided analysis of medical data dates
back more than 20 years [58]. Nowadays, it is used in the clinical workflow at
various stages from population screening and diagnosis to treatment delivery and
monitoring [34].

Machine learning models are, for example, used for semantic segmentation, in-
stance detection, and instance segmentation. Semantic segmentation predicts each
pixel in a patient image, such as tumor or no tumor. Instance detection outputs
a bounding box around a specific object, e.g., tumor lesion 1 and tumor lesion 2.
Instance segmentation combines the two approaches and adds a pixel-wise segmen-
tation to each instance.

13

Chapter 3

Literature Research

A systematic literature review (SLR) is the process to find all available publications
relating to a specific research question. Goals of an SLR are to summarize the existing
knowledge on a specific topic, to identify areas to improve, and to create an overview
over a specific topic. The systematic approach reduces the biases during review and
reveals information about varying results on the same topic [49].

This chapter is structured in the following way: In Section 3.1 the methods of how
the literature research is conducted and how the research questions to be answered
are introduced. Section 3.2 describes how the literature research is performed and
shows the resulting literature, matching to the research question. A comparison of
the matching literature is shown in Section 3.3. The results and how they impact this
work are summarized and analyzed in Section 3.4.

3.1 Methodology

Systematic literature research (SLR) is the process of extracting valuable information
from a tremendous amount of literature. The first step is to derive research questions
from the goals of this work.

3.1.1 Research Questions

The goals of this work are described in Table 1.1, and the design goals in Table 1.2.
Based on the goals we derived the three research questions (RQ), shown in Table 3.1.

TABLE 3.1: Research questions for systematic literature research

RQ Goals Research Question

RQ-1 DG-1–DG-5 What features do machine learning platforms for medical
imaging offer?

RQ-2 DG-1 How can the machine learning models be standardized,
shared and trained?

RQ-3 DG-4 How can version management for large data sets be realized?

Research question 1 is based on all goals; it is generic and could lead to insides of
current machine learning platforms for medical imaging. We aim to find more details
about the challenges and constraints of machine learning in the medical field and
how they are currently being tackled.

14 Chapter 3. Literature Research

Research question 2 is derived from goal GO-1 and seeks answers about how the
machine learning models can be standardized, shared and trained. We aim to find a
way to standardize how machine learning models can be stored and how the whole
machine learning pipeline can be designed and optimized. A standardized way of
storing and using machine learning models is needed to be able to support multiple
machine learning approaches within the same platform. Each machine learning
approach has its own requirements and workflow. A standard aims to find a generic
solution to maximize the supported machine learning approaches within our system.
Having a standard also reduces the challenges to share machine learning models and
use existing implementations. This research question is specific to machine learning
models and does not limit on the medical context.

Research question 3 is derived from goal GO-4 and evaluates how machine
learning data sets are stored and managed. Data sets can have multiple revisions due
to new images or annotations and should not be replicated after every change. To
keep track of the changes and be able to keep old versions, we aim to discover the
currently available approaches to apply version management on large data sets.

3.1.2 Database Search and Snowballing

To conduct an SLR two approaches are common: database searches and snow-
balling [44, 69, 97, 19, 50]. Database searches require a set of search queries, which
are derived from the research questions and used to find related publications. The
literature results are then further analyzed, filtered, grouped and reduced to a small
set of publications which are closely related to the research question. It sometimes
may be necessary to iteratively improve the search terms to find results which fit the
resource question better. Snowballing focuses on finding related publications to a
specific publication. It is divided into two parts [8]: backward snowballing (BSB) and
forward snowballing (FSB). BSB focuses on analyzing the references whereas FSB
focuses on the citations to find essential publications relating to that topic.

In this work, we combine search term based database search and snowballing.
During the first part, a database search is performed, in the second part, the context
of the best fitting publications is analyzed with snowballing. For the database search,
we need to define search queries, depending on the digital database. For simplicity,
only pseudo search queries are shown and accordingly adjusted for each digital
library. The search queries are shown in Table 3.2. To find related publications
to research question 1, we defined the search query SQ-1.1. We are searching for
publications, where the title, abstract or the keywords are containing an exact match
for machine learning, medical imaging, and platform. If there are more than 100 results,
we analyze the first 100 most relevant matches first, and only continue if the results
are promising. For the search queries SQ-2.1 and SQ-2.2 we included only recent
publications, published after the year 2000, in order to consider only modern and
currently relevant machine learning models.

After defining the research questions and search queries, we need to find matching
digital databases. Therefore, we checked which databases are available for us in
the scientific, medical field and chose the following five scientific, digital database
libraries for our research:

3.1. Methodology 15

TABLE 3.2: Derived search queries for the research questions

ID RQ Search Query

SQ-1.1 RQ 1 “machine learning” + “medical imaging” + “platform”
SQ-2.1 RQ 2 “machine learning” + “lifecycle management” + published after 2000
SQ-2.2 RQ 2 “machine learning” + “model management” + published after 2000
SQ-3.1 RQ 3 “dataset” + “version management”

• ACM1,

• IEEE Xplore2,

• PubMed3,

• ScienceDirect4,

• arXiv5.

To evaluate which results of the search queries are relevant to our research question,
we defined specific criteria, which is applied to every publication we find during
database search and snowballing. The criteria can be seen in Table 3.3.

TABLE 3.3: Criteria for publications to be considered relevant

ID Criteria

CR-1.1 Publication title is relevant to the research question
CR-1.2 Abstract is relevant to the research question
CR-1.3 Full publication is relevant to the research question

The criteria CR-1.1 is fulfilled, when the title of the publication is close to the
research question. This is the weakest criteria and easiest way to filter non-matching
results. Criteria CR-1.2 is fulfilled, when CR-1.1 is fulfilled and the abstract is similar to
the research question. When CR-1.2 is fulfilled, the title and abstract of the publication
is relevant to at least one of our research question. In that case, we evaluate the whole
publication and the provided material from the authors. If the publication relates
strongly with our research question it is considered highly relevant to our research.
Therefore it meets the highest CR-1.3 criteria. Additional to the database research
the following publication was recommended by personal communication. Thus the
publication Applied Machine Learning at Facebook from Hazelwood et al. [41], is added
to the search results. After the database search, all publications meeting the CR-1.3
criteria are combined as start set for the snowballing process.

The snowballing approach consists of two parts. First the backward snowballing
process (BSB). During BSB references are analyzed using the criteria mentioned in
Table 3.3. If the reference is matching at least CR-1.1 it is considered relevant. To

1ACM Digital Library, dl.acm.org, last accessed 07.02.2019
2IEEE Xplore, ieeexplore.ieee.org, last accessed 07.02.2019
3PubMed, www.ncbi.nlm.nih.gov/pubmed, last accessed 07.02.2019
4ScienceDirect, www.sciencedirect.com, last accessed 07.02.2019
5arXiv, arxiv.org, last accessed 07.02.2019

16 Chapter 3. Literature Research

measure how much of the references are relevant in comparison to all references
within the publication, the precision is calculated:

PBSB =
related re f erences

total amount o f re f erences

After the BSB process, the forward snowballing process (FSB) is applied. It is
similar to the BSB process but instead of looking at the references of a publication,
FSB evaluates which publications, which contain citations to the currently focused
publication, are relevant to our research. If the reference is matching at least CR-1.1 it
is considered relevant and added to the overall publication summary. Analogous to
the precision of the BSB, the precision of the FSB is calculated by:

PFSB =
related citations

total amount o f citations

3.2 Literature Results

The results of the database search are shown in Table 3.4.

TABLE 3.4: Digital library search result-precision

Search Query ID ACM IEEE PubMed ScienceDirect arXiv

SQ-1.1 0/2 4/11 1/1 1/5 0/5
SQ-2.1 0/3 2/10 0/0 0/1 0/1
SQ-2.2 1/7 0/11 0/0 0/5 0/1
SQ-3.1 1/2 0/0 1/1 0/0 2/2

Search query SQ-1.1 for the first research question had four relevant results within
the IEEE database, and one relevant result in PubMed and the same publication as
well in ScienceDirect. Search query SQ-2.1 and SQ-2.2 answering the second research
question had two relevant results within the ACM digital library and one within
IEEE Xplore. For research question 3 we used search query SQ-3.1 and found two
publication in the arXiv digital library.

All publications meeting the CR-1.3 criteria are added to the start set for the
snowballing process. As described in Section 3.1, the backward and the forward
snowballing process is performed. The results and amount of references and citations
found for each publication, using both snowballing methods (BSB and FSB) and
how much of them are relevant to a research question can be seen in Table 3.5.
During backward snowballing the publications from Vartak et al. [43] had the highest
precision. Within the forward snowballing process Bhardwaj et al. [14] had the best
precision.

The overall summary of relevant publications, how we found them, and which
criteria they matched can be seen in Table 3.6. The summary in Figure 3.1 shows
only the publications matching CR-1.3. The publications are compared by keywords,
context and motivation, goals and methods & contribution in the Table 3.7.

3.2. Literature Results 17

TABLE 3.5: Backward and forward snowballing results

Publication Title PBSB PFSB

Distributed Container-Based Evaluation Platform for Private/Large
Data sets [31]

5/26 0/0

NiftyNet: a deep-learning platform for medical imaging [34] 1/57 2/49

Towards Unified Data and Life-cycle Management for Deep Learn-
ing [63]

5/39 2/22

Applied Machine Learning at Facebook: A Datacenter Infrastructure
Perspective [41]

0/17 0/28

DataHub: Collaborative Data Science & Data set Version Manage-
ment at Scale [14]

1/22 7/88

Goods: Organizing Google’s Data sets [36] 3/26 1/53

18
C

hapter
3.

Literature
R

esearch

TABLE 3.6: Systematic literature research results

Publication Title Source Criteria Database Date

Distributed Container-Based Evaluation Platform for Private/Large Data sets [31] SQ-1.1 <=CR-1.3 IEEE Xplore 2018

NiftyNet: a deep-learning platform for medical imaging [34] SQ-1.1 <=CR-1.3 PubMed, ScienceDirect 2018

An easy-to-use image labeling platform for automatic magnetic resonance image
quality assessment [56]

SQ-1.1 <=CR-1.2 IEEE Xplore 2017

Medical Imaging Processing on a Big Data Platform Using Python: Experiences with
Heterogeneous and Homogeneous Architectures [80]

SQ-1.1 CR-1.1 IEEE Xplore 2017

AggNet: Deep Learning From Crowds for Mitosis Detection in Breast Cancer Histol-
ogy Images [2]

SQ-1.1 CR-1.1 IEEE Xplore 2016

GIFT-Cloud: A data sharing and collaboration platform for medical imaging re-
search [29]

BSB <=CR-1.3 ScienceDirect 2017

Cloud-based benchmarking of medical image analysis [37] BSB <=CR-1.2 SpringerOpen 2017

BEAT: An Open-Source Web-Based Open-Science Platform [6] BSB <=CR-1.2 arXiv 2017

Evaluation-as-a-Service: Overview and Outlook [40] BSB <=CR-1.2 arXiv 2015

Cloud–Based Evaluation Framework for Big Data [39] BSB <=CR-1.2 Springer Link 2013

Cloud deployment of high-resolution medical image analysis with TOMAAT [64] FSB <=CR-1.3 IEEE Xplore 2018

Bringing the Algorithms to the Data: Cloud–Based Benchmarking for Medical Image
Analysis [38]

BSB <=CR-1.2 Springer Link 2012

Towards Unified Data and Life-cycle Management for Deep Learning [63] SQ-2.1, BSB <=CR-1.3 IEEE Xplore 2017

table continued on next page

3.2.
Literature

R
esults

19

Table 3.6 — continued from previous page

Publication Title Source Criteria Database Date

ModelHub: Deep Learning Life-cycle Management [62] SQ-2.1 <=CR-1.2 IEEE Xplore 2017

Applied Machine Learning at Facebook: A Datacenter Infrastructure Perspective [41] BSB <=CR-1.3 IEEE Xplore 2018

ModelDB: A System for Machine Learning Model Management [88] SQ-2.2, FSB, BSB <=CR-1.2 ACM 2016

DeepNeuro: an open-source deep learning toolbox for neuroimaging [11] FSB <=CR-1.3 arXiv 2018

Data Engineering: Special Issue on Machine Learning Life-cycle Management [43] FSB <=CR-1.2 IEEE 2018

The Missing Piece in Complex Analytics [26] BSB CR-1.1 arXiv 2015

DLHub: Model and Data Serving for Science [22] FSB <=CR-1.2 arXiv 2018

DataHub: Collaborative Data Science & Data set Version Management at Scale [14] SQ-3.1, BSB <=CR-1.3 arXiv 2014

Principles of Data set Versioning: Exploring the Recreation/Storage Tradeoff [15] SQ-3.1, BSB <=CR-1.2 PubMed 2015

Archiving Scientific Data [20] BSB CR-1.1 ACM 2004

Goods: Organizing Google’s Data sets [36] FSB <=CR-1.3 ACM 2016

UStore: A Distributed Storage With Rich Semantics [28] FSB <=CR-1.2 arXiv 2017

DataLab: a version data management and analytics system [100] FSB <=CR-1.2 IEEE Xplore 2016

20 Chapter 3. Literature Research

Medical
Imaging
Platform

Machine
Learning
Models

Data and
Life-cycle
Manage-

ment
[63]

Applied
Machine
Learning

[41]

Machine
Learning
Platform

Evaluation
Platform

[31]

NiftyNet
[34]

Gift-
Cloud

[29]

DeepNeuro
[11]

TOMAAT
[64]

Data set
Manage-

ment

DataHub
[14]

Goods
[36]

FIGURE 3.1: Systematic literature research results, summary graph

3.2.
Literature

R
esults

21

TABLE 3.7: Comparison of most relevant publications

Cite Keywords Context and Motivation Goal Method & Contribution

[31] E-Health, Evaluation, Dis-
tributed containerization,
Docker, Big data, Data privacy,
Reproducibility, Containers,
Computer architecture, Task
analysis, Machine learn-
ing, Distributed databases,
Biomedical imaging, Graphics
processing units

Exponential increase in stored
data, Sharing data for research
is challenging, Physically moving
data sets to researchers is inconve-
nient, Research on sensitive data
is often not possible,

Novel distributed platform us-
ing containers for simple ex-
ecution and evaluation of re-
search applications on the data
owner’s infrastructure, bringing
the algorithms to the data and
avoids transfer of large data sets

Distributed container-based evaluation
platform which circumvents a lot of is-
sues in this field.

[34] Medical image analysis, Deep
learning, Convolutional neural
network, Segmentation, Image
regression, Generative adver-
sarial network

Medical problems are being
addressed with deep-learning-
based solutions. Established
deep-learning platforms do not
provide specific functionality for
medical context.

Open-source NiftyNet platform
for deep learning in medical
imaging.

Platform which allows the researchers
to rapidly develop and distribute deep
learning solutions for segmentation, re-
gression, image generation, and repre-
sentation learning applications, or ex-
tend the platform to new applications.

[29] Data sharing, Biomedical re-
search, Cross-disciplinary re-
search, Anonymisation, Dei-
dentification, Fetal surgery

Clinical imaging data is essential
but existing systems are poorly
suited for data sharing between
healthcare and academia.

GIFT-Cloud, a data and medical
image sharing platform, to meet
the needs of GIFT-Surg, an inter-
national research collaboration
that is developing novel imag-
ing methods for fetal surgery.

Platform implemented in a multi-centre
study for fetal medicine research. Case
study of placental segmentation for pre-
operative surgical planning, showing
how GIFT-Cloud-Platform underpins
the research and integrates with the
clinical workflow.

table continued on next page

22
C

hapter
3.

Literature
R

esearch

Table 3.7 — continued from previous page

Cite Keywords Context and Motivation Goal Method & Contribution

[64] Deep learning, medical image
analysis, segmentation, reg-
istration, cloud deployment,
clinical translation

Recent research efforts have im-
proved the state of the art, but
most of the methods cannot be
easily accessed, compared or
used by other researchers or clini-
cians.

Open-source framework to pro-
vide AI-enabled medical image
analysis through the network

Platform, which provides a cloud en-
vironment for general medical image
analysis

[11] Computer science, computer
vision and pattern recognition,
deep learning, neuroimaging,
software, open-source, prepro-
cessing, reproducibility

Translating neural networks from
theory to clinical practice has
unique challenges.

Best-suited deep learning frame-
work to put deep learning algo-
rithms for neuroimaging in prac-
tical usage.

Platform that can be used to both de-
sign and train neural network architec-
tures, including proof.

[63] Machine learning, training,
predictive models, database
management systems, infer-
ence mechanisms, artificial
intelligence, storage manage-
ment, data management, life-
cycle management, deep learn-
ing

Current systems, focus on model
building and training phases,
while the issues of data manage-
ment, model sharing, and life-
cycle management are largely ig-
nored.

New vision and implementation
of a data and life-cycle manage-
ment system for deep learning.

Extensive experiments over several real
data sets from computer vision domain
to show the efficiency of the proposed
techniques.

table continued on next page

3.2.
Literature

R
esults

23

Table 3.7 — continued from previous page

Cite Keywords Context and Motivation Goal Method & Contribution

[41] Facebook, neural networks,
support vector machines, ma-
chine learning pipelines, high-
performance distributed train-
ing flows, span machine

Describing the hardware and
software infrastructure that sup-
ports machine learning at global
scale, challenges in delivering
data to high-performance dis-
tributed training flows, intense
computational requirements

Support extremely diverse ma-
chine learning workloads, ad-
dressing emerging challenges
that include machine learning
algorithms, software, and hard-
ware design

Application of machine learning to real
problems at this scale, including a deep
learning tools ecosystem.

[14] Computer science, databases Relational databases have limited
support for data collaboration

A data set version control sys-
tem and a platform that gives
the ability to perform collabora-
tive data analysis at scale.

Utilizing two tightly-integrated sys-
tems: A Data set Version Control Sys-
tem and a hosted platform on top of
that.

[36] not provided Rethink how we organize struc-
tured data sets at scale, in a set-
ting where teams use diverse and
often idiosyncratic ways to pro-
duce the data sets and where
there is no centralized system for
storing and querying them

Building a large-scale enterprise-
level data-management system,
crawl and infer the metadata for
billions of data sets, to maintain
the consistency of the metadata
catalog at scale

Data-Management system that is capa-
ble of extracting and exposing metadata
ranging from salient information about
each data set to relationships among
data sets, such as similarity and prove-
nance.

24 Chapter 3. Literature Research

3.3 Literature Synthesis

During literature synthesis, publications are analyzed with the aim to find answers to
the research questions. The research questions are described in Table 3.1. To answer
the questions, multiple categories are derived from the goals and the description of
this thesis and used to compare multiple approaches with each other. This categories
can either be present or not present. In case no information about the attribute is
available for a platform, not present is assumed.

3.3.1 Research Question 1

Research question 1 aims to analyze existing approaches for medical imaging plat-
forms leveraging machine learning. We evaluate the following five publications:

Eval: Eggel et al., 2018, Distributed Container-Based Evaluation Platform for Pri-
vate/Large Data sets, published at the 17th International Symposium on Parallel
and Distributed Computing (ISPDC) [31].

NiftyNet: Gibson et al., 2018, NiftyNet: a deep-learning platform for medical imag-
ing, published within the journal paper Computer Methods and Programs in
Biomedicine [34].

GIFT: Doel et al., 2017, GIFT-Cloud: A data sharing and collaboration platform
for medical imaging research, published within the journal paper Computer
Methods and Programs in Biomedicine [29].

TOMAAT: Milletari et al., 2018, Cloud deployment of high-resolution medical image
analysis with TOMAAT, published within the journal paper IEEE Journal of
Biomedical and Health Informatics [64].

DeepNeuro: Beers et al., 2018, DeepNeuro: an open-source deep learning toolbox
for neuroimaging, published on arXiv.org in the Computer Science > Computer
Vision and Pattern Recognition category [11].

The comparison results based on the categories can be seen in Table 3.8. The categories
are described as follows:

• Platform Deployment Strategy: Platforms are usually deployed using multiple
strategies. The purest form of deployment is to directly install it on the machine,
without further encapsulation. To use the resources more efficiently and increase
the portability, containers are often leveraged. In this block, we evaluate how
the platforms are deployed, especially if they are directly deployed on the
operating system (using virtual machines), or if they support more advanced
strategies such as container deployment. We assume in this case, that all of the
platforms can either be deployed on a virtual machine or within containers.
To our knowledge, the analyzed platforms did not require native hardware
access without the support for containerized environments. Containerized
environments are capable of running with or without underlying virtualization.

3.3. Literature Synthesis 25

Virtual Machines: The guest operating system is encapsulated in a virtual
machine (VM) on the host machine. It defines the virtual hardware the
guest system is able to use (such as CPU cores, amount of memory, and
network interfaces). This may increase the efficiency since virtual machines
can share the resources from a host.

Containerization: Most platforms are still relying on a full operating system
environment. Containerization focusses portability, scalability, and the
simplification of adjusting, customizing, and replacing of components.
Especially in larger container deployments, single containers can be scaled,
modified, replaced, and monitored independently from the other com-
ponents. Containerization methods encourage the precise definition of
interfaces, communication strategies, requirements, and tasks for every
component within the platform. Thus a containerized concept is similar
to building the platform with small bricks, where each brick has a small
task and can be replaced, shared and tested independently from the other
components. This provides more freedom for the developers to create,
share and adjust each brick individually as they need it.

• Machine Learning Framework Support: In this block, the machine learning
frameworks within the model management environment are evaluated. Each
framework has its strengths and weaknesses and requires specialized knowl-
edge on its concept, implementation, and usage. Also optimizing specific needs
in order to perform best within a specific situation such as optimization for
debugging and development or development for production use at scale are
shaping how frameworks are used in practice. The focus is on the most common
frameworks Tensorflow and PyTorch.

Tensorflow: Tensorflow [1, 5] is a popular, open-source machine learning frame-
work developed by members from Google Brain [17]. Tensorflow supports
the programming languages Python [71] and C [47]. It is also frequently
used by researchers in the medical field.

PyTorch: Similar to Tensorflow, PyTorch [75] is also a commonly used open-
source machine learning framework. It is developed by Facebook and is
deeply integrated into the programming language Python. PyTorch is very
popular in the medical field, next to Tensorflow.

Custom Framework: Some use-cases cannot be implemented using Tensorflow
or PyTorch. In this case, the platform should be able to use other frame-
works, by offering an interface to exchange the framework-component as
needed.

• Medical Customization: Many unique challenges and specifics are present in
the medical environment, which requires to be tackled accordingly. This block
focuses on medical attributes that are especially needed for the medical imaging
platforms.

DICOM Support: Digital Imaging and Communications in Medicine stan-
dard [7] (DICOM) was developed and improved over many years, which

26 Chapter 3. Literature Research

introduces a significant challenge in terms of backward compatibility for a
generic imaging platform. DICOM is used by most imaging related modal-
ities in the medical field to store and transfer medical data. Therefore it
is essential for a medical imaging platform to be able to handle DICOM
object files and the DICOM communication protocol.

NIFTI Support: Neuroimaging Informatics Technology Initiative [65] (NIFTI)
has a medical imaging data format. In contrast to DICOM, it is frequently
used for analysis, designed to support scientific visualization and image
processing, and especially the metadata is not standardized.

NRRD Support: Nearly Raw Raster Data [83] (NRRD) is also a medical imag-
ing data format, similar to NIFTI.

PACS Interface: The Picture Archiving and Communication System [12] (PACS)
is a system used in the clinical environment, which provides services for
the storage and access to medical images relying on the DICOM image
format.

Anonymisation: Anonymisation is very crucial to ensure sensitive patient in-
formation are never leaked to the outside world. Some platforms introduce
specialized gateways to access sensitive patient information but ensure
that all of the personal information is removed or replaced prior providing
it to the user.

Custom Processing Pipelines: Processing pipelines are the backbone of the
machine learning platform. They combine all tasks needed to perform
machine learning tasks into one schedule. Customization capability is
essential to adjust certain tasks to the specific needs to a new use-case.

Table 3.8 compares the most relevant publications to research question 1 with each
other. Two of the five platforms are based on modern containerization approaches [31,
11], the others are relying on virtual machines for deployment.

The essential component for machine learning is the framework and programming
language used to perform the training and inference. In this case, most platforms
support the machine learning framework Tensorflow and PyTorch. Three of the
compared platforms allow exchanging the used machine learning framework for a
custom one and therefore support multiple machine learning frameworks [31, 11, 64].

Another crucial factor is the customization for the medical field. In the medical
field, many additional challenges occur, which are very complicated to tackle. One
challenge is how the images and their metadata are stored within a clinical envi-
ronment. Fortunately, all platforms except [31] provide native DICOM Object file
support. A frequently used workaround is to transform DICOM objects to other file
formats and work with these formats. Alternative formats such as NIFTI and NRRD
are mostly used during scientific research. Three platforms provide native support for
NIFTI images [34, 29, 11] and only one supports the NRRD file format [11]. Another
challenge is how the images are accessed and used for scientific research. Clinics
usually store the patient images within the Picture Archiving and Communication
System. It relies on the DICOM network protocol to access and store patient data and
thus has to comply with high-security standards. During research we found only one

3.3. Literature Synthesis 27

TABLE 3.8: Literature synthesis: Research question 1

Category Eval. NiftyNet GIFT TOMAAT DeepNeuro
[31] [34] [29] [64] [11]

Deployment:
Virtual Machines no yes yes yes no
Containerization yes no no no yes

Framework Support:
Tensorflow yes yes no yes yes
PyTorch yes no no yes yes
Custom Framework yes no no yes yes

Medical Customization:
DICOM Support no yes yes yes yes
NIFTI Support no yes yes no yes
NRRD Support no no no no yes
PACS Interface no no yes no no
Anonymisation no no yes no no
Custom Pipelines no no no no yes

platform tackling this critical problem [29]. It offers specialized gateways as inter-
mediate, which is the only connection to the clinical PACS. Thus it can be ensured
that all the critical patient data can be anonymized prior to scientific usage. The same
platform is also the only one including features for anonymization of patient data and
reducing the barriers connecting the researchers with real data. To apply machine
learning models to the anonymized patient data, custom processing pipelines are
frequently needed to adjust each processing step to the specific task. In this case, only
one publication implemented a more dynamic approach, which provides the user
with the ability to customize the whole machine learning processing pipeline [11].
In contrast to the customized framework, this also includes tasks such as importing
medical patient images and exporting processed images to the clinical PACS.

These platforms offer a variety of essential features, but none of them implemented
all important features. GIFT [29] was the only publication to tackle the management
of sensitive patient data but lacks support for common machine learning frameworks.
DeepNeuro [11] provides many of features but lacks PACS and anonymization
support.

3.3.2 Research Question 2

Research question 2 aims to analyze existing approaches to standardize, share and
train machine learning models within a machine learning platform, independently
from the medical context. We are evaluating the two following publications:

Data Management: Miao et al., 2017, Towards Unified Data and Life-cycle Man-
agement for Deep Learning, published within the IEEE 33rd International
Conference on Data Engineering (ICDE) [63].

28 Chapter 3. Literature Research

ONNX: Hazelwood et al., 2018, Applied Machine Learning at Facebook: A Dat-
acenter Infrastructure Perspective, published within the IEEE International
Symposium on High Performance Computer Architecture (HPCA), especially
the Open Neural Network Exchange (ONNX) format [21].

The comparison results based on the categories can be seen in Table 3.9. For compari-
son the following categories used:

• Generic Attributes: Working with machine learning models requires lots of dif-
ferent tools and skills. Combining these tools and providing more possibilities
and guidance within the platform can increase the development efficiency for
researchers.

Transfer Model between Frameworks: Many machine learning frameworks
are available for various reasons and optimized for different tasks and
hardware. The first step towards standardization is the capability of trans-
ferring models between frameworks (decoupling models from specific
frameworks). Ideally, it would be possible to develop a machine learning
model in a framework which suits best for development and later trans-
forms it into another framework which is the best for production usage on
the target hardware platform.

Model Standardization: A standardized description of a model makes it in-
dependent from the framework. In the ideal case, a platform supporting
the standard model representation would remove the dependency on a
specific machine learning framework.

Model Life-cycle Tracking: Machine learning models are usually developed,
trained, applied and improved iteratively. Life-cycle tracking monitors
and documents each iteration step to describe how each model was trained.
This helps the developers to visualize the process and the history to further
push the limits for the next iteration.

Model Zoo: A model zoo is a collection of pre-trained models for specific tasks.
It represents a shared, central repository for models within the platform.
Users can access the available models and use them as a reference for
developing new models, to compare the performance of new models with
existing ones or other research purposes.

Model Search Query: Model queries offer the possibility to search a model zoo
by looking at the metadata and other attributes of the available models.

• Machine Learning Framework Support: In this block, the machine learning
frameworks within the model management environment are evaluated. Each
framework has its strengths and weaknesses and requires specialized knowl-
edge on its concept, implementation, and usage. Also optimizing specific needs
in order to perform best within a specific situation such as optimization for
debugging and development or development for production use at scale are
shaping how frameworks are used in practice. The focus is on the most common
frameworks Tensorflow and PyTorch.

3.3. Literature Synthesis 29

Tensorflow: Tensorflow [1, 5] is a popular, open-source machine learning frame-
work developed by members from Google Brain [17]. Tensorflow supports
the programming languages Python [71] and C [47]. It is also frequently
used by researchers in the medical field.

PyTorch: Similar to Tensorflow, PyTorch [75] is also a commonly used open-
source machine learning framework. It is developed by Facebook and is
deeply integrated into the programming language Python. PyTorch is very
popular in the medical field, next to Tensorflow.

Other Frameworks: Some use-cases cannot be implemented using Tensorflow
or PyTorch. In this case, it should be possible to use other frameworks
within the same model management environment.

TABLE 3.9: Literature synthesis: Research question 2

Category Data Management ONNX
[63] [41, 21]

Generic Attributes:
Transfer Frameworks no yes
Standardization no yes
Life-cycle Tracking yes no
Model Zoo yes yes
Model Query yes no

Framework Support:
Tensorflow yes yes
PyTorch yes yes
Other Frameworks yes yes

Table 3.9 compares the most relevant publications to research question 2 with each
other. There are many different machine learning frameworks available, which are
defining how the model is defined and executed. Ideally, it is possible to transform
one model, independently from the framework it was developed in, into another
framework and its architecture. The capability of importing a model from a frame-
work and exporting it to a model of another framework is offered by one publica-
tion [41]. They achive this by adding the feature of transforming the model into
an intermediate standardized representation, namely ONNX. From this intermedi-
ate representation, they are able to export the model to another framework. This
approach is very promising since it aims to build a well-defined interface between
frameworks to allow the developers to focus on the model itself instead of the frame-
work which is used to execute it later. Unfortunately, they do not provide life-cycle
tracking for the development of the model, for the developers at this time. This was
implemented by [63], and shows the development history, including the lineage.
Another important factor is the availability of a reference model repository (Model
Zoo). It provides the possibility to share pre-trained models with others, and have a
local collection of multiple models for a specific set of tasks. This is implemented by
both publications [62, 41]. Additionally to the model zoo, it is beneficial to design

30 Chapter 3. Literature Research

specific search queries in order to find the right model for a specific set of tasks. This
is implemented by [63].

Both publications support Tensorflow, PyTorch and other machine learning frame-
works.

3.3.3 Research Question 3

Research question 3 aims to analyze existing approaches to store and manage data
sets used for machine learning, including version management. We evaluate the
following two publications:

DataHub: Bhardwaj et al., 2014, DataHub: Collaborative Data Science & Data set
Version Management at Scale, published at arXiv [14].

Goods: Halevy et al., 2016, Goods: Organizing Google’s Data sets, published within
the conference paper Proceedings of the 2016 International Conference on
Management of Data [36].

The comparison results based on the categories can be seen in Table 3.8. The categories
are described as follows:

• Generic Attributes: Managing data sets for machine learning is a very challeng-
ing and underestimated task. Therefore, the following attributes are compared.

API-Access: Data sets are usually used within processing pipelines during
training. These are highly automated and executed without user interac-
tion. Therefore it is essential to provide an interface to connect the database
management system with these pipelines.

Custom Data Formats: Depending on the origin of the data, it can have very
different attributes and shapes. Data sets can consist of objects such as
large, high-dimensional images, and comma-separated values or videos.
Therefore the data set management system should allow storing different
types of data.

Change Protection: Data sets are used in conjunction with machine learning.
To reproduce the machine learning tasks, the exact, unchanged version of
the data set is required. Therefore the data set management system should
prevent changes to the data set, but allow the creation of new data sets
with the same data.

Branching: Branching allows data sets to change, without replicating all the
data within the data set. This can be implemented by linking to the existing
data set and only store the changed data.

Lineage Information: Data sets often evolve over a long time. To evaluate
the process and identify problems or positive parts of the history lineage
information is essential.

Search Query: Having a large number of data sets available, it can be tough to
find data sets matching specific criteria. Therefore the database manage-
ment system should provide the capability to execute search queries and
provide related data sets.

3.4. Takeaway 31

TABLE 3.10: Literature synthesis: Research question 3

Category DataHub Goods
[14] [36]

Generic Attributes:
API-Access yes yes
Custom Data Formats yes yes
Change Protection yes yes
Branching yes yes
Lineage yes yes
Search Query yes yes

Table 3.10 compares the most relevant publications to research question 3 with each
other. In this case, both publications were able to support all our generic attributes.
They both offered API-Access to allow other programs to access the data sets directly,
allow the storage of custom data, protect the data set from changes, allow branching
of data sets, provide lineage information on how the data sets evolved and accept
search queries to find relevant data sets based on the search query.

3.4 Takeaway

During literature research, we defined three research questions to define the focus of
our research. The research questions are shown in Table 3.1.

Research question 1 evaluates how current medical imaging platforms are de-
ployed, which frameworks they support and which medical customizations were
applied to establish them in the medical field, as described in Section 3.3.1. The
approach taken by DeepNeuro [11] is very promising, leveraging containerization to
exchange parts of the machine learning pipelines similar to bricks, and allowing the
researchers to customize the bricks as required. With this approach, the interfaces
to each brick must be clearly stated to ensure that new bricks are matching those
before they are integrated with the platform. Unfortunately, they do not provide
quality assurance methods, which test each component before they are accepted as
part of the platform. Another important aspect is the integration into the medical
environment. The DeepNeuro platform offers support for multiple file formats, such
as DICOM, NIFTI, and NRRD, but we were not able to find the capability to connect
to common medical image management systems such as PACS or XNat. Additionally,
they do not have any precautions or tools to ensure that sensitive patient data is
removed (anonymized) or only accessible in a specific, restricted way. This was well
tackled by the GIFT-Cloud platform [29], which added many additional features and
components to ensure all sensitive data is handled accordingly and anonymized if
needed.

Research question 2 takes a broader look at standardization, generic features
and life-cycle management of machine learning tasks, and how existing models can
be used, even if they are written within unsupported frameworks by transferring
them into a support framework or own representation of the model, as described

32 Chapter 3. Literature Research

in Section 3.3.2. The publication Data and Life-cycle Management [63] developed
important approaches to tackle the machine learning pipeline, from collecting the
data and machine learning models, training, evaluating and serving the newly trained
model for inference. It is crucial to understand how new machine learning models are
developed to adjust the platform accordingly. Additionally, they developed a model
registry to collect the pre-trained models and share them with other researchers.

Research question 3 summarizes existing approaches to manage data sets at scale,
including version control, branching, custom data formats and strategies to efficiently
find relating data sets within a large data set repository. The publications Goods [36]
and DataHub [14] are very promising. They are capable of handling a vast amount of
data types and sizes, analyze the data sets autonomously to extract relevant metadata,
track how they evolve over time and create new data sets by branching as needed.

It would be very promising to design and implement such a concept, however this
would require significant efforts of multiple developers due to the high amount of
functionality and the high complexity. Therefore, we are planning to create a concept
of the component based foundation of a platform that fit our needs and extend the
functionality iteratively in future work. We are defining the requirements for our
platform in Chapter 4.

33

Chapter 4

Requirements Analysis

This chapter describes the necessary requirements for the Medical Machine Learning
Platform (MMLP), following the task and object-oriented requirements engineering
(TORE) approach [72].

During the elicitation of requirements, the insights of the literature research in
Chapter 3, and in particular, the work by Rupp et al. [78], Nuseibeh et al. [70], and
Kotonya et al. [51] are used.

Section 4.1 explains how requirements for the platform were derived from the
insights about the medical domain and machine learning. Section 4.2 describes the
domain data, especially the application of machine learning in the medical field.
The primary personas are identified and described in Section 4.3. By analyzing the
motivation, interests, and background of each persona, requirements of the platform
are derived. With these personas in mind, we take a more in-depth look at the
data that these personas work with and introduce the required terminology (used
throughout this thesis). To further describe the user interaction and the platform
behavior, the functional requirements are derived in Section 4.4. Subsequently, the
interaction between the user and the platform is described, focusing on the complete
workflow the user has to perform to fulfill a specific task in Section 4.5. Collaborative
workflows are introduced in Section 4.6. These are followed by the non-functional
requirements in Section 4.7, which describe the quality requirements for the platform.
The accumulated knowledge of the previous sections is used to create the user
interface structure in Section 4.8. All requirements are summarized in Section 4.9. The
requirements are specified, documented, and made available to design the resulting
platform, which is described in Chapter 5.

In this chapter, we used the following color-code for figures: objects related to data
set management, machine learning model management, machine learning method
management, and computation environment management are indicated by blue, red,
green, and yellow, respectively.

4.1 Requirements Elicitation

To model the requirements according to the users’ needs, multiple steps were per-
formed. In the first step, the overall goals were defined in Chapter 1. These overall
goals were used to derive the research questions answered by the systematic literature
research. The literature research (see Chapter 3) yielded a broad overview of topics
such as the problems, approaches, and further details about the medical context.

34 Chapter 4. Requirements Analysis

To further focus on the actual users of the platform, fifteen potential users of the
platform were observed while working and interviewed afterwards. Contextual and
one-on-one interviews yielded essential information about their work environment,
such as how they actually work on a daily basis and potential areas to focus on.
During interviews, mockups, schematics, and prototypes were shown to the potential
users of the platform and discussed, to elicit requirements or to refine the elicited
requirements in the literature research and additionally collect ideas about how the
platform could be designed and operate.

Multiple users had concerns to participate, due to confidential workflows that they
perform or confidential data that they work with. Further, it seemed that their current
workflow was not mature enough that they wanted it to be shared or published.
Therefore, no personal or work-topic related information was collected, only the
fundamental approaches required to ensure the proposed platform does support, and
possibly exceeds their expectations.

4.2 Domain Data Description

In this section, the terminology is introduced, focusing on the context of machine
learning in the medical field.

The domain data model in Figure 4.1 describes the relationships between data
sets, algorithms, parameters, hyperparameters, models, patient data, and methods:
An algorithm describes a programmatic way of archiving a specific goal [67]. It defines
all inputs, a step-by-step procedure, which describes how the input is processed and
the corresponding results, and the output of the pipeline. The source code covers all
the files, which are needed to run the algorithm, excluding the input data. Machine
Learning algorithms optimize internal weights, or parameters, to minimize a user-
defined loss function, such as the mean squared error. For example, parameters could
be activation weights and biases in neural networks or decision rules in decision trees.
Variables regarding the configuration of the algorithm, are called hyperparameters. In
neural networks, typical hyperparameters are, for example, the optimizers learning
rate, the number of epochs, and data augmentation configurations. The combination
of algorithm, parameters, and hyperparameters is called machine learning model or
short model. Thus, a model describes how the computer can learn — by minimizing
the loss function — to solve a specific task [67]. The minimization of the loss function
is usually done iteratively utilizing previously annotated input data. This process is
called training.

Similar input data to train the model is grouped and stored in data sets. If the data
set is used for training, it is also referred to as training data. The data sets can have
very different characteristics, such as the dimensionality and format. As an example,
patient images with annotations, non-medical data collections, or entirely fictional
toy data sets, could be used to train the model.

Before the data set is used, it has to be pre-processed, which transforms the data into
a for the model matching format. If the model created new images or annotations,
it could be necessary to transform the data back to the original format. This step is
called post-processing. These data processing steps vary depending on the intention of
the user. If the user wants to train the model, the pre-processing part could be applied

4.3. Primary Personas 35

MethodPatient Data

Model

Data Set

Model
Snapshot

stores
training
result in

1

0..n

is
trained

on

1..n

1..n

is core of

10..1

is analyzed with

1..n 1..n

Hyper-
ParameterParameter

is
part

of

1..n

1..n

is
part

of

1..n

1..n

Algorithm

is
part

of

1

1..n

FIGURE 4.1: Domain data diagram: Visualizing the relationships
between data sets, algorithms, parameters, hyperparameters, models,

patient data, and methods.

manually before uploading the data set. This reduces the training time because the
data set does not need to be transformed prior to every model training iteration.

After the training is completed, the model and its parameters are frozen and
stored separately. The combination of the model and the learned parameters is called
model snapshot. This model snapshot can now be used to create a machine learning
method or short method. A method is able to use the model snapshot on previously
unseen, but similar input data, to generate annotations, which is called inference. In
addition to the model snapshots, all configuration and required steps, e.g., pre- and
post-processing are automated. This helps medical experts to try available machine
learning methods on the patient data they are working with. Medical experts work
with various types of data they collect from their patients. For segmentation tasks,
medical experts are using patient cohorts, which are patient images grouped by
patient attributes, e.g., all patients between the age of 42 and 47, female, and specific
types of illnesses.

Training and inference of machine learning models and methods need a lot of
computational resources. To tackle these demands, custom computing environments
are leveraged.

4.3 Primary Personas

The platform should be designed as closely as possible to the actual user needs. There-
fore, the first consideration is what kind of users should benefit from the platform. To
describe the users, a persona is utilized, which describes a hypothetical archetype of

36 Chapter 4. Requirements Analysis

an actual user [24]. The proposed platform should be used by both medical experts
and clinical data scientists. In general, medical experts are focused on medical images
analysis, whereas clinical data scientists are focused on the development of machine
learning models. The clinical data scientist can leverage the platform to create a
fully automatic method, including pre- and post-processing, and share the resulting
methods with other users of the platform, particularly medical experts. Medical
experts can then conveniently apply the shared method to their patient data without
any manual intervention. They are described in Table 4.1 and Table 4.2.

TABLE 4.1: Persona: Medical expert

Topic Description

Biographic Facts Has a medical background and is working with patient data,
including images. Due to a large number of patient data, she
wants to leverage machine learning methods to support her
workflows. Typical workflows are automatically segmenting
tumors in MRI scans or classifying electrocardiograms, finally
resulting in a diagnosis, risk evaluation, or treatment procedure.

Knowledge Expert level knowledge about medical-related questions, an
only basic understanding of machine learning concepts and
computer science, knows that it is possible to leverage machine
learning techniques to analyze patient data.

Needs Since she does not have a customized computer for machine
learning and works from multiple locations, she wants to apply
the tools via an intuitive, easy to use interface. Furthermore, she
looks for options to apply machine learning methods on patient
data of interest, and subsequently access the generated outcome.

Frustrations Providing the patient data and applying the required machine
learning methods are complicated, time-consuming, and not
intuitive.

Ideal Features Developed methods should support the medical expert in de-
livering superior patient care with reduced manual effort. The
medical expert strongly prefers a simple and easy-to-use inter-
face.

4.4. Functional Requirements 37

TABLE 4.2: Persona: Clinical data scientist

Topic Description

Biographic Facts Has a scientific background and is currently developing new
machine learning models. She wants to bring the state-of-the-art
for machine learning into the medical field and help medical
experts diagnosing patient data. Therefore she improves the cur-
rently available machine learning models in the medical domain.
She uses the platform to manage, develop, and share machine
learning models and developed machine learning methods.

Knowledge Expert level knowledge about machine learning and related
questions, a basic understanding of the medical context. The
clinical data scientist is aware of current challenges in the medi-
cal field and develops state-of-the-art machine learning methods
to tackle these.

Needs The clinical data scientist needs a platform to deploy her meth-
ods into clinical practice. Thus, she needs a simple way to access
a machine learning platform remotely using a web-interface,
add, customize, modify, and train machine learning models. Af-
ter the models are trained, they are used to create and share new
methods with medical experts in the clinical environment. Meth-
ods in the platform must include all pre- and post-processing
steps, parameters, and settings needed to apply them to the
patient data they are working with.

Frustrations Platform usage is too complicated or time-consuming and re-
stricts her flexibility to design machine learning models. She
also fears a bad reputation if these machine learning models do
not work as intended.

Ideal Features Increase the popularity of machine learning models in the medi-
cal field. Improve patient care by providing better technological
assistance for the medical experts.

4.4 Functional Requirements

This section describes the functional requirements of our platform. The functional
requirements specify functionality that the platform must be able to perform [76].
The following sections describe what the platform needs to do, starting with the use
cases in Section 4.4.2, the user-tasks in Table 4.3, and the platform functions and user
stories in Section 4.4.3.

4.4.1 User Tasks

A user-task is used to model the work a persona needs to do. Additionally, sub-tasks,
system-functions, and user story are used to clarify the needs further. The user-tasks
are defined in Table 4.3.

38 Chapter 4. Requirements Analysis

TABLE 4.3: Description of user-tasks

User-Task Description

UT-Train Train Machine Learning Model:
Description: Clinical data scientists need to train machine learning
models.
Frequency: The user trains a model multiple times per day on aver-
age.
Trigger: The user starts the training whenever she likes.
Risk: In case a data set or a model would not be supported by the
platform, the user would need to develop them without using the
platform, which would be a big problem for the acceptance rate and
possibly cause the frustrations dealing with restrictions.
Solution Conditions: Developing new machine learning models
requires management of the model source code and its versions,
data sets to train the model, and configuring and monitoring the
training pipeline. Data sets and models can vary heavily depending
on the type, size, structure, and content.

UT-Share Export Machine Learning Model as Method:
Description: The clinical data scientist needs to share the trained
models (snapshots) with other data scientists and medical experts,
who may want to test other models for their problem.
Frequency: The user shares one model every three days on average.
Trigger: The user shares a model whenever she likes.
Risk: The user has issues sharing the model and exposing the cre-
ated method.
Solution Conditions: To share the model snapshots, the user pre-
configures the pre- post- and inference-pipeline and combine it into
a method. The user uses the methods to analyze or test the per-
formance of multiple methods her patient data. Therefore various
types of data and methods have to be supported.

UT-Analyze Analyze Patient Data leveraging Machine Learning Method:
Description: Medical experts apply machine learning methods to
analyze patient data and provide important insights, such as detect-
ing areas of interest.
Frequency: The user uploads and analyzes data multiple times per
day on average.
Trigger: The user starts analyzing her data whenever she likes.
Risk: The user has issues uploading and analyzing her data, due to
restrictions of the platform. Additionally, the user might have issues
understanding how to use the platform.

table continued on next page

4.4. Functional Requirements 39

Table 4.3 — continued from previous page

User-Task Description

Solution Conditions: The user needs to be guided to a simplified
workflow to upload the patient data of interest, select the desired
method, and start the analysis pipeline.

4.4.2 User Sub-Tasks

A sub-task is used to further specify the user-task. In this thesis, we use two levels of
subtasks. The first level is called sub-tasks categories which are shown and described
in Table 4.4. The categories are further refined in Table 4.5, Table 4.7, and Table 4.8.

TABLE 4.4: Description of sub-tasks categories

Sub-Task
Category

Description

ST-DS Manage Data Sets:
Description: The clinical data scientist needs to manage data sets
to train machine learning models. For example, they need to
upload and view them.
Solution Conditions: The data set needs to match the require-
ments of a machine learning model as good as possible to achieve
the best possible results during training of a machine learning
model. Therefore the platform has to manage the data set itself as
well as supporting the user with the decision, whether a data set
matches her needs or not (e.g., by showing her detailed informa-
tion).
Supports user-task: UT-Train

ST-MO Manage Machine Learning Models:
Description: The clinical data scientist needs to manage machine
learning models prior training. For example, they need to import
and view them.
Solution Conditions: Machine learning models are an attempt to
improve the number of tasks a machine can perform. The models
itself are made available and are managed by the platform. In
addition to the metadata about the model itself, information about
tasks such as configuration, monitoring and pre-processing has
to be communicated and adjusted by the user. The main purpose
of models is to be improved by training and then used to create
automated machine learning methods.
Supports user-task: UT-Train, UT-Share

ST-ME Manage Machine Learning Methods:
table continued on next page

40 Chapter 4. Requirements Analysis

Table 4.4 — continued from previous page

Sub-Task
Category

Description

Description: The medical expert and the clinical data scientist
need to manage machine learning methods before using them to
analyze patient data. For example, they need to view them and be
able to check the provided description.
Solution Conditions: Machine Learning Methods are tools that
are capable of performing pre-trained tasks. The method itself is
based on a model snapshot, which was trained for a specific task.
In comparison to models, the method is pre-configured. It does not
require any input from the user, except the patient data it should
analyze.
Supports user-task: UT-Share, UT-Analyze

ST-CE Manage Computation Environment:
Description: The medical expert and the clinical data scientist
need to manage the compute environment. For example, they
need to set up and start the training/analysis pipeline and and
monitor the current status.
Solution Conditions: The computation environment executes the
training of machine learning models and inference of machine
learning methods. It covers all necessary steps from the configura-
tion, deployment, monitoring, and results management. Usually,
models require a lot of customization, depending on the selected
data set. During training, the user tries to improve the perfor-
mance of a model, and during inference, a model is applied to the
uploaded patient data.
Supports user-task: UT-Train, UT-Analyze

TABLE 4.5: Sub-Tasks: Data set management

Sub-Task Description

ST-DS-1 View Data Sets:
Description: The user views all data sets, their versions, and also read
the metadata to prepare the training of a machine learning model.
Persona: Clinical Data Scientist

ST-DS-2 Upload Data Set:
Description: The user needs to upload data sets, that matches the re-
quirements of a specific machine learning model.
Persona: Clinical Data Scientist

table continued on next page

4.4. Functional Requirements 41

Table 4.5 — continued from previous page

Sub-Task Description

Conditions: If the user provides additional metadata in the data set, it
should be recognized and added to the description of the data set. The
data set and the metadata must be valid and readable by the platform.

ST-DS-3 Add new Data Set Version:
Description: The user needs to add a new version of the data set and
keep track of the previous versions, after she adjusted the data set.
Persona: Clinical Data Scientist
Conditions: Previous data set versions are crucial to reproduce training
results. Therefore, the user needs to keep track of differences between
data sets and precise versioning of data sets and their versions. The old
version of the data set has to stay available. The data set receives an
incremental update, including a new unique identifier for the updated
version.

ST-DS-4 Edit Data Set Metadata:
Description: The user needs the ability to improve the documentation
and the metadata of a data set.
Persona: Clinical Data Scientist
Conditions: The metadata includes information such as the source,
maintainer, description, included patient ids and other essential charac-
teristics, and the dates of each version. Before the metadata is modified,
the platform shall verify, that the changes are valid, if possible (medical
attributes are difficult to be validated autonomously).

ST-DS-5 Remove Data Sets:
Description: The user needs to remove data sets which are no longer
required.
Persona: Clinical Data Scientist
Conditions: The platform should only remove data sets which are not
in use. Additionally to the deleted data set, all versions should be
recursively removed.

TABLE 4.6: Sub-Tasks: Model management

Sub-Task Description

ST-MO-1 View Machine Learning Models:
Description: The user should be able to view all machine learning
models and also read the metadata to check the details and available
versions.
Persona: Clinical Data Scientist

ST-MO-2 Import Machine Learning Model:
table continued on next page

42 Chapter 4. Requirements Analysis

Table 4.6 — continued from previous page

Sub-Task Description

Description: The user needs to import machine learning models, stored
in external repositories.
Persona: Clinical Data Scientist
Conditions: If the user provides additional metadata within the model,
it should be recognized and added to the description. All available
versions of the model have to be recognized and added to the model-
version list, including the available metadata for each version.

ST-MO-3 Update Machine Learning Model:
Description: The user needs to tell the platform to update the source
code of the machine learning model from an external repository.
Persona: Clinical Data Scientist
Conditions: The user notifies the platform, that it should check and
import new model versions, including the metadata and change-
description of each version. The old version of the machine learning
model has to stay available, to repeat a training (run a training process
using the same data set version, model version and hyperparameter
settings as before). The machine learning model receives an incremental
update, including a new unique identifier for the updated version.

ST-MO-4 Edit Machine Learning Model Metadata:
Description: The user needs the ability to modify the documentation
and the metadata of a machine learning model. The metadata includes
information such as the source-url, maintainer, description, model pa-
rameters, monitoring possibilities, and the dates of each version.
Persona: Clinical Data Scientist
Conditions: Before the metadata is modified, the platform shall verify,
that the changes are valid, if possible (medical attributes are difficult to
be validated autonomously).

ST-MO-5 Remove Machine Learning Models:
Description: The user needs to remove models which are no longer
required.
Persona: Clinical Data Scientist
Conditions: The platform should only remove model which are not in
use. Additionally to the deleted model, all versions should be recur-
sively removed.

ST-MO-6 View Snapshots of a Machine Learning Model:
Description: The user needs to view the available model snapshots.
She requires two views: one overview of all available model snapshots,
and an overview of model snapshots for a specific model version. Ad-
ditionally, the user needs to see the current status of the training (status
messages such as pre-processing, training, etc.)

table continued on next page

4.4. Functional Requirements 43

Table 4.6 — continued from previous page

Sub-Task Description

Persona: Clinical Data Scientist

ST-MO-7 Remove a Snapshots of a Machine Learning Model:
Description: The user should needs to remove a specific snapshot of a
model.
Persona: Clinical Data Scientist
Conditions: The platform should only remove model snapshots which
are not in use.

TABLE 4.7: Sub-Tasks: Method management

Sub-Task Description

ST-ME-1 View Machine Learning Methods:
Description: The user needs to view all available machine learning
methods and also read the metadata to prepare the analysis of patient
data.
Persona: Medical Expert, Clinical Data Scientist

ST-ME-2 Create Machine Learning Method:
Description: The user needs to create a new machine learning methods.
The user provides all required settings to automate the usage of the
method, such as pre- and post-processing pipelines, a machine learning
model, its hyperparameters, and a pre-trained snapshot.
Persona: Clinical Data Scientist

ST-ME-3 Remove Machine Learning Method:
Description: The user needs to remove a specific machine learning
method.
Persona: Clinical Data Scientist
Conditions: The platform should only remove methods which are not
in use.

ST-ME-4 Upload Patient Data:
Description: The user needs to upload locally available patient data to
the platform for further analysis.
Persona: Medical Expert, Clinical Data Scientist

TABLE 4.8: Sub-Tasks: Computation environment management

Sub-Task Description

ST-CE-1 Subscribe to Training and Inference Updates:
table continued on next page

44 Chapter 4. Requirements Analysis

Table 4.8 — continued from previous page

Sub-Task Description

Description: The user requires information about the status of the
training/inference to continue with their workflow. The user needs
to place a subscription, that notifies her about essential updates of a
machine learning pipeline.
Persona: Medical Expert, Clinical Data Scientist
Conditions: Some training or inference processes will need a long time
to finish. Therefore the user should be able to receive a notification
outside of the platform, such as SMS, a chat-bot, or email, in case
the training or inference process reaches a milestone or finishes. This
notification should also include the result (successful / failed) and the
logs collected during runtime.

ST-CE-2 Start Automated Inference using a Machine Learning Method:
Description: The user needs to deploy an automated inference process,
on previously uploaded patient data.
Persona: Medical Expert, Clinical Data Scientist

ST-CE-3 Monitor and Terminate Machine Learning Pipelines:
Description: The user needs to monitor the progress of multiple ma-
chine learning pipelines simultaneously and terminate them if she de-
tects a problem.
Persona: Medical Expert, Clinical Data Scientist

ST-CE-4 View and Download Results:
Description: The user needs to access and download the results of a
finished analysis of a machine learning method.
Persona: Medical Expert, Clinical Data Scientist
Conditions: The results should also contain comprehensive information
about the individual phases during application of a machine learning
method (e.g., annotations, statistics, and logs). Due to the highly vary-
ing architectures of machine learning models, the platform needs to
provide a generic way of storing and offering the results to the users.
Additionally, it should be easily visible who applied the method and
whether it succeeded or not.

ST-CE-5 Training of a Machine Learning Model:
Description: The user needs to configure and launch a training pipeline
in the platform.
Persona: Clinical Data Scientist
Conditions: The training details should be documented and included
in the model snapshot.

ST-CE-6 Track a single Machine Learning Training and Inference Progress:
table continued on next page

4.4. Functional Requirements 45

Table 4.8 — continued from previous page

Sub-Task Description

Description: The user should be able to track the process of a specific
machine learning pipeline.
Persona: Clinical Data Scientist

ST-CE-7 Customize the Pre- and Post-Processing Pipeline of a Machine Learning
Model:
Description: The user needs to adjust the pre- and post- pipelines for
the training of a machine learning method.
Persona: Clinical Data Scientist

ST-CE-8 Initialize Machine Learning Model using a Snapshot:
Description: The user needs to use a previously created model snapshot
to initialize a new training pipeline.
Persona: Clinical Data Scientist
Conditions: The model snapshots should be stored and visualized in
a way that allows the user to understand how a specific snapshot was
created easily, e.g., show the utilized data set.

ST-CE-9 Customize the Hyperparameters of a Machine Learning Model:
Description: The user needs to configure the hyperparameters of a
machine learning model before starting the training pipeline.
Persona: Clinical Data Scientist

A summary of all use cases is shown in Figure 4.2. The clinical data scientist
uses all functionalities of the platform during the development of machine learning
models, as well as creating and testing machine learning methods. On the other
hand, the medical expert should strictly focus on the application of machine learning
methods on the uploaded patient data. Specifically, her goal is not to modify any
methods nor fine-tune existing models to create methods.

46 Chapter 4. Requirements Analysis

FIGURE 4.2: Sub-Tasks: Persona centered overview

4.4.3 System-Functions and User Stories

The system-functions are needed to support the user tasks and subtasks listed in
Table 4.4. This section describes the system-functions, which includes: the input data,
output data, pre-conditions, post-conditions, exceptions, rules, the motivation of the
user, and the role of the user. The order of the system-functions does not correlate
with their priority.

Data Set Management

Data set management is one of the fundamental features of the platform. Management
includes various tasks such as listing, uploading, updating, and removing data sets.
The image and annotation format can vary depending on the task, the preference
of the user, and on the source of the images. Therefore the platform should offer a
generic solution, offering as much flexibility to the user as possible.

4.4. Functional Requirements 47

TABLE 4.9: System function: List data sets

Attribute Description

ID REQ-1, supports ST-DS-1
Pre-Condition Platform is running and sample data sets are pre-loaded.
Input Command to list the data sets.
Post-Condition Nothing changed.
Output Success or error message.

TABLE 4.10: System function: Import data set

Attribute Description

ID REQ-2, supports ST-DS-2
Pre-Condition Data set D does not exist within the platform.
Input The user uploads her data set using the web interface.
Post-Condition Data set was successfully uploaded, basic metadata generated and

updated.
Output Success or error message.

TABLE 4.11: System function: Update data set

Attribute Description

ID REQ-3, supports ST-DS-3
Pre-Condition Data set D is present and valid.
Input Command to update data set D.
Post-Condition Data set D is present in the platform.
Output Success or error message.

TABLE 4.12: System function: Edit data set metadata

Attribute Description

ID REQ-1, supports ST-DS-4
Pre-Condition Data set D is present and valid.
Input Command to edit the data sets metadata D.
Post-Condition The data sets metadata D is updated.
Output Success or error message.

TABLE 4.13: System function: Remove data set

Attribute Description

ID REQ-1, supports ST-DS-5
Pre-Condition Data set D is present and valid.
Input Command to remove data set D.
Post-Condition Data set D is removed.
Output Success or error message.

48 Chapter 4. Requirements Analysis

Machine Learning Model Management

Management includes various tasks such as listing, importing, updating, and remov-
ing models. Machine learning models are developed with the aim to fulfill various
tasks on matching the data sets. The structure, requirements, and functionality can
vary considerably, making it a huge challenge to fit them into a single platform.
Therefore the platform should attempt to offer a generic, standardized solution which
provides as much freedom to the developer as possible.

TABLE 4.14: System function: List models

Attribute Description

ID REQ-6, supports ST-MO-1
Pre-Condition Platform is running and ready to be used.
Input Command to list the available models.
Post-Condition Nothing changed.
Output Success or error message.

TABLE 4.15: System function: Import model

Attribute Description

ID REQ-7, supports ST-MO-2
Pre-Condition Model M does not exist within the platform.
Input Reference to the model, which is accessible for the platform.
Post-Condition Model was successfully imported and the metadata extracted and

updated.
Output Success or error message.

TABLE 4.16: System function: Update model

Attribute Description

ID REQ-8, supports ST-MO-3
Pre-Condition Model M is present and valid.
Input Command to update model M.
Post-Condition Model M is updated.
Output Success or error message.

4.4. Functional Requirements 49

TABLE 4.17: System function: Edit model metadata

Attribute Description

ID REQ-9, supports ST-MO-4
Pre-Condition Model M is present and valid.
Input Command to edit the model M metadata.
Post-Condition Model M metadata is updated.
Output Success or error message.

TABLE 4.18: System function: Remove model

Attribute Description

ID REQ-10, supports ST-MO-5
Pre-Condition Model M is present and valid.
Input Command to remove model M.
Post-Condition Model M is removed.
Output Success or error message.

TABLE 4.19: System function: List model snapshots

Attribute Description

ID REQ-11, supports ST-MO-6
Pre-Condition Model M is present and valid.
Input Command to list the snapshots of the model M.
Post-Condition Nothing changed.
Output Success or error message.

TABLE 4.20: System function: Remove snapshot

Attribute Description

ID REQ-12, supports ST-MO-7
Pre-Condition Model M, Snapshot S is present and valid.
Input Command to remove a snapshot S of model M.
Post-Condition Snapshot S of model M is removed.
Output Success or error message.

Machine Learning Method Management

Machine learning method management is one of the fundamental features of the
platform. Management includes various tasks such as listing, creating, uploading
patient data, and removing methods. Machine learning methods are pre-configured
model snapshots which are able to fulfill various tasks on the uploaded patient data.
The structure, requirements, and functionality can vary considerably, making it a
huge challenge to fit them into a single platform. Therefore the platform should
attempt to offer a generic, standardized solution, which provides as much freedom to
the developer as possible.

50 Chapter 4. Requirements Analysis

TABLE 4.21: System function: List methods

Attribute Description

ID REQ-13, supports ST-ME-1
Pre-Condition Platform is running and ready to be used.
Input Command to list the available models.
Post-Condition Nothing changed.
Output Success or error message.

TABLE 4.22: System function: Create method

Attribute Description

ID REQ-14, supports ST-ME-2
Pre-Condition Method ME does not exist within the platform.
Input Command to create Method ME, including its configuration.
Post-Condition Method was successfully created and is available in the platform.
Output Success or error message.

TABLE 4.23: System function: Remove method

Attribute Description

ID REQ-15, supports ST-ME-3
Pre-Condition Method ME is present and valid.
Input Command to remove method ME.
Post-Condition Method ME is removed.
Output Success or error message.

TABLE 4.24: System function: Import patient data

Attribute Description

ID REQ-16, supports ST-ME-4
Pre-Condition Analyze patient data is selected in the platform.
Input Command to upload the locally available patient data archive P.
Post-Condition The patient data P is updated, extracted and available for the

method.
Output Success or error message.

Computation Environment Management

The computation environment applies a machine learning model to a data set and
guides the user through each step of the training setup. Due to the different kinds of
models, the startup process needs to adapt to the selected model. After launching
the training or inference, the platform monitors the process and collects important
information and stores them in a standardized way. Therefore the platform should
attempt to offer a generic, standardized solution which provides as much freedom to
the model developer as possible.

4.4. Functional Requirements 51

TABLE 4.25: System function: Subscribe to process updates

Attribute Description

ID REQ-17, supports ST-CE-1
Pre-Condition Process S is running within the platform.
Input Subscription to process S, contact option Co.
Post-Condition Process is monitored and platform sends updates to contact option

Co.
Output Success or error message.

TABLE 4.26: System function: Automated method application

Attribute Description

ID REQ-18, supports ST-CE-2
Pre-Condition Patient Data PD and method ME is present.
Input Command to apply method ME on patient data PD.
Post-Condition A new result for method ME is present.
Output Success or error message.

TABLE 4.27: System function: Monitor and terminate processes

Attribute Description

ID REQ-19, supports ST-CE-3
Pre-Condition Processes PR1, . . . , PRN are running within the platform.
Input Command to monitor these processes and command to delete

processes PR1, . . . , PRm.
Post-Condition Information about the running processes are gathered and pro-

cesses PR1, . . . , PRm were terminated.
Output Success or error message.

TABLE 4.28: System function: Show and offer download of results

Attribute Description

ID REQ-20, supports ST-CE-4
Pre-Condition Method Application MEA is finished and the results are available

within the platform.
Input Command to show the results of the method applications within

the platform.
Post-Condition Application results are stored and compressed to an archive, in-

cluding a working download link for each result-archive.
Output Success or error message.

52 Chapter 4. Requirements Analysis

TABLE 4.29: System function: Perform model training

Attribute Description

ID REQ-21, supports ST-CE-5
Pre-Condition Data set D and model M is present.
Input Command to train model M on data set D with configuration C.
Post-Condition A new snapshot is present, containing the trained parameters and

details of the training.
Output Success or error message.

TABLE 4.30: System function: Track progress

Attribute Description

ID REQ-22, supports ST-CE-6
Pre-Condition Training or Inference TE is created and still running.
Input Command to track running Process TE.
Post-Condition Nothing changed.
Output Success or error message.

TABLE 4.31: System function: Customize processing pipeline

Attribute Description

ID REQ-23, supports ST-CE-7
Pre-Condition Model M is present.
Input Selected model M, selection to customize its pre- and post- pro-

cessing pipeline PI.
Post-Condition The customizable processing pipeline is applied during training.
Output Success or error message.

TABLE 4.32: System function: Initialize training using model snapshot

Attribute Description

ID REQ-24, supports ST-CE-8
Pre-Condition Model M is present and has a snapshot PS.
Input Command to initialize model M with snapshot PS is given.
Post-Condition Before training the model is initialized with snapshot PS.
Output Success or error message.

TABLE 4.33: System function: Customize model hyperparameters

Attribute Description

ID REQ-25, supports ST-CE-9
Pre-Condition Model M is present.
Input Selected model M, selection to customize its configuration C.
Post-Condition The customizable hyperparameters, default values and descrip-

tion is applied in the training of the model.
Output Success or error message.

4.5. Single-User Workflow 53

4.5 Single-User Workflow

The following section describes typical workflows for each persona, i.e., in which
sequence the user would perform the sub-tasks mentioned earlier. The workflows
introduced in the section represent the most common use cases for each persona.

4.5.1 Medical Expert

The medical expert’s main motivation is to apply state-of-the-art machine learning
methods to her patient images without needing a machine learning background.
Usually, the methods annotate specific areas in the images, such as cancer locations
to support the medical expert with the image analysis. A generalized workflow is
shown in Figure 4.3

FIGURE 4.3: Activity diagram for the medical expert

• Persona: Medical Expert

• Default use-case and platform behavior (as shown in Figure 4.3)

1. Upload patient data (ST-ME-5)
Patient data is uploaded, imported, and stored in a temporal directory
within the platform.

2. View, search, filter and select methods (ST-ME-1)
All available methods are listed, a search function and filter are available
to help the user to find the needed methods. Details about the methods
are displayed on request, and system attributes are hidden from the user.

3. Deploy automated inference using selected methods (ST-CE-2)
The pre- and post-processing pipeline and all hyperparameters are already
pre-defined in the method. After pre-processing, the trained model is
inferred on the medical data. The results of the inference are processed
by the post-processing pipeline and stored in a persistent storage on the
platform.

4. Access and download results (ST-CE-4)
The user receives a notification about the available results, including a
link to download them as a zip-archive. The archive contains data and
information related to the inference, including the logs of the pipelines
and source images.

54 Chapter 4. Requirements Analysis

• Quick-deployment use-case

1. Selection of a method (ST-ME-1)

2. Use corresponding quick-deployment button

3. Import of patient data (ST-ME-5)

4. Deploy automated inference (ST-CE-2)

4.5.2 Clinical Data Scientist

The main motivation for the clinical data scientist is to improve and adapt state-of-
the-art machine learning models to specific tasks and share them with other users.
To optimize the machine learning method for a specific task, she uses a range of
data sets, modifies the model architecture, and tunes its hyperparameters. When
the clinical data scientist is satisfied with the model’s performance, she generates
a model snapshot and, additionally, an automated method. The method can now
be conveniently shared with clinical data scientists, who hence have easy access to
the latest developments of the machine learning model. A generalized workflow is
shown in Figure 4.4.

FIGURE 4.4: Activity diagram for the clinical data scientist

• Persona: Clinical Data Scientist

• Default use-case and platform behavior (as shown in Figure 4.4)

1. Upload data set (ST-DS-2)
The data set is uploaded and imported from an archive of the images
and labels. The data set is stored in a persistent storage location on the
platform.

2. Import model (ST-MO-2)
Models are imported from a for the platform accessible repository. Needed
attributes are collected and stored. The model is stored in a persistent
storage location on the platform.

3. Train, the model on a selected data set (ST-CE-5),
The platform guides the user through the training process. This includes

4.6. Multi-User Collaboration Workflow 55

steps such as selecting a previous model snapshot to start the training
with, customization of available hyperparameters for the selected model
and monitoring.

4. Update model version (ST-MO-3)
The user changes the source code of the model and adds a new tag within
the source code repository. During update the platform detects the new
version and updates the model version accordingly.

5. Train updated model (ST-CE-5)
The platform adds a new model snapshot to the updated model. Snapshots
of the old version can not be used anymore as a starting point for a new
training.

6. Improve trained updated model (ST-CE-8, ST-CE-9, ST-CE-5)
A new training is launched, using the snapshot of the previous training as
a starting point of the training.

7. Access and download training results (ST-CE-4)
The user accesses the training results by downloading a zip-archive with
all data related to the training (including logs and statistics).

8. Create method from model and a selected snapshot (ST-ME-2)
The user exports the selected snapshot as a method, by adding a simple
name, description, and pre- and post-processing pipeline.

• Remove unused or old methods (ST-ME-3),
The user removes methods that are not used anymore from the platform.

4.6 Multi-User Collaboration Workflow

One of the main goals of this platform is to connect medical experts to the clinical data
scientists to provide them with state-of-the-art methods for medical data analysis.

A generic sample workflow is assumed to involve three parties, from which one
focusses on the medical tasks, and two are focussing on machine learning related
research in the medical context.

The collaboration requires shared access to data and machine learning research.
The following list shows an overview of the most common concerns we gathered
during interviews with potential users:

• Legal Restrictions

– Sensitive patient data can only be accessed within a strictly protected
environment.

– Sensitive data sets are used to train machine learning models without
exposing the data to the users.

– The platform should be aware of sensitive patient data users may upload
during the setup of the analysis workflow. After a method was trained
using sensitive data, it may also be sensitive itself.

• Political Restrictions

56 Chapter 4. Requirements Analysis

– Accumulating high-quality data for research is costly and time-consuming.
Therefore some researchers may not want to share the data freely with
others but allowing other users of the platform to use it in a controlled
way under their supervision.

• Technical Restrictions

– Required data is too large to copy it over the network in a reasonable time.

– Required data is too large for storing it on the target platform.

Therefore the platform provides different handling of data, depending on the purpose.
To develop new state-of-the-art models, anonymized or insensitive data sets are stored
and shared within the platform. For applying machine learning methods to sensitive
patient data, the data is collected and only used for one application. To support
this concern, they need multiple computation environments, which are used to train
models or deploy newly developed methods. Therefore the computation environment
should be standardized and not depend on the other parts of the platform. The
following scenario describes the interaction between the users:

1. Medical experts are working with large sets of patient data, and they need to
analyze it to gain further insights on their data. Currently, they analyze the data
manually but wonder whether there are state-of-the-art methods available to
reduce their workload.

2. The medical experts contact a clinical data scientist CDS1 to evaluate the possi-
bility of leveraging machine learning concepts to analyze the patient data.

3. CDS1 explores currently available machine learning models using state-of-
the-art publications, her own research, and research from other clinical data
scientists she works with.

4. A clinical data scientist CDS2 mentioned in a previous meeting that she has
developed a machine learning model solving a similar problem and is interested
in customizing the model to meet the needs of the medical experts.

5. CDS2 uploads her current model into the medical machine learning platform.

6. CDS1 and CDS2 are working together, understanding how the model works
and which steps are needed to customize it for the medical experts.

7. They customize and improve the machine learning method iteratively using
the platform, based on available data sets and sample data sets provided by the
medical experts for this specific issue.

8. After some time they finalized the model and use it to create a new method. The
method automates the application of the model and makes it straightforward
for the medical experts to apply it to their patient data.

9. They notify the medical experts that the method is available in the platform.

10. The medical experts apply the method to their patient data.

4.6. Multi-User Collaboration Workflow 57

The platform focuses on the machine learning aspects. Figure 4.5 shows all and
actors and possible interaction points. The medical experts wish to leverage modern
machine learning approaches to reduce their manual workload. Therefore, they ask a
clinical data scientist CDS1, if it is possible to develop a new method for their use case.
Additionally, they provide insensitive sample data, which is accessible by the clinical
data scientists. Data sets are stored in the platform and managed by the clinical
data scientists. Due to the complexity, the figure focuses on the model and method
development. The grayed tasks are not part of the platform but may be helpful to
understand the workflow.

Researcher CDS1 decides whether to collaborate with other researchers. They
develop a new model iteratively and create an automated method afterward. The
method is mainly accessed and used by medical experts. In the ideal case, they can
load their sensitive data directly into the computing environment and apply the new
method there. This way, the other parties will never have access to the real data but
can get valuable information about the performance later. In the future, this behavior
could also be used to train machine learning models on real patient data without
providing direct access to the researchers.

Another important aspect of the platform is to share and provide access to valuable
data sets. The creation of high-quality data sets is usually very costly and may contain
sensitive information. Therefore it is not always possible to make it publicly available.
This platform should store these data sets and allows other users to use them for
training their model. The focus is on the general functionality of managing data
sets and using them to train machine learning models within the platform. The big
advantage in comparison to publishing the data set is in the control of who uses it and
how. The access could be revoked any time, and changes can also be easily applied.

58 Chapter 4. Requirements Analysis

FIGURE 4.5: Multi-user collaboration workflow design

4.7 Non-Functional Requirements

Non-functional requirements (NFR) describe the non-behavioral attributes of a sys-
tem, including completeness, correctness, efficiency, interoperability, usability, reliabil-
ity, maintainability, portability, test-ability, and understandability [23]. The categories
used to describe the NFR are derived from [27]. These are described for this plat-
form in the following Tables: sustainability Table 4.35, and Table 4.36, performance
efficiency in Table 4.37, compatibility and interoperability in Table 4.38, usability in
Table 4.39, reliability in Table 4.40, maintainability in Table 4.41, and Table 4.42. A full
overview of all functional and non-functional requirements is shown in Table 4.43.

4.7. Non-Functional Requirements 59

TABLE 4.34: NFR: Functional compatibility

Attribute Description

Category Functional Suitability
Description This platform should provide very flexible management for data

sets and models to minimize the burden of using the platform. The
compatibility of different kinds of data sets and models is a necessary
requirement for medical researches.

Criteria Data sets containing various types of data, such as images, audio, text,
and videos are supported. Machine learning models are not restricted
to specific frameworks.

Time Design and Development-Stage

TABLE 4.35: NFR: Functional completeness

Attribute Description

Category Functional Suitability
Description The developed platform is fulfilling the desired requirements.
Criteria The defined system-functions are implemented.
Time Design and Development-Stage

TABLE 4.36: NFR: Functional correctness

Attribute Description

Category Functional Suitability
Description The developed platform was tested to assure the quality and cor-

rectness of each component. The implementation adapts to design
decisions such as the General Responsibility Assignment Software
Patterns (GRASP) [86]. These patterns include high cohesion, low
coupling, polymorphism, protected variations, indirection, and pure
fabrication.

Criteria Test strategies are described.
Time Design and Test-Stage

TABLE 4.37: NFR: Time-behavior

Attribute Description

Category Performance Efficiency
Description The user interface should respond quickly, with the exception of

loading a large data set or using a complex machine learning method.
Criteria On average the response time should be less then 1 second.
Time Design- and Development-Stage

60 Chapter 4. Requirements Analysis

TABLE 4.38: NFR: Interoperability

Attribute Description

Category Compatibility
Description The platform is fully containerized and deployed within a fully virtu-

alized container environment.
Time Design- and Development-Stage
Criteria Platform is containerized.

TABLE 4.39: NFR: User-interface

Attribute Description

Category Usability
Description User feedback is displayed in case of issues after the user inputs data

or uses an advanced functionality of the platform.
Time Development- and Test-Stage
Criteria A notification is displayed after invalid user input.

TABLE 4.40: NFR: Fault tolerance

Attribute Description

Category Reliability
Description The platform tolerates invalid user input. If the user provides invalid

information, the platform should display a notification. After that the
user should be able to correct her input.

Time Development- and Test-Stage
Criteria The platform does not crash after invalid user input is provided.

TABLE 4.41: NFR: Modularity

Attribute Description

Category Maintainability
Description The developed platform uses design patterns, separation of concerns,

and matching design structures.
Time Design- and Development-Stage
Criteria Each system component runs separately from the others.

TABLE 4.42: NFR: Reusability

Attribute Description

Category Maintainability
Description The developed platform allows adding more components later.
Time Design- and Development-Stage
Criteria The source code is structured in a way that enables others to modify

each component easily.

4.8. User-Interface Structure Design 61

4.8 User-Interface Structure Design

The user interface structure diagram describes the interaction between the user
and the platform. Workspaces describe which content is shown and the system-
functions used to present it. Arrows between the workspaces indicate how the
user can navigate between each of them. Sophisticated workspaces are divided into
smaller sub-workspaces. Special sub-workspaces are further separated and shown in
a different diagram.

Clinical	Data	Scientist:	Medical	Machine	Learning	Platform	-	User	Interface

WS-1: Data Set View

Required Data:
- Available Data Sets and Metadata

WS-2: Model View

Required Data:
- Available Models and Metadata

WS-2. MO Snapshot List

System-Functions
(selected MO Version):
- List Model Snapshots
- Remove Model Snapshots
- Create Method from Snapshot

WS-2.0 Model (Default)

System-Functions (all Models):
- List
- Import
- Delete
- Edit Metadata

WS-2.1 MO Version List

System-Functions (selected MO):
- List (Versions)
- Update
- Delete
- Edit Metadata

WS-1.0 Data Set List (Default)

System-Functions (all DS):
- List
- Import
- Delete
- Edit Metadata

WS-1.1 DS Version List

System-Functions (selected DS):
- List (Versions)
- Update
- Delete
- Edit Metadata

WS-3: Method View

Required Data:
- Available Methods
 and Metadata

WS-3.0 Method (Default)

System-Functions:
- List
- Delete
- Edit Metadata

WS-4: Computing Environment View

Required Data:
- Available Data Sets, Models,
 and Methods

WS-4.2 Train Model

System-Functions :
- List Data Sets
- List Model
- List Model Snapshots
- Multiple CE System-Functions

WS-4.0 Status (Default)

System-Functions:
- Monitor and Terminate
- Track Progress

WS-4.1 Results

System-Functions:
- Show and Offer Dow. of Results

WS-4.3 Analyze Patient Data

System-Functions :
- Import Patient Data
- List Methods
- Multiple CE System-Functions

FIGURE 4.6: User interface structure diagram for the clinical data
scientist

The platform offers multiple workspaces based on the persona who is using it. If
the clinical data scientist is using the interface, workspaces one to 4 are used. They
are shown in Figure 4.6. WS-1 shows the workspace related to the data sets. If the
user enters the workspace, WS-1.0 is shown. It offers a list of all data sets, uploading,
deleting, and editing of the metadata. To further inspect a data sets, WS-1.1 offers
a view about the available versions and the option to update a new version. WS-2
focusses on the available models. Per default, WS-2.0 is shown, which provides a
list and functions to manage the models. WS-2.1 shows the available versions of a
selected model and offers additionally the possibility to view and remove model
snapshots and create methods by navigating to workspace WS-2.2. WS-3 and WS-3.0
offers to list, delete, and edit the metadata of available methods. WS-4 guides to
all the needed steps for training a model on a data set and applying a method to
uploaded patient data. It defaults to WS-4.1, which shows the currently running
processes, options to terminate them and track the progress. To check and download
the results of completed method applications, the user can navigate to WS-4.1.

62 Chapter 4. Requirements Analysis

WS-6: Computing Environment View

WS-4.2 Train Model

WS-4.2.1 Select Data Set

System-Function:
- List Data Sets

WS-4.2.2 Select Model

System-Function:
- List Models

WS-4.2.3 Select Model Snapshot

System-Function:
- List Model Snapshot
- Initialize Training using Model Snapshot

WS-4.0 Status (Default)

System-Function:
- Monitor and Terminate
- Track Progress

WS-4.2.4 Customize Model Hyperparameters

System-Function:
- Customize Model Hyperparameters

WS-4.2.5 Customize Processing Pipeline

System-Function:
- Customize Processing Pipeline

WS-4.2.6 Start Model Training

System-Function:
- Perform Model Training
- Subscribe to Process Updates

FIGURE 4.7: User interface structure diagram for model training

Training a model requires a large amount of customization. The interface guides
the user through every step in WS-4.2. Due to the high complexity the steps are
shown in Figure 4.7. The first step is to select a data set in WS-4.2.1. In the second
step WS-4.2.2 the user selects the model to train. Sometimes it is required to improve
a previous training result further. Therefore WS-4.2.3 lists all available snapshots
for the selected model version. In WS-4.2.4, the hyperparameters of the model are
displayed with the options to customize them. Depending on the model, it may be
required to adjust the processing pipeline (pre and post-processing). WS-4.2.5 shows
the default pipeline and allows to modify it. In the last step WS-4.2.6, a summary of
the configuration is shown, and the user can start the training of the model. After the
training is started, the progress is shown in WS-4.0. To test newly created methods,
WS-4.3 offers to apply methods to patient data, as the medical expert would do. The
workspace is the same as described in WS-6.3 and shown in Figure 4.9.

In contrast to the clinical data scientist, the medical expert focuses on applying
methods to patient data. Therefore the interface differs a lot. The platform should
offer WS-5 and WS-5.1 to display the available methods to the user. To apply one
of them to the patient data, the computing environment WS-6 is required. WS-6.1
welcomes the user with an overview of the currently running method applications.
The user can navigate to WS-6.1 to view and download old results or start an analysis
of her patient data. Due to the complexity of the analysis, this process is shown in
Figure 4.9

4.8. User-Interface Structure Design 63

Medical	Expert:	Medical	Machine	Learning	Platform	-	User	Interface

WS-5: Method View

Required Data:
- Available Methods
 and Metadata

WS-5.0 Method (Default)

System-Functions:
- List Methods

WS-6: Computing Environment View

Required Data:
- Available Methods

WS-6.0 Status (Default)

System-Functions:
- Monitor and Terminate
- Track Progress

WS-6.1 Results

System-Functions:
- Show and Offer Download of Results

WS-6.3 Analyze Patient Data

System-Functions:
- Import Patient Data
- List Methods
- Automated Method Application
- Subscribe to Process Updates

FIGURE 4.8: User interface structure diagram for the medical expert

WS-6: Computing Environment View

WS-6.3 Analyze Patient Cohort

WS-6.3.1 Import Patient Data

System-Function:
- Import Patient Data

WS-6.3.2 Select Methods

System-Function:
- List Methods

WS-6.3.3 Start Method Application

System-Function:
- Automated Method Application
- Subscribe to Process Updates

WS-6.0 Status (Default)

System-Function:
- Monitor and Terminate
- Show and Offer Result Download

WS-6.1 Results View

System-Function:
- Show and Offer Download of Results

FIGURE 4.9: User interface structure diagram for the method applica-
tion

The first step of analyzing a patient data is to upload it into the platform. Upload-
ing the patient data is possible in Figure 4.9. In the next step, the medical expert has to
view all available methods and select the method required to gain the needed insights
on the patient images, which is provided by WS-6.3.2. Lastly, WS-6.3.3 provides
the option to review the configuration before launching it. Also, some advanced

64 Chapter 4. Requirements Analysis

features such as a subscription to updates can be selected to notify the users if certain
milestones are reached. After the application finished, the user can access the results
page to view and download the produced results.

4.9 Takeaway

The personae who are using the platform were defined in Section 4.2. A primary
persona is the Medical Expert, as described in Table 4.1. The medical expert works in
the medical field and wants to leverage machine learning approaches to support her
during patient image analysis. Another primary persona is the Clinical Data Scientist.
The clinical data scientist is defined in Table 4.2.

She has a much broader scientific background, works with machine learning
regularly, and wants to use the platform to develop and share her machine learning
models. All use cases are described in Table 4.4. These use cases were used to derive
functional requirements, which are described in Section 4.4, the user workflows in
Section 4.5, multi-user workflows in Section 4.6, and non-functional requirements
are described in Section 4.7. The user interaction with the platform is described in
Section 4.8. An overview of all requirements is shown in Table 4.43.

TABLE 4.43: Requirements analysis: Requirements overview

ID Type Name

Data Set Management:
REQ-1 FR List Data Sets (Table 4.9)
REQ-2 FR Upload Data Set (Table 4.10)
REQ-3 FR Update Data Set Version (Table 4.11)
REQ-4 FR Edit Data Set Metadata (Table 4.12)
REQ-5 FR Remove Data Set (Table 4.13)

Model Management:
REQ-6 FR List Models (Table 4.14)
REQ-7 FR Import Model (Table 4.15)
REQ-8 FR Update Model (Table 4.16)
REQ-9 FR Edit Model Metadata (Table 4.17)
REQ-10 FR Remove Model (Table 4.18)
REQ-11 FR List Model Snapshots (Table 4.19)
REQ-12 FR Remove Snapshot (Table 4.20)

Method Management:
REQ-13 FR List Methods (Table 4.21)
REQ-14 FR Create Method (Table 4.22)
REQ-15 FR Remove Method (Table 4.23)
REQ-16 FR Import Patient Data (Table 4.24)

table continued on next page

4.9. Takeaway 65

Table 4.43 — continued from previous page

ID Type Name

Computation Environment:
REQ-17 FR Subscribe to Process Updates (Table 4.25)
REQ-18 FR Automated Method Application (Table 4.26)
REQ-19 FR Monitor and Terminate Processes (Table 4.27)
REQ-20 FR Show and Offer Download of Results (Table 4.28)
REQ-21 FR Perform Model Training (Table 4.29)
REQ-22 FR Track Progress (Table 4.30)
REQ-23 FR Customize Processing Pipeline (Table 4.31)
REQ-24 FR Initialize Training using Model Snapshot (Table 4.32)
REQ-25 FR Customize Model Hyperparameters (Table 4.33)

Non-Functional Requirements:
REQ-26 NFR Functional Suitability: Functional Compatibility (Table 4.34)
REQ-27 NFR Functional Suitability: Functional Completeness (Table 4.35)
REQ-28 NFR Functional Suitability: Functional Correctness (Table 4.36)
REQ-29 NFR Performance Efficiency: Time-behavior (Table 4.37)
REQ-30 NFR Compatibility: Interoperability (Table 4.38)
REQ-31 NFR Usability: User-Interface (Table 4.39)
REQ-32 NFR Reliability: Fault tolerance (Table 4.40)
REQ-33 NFR Maintainability: Modularity (Table 4.41)
REQ-34 NFR Maintainability: Reusability (Table 4.42)

67

Chapter 5

Design and Implementation

This chapter describes the fundamental design decisions and the implementation of
the prototype.

5.1 Overview

The overall goal is to integrate and standardize machine learning research approaches
into one platform. With this prototype, we aim to provide a proof of concept for
the fundamental idea behind the platform: building a scalable collaboration hub
for clinical data scientists and medical experts, in which they can train, share, and
apply machine learning models. Thus, the first effort was focussed at the essential
functionality of the platform: model training and model application. The concept
and implementation work can be subdivided into four parts: frontend, backend,
computing environment, and infrastructure. Special attention was directed at the
underlying infrastructure to support on-demand scaling and high computation power.
Each component of the platform should follow a cloud-native design approach, as
described in Section 2.3 to exploit the advantages of cloud computing, such as notably
better scaling capabilities. The design of the platform prototype includes the full
infrastructure stack and therefore can adapt to the specialties of a cloud compute
cluster. A local workstation, supporting the development and the execution of
virtualized application containers, is used as a simplified representation for the
prototype. In further work, the platform can be, as it is built on top of scalable
infrastructure, integrated into the proposed fully capable cloud computing cluster
environment.

General Architecture

The platform consists of thee major components, which run on top of the infrastruc-
ture: the frontend, the backend, and the computing environnement (Figure 5.1). The
user has access to the frontend to manage data sets, models, and methods. When the
user uses the frontend, requests are created and send to the backend. The backend
processes the user requests and executes corresponding function calls. Computing
jobs are run inside a fully virtualized computing environments, which can theoret-
ically be deployed in various locations (e.g., local machine, a compute cluster, or a
cloud provider).

68 Chapter 5. Design and Implementation

User
<<System>>
Medical Machine Learning Platform (MMLP)

MMLP-Frontend MMLP-Backend

MIP-ExperimentMIP-ExperimentMMLP-Computing
Environment
Location 1

Network
Storage

MIP-ExperimentMIP-ExperimentMMLP-Computing
Environment
Location 2

MIP-ExperimentMIP-ExperimentMMLP-Computing
Environment
Location 3

FIGURE 5.1: Main components of the platform

5.2 Frontend

Both medical experts and data scientist have to work on the project. Therefore, the
user interface should provide access for multiple users from separate locations. Due
to the various types of workplaces in the medical field, it also cannot be assumed that
the local computer is powerful enough to allow support machine learning-related
tasks.

Therefore, we have chosen to employ a web-based frontend to provide access
to the platform. The web-based frontend will utilize a backend to process the user
requests and multiple computing environments, which performs the training of a
model and application of a method. Opposed to an application-style frontend, a
web-based frontend imposes minimal soft- and hardware requirements. Furthermore,
it does not need local installations, and users can easily access the platform using an
internet browser.

We developed the frontend following a user-centred design approach, focussing
on the users’ needs during every step of the development [33]. The design compo-
nents include how data and functions are represented, how the layout of the screen
is structured, and how the dialogs are described. In this work, two personae are
considered: the medical expert (described in Table 4.1) and the clinical data scientist
(described in Table 4.2). As shown in Section 4.5, the personas have different tasks
that the platform either enables or supports. Additionally, the tasks may require
very different data, information, and functionalities. Therefore the interface should
distinguish between each persona, having an option to select which persona wants to
use the platform. To further support the personas, the interface should be simplified
and automated as much as possible. For clinical data scientists, a simple but powerful
frontend is required, focusing on flexibility and an extensive feature-set, without sac-
rificing ease-of-use and intuitiveness. Further, clinical data scientists should be able
to upload annotated data to train a segmentation model with minimal restrictions on
the format, structure, or other aspects.

The focus for the medical expert was to provide an accessible, intuitive, and mod-
ern interface to additionally motivate the usage of a new system. To use an exported

5.2. Frontend 69

method with patient data, the interface should provide clear guidance, following
a three-step approach: upload data, select method, and start the analysis process.
Further configuration should not be necessary, because all relevant information was
already collected during training. Additionally, the interface should be intuitive to
use and aesthetically pleasing, to take advantage of the platform without requiring
training classes, especially for the users without a computer science background.

A training pipeline could take multiple days to complete, during which the
platform has to stay responsive to the users. Therefore, time-intensive functions
should run asynchronously, enabling the user to use other functions while parts of
the system are busy. Additionally, the platform should be able to send notifications to
inform the users about important changes, such as finished training or application
pipelines.

Frontend Implementation The user interface is build upon Node.js and JavaScript
[84]. Node.js is a framework to develop high-performance, concurrent web applica-
tions and used for the frontend of the platform. On top of Node.js, the JavaScript
Framework Vue.js [57] is used to implement the required functionalities. In general,
Vue.js offers the following advantages: it supports a stateless and instanceless func-
tional developing model, it has already a variety of standard components available, it
has a variety of user libraries available, and it offers the capability to implement a
android app in the future [90]. During the implementation process of the platform,
we utilized the user-made material component framework Vuetify.js [91].

Medical Machine Learning Platform - Frontend

View 1

Route 1

View N

Component 1

Component O

Asset 1 Asset P

Route M

Mixin 1 Mixin N

Translations
(optional)

Global State Management

State Action

MutationGetter

FIGURE 5.2: Frontend: Generic component diagram

The frontend requires multiple components to process and display the requested
pages from the user, which are shown in Figure 5.2. The content is divided into
routes, which are defined by the Uniform Resource Locator (URL). Based on the

70 Chapter 5. Design and Implementation

URL, the main application of the frontend forwards the request to the configured
view or displays an error if no view is defined. An extemporary URL could be
’https://MMLP.de/datasets’. The router would call and show the datasets overview view.
Each view could be described as a dynamic page of the website, which adapts its
content according to the provided data. The content is displayed using components
which define how the data is presented and which functionalities are available to
the user. A simple component could be the data set overview table, including the
functions such as upload, add version, delete, and edit the data set. Each component
can require additional functions to process and display the data. To use a function
multiple with different components, they are shared using a mixin component. Simi-
lar to mixins, asset components contain objects, for example, static pictures, which
can be shared by multiple frontend components. Notably, instead of implementing a
synchronous parent-child-tree communication, the platform utilizes asynchronous
communication with a global state management component. Asynchronous com-
munication reduces code complexity and increases the responsiveness of the user
interface.

The global state management component consists of four major parts: a getter,
state, action, and mutation component. The state component keeps track of the
current value of the data. The getter component is used to read data from the store.
Specifically, getter components are functions that can access the data and apply arbi-
trary functions to it before the data is returned, for example, filters or extraction of
specific parts. Two components are available to modify the content of the state: action
and mutation. The critical difference between actions and mutations is that an action
runs asynchronously, and is thus not blocking the frontend while it is running. There-
fore the communication with the backend always uses action components, allowing
the user to still use the frontend while data is sent or received from the backend.
Mutation components are only used in the frontend for internal modifications of
its data, which are usually very fast and thus does not notably block the user interface.

A sample screenshot of the frontend is shown in 5.3. The menu-toolbar shows avail-
able options, customized to the persona using the platform. From left to right, the
menu includes the following features: data set management, model management,
start training workflow, snapshot management, method management, result manage-
ment, and a switch to change the persona.

The screenshot displays the summary page in the training workflow of the clinical
data scientist. The summary page lists the complete configuration of the training
process. In this case, the data set, model version, set model parameters, and available
live-tracking services for training the models are presented. The small check-marks
next to the menu-toolbar indicate the current state in the workflow. In this example,
she already successfully configured the data set, model, snapshot, and model param-
eters. In case of a faulty configuration, an error sign is displayed, and the user is not
able to proceed until the error is fixed.

5.3. Backend 71

FIGURE 5.3: Frontend sample screenshot

5.3 Backend

The backend is used to process user requests from the frontend with the underlying
programs of the platform and exposes the API to other programs. Exposing the API
allows other programs to access the platform functionality directly. This offers further
integrateability to other tools such as image viewer and machine learning related
tools.

The backend implements the functional requirements mentioned in Chapter 4,
especially REQ-1 to REQ-16. An especially important task is the execution of training
and application of machine learning models in the computing environment, where the
data related to user-specified input has to be routed to the corresponding container.
We have chosen Python as the employed programming language, as it is frequently
used in the scientific field and therefore could encourage other collaborators to join

72 Chapter 5. Design and Implementation

the platform development in the future [71]. The main contracts in Python are object-
oriented and also supports some of the functional programming approaches. The
advantage of functional programming is an effective and elegant programming style
which facilitates the rapid development of new functionalities. This is also essential
for quality assurance, which is further described in Chapter 6.

Medical Machine Learning Platform - Backend

Resource Controller 1

Endpoint 1

Resource Controller N

Resource Manager 1

Resource Manager O

Data Class 1

Data Class P

Endpoint M

FIGURE 5.4: Backend: Generic component diagram

Backend Implementation The structure of the backend service is shown in Fig-
ure 5.4. Incoming requests have to be forwarded to the endpoint for processing,
which is defined in the right part of the diagram. A request has an action, such
as GET, POST, or DELETE, and a resource identifier, which is part of the Uniform
Resource Locator (URL). Based on the resource identifier, the matching endpoint is
selected and the matching resource controller called. The resource controller validates
the requests, performs the required steps before it calls the resource manager(s) to
provide the requested functionality. The resource manager has access to the data
classes and the functions required to work with and manipulate the stored data.

For example, if the user sends a GET request to ’https://MMLP.de/datasets’, the
resource id datasets is extracted, and passed to the resource controller. The resource
controller validates the input, and calls the resource data-set-manager to collect a list
of all available data sets. In the last step, the data set resource manager extracts the
required information from the stored data-set-classes and returns it to the controller,
which creates the required http-response and sends it back to the user.

The API Falcon [35] is used to realize the backend. Compared to other frameworks,
Falcon is rather minimalistic, robust, performant, and only requires a small amount
of dependencies [35].

5.4. Computation Environment 73

5.4 Computation Environment

The computation environment handles all tasks related to defining, running, moni-
toring, and controlling training of models, and application of methods. It is closely
connected to the backend and implements REQ-17 to REQ-25. There are various
options available to implement such an environment. For specific frameworks such
as PyTorch [48], a python based virtual environment could be used. However, this
only applies to certain frameworks and is not a programming language-independent
solution. Therefore, to support more generic computation environments system level
virtualization strategies such as application containers are recommended. Applica-
tion containers support nearly all kinds of programs, allowing even non-machine
learning models to be used within the platform.

Additionally, the required computing power to develop and apply new machine
learning methods has to be provided and will potentially grow over time. Further,
contrary to the clinical data scientists, the compute capability of the local medical
experts’ workstation may not be sufficient for modern machine learning methods,
especially when running multiple training pipelines in parallel. Therefore, the plat-
form should provide its own infrastructure stack such as a GPU compute cluster
on-premise or in the cloud. Therefore, the design should consider scaling capabilities
of the infrastructure and be able to handle large amounts of data, high demand of
CPU and GPU-computing power, and the parallel execution of independent model
training and method analysis pipelines. This could be tackled by using high-end
local workstations or local compute clusters. Other disciplines, for example in the
field of bio-informatics, already use web-based cloud solutions run large, on-demand
compute clusters [53]. Cloud solutions can be on-premise, managed by a local service
provider, publicly by common providers such as Amazon Web Services or Google
Compute Cloud, or a hybrid solution using both of them. This trend is also emerging
in the medical field [64, 29]. Therefore the foundation of this platform is designed
to support local, public and hybrid cloud solutions. Building on this cloud concept,
each component of the platform is running in its own virtualized environment, inde-
pendently from the hardware or the system its running on. This is further described
in Section 2.3.

Model Training Process

The model training process is handled in large parts by the computation environment.
In Figure 5.5 the communication of the system components and required steps to
train a model are shown.

The clinical data scientist uses the frontend to manage data sets (REQ-1, REQ-2,
REQ-3, REQ-4, and REQ-5) and machine learning models (REQ-6, REQ-7, REQ-8,
REQ-9, REQ-10, REQ-11, and REQ-12).

First, she selects a data set version and the model version she wants to use. Then,
to start the training, she configures training hyperparameters (REQ-25), customizes
the processing pipeline (REQ-23), optionally initializes the training with a model
snapshot (REQ-24), and start the training process (REQ-21). She is given the option to
subscribe to process updates (REQ-17) and to monitor the training process (REQ-19).
The backend receives the request, validates the configuration, creates and configures

74 Chapter 5. Design and Implementation

Clinical Data Scientist/MMLP-Frontend

Configures and Starts
Model Training

Error Notification

Access
Model Snapshot

Create Method

Monitor
Training Status

MMLP-Backend

Setup Computation
Environment

input
valid?

No

success?

No

Yes

Monitor:
Statistics and Status,

Send Notifications

Yes

MMLP-Computation Environment

Custom Model Environment

Provide
Input Data

Collect and
Archive Results

Custom
Pre-Processing

Model
Training

Custom
Post-Processing

Global
Pre-Processing

Create
Model Snapshot

FIGURE 5.5: Activity diagram: Model training

the computation environment and provides the needed input data for the training
(all needed input data are shown in Figure 5.7). The training is started and the
pre-processing steps are applied, transforming the data set into a matching format
for the model. Afterwards the model is trained using the provided data set and the
configured hyperparameters. During post-processing stage the researcher can add
tasks which help to analyse the training results. In general this step is rather optional
during training, since training focuses on improving the model and not to produce
annotations on unknown images. In the last step the model snapshot is created from
the current state and the clinical data scientist can use the generated meta data to
evaluate the performance of the newly created snapshot.

After the machine learning method training succeeded, the clinical data scientist
is given the option to list (REQ-13), create (REQ-14), and remove machine learning
methods (REQ-15). When the methods are updated, the medical expert is able to
access and utilize the newly methods.

Method Application Process

The method application process is also largely depending on the computation envi-
ronment. After the clinical data scientist created a method from her model snapshot,
the medical expert can use it to analyze her data. Figure 5.6 shows how the medi-
cal expert and the platform communicates and which steps are required to apply a
method to new data.

In the first step the medical expert selects a method (REQ-13) and uploads her
patient data (REQ-16) using the frontend component. The backend validates the

5.4. Computation Environment 75

Medical Expert / MMLP-Frontend

Trigger Method
Application and

Upload Patient Data

Error Notification

Download and
Analyze Results

Monitor
Analyze Status

MMLP-Backend

Setup Computation
Environment

input
valid?

No

success?

No

Yes

Yes

MMLP-Computation Environment

Custom Method Environment

Collect and
Archive Results

Custom
Pre-Processing

Model
Snapshot
Inference

Custom
Post-Processing

Provide
Input Data

Global
Pre-Processing

Monitor:
Statistics and Status,

Send Notifications

Finalize
Results

FIGURE 5.6: Activity diagram: Method application

request, setups the computation environment, and provides the needed input data
for the method (all needed input data are shown in Figure 5.8). The pre-defined pre-
processing steps are applied on the uploaded patient data and the model snapshot
is loaded to analyze the provided patient data (REQ-18). Afterwards the resulting
annotations and the logs of the application generated and stored. All results are
collected, compressed and archived. Notifications are send to inform the user about
the current state of the analysis. To evaluate the results the clinical data scientist
downloads the result-archive and views the annotations (REQ-20).

Standardized Computation Environment

The standardized computation environment has to support two use-cases: first the
model training is described in Figure 5.7 and second the method application in
Figure 5.8.

Before model training the data set is transformed into the required input format of
the model. Additionally, further components could be added to manipulate the input
data, such as image anonymization and augmentation. The resulting data is used to
train the model for a specific tasks. Hyperparameters and other settings are provided
to the model. If the model supports it, live tracking and monitoring services of the
model are exposed to the user. This allows further possibilities to understand how the
training performs and maybe ideas on how to improve it in the next iteration. After
the training is finished, a custom-preprocessing pipeline allows to further process

76 Chapter 5. Design and Implementation

Computation Environment for Model Training

 Input /
 Output Data

Model
DataData Set Model

Snapshot

Custom
Pre-Processing

Model
Training

Custom Post-
Processing

Live-
Tracking

and
Monitoring

\

FIGURE 5.7: Standardized computation environment for model train-
ing

the data generated during training. The state of the model and generated files is
preserved in a model snapshot. If the model snapshot is good enough, the clinical
data scientist uses it to create a method.

Computation Environment for Method Application

 Input /
 Output Data

Model
Snapshot

Input
Data Results

Custom
Pre-Processing

Model
Snapshot

Interference

Custom Post-
Processing

Monitoring:
Status

Notifications

\

FIGURE 5.8: Standardized computation environment for method ap-
plication

The uploaded patient data must be pre-processed to analyze it using the machine
learning method. Therefore the global and custom pre-processing steps are performed
in the application pipeline. The method is applied and produces new annotations,
such as showing the estimated location and severity of a tumor. In the last step the
data and the annotations are post-processed to transform them into a standardized
format, which has to be readable by the medical expert.

5.5. Infrastructure Stack 77

Computation Environment Implementation

For stability and reproducibility concerns, every time the model is trained or method
is applied, the exact same environment should be present. Even small, unexpected
changes in the filesystem or the installed software versions could cause serious issues.
Therefore, the computing environment is implemented using virtualized applica-
tion containers, specifically Docker, providing flexibility while having a negligible
performance impact [32]. The computing environment requires specialized comput-
ing infrastructure providing multiple GPU’s for training machine learning models.
However, Docker does currently not support sharing of a GPU out of the box. To
circumvent that issue, the platform relies on the Nvidia-Docker container runtime [25]
for shared GPU access.

Another essential aspect is the flexibility of the environment to support different
model frameworks. As the models’ design and behavior can vary considerably
depending on its intended purpose, a non-restricting standardization of the structure
and execution routine can be challenging. Therefore, instead of standardization on the
model-level, a standardization of the environment around that model is implemented
in the platform.

Application containers allows the model-developer to install all kinds of require-
ments within the models’ environment, such as specific versions of a library, and
even allow custom builds of requirements. Thus, the clinical data scientist has a
unrestricted pool of design choices when developing a model for the medical expert.
If applicable, even non-machine learning can be implemented. In special cases, it is
necessary to adapt the computation environment to the on-premises infrastructure.
This includes local GPU clusters, a specific set of GPU workstations, or other kinds of
specialized hardware. Additionally, it may be required to standardize the usage to
only support a specific machine learning framework, to further slimline the process
and offer exchangeability between the model and the components of the pre- and
post-processing pipelines.

For this prototype, the generic application approach is implemented using Docker
container. Docker supports the creation of virtual environments for nearly all kinds
of programs. Compared to other solutions, it is especially lightweight, portable, and
resource-efficient.

5.5 Infrastructure Stack

There are multiple options to provide the required compute resources, as described
in Chapter 2. The simplest option is to install the platform components natively on
top of the operating system. However, this does not scale well beyond one machine,
other applications could interfere with the platform, and pre-installed libraries could
cause version conflicts with the platform requirements. A possible solution is to
leverage hardware virtualization and run the platform and its components within
virtual machines. Virtual machines run a full operating system, which itself has a
considerable performance cost. Our preferred solution is to use virtual application
containers, which has similar advantages to virtual machines but only have a minor

78 Chapter 5. Design and Implementation

performance impact. Therefore the infrastructure stack has to support application
containers and manage the available resources efficiently.

FIGURE 5.9: Proposed infrastructure stack

An overview over the infrastructure stack is shown in Figure 5.9: The base
layer represents the virtualized computing hardware stack, including the machines,
networking and security rules, and monitoring. It is managed using automated tools,
also called infrastructure as code (IaC) [68] service, or Infrastructure as a Service
(IaaS). On top of the infrastructure, computing nodes are created and pre-installed
with a lightweight, robust, and container-supporting operating system. The nodes
are managed using a distributed cluster operating system. A distributed cluster
operating system combines the resources of all available nodes, schedules new jobs,
and monitors and controls the cluster. The developed Medical Machine Learning
Platform is deployed on top of the distributed cluster operating system. Therefore the
prototype assumes that the infrastructure is already deployed (open source templates
that start the infrastructure are available [30], alternatively a managed service such as
Amazon Elastic Container Service for Kubernetes [4])

Infrastructure Implementation

As motivated in Chapter 2, the base operating system CoreOS is used, due it’s
minimalistic, container-centered, and robust architecture [66]. On top of the base
operating system, a distributed operating system is needed to make the resources of
each node manageable and schedule the containers on the nodes. Kubernetes [13] is

5.5. Infrastructure Stack 79

an open-source distributed cluster resource manager, introduced by Google in 2014.
It fulfills our needs and is capable of executing our docker containers on the cluster.

FIGURE 5.10: Envisioned architecture of fully deployed platform

The fully deployed platform architecture is shown in Figure 5.10. The infrastruc-
ture consisting of an on-premise cloud provider, nodes, a basic operating system, and
a distributed container orchestration platform (supporting Docker) is expected. On
top of the infrastructure stack, the backend, frontend, and the computing environ-
ment are deployed. The backend is implemented using Falcon [35], a robust, fast, and
minimalistic web framework. Model training and method inference is implemented
in Docker [16] and supports all kinds of machine learning tasks (maybe even more
generic tasks to be applied on images).

5.5.1 Platform Deployment

The platform is designed in a modular way, allowing simple deployments in ev-
ery environment that supports application containers. The frontend and backend
itself are deployed within a virtual application container each, to enable flexible
and straightforward deployment without interference with other applications (Fig-
ure 5.11). Training and application pipelines are also running in their own application
containers, allowing it to scale and run distributed across the cluster.

The here employed infrastructure could be integrated into local on-premise cloud
solutions such as OpenStack [79], or public cloud solutions such as AWS [96], Google
Compute Cloud[54], and Azure [94].

80 Chapter 5. Design and Implementation

FIGURE 5.11: Platform deployment diagram

81

Chapter 6

Quality Assurance

This chapter provides answers to the following questions as described by Ludewig
and Lichter [59]:

1. Are the system functions operating as expected?

2. How can the platform be developed in an understandable way to reduce the
time new developers need to improve a specific aspect?

To prioritize the focus during testing and development, the following factors are
considered: risk management and cost management. Risk management evaluates
which component requires special attention to ensure that the most crucial platform
functions are available. This includes especially the core functionality of the frontend,
backend, and the computing environment. If one of them fails, the entire platform
will not be reachable anymore. Other issues may affect a set of functions within the
platform, but not all users might be affected. Therefore the core functionality is tested
extensively. Cost management evaluates how much damage is caused if an error
occurs in contrast to how much it costs to prevent it. However, this platform is a
proof of concept and will not directly be used within a production setting. Therefore
the focus is on minimizing the risk of failure.

Management of knowledge is an essential factor for the successful development
of software. To meet the requirements for good software, especially the following
points were considered during development: Functionalities are divided into small
components to ensure the reusability for other platforms and new features within the
platform, as shown in Figure 5.2 and Figure 5.4. The specification should clearly state
which features are required, including all demands to the environment and the way
the user interacts with it, as shown in Chapter 4. The documentation should include
at least the description of each function, its parameters, how it is designed, and how
it interacts with other components.

To improve the overall quality, three paths are recommended [59]: organizational,
constructive, and analytics. The organizational path describes how the programming
language is selected, the configuration is managed, the issues are handled and how
they affect the system, and how the programming was managed, which is part of
Chapter 5. The constructive path focuses on systematic development strategies, such
as guidelines, templates, tools, methods and notation strategies and training. The
analytic path validates whether the requirements are fulfilling by inspections from
experts, static analysis using programming tools, and testing of the desired behavior.
For this platform, the paths are adapted as follows:

82 Chapter 6. Quality Assurance

• Organizational Path
The programming languages were chosen specifically for the desired purpose
of the component. Due to the containerization of the platform itself, the pro-
gramming language is selected for each component independently, and thus the
matching language is selected. Details of the selection process are described in
Section 5.3. The configuration is centralized with the goal to define each setting
only once to avoid inconsistencies and improve configurability. Functions with
side-effects, meaning that the outcome of the function does not only depend on
the input but also on other aspects such as reading files from the filesystem, are
protected by try-catch statements. If something fails, the issue is logged, and
the platform is ensured to have a clean recovery.

• Constructive Path
Various parts of the platform require similar structures to perform. Templates
are provided to guide the user to minimize the risk of failure. Additionally, the
official code-style guidelines were followed as close as possible (e.g., PEP 8 [73]
for Python and Lint for JavaScript [60]) and verified using the corresponding
tools for development. These guidelines recommend specific notations to
minimize various kinds of issues.

• Analytic Path
During development, static code analysis was used in combination with a
simple continuous integration pipeline. After changes to the codebase are
made, the developer triggers an autonomous redeployment of all components
and is able to validate immediately whether the desired code changes were
successful.

6.1 Quality Assurance during Development

To test the platform prior to the evaluation, the usability, NFR, frontend, and backend
tests were performed with potential users frequently during the development of the
multiple prototypes. These tests focus on specific parts of the platform but also let
the user space to explore and test further functionalities of the platform.

6.1.1 Useability-Test

Users were invited to test and evaluate to which degree the platform and its compo-
nents are usable and intuitive. Users are presented real-world use case scenarios and
are asked to solve them without detailed knowledge about the platform. The users of
the platform are monitored while they try to solve the typical tasks with the platform.
During this process, everything that could be helpful for development was noted. To
improve the outcome, users are invited to apply techniques such as loud thinking,
to allow the developer to understand how the platform can be improved and which
functionalities might be missing. The test is executed as follows:

1. Prepare the functionality which should be tested

2. Prepare the platform for the test

6.2. Backend Development and Testing 83

3. Let users solve the relating tasks using the platform

4. Collect, discuss, and implement the feedback

6.1.2 NFR Tests

To measure some of the non-functional requirements, users are asked to answer a
small set of questions about their platform-usage-experience. This includes multiple
parts of the quality attributes, which are described in the standard for systems and
software quality requirements and evaluation (SQuaRE). SQuaRE consists of two
parts: quality in use and software product quality.

Quality in use is directly evaluated with the user and includes effectiveness,
efficiency, satisfaction, freedom of risk, and context coverage.

The software product quality is validated during development and can partly be
measured afterwards. The development was guided by the following key criteria:

• Functional suitability, which includes functional correctness (see Table 4.36),
functional completeness (see Table 4.35), and functional appropriateness

• Performance efficiency, which includes time behavior (see Table 4.37), and
resource utilization

• Compatibility with various types of data sets and models (see Table 4.34)

• Usability, which includes learnability, user error protection, and user interface
aesthetics

• Reliability, which is tested while testing the other aspects

• Portability, which is part of the design using application containers

6.2 Backend Development and Testing

The quality of the backend is ensured by using a test-driven development [10] ap-
proach. Testing of the backend is performed utilizing the API development environ-
ment Postman [74].

The first step of implementing a new functionality of the backend is to define
the API-Request, what it should do and which components are required to achieve
this, which errors should be caught (e.g., false user input), how unknown errors
are handled, and if it should run synchronously or asynchronously. This request is
then defined in Postman. At this stage, the endpoint is not implemented, and the
request will fail with a 404 not found error. From this point, the endpoint is improved
iteratively, first by providing meaningful error messages and input validation checks
and second by the functionality and all requirements to provide the requested func-
tionality. If the functionality requires data objects (such as a machine learning model),
mockup data is created and used. In the final step, real data, or close to real data (for
sensitive data) is included.

These integration tests could be improved further by implementing tests on a
lower level using python unit tests, checking every single function using equiva-
lence partitioning testing. Equivalence partitioning testing ensures that all types of

84 Chapter 6. Quality Assurance

input values are tested and the outcome is either a meaningful error or the expected
outcome.

6.2.1 Simple Static Code Analysis

To further measure the code quality, a static code analysis was performed. The shown
code metrics were collected manually and by using the tool radon [92]. Additionally,
to the fundamental metrics, the cyclomatic complexity is used as an indication for the
complexity of the backend. The cyclomatic complexity is calculated according to [87],
and the resulting score is ranked according to Table 6.1.

TABLE 6.1: QA: Cyclomatic complexity classes

Score Rank (according to [87])

1 to 5 A (low risk — simple block)
6 to 10 B (low risk — well structured and stable block)
11 to 20 C (moderate risk — slightly complex block)
21 to 30 D (more than moderate risk — more complex block)
31 to 40 E (high risk — complex block, alarming)
41+ F (very high risk — error-prone, unstable block)

TABLE 6.2: QA: Backend code metrics

Metric Measured Value

Number of Python Classes 54
Number of Python Functions 246
Lines of Code 4388
Average Cyclomatic Complexity A (2.1)

The collected metrics are shown in Table 6.2. The complexity rank of A indicates
good code quality, especially in terms of testing, maintainability, modularity, and
reusability.

6.3 Frontend Development and Testing

The frontend is developed similar to the backend. First, the desired view for the user
is defined. This includes how it should look, which and how the data should be
shown, and all the required functionalities to archive this goal. Afterwards, the view,
its components, the required functions, and the storage state management patterns
are implemented. The communication with the backend to request real data can
be very complex, especially if larger files are transmitted. This is typical for data
sets, patient data, machine learning model snapshots, and results, which require
asynchronous, multi-part messages, and a lot of fine-tuning to perform as expected.
In the early stage of the development, mock data is utilized to guide the design
process of a view. In later development stages, the mock data is replaced with real
data to develop and test the full communication capability.

6.3. Frontend Development and Testing 85

In the final step, the implemented view is compared to the previous definition of
the view and tested against wrong user input, performance, and other non-functional
requirements (see Section 4.9).

6.3.1 Simple Static Code Analysis

To further measure the code quality, a static code analysis was performed. The shown
code metrics were collected manually, due to the lack of tools for static code analysis
supporting Vue.js at the time of writing. Table 6.3 shows the collected metrics.

TABLE 6.3: QA: Frontend code metrics

Metric Measured Value

Number of Functions 184
Number of JavaScript Functions 43
Number of Vue.js Functions 141
Lines of Code 5344
Lines of Code JavaScript 1661
Lines of Code Vue.js 3683

87

Chapter 7

Evaluation

This chapter describes how the evaluation of the platform was planned, performed,
and discusses the results. The evaluation itself and the strategy behind it is described
in Section 7.1. In Section 7.2, the results of the evaluation questionnaire are presented
and discussed. The biases of this evaluation are discussed in Section 7.3.

7.1 Evaluation Strategy

The evaluation aims to validate how good the platform matches the requirements
of the clinical data scientist and the medical expert. In particular, the evaluations
focus on the ease of use, the collaboration support between both personas, and the
possibility to use existing machine learning models. Therefore, both personae are
confronted with the platform interface without further steps or instructions. This
approach assesses the intuitiveness and the understandability of the user interface.
The evaluation questions are summarized in Table 7.1.

TABLE 7.1: Governing evaluation questions

ID Question

Eval-1 How good does the proposed platform match the requirements and ex-
pectations of clinical data scientist and medical experts?

Eval-2 Does the platform improve the collaboration between clinical data scien-
tists and medical experts?

Eval-3 How can the platform be further improved?

Before each evaluation, the platform state is reset, to ensure that every participant
evaluates precisely the same platform, especially with the same data sets, models,
model snapshots, methods, and results.

The evaluation is performed following the questionnaires, which are shown in
Appendix A. The design focusses on user acceptance, leveraging the technology
acceptance model (TAM) [89]. TAM primarily focusses on the usage without prior
training to measure the perceived usefulness and the perceived ease of use.

To ensure meaningful results and further investigate the usability and intuitive-
ness, evaluators are required to think aloud during all parts of the evaluation, es-
pecially during the parts where they perform tasks using the platform. During the
evaluation, the participant’s actions and approaches are monitored, to gain further
insides on how the platform could be further improved. In the end, a brief discussion

88 Chapter 7. Evaluation

with the participant was offered, to provide further information and collect additional
feedback about the platform itself and further application possibilities.

7.1.1 Personae

In the first part, details and descriptive data about the evaluating person and their
work environment are gathered. This includes the amount of experience in their field,
their tasks, whether they cooperated with others before, and whether they see the
potential for closer collaboration.

Furthermore, the biggest hurdles for applying machine learning methods in the
medical field are evaluated. The assumed hurdles include awareness of the currently
available state-of-the-art methods, simple access to them, the computing capabili-
ties, establishing the machine learning workflows, and the lack of collaborations to
improve the available methods.

7.1.2 Platform Evaluation

In this paragraph, the evaluators are asked to perform their main user tasks such as
training machine learning models or analyzing patient data. To further evaluate the
design for the medical experts, the clinical data scientists are also asked whether they
find the abstraction of the analysis/inference process of the medical experts views is
clear and sufficient. The platform provides specialized frontends for each of the two
personae. Therefore, the workflow for each personae is evaluated as follows:

Platform Evaluation Workflow for the Clinical Data Scientist

The clinical data scientists main goal is to use the platform to develop new machine
learning models. During evaluation the main steps are performed by multiple clinical
data scientists. These steps are described in the following list:

1. Import a provided data set (containing image and segmentation objects)
System:
The user-defined data set is requested and retrieved by the system.
Result: The user has access to the newly imported data set.

2. Import a Machine Learning Model into the Platform
System:
The platform validates that the provided source-url is valid, requests a copy of
the models source code, and imports it to the platform.
Result: The user has access to the model and its versions within the platform.

3. Fine-Tune a pre-trained model snapshot, using the imported data set, and
improved hyperparameter settings. The platform guides the user through each
step of the training configuration and allows to select the previously trained
model snapshot.
Required User Actions:

(a) The user selects the data set

(b) The user selects the machine learning model

7.1. Evaluation Strategy 89

(c) The user selects a previously trained model snapshot for training.

(d) The user specifies two hyper parameters for the model (hyper parameters
are model dependent and only shown as example). The platform automat-
ically subscribes the user for notifications on a previously defined e-mail
address.

• Number of Epochs should be set to 1

• Preprocessing should be active.

System:
The platform validates the input of the user, the data set, the machine
learning model, and the selected training configuration. It then creates a
new model snapshot and documents the metadata and provided settings.
The running training pipelines and their statuses are shown to the user
on the snapshot page. The platform sends important update notifications
directly to the user via e-mail.

Result: The user has access to the improved model snapshot. The user can
download the metadata and the results (statistics, training history, trained
weights) of the model snapshot. Additionally, the user received an e-mail
containing important information about the pipeline, including the output of
the pre-processing, the model during training. The actual results are assumed
as successful since the model itself is not the focus of this evaluation.

4. Create a machine learning method using the trained model snapshot. After the
training pipeline finished, the corresponding model snapshot is used to create a
new machine learning method.
Required User Actions:

(a) The user lists available model snapshots of the model

(b) The user creates a new machine learning method based on the newest
model snapshot

5. The clinical data scientist switches to the interface of the medical expert and
performs the analysis of provided patient data.
Required User Actions:

(a) The user switches to the interface for medical experts

(b) The user lists available model snapshots of the model

(c) The user creates a new machine learning method based on the newest
model snapshot

(d) The user lists and downloads the results

Platform Evaluation Workflow for the Medical Expert

The medical expert leverages the platform to analyze patient data using provided
machine learning methods. During evaluation the primary workflow is performed
by multiple medical experts. These steps are described in the following list:

90 Chapter 7. Evaluation

1. Check the available machine learning methods
Required User Actions: The user navigates to the method overview page of
the platform.

2. Application of a machine learning method to the provided patient data. The
idea is that the methods can be used with previously unknown patient data.
This is one of the primary purposes of this platform since the application of
methods can support medical experts in extracting valuable information from
patient data.

Required User Actions: The user navigates to the analysis page of the platform,
and the platform guides her through the following steps:

(a) The user uploads a patient data archive

(b) The user selects the machine learning method

(c) The user starts the analysis processing pipeline System:
The system deploys a new analysis process and documents the metadata
and provided patient data. The running processes are shown to the user
on the dashboard. Result: The user can see and download the results.

3. Viewing and downloading of analysis results. After a new model was trained
and exported to a method, it may be interesting for the user to check how the
method performed on provided patient data.
Required User Actions:
The user navigates to the results page, and downloads the matching result.
Result: The user can view and download the results of the applied method.

7.1.3 Design and Workflow Evaluation

One goal of the platform was to support as much as possible types of data sets and
machine learning models. Therefore the clinical data scientist should be asked if it
would be possible to integrate their machine learning model, including the required
data sets and pre- and postprocessing into the platform.

After the evaluators have used the platform, they should evaluate their experience.
The questions should cover the following topics:

• Overall impression of the platform

• How good the frontend guided the user through the complex workflows

• How responsive the platform reacted

• The aesthetics of the interface

The last question evaluates whether the evaluator sees that the platform con-
tributes to a closer collaboration between both personas, which is a primary goal of
the platform.

7.2. Results and Discussion 91

7.1.4 Additional Remarks

In the last step, additional remarks such as comments, observations, and concrete
examples are collected to evaluate how easy or difficult it was to do a specific task.
It should be clear that critics are very welcome to motivate the evaluators further to
write about all the impressions they had during the usage of the platform.

7.2 Results and Discussion

This section describes the findings of the evaluation based on the questionnaire, loud
thinking, monitoring the participants actions and approaches, and a brief discussion
with the participant in the end. To maximize the outcome of the evaluation, each
participant was evaluating the platform sequentially.

The evaluation was performed with 22 participants, consisting of 12 clinical
data scientists and 10 medical experts. Before the participant arrived, the platform
was reset to the same primary state. Questionnaires did not collect any personal
information but do have a unique identifier. A separate documentation sheet for each
persona collects each identifier of the questionnaire and the signing of the participant.
For privacy concerns, each participant was only able to see his identifier and name,
and the others were hidden.

7.2.1 Clinical Data Scientist

The clinical data scientist evaluates the platform, especially focussing on the machine
learning model development. On average, the evaluation took 40 to 60 minutes,
including discussion of further feedback and questions.

Persona

The average clinical data scientist has about three years experience in the medical field
(the inexperienced participant with a half year, and the most experienced ten years).
58% of the participants worked with medical experts before, and all participants see
the potential for closer collaborations.

Most of the participants are working on multiple tasks such as image segmen-
tation (N=7), object detection (N=4), regression (N=3), image registration (N=3),
classification (N=3), and seven other tasks. Clinical data scientists see the most sig-
nificant hurdles when applying machine learning models in the effort to establish
the required machine learning workflows (N=10), awareness of existing and per-
formance of machine learning methods (N=8), lack of collaborations (N=6), simple
access to state-of-the-art machine learning methods (N=6), lacking computing capa-
bilities (N=6), and four other issues. Among the other issues, the following were
mentioned: the difficulty of reproducing results on the own data, lacking integration
to the medical workflow, and dependency issues of the code.

92 Chapter 7. Evaluation

Platform Evaluation Results

The participants were asked to perform a generalized workflow containing the re-
quired steps to fine-tune a pre-trained model within the platform. The results are
shown in Figure 7.1.

In the first step the participants had to find out how a medical data set intuitively
can be uploaded (S1), how a model can be imported from an external repository
(S2), how a pre-trained model can be fine-tuned and customized using the training
pipeline (S3), how the newly created model snapshot can be viewed and downloaded
(S4), and how the model snapshot can be exported as a method (S5) to support
medical experts with their workload.

In S6, the clinical data scientist evaluates, how the abstraction of the interface
and the workflow for the medical experts is designed. S7 and S8 aim to check
the possibility to perform the clinical data scientists research within the proposed
platform.

The main goals of the platform are to improve the model development task and
support the collaboration between the personas by reducing technical barriers. S9
evaluates how good these goals were archived.

Fraction of agreeing participants

neutral agree strongly agreedisagreestrongly disagree

Clinical Data Scientist: Platform Usability & Purpose
0 % 50 %25 % 75 %

12 100 %

12 100 %

2 10 100 %

1 1 10 92 %

1 11 100 %

1 11 100 %

12 100 %

12 100 %

1 11 100 %

S2: Importing a model and viewing its description is easy.

S4: Accessing and downloading the training’s results is easy.

S3: Fine-tuning a model and customizing the training pipeline is easy.

S1: Uploading a medical data set and viewing its description is easy.

S5: Creating methods from model snapshots is easy.

S6: The analysis/interference abstraction is clear and sufficient.

S7: The pre-/postprocessing approach can be used for my work.

S8: The training/application approach can be used for my work.

S9: The platform facilitates model development and collaborations.

FIGURE 7.1: Clinical data scientist: Evaluation platform useability and
purpose

The results are shown in Figure 7.1 show that the 12 participating clinical data
scientists agreed in all points by a minimum of 92%, with one neutral answer.

Overall Platform and Workflow Design

After the participants performed the fine-tuning and hyper parameter customizing
of the provided model on the uploaded data set, the overall platform experience is
focussed. The following four aspects are addressed to evaluate the overall platform
experience: overall impression, guidance and workflows, aesthetics, and responsive-
ness.

The results are shown in Figure 7.2. The overall impression was rated very good
(5) by 92% of the participants (mean: 4.9), 67% rated the guidance and workflows
provided by the platform as adequate guidance and clear instructions (mean: 4.7),

7.2. Results and Discussion 93

%
 R

es
po

ns
es

1 2 3 4 5
0

50

0 %
(0)

0 %
(0)

0 %
(0)

8 %
(1)

92 %
(11)

placeholder123mean: 4.9 median: 5.0

%
 R

es
po

ns
es

1 2 3 4 5
0

50

0 %
(0)

0 %
(0)

0 %
(0)

8 %
(1)

92 %
(11)

placeholder123mean: 4.9 median: 5.0

%
 R

es
po

ns
es

1 2 3 4 5
0

50

0 %
(0)

0 %
(0)

0 %
(0)

0 %
(0)

100 %
(12)

placeholder123mean: 5.0 median: 5.0

%
 R

es
po

ns
es

1 2 3 4 5
0

50

0 %
(0)

0 %
(0)

0 %
(0)

33 %
(4)

67 %
(8)

placeholder123mean: 4.7 median: 5.0

B Clinical Data Scientist: Guidance/WorkflowsA Clinical Data Scientist: Overall Impression

C Clinical Data Scientist: Aesthetics D Clinical Data Scientist: Responsiveness

hard-to-follow workflows adequate guidance,
clear instructions

very bad very good

poorly designed,
unaesthetic

well designed,
aesthetic

lags,
stuttering

no perceivable lags,
fluid animations

FIGURE 7.2: Clinical data scientist: Evaluation platform overall rating

92% rated the aesthetics as well designed (mean: 4.9), and no participants did find
any perceivable lags (mean: 5).

Additional Feedback

In the last step, each participant had the chance to provide additional feedback for
the platform. In this scope, only frequently mentioned feedback is presented, the
complete feedback is shown in Section B.2. Nine clinical data scientists suggested
to integrate the platform with broader, on-premise compute resources, four would
expose more functionality for the data sets, models, training pipeline, and methods
to the frontend, and three would integrate further automation tools to the training
pipeline such as hyperparameter optimization.

Discussion Clinical Data Scientist

Clinical data scientists are using the platform to manage data sets, manage machine
learning models, train machine learning models with the data sets, sharing trained,
pre-configured models as methods with medical experts, and managing the results.
The platform removes a lot of technical barriers by offering high automation and
abstraction of sophisticated features, without restricting the user too much.

By focussing on the workflow to iteratively improve machine learning models
and collaborating with the medical expert for development and application, it was
possible to design the user interface very intuitively but still flexible enough to
customize the training configuration and hyperparameters. The current prototype
builds on the experience we collected from two prior developed prototypes, especially
the backend functionality and frontend design.

94 Chapter 7. Evaluation

During evaluation, 12 clinical data scientists with half to 10 years of experience
confirmed significant technical barriers to applying machine learning methods on pa-
tient data of the medical experts. Fortunately, they agreed that the proposed platform
eases these barriers. When asked if it would be possible to integrate their current
machine learning developments, including all required pre- and post-processing com-
ponents, training- and application pipeline, they strongly agreed that the platform
could be used. Especially for the collaboration with medical experts, clinical data
scientists agree that the platform eases the technical barriers. Besides, the overall im-
pression of the platform, guidance, and aesthetics of the user interface was very well
perceived. There were also additional questions about the scalability of the compute
resources, especially using already operating GPU-clusters and the possibilities to
integrate further advanced tools to perform tasks such as automated hyperparameter
optimization.

These features would integrate nicely with the platform. Integrating on-premise
computing clusters require the support of local administrators and an additional
option for the user to select the location for the computation environment. Addi-
tionally, other computation environments could be used to respect limitations such
as data location, licensing, and infrastructure cost. Currently, Docker is supported
for training and inference of models. The computation environment management
could be extended to also support other technics, such as Kubernetes Pods [13], and
managed (cloud) services such as the Amazon Elastic Container Service [3].

Advanced features, such as customized pre- and post-processing, augmentation,
and automated hyperparameter optimization are benefiting strongly from the mod-
ular design of the platform. These tools can be added to the matching component
of the platform, without changing the other parts. For example, hyperparameter
optimization approaches could be integrated as the first step after the user committed
the training configuration, and before the training is actually started. Since the whole
training is now parametrized, the hyperparameter optimization tool is able to start
multiple training iterations, modifying the hyperparameter settings as required to
improve the model’s performance.

7.2.2 Medical Expert

The medical expert evaluates the platform, especially focussing on the analysis of local
patient data using provided machine learning methods. On average, the evaluation
took 20 to 40 minutes, including discussion of further feedback and questions.

Persona

The average medical expert has six years experience in the medical field (the inexpe-
rienced participant with two years, and the most experienced 15 years). 60% of the
participants worked with clinical data scientists before, and all participants see the
potential for closer collaborations and potential to apply machine learning methods
in their field.

Most of the participants are working on multiple tasks such as image segmentation
(N=6), image registration (N=4), image reconstruction (N=2), and 12 other tasks.
Medical experts see the most significant hurdles when applying machine learning

7.2. Results and Discussion 95

methods in the effort to establish the required machine learning workflows (N=8), lack
of collaborations (N=8), lacking computing capabilities (N=7), simple access to state-
of-the-art machine learning methods (N=6), awareness of existing and performance
machine learning methods (N=5), and four other issues. Among the other issues, the
following were mentioned: the difficulty of reproducing results on the own patient
data, and the problematic access to clinical data.

Platform Evaluation Results

The participants were asked to perform a generalized workflow containing the re-
quired steps to view the available machine learning methods and to analyze their
uploaded patient data using a machine learning method within the platform. The
results are shown in Figure 7.3.

In the first step, the participants had to intuitively find out how they can view
all available machine learning methods within the platform (S1), how to use the
segmentation method to analyze locally available patient data (S2), and how the
results of the analysis can be accessed and downloaded (S3).

The main goals of the platform are to improve the machine learning method
development process and to support the collaboration between both personas by
reducing technical barriers. S4 evaluates how good these goals were archived.

Medical Expert: Platform Usability & Purpose
0 % 50 %25 % 75 %

1 9 100 %

1 9 100 %

5 5 100 %

1 9 90 %

Fraction of agreeing participants

S2: Analyzing the uploaded medical data using a method is easy.

S4: The platform facilitates model development and collaborations.

S3: Accessing and downloading the analysis results is easy.

S1: Checking available machine learning methods is easy.

neutral agree strongly agreedisagreestrongly disagree

FIGURE 7.3: Medical expert: Evaluation platform useability and pur-
pose

The results in Figure 7.3 shows that the ten participating medical experts agreed
in all points by a minimum of 90%, with one neutral answer for S4.

Overall Platform and Workflow Design

After the participants performed the analysis of the provided patient data using the
segmentation method, the overall platform experience is focussed. The following four
aspects are addressed to evaluate the overall platform experience: overall impression,
guidance and workflows, aesthetics, and responsiveness.

The results are shown in Figure 7.4. The overall impression was rated very good
(5) by 90% of the participants (mean: 4.9), 90% rated the guidance and workflows
provided by the platform as adequate guidance and clear instructions (mean: 4.9),
80% rated the aesthetics as well designed (mean: 4.8), and no participants did find
any perceivable lags (mean: 5).

96 Chapter 7. Evaluation

hard-to-follow workflows adequate guidance,
clear instructions

B Medical Expert: Guidance/Workflows

%
 R

es
po

ns
es

1 2 3 4 5
0

50

0 %
(0)

0 %
(0)

0 %
(0)

10 %
(1)

90 %
(9)

placeholder123mean: 4.9 median: 5.0

very bad very good

A Medical Expert: Overall Impression

%
 R

es
po

ns
es

1 2 3 4 5
0

50

0 %
(0)

0 %
(0)

0 %
(0)

20 %
(2)

80 %
(8)

placeholder123mean: 4.8 median: 5.0

poorly designed,
unaesthetic

well designed,
aesthetic

C Medical Expert: Aesthetics

%
 R

es
po

ns
es

1 2 3 4 5
0

50

0 %
(0)

0 %
(0)

0 %
(0)

0 %
(0)

100 %
(10)

placeholder123mean: 5.0 median: 5.0

lags,
stuttering

no perceivable lags,
fluid animations

D Medical Expert: Responsiveness

%
 R

es
po

ns
es

1 2 3 4 5
0

50

0 %
(0)

0 %
(0)

0 %
(0)

10 %
(1)

90 %
(9)

placeholder123mean: 4.9 median: 5.0

FIGURE 7.4: Medical expert: Evaluation platform overall rating

Additional Feedback

In the last step, each participant had the chance to provide additional feedback for
the platform. In this scope, only frequently mentioned feedback is presented, the
complete feedback is shown in Section B.1. Four medical experts suggest adding an
option to reduce the debug information in the analyze results, to further simplify
the results. Another point is that four medical experts are interested in developing
machine learning methods themselves, but faced lots of restrictions in terms of
complexity, lacking compute resources, and knowledge on how to set up the required
environment to do so. They mentioned that the platform strongly reduces the barriers
for them to start developing new methods. Additionally, three medical experts see
significant potential if this platform would be available to them in the future.

Discussion Medical Experts

Medical experts are using the platform to access the developed machine learning
methods within the platform. The platform removes a lot of technical barriers by
offering high automation and abstraction of sophisticated features, without restricting
the user too much. By focussing on the workflow to uploaded and analyze patient
data using machine learning methods, it is possible to radically slimline the interaction
and knowledge required by the medical expert. To develop and customize the
methods to the medical experts’ needs, the clinical data scientists can use various
types of medical data and machine learning frameworks.

During evaluation, ten medical experts with two to 15 years of experience con-
firmed significant technical barriers to applying machine learning methods on their
patient data. Fortunately, they agreed that the proposed platform eases these barri-
ers. Besides, the overall impression of the platform, guidance, and aesthetics of the

7.3. Threats to Validity 97

user interface was very well perceived. They were also additional questions about
when and where the platform will be available in the future, as well as if it would
be possible for a medical expert to switch to the clinical data scientists interface to
start learning how to develop and improve new machine learning methods. The
platform would remove lots of barriers of developing new methods, since the medical
experts are able to use existing methods and learn how to customize them to their
needs without having to buy, configure, and set up specialized hardware, learn the
required programming language(s), and set up a development environment. Within
the platform they can directly modify the configuration and hyperparameter of a
model, allowing them to start working on the machine learning research field, with a
very steep learning curve and focussing on the training itself rather than all the other
tasks around it.

7.3 Threats to Validity

Multiple biases could influence the outcome of the evaluation. To analyze these
biases, the internal and external factors are discussed [98]:

Internal validity focuses on questions about how the evaluation questions related
to other variables such as the previous experience of the participants. Therefore the
questionnaire includes questions about the persona such as previous experience and
work topics, which could be used to find correlations between the answers and the
personas. Additionally, some of the participants know the author of this paper, which
could influence their opinion during evaluation.

External validity focuses on the generalizability of the results. During evaluation,
a pre-defined and configured model was used. Adapting and importing new models
and their requirements into the platform could require more work and uncover areas
to improve. Due to the limited time with the platform, participants may not have
noticed all parts of the platform. After working with the platform more intensively,
more feedback could be provided.

99

Chapter 8

Conclusion and Outlook

8.1 Conclusion

It is a challenge to translate the latest advances in academic research fields such as
computer science and physics into clinical practice. A close collaboration between
data scientists and medical experts is required to steer the translational process.
In machine learning-assisted medical research, considerable effort is invested in
developing and optimizing machine learning models. Exemplary applications are
the automated segmentation of diseased tissue in MRI or CT scans, or the analysis of
time-series data, such as ECG and EEG. Challenges include the accessibility, usability,
and compute requirements of state-of-the-art machine learning research. As these
challenges are not of algorithmic nature and therefore only indirectly related to the
research task at hand, they hamper the impact of newly developed machine learning
methods. In this thesis, we aimed to ease the use of state-of-the-art machine learning
models and establish a machine learning platform that serves as a collaboration hub
for medical experts and clinical data scientists. To achieve this, we systematically
investigated three research questions (see Chapter 1.1):

First, a systematic literature research examined current state-of-the-art and state-
of-the-practice to create medical machine learning platforms, the management of ma-
chine learning models, and the version management of large data sets (see Chapter 3).
We found that there are multiple approaches available, but to our understanding,
none of them offers the required flexibility for different machine learning frameworks,
different types of data sets, and support for close collaborations between the medical
expert and the clinical data scientists.

Second, we conducted a requirement analysis for a new machine learning plat-
form (see Chapter 4), formulated a conceptual design and infrastructure stack (see
Chapter 5), and implemented a realization thereof in a fully functional prototype,
following the design goals defined in Table 1.2. The prototype is built on top of a
scalable infrastructure stack, hosting three fully-virtualized – and therefore scalable –
components: a web-based user interface, a python-based backend, and a standardized
computation environment. Clinical data scientists can utilize and customize a com-
prehensive feature set to define, train, and share machine learning methods, including
pre- and post-processing modules. On the other hand, the platform offers medical
experts an easy-to-use workflow to import local patient data and subsequently apply
pre-defined machine learning methods to it.

Further, the implementation of the platform was guided and tested by following
an organizational, constructive, and analytic perspective of quality assurance (see

100 Chapter 8. Conclusion and Outlook

Chapter 6). The tests indicated the fulfillment of functional and non-functional
requirements, as well as good code quality, which can be related to adhering to best
practices in code testing, maintainability, and modularity.

Third, we performed and discussed a throughout evaluation of the platform
prototype with both medical experts and clinical data scientists (Chapter 7). Both
personae almost unanimously rated their impression of the platform as very good,
stating that the offered feature set is easy-to-use, well-designed, and beneficial for
collaboration between clinical data scientists and medical experts. The results of
the evaluation make a strong case in favour of our final design and implementation
decision. Further, they highlight the high interest in the proposed machine learning
platform.

The conducted expert survey suggests that the here proposed platform could
be used to develop, optimize, and apply machine learning methods in the medical
domain and beyond. The platform is especially advantageous because of its ease-
of-use, flexibility, and by-design scalability through virtualization and cloud-native
approaches. Virtualization offers an almost unrestricted choice of machine learning
frameworks and pre- and post-processing modules. Furthermore, the proposed
abstraction of training, pre- and post-processing, and packaging it together into
machine learning methods, could additionally motivate the acceptance of state-of-
the-art machine learning in daily clinical use.

8.2 Outlook

Multi-Institute-Workflow The platform provides a generic workflow, which al-
lows them to collaborate with multiple users on developing new machine learning
methods. A similar concept could be applied to collaborate with multiple medical
research institutions. One significant difference is the authentication of the users to
access the available data sets, models, and methods. Additionally, data protection
is much more difficult between multiple institutes, because after training a model
on a sensitive data set, the model could be sensitive, too. Also, the communication
channels could be provided by the platform, to collect relevant information and
inform affected users, e.g., a request for a new method was made, which results in
notifications for the interested clinical data scientists. Figure 8.1 shows three medical
institutions, one focussed on patient-care and two focussed on machine learning in
the medical context. The host of the platform is making their data sets, models, and
methods available to other institutions they provide access to. Therefore the others
are able to use high-quality data sets if they add their machine learning model to the
platform. On the other side, researchers can collaborate on specific projects, to further
improve the methods used in the medical field. The medical institute can access the
developed methods, which allow them to leverage state-of-the-art machine learning
techniques on their patient data.

Advanced Decision Support for Machine Learning During configuration of the
training pipeline, the developer has to make lots of decisions to adjust the parameters.
Knowledge collected during previous training pipelines could support a user decision
support feature. For each parameter, the system could provide a suggestion to support

8.2. Outlook 101

FIGURE 8.1: Multi-institute method development life-cycle

the developer. Additionally, all parameter values could be checked before a training
pipeline is started to inform the user about possible issues or inefficient settings.

Edit the Models Source Code within the Web-Interface Developing new machine
learning models sometimes requires to adjust parts of the source code. At some point,
this could eventually allow the developer to work only within the web-interface,
without requiring to set up a local machine learning capable workstation. Currently,
the platform can load the changes from the model repository but does not support
adjustments directly.

By adding a web-based text editor, such as a Jupyter notebook [45] the developer
could access and modify the source code directly. The challenging part for this feature
is the integration with the version control system. Changes of the user must be stored
as a new model version or reverted to ensure that the source code of the model is not
modified in an uncontrolled manner.

Advanced Statistics of a Model Snapshot Training a machine learning model may
require multiple iterations. After each iteration, the results of the training have to be
evaluated. Therefore the platform currently sends collected logs via email and offers
a download of the model snapshot. Additionally, it could be beneficial to include
vital statistics and graphs in the web-interface. The developer could check the results
in a much simpler way and would not need to download and analyze the results
manually.

Compare Advanced Statistics of Multiple Model Snapshots When statistics of
model snapshots are available in the web-interface, it could be useful to compare mul-
tiple model snapshots. Especially interesting could be the influence of the provided

102 Chapter 8. Conclusion and Outlook

model hyper parameters or data sets. The comparison could, therefore, show the
differences in the configuration of multiple model snapshots and advanced statistics
of the training.

Frequently used Pre-, Post-Processing, and Augmentation Container Management
After importing data sets into the platform, it could be required to pre- or post-
process them when used for model training. Therefore the platform could provide
an overview of available containers for the developers to choose from. Addition-
ally, multiple containers could be combined with a pipeline, to allow more complex
processing steps.

Dynamic, On-Demand Scaling of Resources The amount of resources provisioned
for a platform is usually determined before the installation of its software. There are
multiple strategies to estimate the usage and calculate the amount of required re-
sources, capable of handling the average and adjusting the infrastructure accordingly.
Instead of estimating the resource demand, the resources could scale automatically to
the required amount. This approach is especially common in cloud environments,
and could also have great potential in this platform. If multiple users use the platform
simultaneously, each training pipeline could require one or more GPUs and a large
number of CPU cores and memory. Dynamic scaling could provide the required
resources to a degree, that for each launched training or application, new resources
are requested and released afterward. In terms of pricing, this approach allows to
only pay for actually needed resources but could cause higher costs if the usage is
not controlled or restricted.

Dynamic Computation Environment Location Deployment Depending on fac-
tors such as the used data set, license, model, and the required resources, it could
be beneficial to use different compute environment locations. These locations could
be selected automatically by the system or provided by the developer during con-
figuration of the training pipeline. As an example, if a published model should be
improved using publicly available data sets, it could be useful to use a public cloud
provider, which usually can provide a vast number of resources. On the contrary,
if sensitive data is used, it might be better to keep it within a protected computing
environment, where resources are usually more limited and costly. The compute
environments locations could include the local compute infrastructure, on-premise
cloud providers, and public cloud providers.

8.2. Outlook 103

105

Appendix A

Appendix: Evaluation
Questionnaires

Questionnaire about the Medical Imaging Platform (MIP) for the Medical Expert

Matthias Greiner 1

Persona:
I have been working in the medical field since approx. years.

Please describe the tasks you wish to use new machine learning methods for:

I have worked with clinical data scientists to develop machine learning models: yes no

Do you see the potential for the application of machine learning methods in your field? yes no

I see potential for closer cooperation with clinical data scientists in my work: yes no

Where do you see the biggest hurdles to apply machine learning models?
(multiple selections possible)

 easy/simple access to (state-of-the-art) machine learning methods

 awareness of the existence/performance of machine learning solutions

 computing capabilities

 establishing machine learning workflows is too time-consuming

 lack of collaborations

 other:

Platform Evaluation:

1. Verify that a segmentation method is available within the platform.

Viewing available methods is easy.

 strongly disagree disagree neutral agree strongly agree

2. Analyze the provided patient cohort using the segmentation method.
The platform guides you to the required steps. The patient cohort is provided as “patient_cohort.tar.gz”.

Analyzing the provided patient cohort was easy

 strongly disagree disagree neutral agree strongly agree

3. View and Download the analysis results.
The platform sends a notification email after the analysis is finished.

Viewing and downloading the results of the method application is easy.

 strongly disagree disagree neutral agree strongly agree

Questionnaire about the Medical Imaging Platform (MIP) for the Medical Expert

Matthias Greiner 2

Design & Workflow Evaluation:

Overall impression:

very bad 1 2 3 4 5 very good

Guidance/Workflows:

 hard-to-follow workflows 1 2 3 4 5 adequate guidance, clear instructions

Responsiveness:

 lags, stuttering 1 2 3 4 5 no perceivable lags, fluid animations

Aesthetics:

 poorly designed, unaesthetic 1 2 3 4 5 well designed, aesthetic

Purpose:
The proposed platform could ease the deployment of machine learning models and could, therefore,
contribute to a closer collaboration between medical experts and clinical data scientists.

 strongly disagree disagree neutral agree strongly agree

Additional remarks:

Please add further comments, observations, or other feedback in the box below. If applicable, please add
concrete examples to your comments. General thoughts and critics are very welcome: What is easy and why is
it easy? What is difficult and why is it difficult?

Questionnaire about the Medical Imaging Platform (MIP) for Clinical Data Scientists

Matthias Greiner 1

Persona:
I have been developing machine learning models since approx. years.

Please describe the tasks you wish to develop machine learning models for:

I have worked with medical experts to develop machine learning models: yes no

I see potential for closer cooperation with medical experts in my work: yes no

Where do you see the biggest hurdles for medical experts to apply machine learning models?
(multiple selections possible)

 easy/simple access to (state-of-the-art) machine learning methods

 awareness of the existence/performance of machine learning solutions in the expert’s field

 computing capabilities

 establishing machine learning workflows is too time-consuming

 lack of collaborations

 other:

Platform Evaluation:

1. Upload the provided “Hippocampus.tar.gz” data set from the default directory and verify that it is present.

Uploading and checking available data sets is easy.

 strongly disagree disagree neutral agree strongly agree

2. Import the machine learning model from “git@github.com:magreiner/unet-docker.git” and inspect its
description.

Importing models and viewing their description is easy.

 strongly disagree disagree neutral agree strongly agree

3. Train the model “U-Net Segmentation Model” (newest version) on the previously uploaded data set using
the pre-trained model snapshot. During the parameter customization dialog locate the pre-processing option
and ensure that “Medical Decathlon Preprocessing Container” is set to ‘’true’’. Additionally, adjust the
hyperparameter “Number of Epochs” to 1. The platform guides you through the subsequent training
configuration steps. The platform will save the resulting trained model as a “model snapshot”.

Training a model and customizing the configuration (pre-processing, hyperparameter selection,
post-processing, …) is easy.

 strongly disagree disagree neutral agree strongly agree

Questionnaire about the Medical Imaging Platform (MIP) for Clinical Data Scientists

Matthias Greiner 2

4. View and Download the newly created snapshot. Verify that the notification emails were received and
contain information about the training. To further examine the results, download and view the model
snapshot.

Accessing and downloading the results of the training is easy.

 strongly disagree disagree neutral agree strongly agree

5. Create a machine learning method from the newly created model snapshot.

Creating methods from previously created snapshots is easy.

 strongly disagree disagree neutral agree strongly agree

6. Analyze the provided patient cohort using the interface for the medical experts.

The proposed abstraction of the analysis/inference process of beforehand generated machine learning
models is clear and sufficient.

 strongly disagree disagree neutral agree strongly agree

Design & Workflow Evaluation:

Technical capability:

The here employed generic approach to modularize and apply pre- and postprocessing methods (virtualized
application containers) could be used to implement the pre- and postprocessing methods used in my developed
machine learning methods.

 strongly disagree disagree neutral agree strongly agree

The here employed generic approach to modularize and apply training methods (virtualized application
containers) could be used to implement the training process used in my developed machine learning models.

 strongly disagree disagree neutral agree strongly agree

Overall impression:

very bad 1 2 3 4 5 very good

Guidance/Workflows:

 hard-to-follow workflows 1 2 3 4 5 adequate guidance, clear instructions

Responsiveness:

 lags, stuttering 1 2 3 4 5 no perceivable lags, fluid animations

Aesthetics:

 poorly designed, unaesthetic 1 2 3 4 5 well designed, aesthetic

Purpose:
The proposed platform could ease the deployment of machine learning models and could, therefore, contribute
to a closer collaboration between medical experts and clinical data scientists.

 strongly disagree disagree neutral agree strongly agree

Questionnaire about the Medical Imaging Platform (MIP) for Clinical Data Scientists

Matthias Greiner 3

Additional remarks:

Please add further comments, observations, or other feedback in the box below. If applicable, please add
concrete examples to your comments. General thoughts and critics are very welcome: What is easy and why is
it easy? What is difficult and why is it difficult?

111

Appendix B

Appendix: Detailed Evaluation
Feedback

During evaluation each participant had an option to provide additional feedback.
The additional feedback is provided in this chapter.

B.1 Additional Feedback from Medical Experts

In this section the additional feedback of the medical experts is shown.

Medical Expert 1:

• To further work with the results it would be better to have them stored in
an imaging archive. The downloaded information is helpful for debugging
reasons.

• Previously, it was quiet an effort to setup a segmentation method because many
methods are very heterogenous. With such a platform it is much easier to test
new methods and get results as fast as possible.

Medical Expert 2:

• Downloading: Allow download of segmentations only

• Very easy to apply since the the technical part is done automatically in the
background

• Allows testing of many methods for a specific data set

• Analyze tab offers workflow as expected

• In methods section add action for use method for analysis

Medical Expert 3:

• In methods overview it would be beneficial to have an extra column for
method/task category. So the developer is forced to specify it (e.g. segmenta-
tion, registration) instead of encoding it in the method name or description

112 Appendix B. Appendix: Detailed Evaluation Feedback

• Viewing in platform is nice, but structure of archive could be improved /
documentation should be provided.

• Basic statistics of results could be provided.

Medical Expert 4:

• From my experience, setting new standards within the scientific community is
quite challenging.

• Nevertheless, I see great potential for such a ready-to-use platform as soon as
enough people are using it.

• For me as beginner in machine learning I would be happy to use such a platform.

Medical Expert 5:

• Nice UI, easy to follow.

• Nice to have an introduction to machine learning as a new developer.

• Integration with slack and telegram.

Medical Expert 6:

• Place next button close to select tile button.

• Maybe viewing code is helpful.

Medical Expert 7:

• I find it easy to upload data and to apply specific methods on it.

• I think it would be useful to have a kind of notification before uploading to
check possible requirements for the method.

Medical Expert 8:

• Include status bar in the results section.

• Disable debugging output in email for medical expert.

• Closes the gap for easy access to deep learning.

B.2. Additional Feedback from Clinical Data Scientist 113

Medical Expert 9:

• Workflow is clear and easy to use.

• Result representation can be improved, less is more.

• With this platform machine learning application can be performed so efficiently:
well organized, easy access, flexible to try different model in a short time.

• Good starting platform for a beginner to learn machine learning.

Medical Expert 10:

• Missing information about the method:

– Modality, kind of data, resolution.

– Kind of machine learning algorithm.

– Trained on what kind and how much data.

– Dice-Scores / accuracy on data set XY.

• Reduce debug output / make it optional.

• Licensing: what do I need to cite.

• Chat and a market place for methods.

• Upload user data prior to developer of model.

B.2 Additional Feedback from Clinical Data Scientist

In this section the additional feedback of the clinical data scientists is shown.

Clinical Data Scientist 1:

• Missing explanations of different Methods visible on the website (add tooltips).

• My model was easy to integrate during an alpha-test of the platform. This was
additionally done aside from the walk-through included in this survey.

Clinical Data Scientist 2:

• Interface within the platform to view results could be an additional feature.

• When setting model parameters within the train function: selection could be
more clear, setting check marks suggest that features are not enabled when
unchecked, however it means they are enabled by default mode.

• Direct embedding of a computation cluster (shared server resources) could be
helpful.

114 Appendix B. Appendix: Detailed Evaluation Feedback

Clinical Data Scientist 3:

• Right now for a model its showing only the master branch. You could also show
all other branches.

• The configuration of the model is fine but you can try to change (e.g. no of
epochs) in a different way.

• You can also put some other available clusters option for the training.

Clinical Data Scientist 4:

• Expose debug options to frontend.

• Back button in available snapshots should go back to model version overview.

• GPU cluster integration.

Clinical Data Scientist 5:

• There should be a login form or email specific form.

• It would be good if we can see the status of the training at any time like number
of epochs that are already done etc.

• platform should consider parameter optimization.

• Platform should have cluster capability, where one can use directly resources of
the cluster.

Clinical Data Scientist 6:

• Connection to a cloud would be required to overcome limitations of a single
workstation.

• Maybe would be nice for developers to get a tool for comparison of different
methods.

• Very clear structure, easy to use without instructions

Clinical Data Scientist 7:

• In train: conformation of parameter settings with enter.

• In Snapshots: view/display hyperparameters used in training and add possi-
bility to filter/search through trainings by hyperparameters.

• Possible usage of the cluster.

B.2. Additional Feedback from Clinical Data Scientist 115

• Download: change structure to log folder with log-files for better overview.

• Applicable for my work with videos: pipeline enables easy use of complicated
method for medical expert but leaves enough freedom to develop multistage
process (preprocessing - converting to deep features application).

• Platform supports all necessary steps to set up and evaluate trainings.

• Required settings from developer on git facilitate usage of model (f.e. required
packages needed for setting up environment on cluster or on local system of
medical expert, hyperparameters for better overview).

• Further ideas: displaying log files or directly monitor if errors occur.

Clinical Data Scientist 8:

• Cluster integration.

Clinical Data Scientist 9:

• Going back from available snapshots to model version overview not working.

• Hide the IDs in training setup. Especially the non-human readable values.

• Keep all machine readable texts to one side in all the windows.

• Highlight the current step more (during training and application).

• Give a feedback once a method is created and also tell where to look.

• Message should be red or brighten so its immediately clear that it is a message
to the user.

• Having an email/slack/social net notification is extremely useful for both
medical experts and clinical data scientists.

• The platform makes the transfer and ease of technical communication for medi-
cal expert and clinical data scientist really streamlined (at least in theory).

Clinical Data Scientist 10:

• Great intuitive usability.

• Modern design.

• Git support is great.

• Cluster integrate could maybe be beneficial (with hyperparameter optimiza-
tion).

116 Appendix B. Appendix: Detailed Evaluation Feedback

Clinical Data Scientist 11:

• Would be good to add some documentation to the app itself. Just in case
someone wants to check it.

• Also nice if the developer can expose his/her contact info in case users want to
contact him/her to discuss model or even future work.

Clinical Data Scientist 12:

• Cluster would ease the usability.

• Increase size of download button.

117

Appendix C

Appendix: Further Details of
Design and Implementation

The data structure is represented on storage in the following way:

C.1 Data Sets

C.1.1 Ideal Directory Structure

• Directory: Dataset-UUID

– File: dataset.json This file contains all metadata and attributes of the
dataset in the json format.

– Directory: training_data This folder contains training data

– Directory: validation_data This folder contains validation data

– Directory: test_data This folder contains test data

– Directory: labels This folder contains a label-file for each image of the
training, validation, and test set.

C.1.2 Metadata File Attributes and Structure

• File: dataset.json

– Data set identifier

– Data set name

– Data set description

– Data set category (segmentation, detection, . . .)

– Data set tags (project, group, . . .)

– Standardized data set (true/false)

– Maintainer

– Version identifier

– Custom metadata (like medical attributes)

– List of training data (relative path)

– List of validation data (relative path)

– List of test data (relative path)

118 Appendix C. Appendix: Further Details of Design and Implementation

C.1.3 Main Functionality

• List (REQ-1): List all available data sets

• Import (REQ-2): Imports a data set to the platform.

• Update (REQ-3): Get updated data set from the same source as the input (only
works if imported by URL), the data set is under version control.

• Edit Metadata (REQ-4): Edits the metadata of the data set.

• Remove (REQ-5): Removes a data set from the platform.

C.2 Machine Learning Models and Snapshots

• Directory: Model-UUID
This directory contains the data corresponding to the model.

– File: model.json This file contains all metadata and attributes of the model
in the json format.

– Directory: source_code This folder contains source code of the model.
The source code is version controlled, deleting of a single version is not
supported to preserve the consistency.

– Directory: snapshots This folder contains the snapshots of the model.

• Directory: Snapshot-UUID
This folder contains the data corresponding to the snapshot.

– File: snapshot.json This file specifies all attributes of the trained
parameters in json format.

– File: hyperparameters.json This file contains all hyperparameters.

– File: method.json If this file exists, this snapshot is exposed and
can be used as method for a specific tasks. It further defines the
attributes of the exposed method. If the snapshot is deleted, the
method must be deleted, too.

– Directory: Checkpoints
Best method weights achieved during training.

– Directory: Configuration
Used Method configuration for the training

– Directory: Sample Pictures
Sample pictures including annotations

– Directory: Training and Platform Logs
Log of each step of the training workflow.

– Directory: Plots
Loss function (training, validation and testing)

– Directory: Statistical Results
Detailed results and metrics for each training step.

C.2. Machine Learning Models and Snapshots 119

C.2.1 Metadata File Attributes and Structure

• File: model.json

– Model identifier

– Model name

– Model description

– Model tags (Segmentation, Detection (location and classification), Regis-
tration, . . .)

– Maintainer

– Version identifier

– Custom metadata (like medical attributes)

– Hyperparameters
Hyperparameters are modified by the user to adjust the training process,
whereas parameters are usually learned during training.

– Monitoring / Live tracking service settings

– Default pre-processing pipeline

– Default post-processing pipeline

• Directory: Environment

– File: environment.json

• Environment selection

• Environment settings

– File: hardware-requirements.json

• Amount CPUs

• Amount GPUs

• Amount Memory

• Amount Storage

• CUDA Version

– (optional) File: Dockerfile

– (optional) File: python-requirements.txt

• File: snapshot.json

– Snapshot identifier
The snapshot identifier must be unique within the same version tag of the
source code

– Snapshot-Parent-UUID
Identifier of the parent this snapshot was trained on. Unset if it was trained
from scratch.

– Model UUID

– Model version UUID

120 Appendix C. Appendix: Further Details of Design and Implementation

– Data set UUID

– Data set version UUID

– Container name

• File: hyperparameters.json

– Snapshot identifier

– Definition of all hyperparameters used for this snapshot.

C.2.2 Main Functionality

• List (REQ-6): Lists all available models.

• Import (REQ-7): Imports a model source code repository to the platform.

• Update (REQ-8): Get updated model from the same source as the input the
models source code is under version control.

• Edit Metadata (REQ-9): Edits the metadata of the model.

• Remove (REQ-10): Removes a model from the platform.

• List Snapshots (REQ-11): List all snapshots.

• Remove Snapshots (REQ-12): Remove a snapshot.

• Train Model (REQ-24): Creates a new model snapshot. This also includes
the tasks Subscribe to updates (REQ-17), Monitor and terminate (REQ-19), View
and download results (REQ-20), Track progress (REQ-22), Customize preprocessing
pipeline (REQ-23), Initialize training using snapshot (REQ-24), and Customize
hyperparameters (REQ-25).

C.3 Machine Learning Methods and Results

C.3.1 Ideal Method Directory Structure

The metadata of the method is stored in the method.json file, in the same directory as
the used snapshot of the model.

After each application a new result object is created which stores the following
information:

• Patient data (copy of uploaded data and available metadata)

• Generated output from the method (annotated data)

• Logs from the processing pipeline

C.3. Machine Learning Methods and Results 121

C.3.2 Metadata File Attributes and Structure

• File: method.json

– Method identifier

– Method name

– Method description

– Method tags (Segmentation, Detection (location and classification), Regis-
tration, . . .)

– Maintainer

– Custom metadata (like medical attributes)

– Model identifier

– Parameter set identifier

– Default pre-processing pipeline (e.g. DICOM -> Methods format)

– Default post-processing pipeline (e.g. Methods format -> DICOM)

– Success/Fail Status, including error message in case of failure

C.3.3 Main Functionality

Main Functionality for creating and deleting methods is handled by the model func-
tionality. The method itself should not need any configuration except the connection
to the image data.

• List Methods (REQ-13): Show all available methods.

• Create (REQ-14): Create a new method based on a model snapshot.

• Remove Method (REQ-15): Remove a method.

• Import Patient Data (REQ-16): Import patient data for automated inference.

• Automated Inference (REQ-18): Run inference on a given patient data. This
also includes the tasks Subscribe to updates (REQ-17), Monitor and terminate
(REQ-19), and View and download results (REQ-20)

123

Bibliography

[1] Martín Abadi et al. “TensorFlow: A System for Large-Scale Machine Learning”.
In: Proceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation (Savannah, GA, USA). OSDI’16. Berkeley, CA, USA: USENIX
Association, 2016, pp. 265–283. URL: http://dl.acm.org/citation.cfm?id=
3026877.3026899 (visited on 02/13/2019).

[2] S. Albarqouni et al. “AggNet: Deep Learning From Crowds for Mitosis De-
tection in Breast Cancer Histology Images”. In: IEEE Transactions on Medical
Imaging 35.5 (May 2016), pp. 1313–1321.

[3] Amazon ECS - Run Containerized Applications in Production. URL: https://aws.
amazon.com/ecs/ (visited on 08/09/2019).

[4] Amazon EKS - Managed Kubernetes Service. URL: https://aws.amazon.com/
eks/ (visited on 06/07/2019).

[5] An Open Source Machine Learning Framework for Everyone: Tensorflow/Tensorflow.
Feb. 13, 2019. URL: https://github.com/tensorflow/tensorflow (visited on
02/13/2019).

[6] André Anjos, Laurent El-Shafey, and Sébastien Marcel. “BEAT: An Open-
Source Web-Based Open-Science Platform”. In: arXiv:1704.02319 [cs] (Apr. 7,
2017). URL: http://arxiv.org/abs/1704.02319 (visited on 02/05/2019).

[7] National Electrical Manufacturers Association. “Digital Imaging and Com-
munications in Medicine (DICOM)”. In: http.//medical.nema.org/ (2003). URL:
https://ci.nii.ac.jp/naid/10028228113/ (visited on 02/13/2019).

[8] Deepika Badampudi, Claes Wohlin, and Kai Petersen. “Experiences from
Using Snowballing and Database Searches in Systematic Literature Studies”.
In: Proceedings of the 19th International Conference on Evaluation and Assessment
in Software Engineering - EASE ’15. The 19th International Conference. Nanjing,
China: ACM Press, 2015, pp. 1–10. URL: http://dl.acm.org/citation.cfm?
doid=2745802.2745818 (visited on 01/28/2019).

[9] Robert Battle and Edward Benson. “Bridging the Semantic Web and Web
2.0 with Representational State Transfer (REST)”. In: Journal of Web Semantics.
Semantic Web and Web 2.0 6.1 (Feb. 1, 2008), pp. 61–69. URL: http://www.
sciencedirect.com/science/article/pii/S1570826807000510 (visited on
06/07/2019).

[10] Kent Beck. Test-Driven Development: By Example. Addison-Wesley Professional,
2003. 241 pp.

[11] Andrew Beers et al. “DeepNeuro: An Open-Source Deep Learning Toolbox for
Neuroimaging”. In: arXiv:1808.04589 [cs] (Aug. 14, 2018). URL: http://arxiv.
org/abs/1808.04589 (visited on 02/06/2019).

http://dl.acm.org/citation.cfm?id=3026877.3026899
http://dl.acm.org/citation.cfm?id=3026877.3026899
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/eks/
https://aws.amazon.com/eks/
https://github.com/tensorflow/tensorflow
http://arxiv.org/abs/1704.02319
https://ci.nii.ac.jp/naid/10028228113/
http://dl.acm.org/citation.cfm?doid=2745802.2745818
http://dl.acm.org/citation.cfm?doid=2745802.2745818
http://www.sciencedirect.com/science/article/pii/S1570826807000510
http://www.sciencedirect.com/science/article/pii/S1570826807000510
http://arxiv.org/abs/1808.04589
http://arxiv.org/abs/1808.04589

124 Bibliography

[12] Erwin Bellon et al. “Trends in PACS Architecture”. In: European Journal of
Radiology. From PACS to the Clouds 78.2 (May 1, 2011), pp. 199–204. URL: http:
/ / www . sciencedirect . com / science / article / pii / S0720048X10002408
(visited on 02/13/2019).

[13] D. Bernstein. “Containers and Cloud: From LXC to Docker to Kubernetes”. In:
IEEE Cloud Computing 1.3 (Sept. 2014), pp. 81–84.

[14] Anant Bhardwaj et al. “DataHub: Collaborative Data Science & Dataset Version
Management at Scale”. In: arXiv:1409.0798 [cs] (Sept. 2, 2014). URL: http:
//arxiv.org/abs/1409.0798 (visited on 01/24/2019).

[15] Souvik Bhattacherjee et al. “Principles of Dataset Versioning: Exploring the
Recreation/Storage Tradeoff”. In: Proceedings of the VLDB Endowment. Inter-
national Conference on Very Large Data Bases 8.12 (Aug. 2015), pp. 1346–1357.
pmid: 28752014.

[16] Carl Boettiger. “An Introduction to Docker for Reproducible Research”. In:
SIGOPS Oper. Syst. Rev. 49.1 (Jan. 2015), pp. 71–79. URL: http://doi.acm.org/
10.1145/2723872.2723882 (visited on 02/19/2019).

[17] Brain Team. URL: https://ai.google/research/teams/brain/ (visited on
02/13/2019).

[18] Eric A. Brewer. “Kubernetes and the Path to Cloud Native”. In: Proceedings
of the Sixth ACM Symposium on Cloud Computing. SoCC ’15. New York, NY,
USA: ACM, 2015, pp. 167–167. URL: http://doi.acm.org/10.1145/2806777.
2809955 (visited on 01/18/2019).

[19] David Budgen and Pearl Brereton. “Performing Systematic Literature Reviews
in Software Engineering”. In: Proceeding of the 28th International Conference on
Software Engineering - ICSE ’06. Proceeding of the 28th International Confer-
ence. Shanghai, China: ACM Press, 2006, p. 1051. URL: http://portal.acm.
org/citation.cfm?doid=1134285.1134500 (visited on 01/28/2019).

[20] Peter Buneman et al. “Archiving Scientific Data”. In: ACM Trans. Database
Syst. 29.1 (Mar. 2004), pp. 2–42. URL: http://doi.acm.org/10.1145/974750.
974752 (visited on 02/05/2019).

[21] Joaquin Quiñonero Candela. Facebook and Microsoft Introduce New Open Ecosys-
tem for Interchangeable AI Frameworks. URL: https : / / research . fb . com /
facebook-and-microsoft-introduce-new-open-ecosystem-for-interchangeable-
ai-frameworks (visited on 02/13/2019).

[22] Ryan Chard et al. “DLHub: Model and Data Serving for Science”. In: arXiv:1811.11213
[cs, stat] (Nov. 27, 2018). URL: http://arxiv.org/abs/1811.11213 (visited on
02/06/2019).

[23] Lawrence Chung et al. Non-Functional Requirements in Software Engineering.
Springer Science & Business Media, Dec. 6, 2012. 458 pp.

[24] Alan Cooper. The Inmates Are Running the Asylum. Indianapolis, IN: Sams,
2004. 255 pp.

http://www.sciencedirect.com/science/article/pii/S0720048X10002408
http://www.sciencedirect.com/science/article/pii/S0720048X10002408
http://arxiv.org/abs/1409.0798
http://arxiv.org/abs/1409.0798
28752014
http://doi.acm.org/10.1145/2723872.2723882
http://doi.acm.org/10.1145/2723872.2723882
https://ai.google/research/teams/brain/
http://doi.acm.org/10.1145/2806777.2809955
http://doi.acm.org/10.1145/2806777.2809955
http://portal.acm.org/citation.cfm?doid=1134285.1134500
http://portal.acm.org/citation.cfm?doid=1134285.1134500
http://doi.acm.org/10.1145/974750.974752
http://doi.acm.org/10.1145/974750.974752
https://research.fb.com/facebook-and-microsoft-introduce-new-open-ecosystem-for-interchangeable-ai-frameworks
https://research.fb.com/facebook-and-microsoft-introduce-new-open-ecosystem-for-interchangeable-ai-frameworks
https://research.fb.com/facebook-and-microsoft-introduce-new-open-ecosystem-for-interchangeable-ai-frameworks
http://arxiv.org/abs/1811.11213

Bibliography 125

[25] NVIDIA Corporation. Build and Run Docker Containers Leveraging NVIDIA
GPUs: NVIDIA/Nvidia-Docker. July 21, 2019. URL: https://github.com/
NVIDIA/nvidia-docker (visited on 07/21/2019).

[26] Daniel Crankshaw et al. “The Missing Piece in Complex Analytics: Low La-
tency, Scalable Model Management and Serving with Velox”. In: (), p. 7.

[27] Organización Internacional de Normalización. ISO-IEC 25010: 2011 Systems
and Software Engineering-Systems and Software Quality Requirements and Evalua-
tion (SQuaRE)-System and Software Quality Models. ISO, 2011.

[28] Anh Dinh et al. “UStore: A Distributed Storage With Rich Semantics”. In:
arXiv:1702.02799 [cs] (Feb. 9, 2017). URL: http://arxiv.org/abs/1702.02799
(visited on 02/06/2019).

[29] Tom Doel et al. “GIFT-Cloud: A Data Sharing and Collaboration Platform for
Medical Imaging Research”. In: Computer Methods and Programs in Biomedicine
139 (Feb. 1, 2017), pp. 181–190. URL: http : / / www . sciencedirect . com /
science/article/pii/S016926071630654X (visited on 02/05/2019).

[30] EastBancTech. Building a Reliable Kubernetes Cluster in the Amazon Cloud. July 16,
2017. URL: https://blog.kublr.com/building-a-reliable-kubernetes-
cluster-in-the-amazon-cloud-5543dffb297d (visited on 07/16/2017).

[31] I. Eggel, R. Schaer, and H. Müller. “Distributed Container-Based Evaluation
Platform for Private/Large Datasets”. In: 2018 17th International Symposium on
Parallel and Distributed Computing (ISPDC). 2018 17th International Symposium
on Parallel and Distributed Computing (ISPDC). June 2018, pp. 93–100.

[32] W. Felter et al. “An Updated Performance Comparison of Virtual Machines
and Linux Containers”. In: 2015 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). 2015 IEEE International Sympo-
sium on Performance Analysis of Systems and Software (ISPASS). Mar. 2015,
pp. 171–172.

[33] Jesse James Garrett. Elements of User Experience,The: User-Centered Design for
the Web and Beyond. Pearson Education, Dec. 16, 2010. 226 pp.

[34] Eli Gibson et al. “NiftyNet: A Deep-Learning Platform for Medical Imaging”.
In: Computer Methods and Programs in Biomedicine 158 (May 2018), pp. 113–122.
pmid: 29544777.

[35] Kurt Griffiths et al. “Falcon Documentation”. In: (2015).

[36] Alon Halevy et al. “Goods: Organizing Google’s Datasets”. In: Proceedings of
the 2016 International Conference on Management of Data. SIGMOD ’16. New
York, NY, USA: ACM, 2016, pp. 795–806. URL: http://doi.acm.org/10.1145/
2882903.2903730 (visited on 02/06/2019).

[37] Allan Hanbury, Henning Müller, and Georg Langs. Cloud-Based Benchmarking
of Medical Image Analysis. OCLC: 988540448. 2017. URL: http://dx.doi.org/
10.1007/978-3-319-49644-3 (visited on 02/05/2019).

https://github.com/NVIDIA/nvidia-docker
https://github.com/NVIDIA/nvidia-docker
http://arxiv.org/abs/1702.02799
http://www.sciencedirect.com/science/article/pii/S016926071630654X
http://www.sciencedirect.com/science/article/pii/S016926071630654X
https://blog.kublr.com/building-a-reliable-kubernetes-cluster-in-the-amazon-cloud-5543dffb297d
https://blog.kublr.com/building-a-reliable-kubernetes-cluster-in-the-amazon-cloud-5543dffb297d
29544777
http://doi.acm.org/10.1145/2882903.2903730
http://doi.acm.org/10.1145/2882903.2903730
http://dx.doi.org/10.1007/978-3-319-49644-3
http://dx.doi.org/10.1007/978-3-319-49644-3

126 Bibliography

[38] Allan Hanbury et al. “Bringing the Algorithms to the Data: Cloud–Based
Benchmarking for Medical Image Analysis”. In: Information Access Evaluation.
Multilinguality, Multimodality, and Visual Analytics. Ed. by Tiziana Catarci et al.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2012, pp. 24–
29.

[39] Allan Hanbury et al. “Cloud–Based Evaluation Framework for Big Data”. In:
The Future Internet. Ed. by Alex Galis and Anastasius Gavras. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2013, pp. 104–114.

[40] Allan Hanbury et al. “Evaluation-as-a-Service: Overview and Outlook”. In:
arXiv:1512.07454 [cs] (Dec. 23, 2015). URL: http://arxiv.org/abs/1512.
07454 (visited on 02/05/2019).

[41] K. Hazelwood et al. “Applied Machine Learning at Facebook: A Datacenter
Infrastructure Perspective”. In: 2018 IEEE International Symposium on High Per-
formance Computer Architecture (HPCA). 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA). Feb. 2018, pp. 620–629.

[42] Benjamin Hindman et al. “Mesos: A Platform for Fine-Grained Resource
Sharing in the Data Center.” In: NSDI. Vol. 11. 2011, pp. 22–22.

[43] Computer Society IEEE. “Data Engineering: Special Issue on Machine Learn-
ing Life-Cycle Management”. In: Vol. 41 No. 4 (Dec. 2018), p. 64.

[44] Samireh Jalali and Claes Wohlin. “Systematic Literature Studies: Database
Searches vs. Backward Snowballing”. In: Proceedings of the ACM-IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement - ESEM
’12. The ACM-IEEE International Symposium. Lund, Sweden: ACM Press,
2012, p. 29. URL: http://dl.acm.org/citation.cfm?doid=2372251.2372257
(visited on 01/28/2019).

[45] JupyterLab Documentation — JupyterLab 1.0.3 Documentation. URL: https://
jupyterlab.readthedocs.io/en/stable/ (visited on 07/26/2019).

[46] Dharmesh Kakadia. Apache Mesos Essentials. Packt Publishing Ltd, June 29,
2015. 230 pp.

[47] Brian Kernighan and Dennis M. Ritchie. The C Programming Language. Prentice
hall, 2017.

[48] Nikhil Ketkar. “Introduction to PyTorch”. In: Deep Learning with Python:
A Hands-on Introduction. Ed. by Nikhil Ketkar. Berkeley, CA: Apress, 2017,
pp. 195–208. URL: https://doi.org/10.1007/978-1-4842-2766-4_12
(visited on 06/11/2019).

[49] B. Kitchenham and S. Charters. Guidelines for Performing Systematic Literature
Reviews in Software Engineering. 2007.

[50] Barbara Kitchenham et al. “Systematic Literature Reviews in Software En-
gineering – A Systematic Literature Review”. In: Information and Software
Technology 51.1 (Jan. 2009), pp. 7–15. URL: https://linkinghub.elsevier.
com/retrieve/pii/S0950584908001390 (visited on 01/28/2019).

[51] Gerald Kotonya and Ian Sommerville. Requirements Engineering: Processes and
Techniques. 1st. Wiley Publishing, 1998.

http://arxiv.org/abs/1512.07454
http://arxiv.org/abs/1512.07454
http://dl.acm.org/citation.cfm?doid=2372251.2372257
https://jupyterlab.readthedocs.io/en/stable/
https://jupyterlab.readthedocs.io/en/stable/
https://doi.org/10.1007/978-1-4842-2766-4_12
https://linkinghub.elsevier.com/retrieve/pii/S0950584908001390
https://linkinghub.elsevier.com/retrieve/pii/S0950584908001390

Bibliography 127

[52] A. Kovari and P. Dukan. “KVM Amp; OpenVZ Virtualization Based IaaS Open
Source Cloud Virtualization Platforms: OpenNode, Proxmox VE”. In: 2012
IEEE 10th Jubilee International Symposium on Intelligent Systems and Informatics.
2012 IEEE 10th Jubilee International Symposium on Intelligent Systems and
Informatics. Sept. 2012, pp. 335–339.

[53] Konstantinos Krampis et al. “Cloud BioLinux: Pre-Configured and on-Demand
Bioinformatics Computing for the Genomics Community”. In: BMC Bioinfor-
matics 13.1 (Mar. 19, 2012), p. 42. URL: https://doi.org/10.1186/1471-2105-
13-42 (visited on 07/20/2019).

[54] S. P. T. Krishnan and Jose L. Ugia Gonzalez. “Google Compute Engine”. In:
Building Your Next Big Thing with Google Cloud Platform: A Guide for Developers
and Enterprise Architects. Ed. by S. P. T. Krishnan and Jose L. Ugia Gonzalez.
Berkeley, CA: Apress, 2015, pp. 53–81. URL: https://doi.org/10.1007/978-
1-4842-1004-8_4 (visited on 02/18/2019).

[55] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “ImageNet Classi-
fication with Deep Convolutional Neural Networks”. In: Advances in Neural
Information Processing Systems 25. Ed. by F. Pereira et al. Curran Associates, Inc.,
2012, pp. 1097–1105. URL: http://papers.nips.cc/paper/4824-imagenet-
classification-with-deep-convolutional-neural-networks.pdf (visited
on 08/15/2019).

[56] T. Küstner et al. “An Easy-to-Use Image Labeling Platform for Automatic Mag-
netic Resonance Image Quality Assessment”. In: 2017 IEEE 14th International
Symposium on Biomedical Imaging (ISBI 2017). 2017 IEEE 14th International
Symposium on Biomedical Imaging (ISBI 2017). Apr. 2017, pp. 754–757.

[57] Alex Kyriakidis and Kostas Maniatis. The Majesty of Vue.Js. Packt Publishing
Ltd, Nov. 14, 2016. 230 pp.

[58] S.- B. Lo et al. “Artificial Convolution Neural Network Techniques and Appli-
cations for Lung Nodule Detection”. In: IEEE Transactions on Medical Imaging
14.4 (Dec. 1995), pp. 711–718.

[59] Jochen Ludewig and Horst Lichter. Software Engineering: Grundlagen, Menschen,
Prozesse, Techniken. dpunkt.verlag, May 17, 2013. 846 pp.

[60] Sanket Meghani. JavaScript Linting Tools Comparison. June 14, 2019. URL: https:
//codeburst.io/javascript-linting-tools-comparison-ebcb4aa23c49
(visited on 06/14/2019).

[61] Daniel A. Menascé. “Virtualization: Concepts, Applications, and Performance
Modeling”. In: Int. CMG Conference. 2005.

[62] H. Miao et al. “ModelHub: Deep Learning Lifecycle Management”. In: 2017
IEEE 33rd International Conference on Data Engineering (ICDE). 2017 IEEE 33rd
International Conference on Data Engineering (ICDE). Apr. 2017, pp. 1393–
1394.

[63] H. Miao et al. “Towards Unified Data and Lifecycle Management for Deep
Learning”. In: 2017 IEEE 33rd International Conference on Data Engineering
(ICDE). 2017 IEEE 33rd International Conference on Data Engineering (ICDE).
Apr. 2017, pp. 571–582.

https://doi.org/10.1186/1471-2105-13-42
https://doi.org/10.1186/1471-2105-13-42
https://doi.org/10.1007/978-1-4842-1004-8_4
https://doi.org/10.1007/978-1-4842-1004-8_4
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://codeburst.io/javascript-linting-tools-comparison-ebcb4aa23c49
https://codeburst.io/javascript-linting-tools-comparison-ebcb4aa23c49

128 Bibliography

[64] F. Milletari et al. “Cloud Deployment of High-Resolution Medical Image
Analysis with TOMAAT”. In: IEEE Journal of Biomedical and Health Informatics
(2018), pp. 1–1.

[65] mjenkinson. NIfTI-1 Data Format — Neuroimaging Informatics Technology Initia-
tive. URL: https://nifti.nimh.nih.gov/nifti-1/ (visited on 02/14/2019).

[66] Rimantas Mocevicius. CoreOS Essentials. Packt Publishing Ltd, June 29, 2015.
132 pp.

[67] Christoph Molnar. Interpretable Machine Learning: A Guide for Making Black Box
Models Explainable. 2019.

[68] Kief Morris. Infrastructure as Code: Managing Servers in the Cloud. "O’Reilly
Media, Inc.", June 9, 2016. 362 pp.

[69] Alison Nightingale. “A Guide to Systematic Literature Reviews”. In: Surgery
(Oxford) 27.9 (Sept. 2009), pp. 381–384. URL: https://linkinghub.elsevier.
com/retrieve/pii/S0263931909001707 (visited on 01/28/2019).

[70] Bashar Nuseibeh and Steve Easterbrook. “Requirements Engineering: A Roadmap”.
In: Proceedings of the Conference on The Future of Software Engineering - ICSE
’00. The Conference. Limerick, Ireland: ACM Press, 2000, pp. 35–46. URL:
http://portal.acm.org/citation.cfm?doid=336512.336523 (visited on
02/19/2019).

[71] T. E. Oliphant. “Python for Scientific Computing”. In: Computing in Science
Engineering 9.3 (May 2007), pp. 10–20.

[72] Barbara Paech and Kirstin Kohler. “Task-Driven Requirements in Object-
Oriented Development”. In: Perspectives on Software Requirements. Ed. by Julio
Cesar Sampaio do Prado Leite and Jorge Horacio Doorn. The Springer Inter-
national Series in Engineering and Computer Science. Boston, MA: Springer
US, 2004, pp. 45–67.

[73] PEP 8 – Style Guide for Python Code. URL: https://www.python.org/dev/
peps/pep-0008/ (visited on 06/14/2019).

[74] Postman | API Development Environment. URL: https://www.getpostman.com
(visited on 07/16/2019).

[75] PyTorch. URL: https://www.pytorch.org (visited on 02/14/2019).

[76] Suzanne Robertson and James Robertson. Mastering the Requirements Process:
Getting Requirements Right. Addison-Wesley, Aug. 6, 2012. 579 pp.

[77] Rami Rosen. “Linux Containers and the Future Cloud”. In: Linux J. 2014.240
(Apr. 2014). URL: http://dl.acm.org/citation.cfm?id=2618216.2618219
(visited on 02/18/2019).

[78] Chris Rupp and Klaus Pohl. Requirements Engineering Fundamentals: A Study
Guide for the Certified Professional for Requirements Engineering Exam - Foundation
Level - IREB compliant. 2nd ed. Santa Barbara, CA: Rocky Nook, May 5, 2015.
164 pp.

https://nifti.nimh.nih.gov/nifti-1/
https://linkinghub.elsevier.com/retrieve/pii/S0263931909001707
https://linkinghub.elsevier.com/retrieve/pii/S0263931909001707
http://portal.acm.org/citation.cfm?doid=336512.336523
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
https://www.getpostman.com
https://www.pytorch.org
http://dl.acm.org/citation.cfm?id=2618216.2618219

Bibliography 129

[79] Omar Sefraoui, Mohammed Aissaoui, and Mohsine Eleuldj. “OpenStack:
Toward an Open-Source Solution for Cloud Computing”. In: International
Journal of Computer Applications 55.3 (Oct. 20, 2012), pp. 38–42. URL: http:
//research.ijcaonline.org/volume55/number3/pxc3882991.pdf (visited
on 03/27/2019).

[80] E. Serrano et al. “Medical Imaging Processing on a Big Data Platform Using
Python: Experiences with Heterogeneous and Homogeneous Architectures”.
In: 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID). 2017 17th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGRID). May 2017, pp. 830–837.

[81] Keith Seymour et al. “Overview of GridRPC: A Remote Procedure Call API
for Grid Computing”. In: International Workshop on Grid Computing. Springer.
2002, pp. 274–278.

[82] Prateek Sharma et al. “Containers and Virtual Machines at Scale: A Com-
parative Study”. In: Proceedings of the 17th International Middleware Conference
(Trento, Italy). Middleware ’16. New York, NY, USA: ACM, 2016, 1:1–1:13. URL:
http://doi.acm.org/10.1145/2988336.2988337 (visited on 02/18/2019).

[83] Teem: Nrrd. URL: http://teem.sourceforge.net/nrrd/index.html (visited
on 02/14/2019).

[84] S. Tilkov and S. Vinoski. “Node.Js: Using JavaScript to Build High-Performance
Network Programs”. In: IEEE Internet Computing 14.6 (Nov. 2010), pp. 80–83.

[85] A. Tosatto, P. Ruiu, and A. Attanasio. “Container-Based Orchestration in
Cloud: State of the Art and Challenges”. In: 2015 Ninth International Conference
on Complex, Intelligent, and Software Intensive Systems. 2015 Ninth International
Conference on Complex, Intelligent, and Software Intensive Systems. July
2015, pp. 70–75.

[86] Muhammad Umair. SOLID, GRASP, and Other Basic Principles of Object-Oriented
Design. URL: https://dzone.com/articles/solid- grasp- and- other-
basic-principles-of-object-o (visited on 08/12/2019).

[87] Using Radon Programmatically — Radon 2.4.0 Documentation. URL: https://
radon.readthedocs.io/en/latest/api.html#module-radon.raw (visited
on 08/01/2019).

[88] Manasi Vartak et al. “ModelDB: A System for Machine Learning Model Man-
agement”. In: Proceedings of the Workshop on Human-In-the-Loop Data Ana-
lytics. HILDA ’16. New York, NY, USA: ACM, 2016, 14:1–14:3. URL: http:
//doi.acm.org/10.1145/2939502.2939516 (visited on 01/31/2019).

[89] Viswanath Venkatesh and Fred D Davis. “A Theoretical Extension of the Tech-
nology Acceptance Model: Four Longitudinal Field Studies”. In: Management
science 46.2 (2000), pp. 186–204.

[90] Vue Native. URL: https://vue-native.io/ (visited on 03/28/2019).

[91] Vue.Js Material Component Framework — Vuetify.Js. URL: https://vuetifyjs.
com/en/ (visited on 06/11/2019).

http://research.ijcaonline.org/volume55/number3/pxc3882991.pdf
http://research.ijcaonline.org/volume55/number3/pxc3882991.pdf
http://doi.acm.org/10.1145/2988336.2988337
http://teem.sourceforge.net/nrrd/index.html
https://dzone.com/articles/solid-grasp-and-other-basic-principles-of-object-o
https://dzone.com/articles/solid-grasp-and-other-basic-principles-of-object-o
https://radon.readthedocs.io/en/latest/api.html#module-radon.raw
https://radon.readthedocs.io/en/latest/api.html#module-radon.raw
http://doi.acm.org/10.1145/2939502.2939516
http://doi.acm.org/10.1145/2939502.2939516
https://vue-native.io/
https://vuetifyjs.com/en/
https://vuetifyjs.com/en/

130 Bibliography

[92] Welcome to Radon’s Documentation! — Radon 2.4.0 Documentation. URL: https:
//radon.readthedocs.io/en/latest/index.html (visited on 08/01/2019).

[93] Roel J. Wieringa. Design Science Methodology for Information Systems and Software
Engineering. Springer, Nov. 19, 2014. 327 pp.

[94] Bill Wilder. Cloud Architecture Patterns: Using Microsoft Azure. "O’Reilly Media,
Inc.", Sept. 20, 2012. 183 pp.

[95] Alex Williams. CI/CD with Kubernetes. The New Stack, Dec. 11, 2018.

[96] Andreas Wittig and Michael Wittig. Amazon Web Services in Action. 1st. Green-
wich, CT, USA: Manning Publications Co., 2015.

[97] Claes Wohlin. “Guidelines for Snowballing in Systematic Literature Studies
and a Replication in Software Engineering”. In: Proceedings of the 18th Interna-
tional Conference on Evaluation and Assessment in Software Engineering - EASE
’14. The 18th International Conference. London, England, United Kingdom:
ACM Press, 2014, pp. 1–10. URL: http://dl.acm.org/citation.cfm?doid=
2601248.2601268 (visited on 01/28/2019).

[98] Claes Wohlin et al. Experimentation in Software Engineering. Springer Science &
Business Media, June 16, 2012. 249 pp.

[99] M. G. Xavier et al. “Performance Evaluation of Container-Based Virtualization
for High Performance Computing Environments”. In: 2013 21st Euromicro
International Conference on Parallel, Distributed, and Network-Based Processing.
2013 21st Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing. Feb. 2013, pp. 233–240.

[100] Y. Zhang et al. “DataLab: A Version Data Management and Analytics System”.
In: 2016 IEEE/ACM 2nd International Workshop on Big Data Software Engineering
(BIGDSE). 2016 IEEE/ACM 2nd International Workshop on Big Data Software
Engineering (BIGDSE). May 2016, pp. 12–18.

https://radon.readthedocs.io/en/latest/index.html
https://radon.readthedocs.io/en/latest/index.html
http://dl.acm.org/citation.cfm?doid=2601248.2601268
http://dl.acm.org/citation.cfm?doid=2601248.2601268

	Declaration of Authorship
	Abstract
	Zusammenfassung
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Motivation and Domain-Specific Challenges
	Research Methodology
	Goals and Contributions
	Outline

	Background
	Program Isolation Strategies
	Cloud Compute Cluster Fundamentals
	Cloud-Native Services Approach
	Machine Learning

	Literature Research
	Methodology
	Literature Results
	Literature Synthesis
	Takeaway

	Requirements Analysis
	Requirements Elicitation
	Domain Data Description
	Primary Personas
	Functional Requirements
	Single-User Workflow
	Multi-User Collaboration Workflow
	Non-Functional Requirements
	User-Interface Structure Design
	Takeaway

	Design and Implementation
	Overview
	Frontend
	Backend
	Computation Environment
	Infrastructure Stack

	Quality Assurance
	Quality Assurance during Development
	Backend Development and Testing
	Frontend Development and Testing

	Evaluation
	Evaluation Strategy
	Results and Discussion
	Threats to Validity

	Conclusion and Outlook
	Conclusion
	Outlook

	Appendix: Evaluation Questionnaires
	Appendix: Detailed Evaluation Feedback
	Additional Feedback from Medical Experts
	Additional Feedback from Clinical Data Scientist

	Appendix: Further Details of Design and Implementation
	Data Sets
	Machine Learning Models and Snapshots
	Machine Learning Methods and Results

	Bibliography

