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ABSTRACT

In this dissertation we develop high order invariant domain preserving schemes for

general hyperbolic systems.

The schemes are based on the general central schemes of formally second, third and

fourth order accuracy. The invariant domain property is modified as the quasiconcave con-

straint and is enforced via a so-called convex limiting technique. There are two classes of

schemes developed. One is based on the invariant domain satisfying nonlinear reconstruc-

tion and the other method is made to be invariant domain preserving via the convex flux

limiting. The main theoretical results are Theorem 4.3.1 and Theorem 4.3.2. The convex

limiting process could sufficiently reduce the oscillations of the numerical solutions at dis-

continuities like shocks, while it does not deteriorate the order of the underlying central

scheme. The numerical performance of the methods is tested on a variety of benchmark

problems.
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1. INTRODUCTION TO NONLINEAR HYPERBOLIC SYSTEMS

1.1 Convention for Vector and Tensor Operations

First, we introduce the usual convention for vector and tensor operations. That is, for

any column vectors a = (a1, · · · , an), b = (b1, · · · , bn), order 2 tensors f with entries

fij , where i = 1, · · · , n, j = 1, · · · ,m and g with entries gij , where i = 1, · · · ,m, j =

1, · · · , n, we have the following standard identities, which are going to be used throughout

this dissertation:

a⊗ b = ab>, (a · f)i =
n∑
j=1

aifji, (g · a)i =
n∑
j=1

fijaj,

(∇·a)ij =
∂aj
∂xi

, (∇·f)i =
n∑
j=1

∂fji
∂xj

, ∇·(a⊗ b) = a · ∇b + b∇·a.

1.2 Hyperbolic Conservation Laws

1.2.1 Physical Interpretation of Conservation Laws

In this subsection we introduce the systems of nonlinear, divergence structure first-

order hyperbolic partial differential equations (PDEs), which arise as models of physical

phenomena, the reader is referred to [14, §4,§11] and [5] for more details.

Let d and m be positive integers and consider the following vector function

u = u(x, t) = (u1(x, t), . . . , um(x, t))> ∈ Rm,

the components of which are the densities of various conserved quantities in a physical

system. Given any compact set Ω ∈ Rd, which has a piecewise smooth boundary ∂Ω, note

that the integral ∫
Ω

udx

represents the total amount of these quantities within Ω and time t. Physically conservation
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laws assert that the rate of change of u within Ω is governed by a nonlinear convection

flux function f : Rm 7→ (Rm)d, which controls the rate of loss or increase of u through

the boundary of the domain ∂Ω, where f is a matrix with entries fij(u), 1 ≤ i ≤ m,

1 ≤ j ≤ d. Otherwise stated, we have that

d

dt

∫
Ω

udΩ +

∫
∂Ω

f(u) · ndΓ = 0, (1.1)

for any n = (n1, . . . , nd)
> ∈ Rd denoting the outward unit normal along Ω.

Now we assume that u and f are sufficiently smooth, i.e., u and f are all continuously

differentiable on Ω, then using the divergence theorem we could rewrite (1.1) as follows

∫
Ω

∂tudΩ +

∫
Ω

∇·f(u)dΩ = 0. (1.2)

As the region Ω is arbitrary, we could derive from (1.2) the initial value problem for a

general system of conservation laws:

∂tu +∇·f(u) = 0 for (x, t) ∈ Rd × R+ (1.3a)

u = u0(x) for x ∈ Rd (1.3b)

where (1.3b) describes the initial distribution of u.

1.2.2 Connection Between Conservation Laws and Hyperbolic Systems

We consider the conservation law (1.3a) and denote Aj(u)
.
= Df j to be the Jacobian

matrix of f j at u, where f j = (f1,j, · · · , fm,j)>, j = 1, · · · , d. If for all α1, · · · , αd ∈

R, we have that the matrix A := α1A
1 + · · · + αdA

d has only real eigenvalues and is

diagonalizable, then system (1.3a) is hyperbolic and could be written in the following

quasilinear form

ut +
d∑
j=1

Aj(u) · uxj = 0 (1.4)
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If the matrix A has m distinct real eigenvalues, it follows that it is diagonalizable, then we

say that system (1.3a) is strictly hyperbolic. Note that in this dissertation, all problems we

will consider are hyperbolic.

1.3 Examples of Conservation Laws

In this section, we introduce several examples of conservation laws: the linear transport

equation and the Burgers equation; the one dimensional isentropic gas dynamics (the so

called P-system); and the compressible Euler equation. All of these examples are classical

and of great importance in the study of hyperbolic conservation laws. In the following sec-

tions(§1.4-§1.6), we will illustrate more important properties of hyperbolic conservation

laws and its solutions with these examples. One should notice that in this section we only

explain the derivation of the equations and the physical interpretation of each equation, no

discussion on initial or boundary condition is included here.

1.3.1 Scalar Conservation Law

First, we consider scalar conservation laws with one space dimension, which in general

describe the movement of a traveling wave, see [5]. In this subsection we will introduce

two typical examples of scalar conservation law: the linear transport equation and the

Burgers equation.

Let d = 1 and m = 1 in system (1.3a), we obtain a conservation law in one space

dimension of the form:

ut + f(u)x = 0, (1.5)

where u denotes the conserved quantity while f is the flux. Now assume that f is differ-

entiable of u with f ′(u) = a(u), using the chain rule, equation (1.5) could be written in

the quasilinear form:

ut + a(u)ux = 0, (1.6)

where a(u) measures the speed of the wave which depends on u.

3



1.3.1.1 Conservation Principle

Here we explain the conservation of equation (1.5) from the physical point of view.

Let’s integral equation 1.5 on a given interval [a, b], we could obtain

d

dt

∫ b

a

u(x, t)dx = −
∫ b

a

f(u(x, t))xdx

= f(u(a, t))− f(u(b, t)) = [inflow at a]− [outflow at b].

(1.7)

which indicates that there is no creation or destroy implemented on the quantity of u: the

change of the total amount of u restricted in the interval [a, b] is the result of the flow across

the boundary.

As stated above, a(u) in equation (1.6) denotes the velocity of the transported wave.

Now we give two examples of scalar conservation law by taking different a(u) separately.

1.3.1.2 Linear Transport Equation

In the linear case, a single wave in space is just translated while maintaining its shape.

Here the dependent variable u denotes the height of the wave and it is the conserved

quantity. Thus we could apply equation (1.6) to describe this movement. By assumption

the shape of the wave is maintained during the transport. Hence, the wave speed a(u) is a

constant function of u, which is denoted by c. Thus we obtain the following equation

∂u

∂t
+ c

∂u

∂x
= 0, (1.8)

which is known as the linear transport equation.

1.3.1.3 Inviscid Burgers Equation

Burgers’ equation is a fundamental PDE occurring in various areas of applied math-

ematics, such as fluid mechanics and gas dynamics. The equation was first introduced

by Harry Bateman in 1915, see [3, 62] and later studied by Johannes Martinus Burgers in

1948, see [6]. Here we introduce the inviscid form of Burgers’ equation, which is a special
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case of nonlinear wave equations.

To obtain the inviscid Burgers equation, we set the wave speed a(u) = u in equation

(1.6) and obtain the following equation:

ut + uux = 0. (1.9)

Equivalently, by taking f(u) = u2

2
in equation (1.5), we could rewrite equation (1.9) to be

∂

∂t
u+

∂

∂x
(
u2

2
) = 0. (1.10)

1.3.2 The P-system

Here we discuss the one-dimensional motion of an isentropic gas, which is modeled

by the so-called P-system, see [61, 57, 64]. To start with, we consider the equations of gas

dynamics for an inviscid, non-heat conducting gas. In Lagrangian coordinates the system

is written as follows:

∂tv − ∂xu = 0, (1.11a)

∂tu+ ∂xp(v) = 0, (1.11b)

where (x, t) ∈ R×R+, v is the specific volume, with v = 1
ρ

and ρ is the density, u denotes

the velocity. The mapping v 7→ p(v) is the pressure which depends on he particular gas

under consideration, and is assumed to be of classC2(R+;R), which satisfies the following

property.

p′ < 0, p′′ > 0, (1.12)

which implies that the system is strictly hyperbolic and genuinely nonlinear, see Exam-

ple 1.6.1 for more details. A typical example of the pressure used in P-system is the

so-called gamma-law, where we set p(v) = rv−γ with r > 0 and γ ≥ 1. Typically we take

r = (γ−1)2

4γ
, see [50].
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Remark. In gas dynamics, an isentropic process is such that the entropy of the system

remains unchanged in time. More details about thermodynamical entropy function will be

introduced in the following sections.

1.3.2.1 Conservation Principle

To explain the physical meaning of equation (1.11), we are going to rewrite it in Eule-

rian coordinates. This is the so-called system of isentropic gas dynamics:

∂tρ+ ∂x(ρu) = 0, (1.13a)

∂t(ρu) + ∂x(ρu
2 + p) = 0. (1.13b)

Notice that equation (1.13) is equivalent to a subsystem of the Euler system (1.22). There-

fore, we will only give a brief explanation here. More details will be discussed in §1.3.3

for the compressible Euler system.

(i) The conservation of mass. Integrating equation (1.13a) on an interval [a, b] and ap-

plying the fundamental theorem of calculus, we have:

∂

∂t

∫ b

a

ρdx = −(ρu)|ba. (1.14)

Here the left term ∂
∂t

∫ b
a
ρdx denotes the rate of the change of the mass in [a, b], while

the right term −(ρu)|ba measures the incoming mass minus the outgoing mass per

unit time, where the term ρu denotes the mass flux.

(ii) The conservation of momentum. Similarly, integrating equation (1.13b) on [a, b] we

have:
∂

∂t

∫ b

a

ρudx = −(ρu2)|ba −
∫ b

a

∂

∂x
pdx. (1.15)

On the left-hand side, the term ∂
∂t

∫ b
a
ρudx denotes the rate of the change of the

momentum in [a, b]. On the right-hand side, the first term −(ρu2)|ba measures the

net rates at which the momentum enters [a, b], where the term ρu2 is the momentum
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flux. The second term −
∫ b
a

∂
∂x
pdx on the right-hand side measures the total force

imposed to the material on [a, b] and has the unit (momentum/time-volume), thus

could be viewed as total rate of change of momentum within [a, b] due to pressure

gradients. Therefore, the right-hand side of the equation describes the rate of change

of momentum due to the boundary flux and pressure gradients.

Remark. As mentioned above, the P-system could be considered as a subsystem of the

Euler system, thus the description of the conservation principle will be similar to the Eu-

ler system, see §1.3.3 for more details. However, the temperature of the P-system is a

constant, so we don’t have the conservation of specific energy for the P-system.

1.3.3 Compressible Euler System

In this subsection we state the Euler equation of compressible gas dynamics, see [59].

The governing equation in Eulerian coordinates has the following conservation form:

∂tρ+∇·m = 0, (1.16a)

∂tm +∇·(m⊗ m

ρ
+ pI) = 0, (1.16b)

∂tE +∇·(m
ρ

(E + p)) = 0, (1.16c)

Here ρ is the material density with unit(mass/volume). m = ρu is the momentum, where

u is the particle velocity with unit(length/time). p is the pressure with unit (force/area).

E = ρ(1
2
ρ||u||2L2

+ e) is the total energy of the system per unit volume, where e is the

specific internal energy with unit(energy/mass), which is determined by a caloric Equation

of State (EOS). For ideal gas, we have the following expression:

e = e(ρ, p) =
p

(γ − 1)ρ
, T = (γ − 1)e, (1.17)

where T is the temperature, γ = cp
cv

denoting the ratio of constant pressure and constant

volume heat capacities. I is an identity matrix in Rd and d is the dimension number.
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Here we briefly introduce some other thermodynamic variables and their relationships

for the Euler system and refer to [59] for more details.The basic variables are the pressure

p and the specific volume v, which are characterized by the temperature T and satisfy the

following relationship for thermally ideal gas:

pv = RT, (1.18)

where R is a constant depends the particular gas under consideration. The First Law of

Thermodynamics states that the change of internal energy is given by

dQ = de+ pdv, (1.19)

where Q is the the heat transmitted to the system and −pdv is the work done on the

system by the pressure. Furthermore, the Second Law of Thermodynamics introduces a

new variable s, called entropy, which satisfies the relation:

Tds = de+ pdv. (1.20)

The last variable of fundamental interest is the speed of sound, which is defined as

a =

√
γp

ρ
. (1.21)

Remark. For the Euler system with a γ-law equation of state (1.17), from the Second

Law of Thermodynamics (1.20) we derive that the physical specific entropy s is given by

s = log(e
1

γ−1ρ−1).
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1.3.3.1 Conservation Principle

Now we explain the physical meaning of the Euler system. We rewrite equations (1.16)

in the following form:

∂tρ+∇·(ρu) = 0, (1.22a)

∂t(ρu) +∇·(ρu⊗ u + pI) = 0, (1.22b)

∂t(ρe+
1

2
ρu2) +∇·(u(ρe+

1

2
ρu2 + p)) = 0. (1.22c)

The equations (1.22) represent conservation of mass, momentum and energy respectively.

Notice that the first two equations represent the same principles as the once in the isen-

tropic gas dynamics in (1.13).

(i) The conservation of mass. Integrate equation (1.22a) on a control volume V and

apply the integral theorem, we have:

∂

∂t

∫
V

ρdV = −
∮
ρu · ndA, (1.23)

where n is the unit normal outward the surface. Here the left term ∂
∂t

∫
V
ρdV denotes

the rate of the change of the mass within V , while the right term −
∮
ρu · ndA

measures the incoming mass over the outgoing mass per unit time, where the term

ρu is the mass flux.

(ii) The conservation of momentum. Integrate equation (1.22b) on a control volume V

and apply the integral theorem, then for each direction i of V we have:

∂

∂t

∫
V

ρuidV = −
∮
ρuiu · ndA−

∫
V

∂

∂xi
pdV, (1.24)

where u = (u1, · · · , ud).

On the left-hand side, the term ∂
∂t

∫
V
ρuidV denotes the rate of the change of the

momentum in direction i within V , where mi = ρui is the ith component of the
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momentum. On the right-hand side, the first term −
∮
ρuiu · ndA measures the ith

component net rates at which the momentum enters V , where the term ρuiu is the

momentum flux in direction i. For the second term −
∫
V

∂
∂xi
pdV on the right-hand,

spatial derivative of the pressure ∂
∂xi
p has a unit(force/volume), where the force has

the unit (momentum/time). Therefore the term −
∫
V

∂
∂xi
pdV measures the total rate

of change of momentum within V due to the pressure gradients. As a conclusion, the

whole equation describes the rate of change of momentum due to the boundary flux

and pressure gradients.

(iii) The conservation of total energy. Similarly, integrating equation (1.22c) within a

control volume V gives us:

∂

∂t

∫
V

(ρe+
1

2
ρu2)dV = −

∮
(ρe+

1

2
ρu2)u · ndA−

∫
V

∇·(pu)dV. (1.25)

On the left-hand side, the term ∂
∂t

∫
V

(ρe + 1
2
ρu2)dV has a unit(energy/time) and

represents the rate of the change of the total energy within V . On the right-hand

side, the first term −
∮

(ρe+ 1
2
ρu2)u ·ndA measures the net rates at which the total

energy enters [a, b], where the term ρeu and (1
2
ρu2)u represents the internal energy

flux and kinetic energy respectively. For the second term −
∫
V
∇·(pu)dV on the

right-hand side, by integration on part we obtain:

−
∫
V

∇·(pu)dV = −
∫
V

∇p · udV −
∫
V

p∇·udV. (1.26)

For the first term of equation (1.26), −∇p is the force per unit implement on the

material within V , it follows that the term −
∫
V
∇p ·udV measures the total change

of the kinetic energy due to the pressure within V . For the second term of equation

(1.26), p∇·udV has a unit (volume/time) and thus represents the total volume change

due to the material movement. Therefore, the term −
∫
V
p∇·udV represents the

change of internal energy due to the compression or expansion of the material. As

a conclusion, the right-hind side of equation (1.25) represents the rate of change
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of the total energy due to the boundary fluxes of internal and kinetic energy plus

the changes of kinetic energy due to pressure gradients and changes of the internal

energy from the effect of the body force from the material.

1.4 Characteristics

We start to discuss the solutions to initial problems of conservation laws (1.3a) in

this section. To simplify the discussion, we set d = 1 in system (1.3a) and consider the

following one dimensional Cauchy problem:

∂tu + ∂xf(u) = 0, for (x, t) ∈ R× R+, (1.27a)

u = u0(x), for x ∈ R. (1.27b)

If f is smooth enough, we have the quasilinear form of (1.27a):

ut + A(u) · ux = 0, (1.28)

where A(u)
.
= f(u) is the Jacobian matrix of f at u. We will explain in the following

subsections that the properties of the solution to system (1.27a) will be strongly correlated

to the characteristic curves determined by the eigenvalues of A(u). For simplicity, we

only state the conclusion here without proof, and we refer the reader to [14, 58, 59] for

more details.

1.4.1 Characteristics Curves

Assuming that A(u) has real eigenvalues (λ1(x, t), · · · , λm(x, t)), we could define the

characteristic curves for system (1.27a) to be the solutions of the following differential

equations:
dx

dt
= λi(x, t), i = 1, · · · ,m (1.29)

One could prove that the solution u is a constant along each curve.

Remark. From the discussion above we could see that, physically the eigenvalues {λi}
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represent speeds of propagation of profiles of m waves decoupled from system (1.28)

separately. Typically, these speeds will be measured positive in the direction of increasing

x and negative otherwise.

1.4.2 Loss of Regularity

Here we consider the solutions defined on the regions between two characteristic

curves, which are highly correlated with the features of these curves as t increases: re-

gions where different characteristic curves approach each other correspond to compres-

sion waves, and regions where the different characteristic curves move away from each

other correspond to expansion waves. When two characteristic curves intersect, it lead to

a multivalued solution which is not physical. Thus one has to define a discontinuous so-

lution according to some physical considerations. These discontinuities are called shocks.

A typical example is shown as follows.

Example 1.4.1. We consider the inviscid Burgers equation (1.9) with the following initial

condition:

u(x, 0) =
1

1 + x2
. (1.30)

By equation (1.29) the characteristic curve is determined by the solution of equation dx
dt

=

u, along which the directional derivative of u(t, x) vanishes. It then follows that u is a

constant along the characteristic lines in the t− x plane:

t 7→ x(t) = x+ tu(x, 0) = x+
t

1 + x2
. (1.31)

Thus the solution to the Cauchy problem is given implicitly by

u(t, x+
t

1 + x2
) =

1

1 + x2
. (1.32)

when these lines do not intersect. When t increase, the map in equation (1.31) is no

longer one-to-one, hence these characteristic lines will intersect and produce multivalued

solutions.
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1.4.3 Riemann Problem

A typical example to illustrate the characteristics of Cauchy problem (1.27a),(1.27b)

is the so-called Riemann Problem with a piecewise constant initial condition

u0(x) = u(x, 0) =

uL if x < 0,

uR if x > 0.
(1.33)

The solution to the Riemann problem is an important building block in the theory

and approximation of conservation laws. A simple but instructive case is when the flux

linear. Then, the Jacobian of the flux is a constant matrix AinRm × Rm. Let ri be the

eigenvectors of A, i ∈ {1, · · · ,m}. The solution with initial condition (1.33) can be

obtained as follows, one could see [5] for more details.

We write the vector uR − uL as a linear combination of ri:

uR − uL =
m∑
i=1

ciri, (1.34)

and define

wi
.
= uL +

∑
j<=i

cjrj, i = 0, · · · ,m. (1.35)

Then the solution takes the form

u(t, x) =



w0 = uL for x/t < λ1,

· · ·

wi for λi < x/t < λi+1,

· · ·

wn = uR for x/t > λn,

(1.36)

The corresponding t − x plane which describes the distribution of the solution is known

as the so-called Riemann fan, see figure 1.1.
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Figure 1.1: The Riemann Fan

Remark. The solutions of nonlinear Riemann problems have a much more complex form

constructed of elementary wave solutions, which will be explained in §1.6.2

1.5 Weak Solutions

As shown in example 1.4.1, in the case of genuinely nonlinear cases, even smooth

initial condition will possibly lead to a discontinuous solution at finite time. In order

to construct solutions globally in time, we thus interpret the equations in a distributional

sense. Still, our discussion is given for the one dimensional case while the results for multi

dimensional cases are quite similar.

1.5.1 Basic Definition

Definition 1.5.1. A measurable function u : R× [0,+∞) 7→ Rm is said to be a distribu-

tional solution of hyperbolic system (1.3a), if for every C1-function φ(x, t) with compact

support within Ω = R× [0,+∞), we have

∫∫
Ω

(
∂φ

∂t
· u +

∂φ

∂x
· f i(u))dxdt = 0 (1.37)

Remark. One should notice that no continuity assumption is made on u, instead we only

require that u and f(u) to be in L1
loc(R × [0,+∞)), i.e., locally integrable on Ω = R ×

[0,+∞).
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Definition 1.5.2. A function u : R × [0,+∞) 7→ Rm is a weak solution of Cauchy

problem (1.27a),(1.27b), if u is a continuous function from [0, T ] into L1
loc, satisfies the

initial condition u(x, 0) = u0(x) and the restriction of u to the open strip ]0, T [×R is a

distributional solution of (1.27a).

There is a useful result for weak solution, known as the famous Rankine-Hugoniot

jump conditions, which could be used to check whether a piecewise constant function of

the following form

u(t, x) =

uL if x < λt,

uR if x ≥ λt,
(1.38)

is a weak solutions of system (1.27a). One could read [48, 59] for more details.

Lemma 1.5.1. If u(t, x) defined by (1.38) is a weak solution of conservation laws (1.27a),

we have

λ(uR − uL) = f(uR)− f(ul). (1.39)

As a result of Lemma 1.5.1 for scalar equations(m = 1), we could define the shock

speed λ as

λ =
f(uR)− f(uL)

uR − uL
, (1.40)

which describes the movement of the shocks.

Example 1.5.1. We consider the Riemann problem for Burgers equation (1.10) with initial

condition

u(x, 0) =

0 if x < 0,

1 if x ≥ 0.
(1.41)

For 0 < α < 1, we consider the following equations

uα(x, t) =


0 if x <

αt

2
,

α if
αt

2
≤ x <

(1 + α)t

2
,

1 if x ≥ (1 + α)t

2
.

(1.42)
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Clearly all equations defined by (1.42) satisfy Burgers equation (1.10) in smooth regions

and has two shocks of speed λ = α
2

and λ = 1+α
2

. By Lemma 1.5.1, equation (1.42)

defines infinitely many weak solutions for Cauchy problem (1.10) and (1.41).

1.5.2 Admissibility Conditions

In example 1.5.1 we notice that there is no guarantee of uniqueness and continuity of

weak solutions, therefore further admissible conditions must be added to the system. Mo-

tivated by the considerations that whether the solution is physical, some of the conditions

are presented as follows.

1.5.2.1 Varnishing Viscosity

A weak solution u of system (1.3a) is admissible in the sense of vanishing viscosity if

there exists a sequence of smooth solutions uε to the parabolic system:

∂tu
ε + ∂xf(uε) = ε∂xxu

ε (1.43)

which converges to u in L1
loc as ε→ 0+. Meanwhile, if equation (1.43) has a sequence of

continuous differentiable solutions which converge in L1
loc, it is proved that the limit is a

solution of equation (1.37). Related results are established for d = 1, m = 1, see [46, 66]

and for d = 1, m = 2, see [7, 12, 13].

1.5.2.2 Entropy Inequalities

In general it is difficult to give uniform estimates of the solutions to equation (1.43) or

to discrete versions of viscosity approximations, thus we have to deduce other conditions

characterizing the vanishing viscosity limit mentioned above. To start with, we introduce

the concept of entropy, which is a generalization of thermodynamic entropy.

Definition 1.5.3. A continuous differential function η : Rm 7→ R is called an entropy of

conservation law (1.27a) with entropy flux F : Rm 7→ R if it holds that:

(i) η is a convex function of u and
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(ii) For all u ∈ Rm we have the following equation which measures the entropy produc-

tion:

DF (u) = η′(u)>Df(u). (1.44)

An immediate consequence of (1.44) is that, assume that u is a C1-solution of system

(1.27a), then we have:

η(u)t + F (u)x = 0, (1.45)

which is called the entropy conservation function since it represents the conservation of

entropy of the system.

Remark. It is known that the entropy satisfies a conservation equation only in the regions

where the solution is smooth, thus we could check the smoothness by computing the en-

tropy production. An application of this is to construct the slope limiter for high order

central scheme, see §3.5.

Now we use Definition 1.5.3 to derive the so-called entropy inequality, which is origi-

nally introduced by [66, 45].

Assume η,F ∈ C2, multiplying equation(1.43) with Dη(uε) leads to

[η(uε)]t + [F (uε)]x = εDη(uε)uεxx = ε{[η(u)]xx −D2η(uε) · (uεx ⊗ uεx)}. (1.46)

Since η is convex, its second derivative at any uε is a positive definite quadratic form, it

follows that the term D2η(uε) · (uεx ⊗ uεx) satisfies

D2η(uε) · (uεx ⊗ uεx) =
m∑

i,j=1

∂2η(uε)

∂ui∂uj

∂uεi
∂x

∂uεj
∂x
≥ 0. (1.47)

Therefore, multiplying equation (1.47) by a nonnegative smooth function φwith a compact

support and integrating by parts, we have

∫∫
{η(uε)φt + F (uε)φx}dxdt ≥ −ε

∫∫
η(uε)φxxdxdt. (1.48)
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Let uε → u in L1 as ε→ 0, then equation (1.48) yields

∫∫
{η(u)φt + F (u)φx}dxdt ≥ 0, (1.49)

for all φ ∈ C1
c , φ > 0. In general this is restated as η(u)t + F (u)x ≤ 0 in the sense of

distribution. Therefore we introduce the following admissible condition.

Definition 1.5.4 (Entropy Inequality). A weak solution u of equation (1.27a) is entropy

admissible if

η(u)t + F (u)x ≤ 0 (1.50)

in the sense of distribution.

Remark. It is well known that for the scalar case(i.e., m = 1), the Cauchy problem

(1.27a),(1.27b) has a unique entropy solution which satisfies the entropy inequality for

any entropy pairs. See [2, 66] for details.

Generally, scalar equations has many entropy pairs, while most physical system has at

least one entropy pair which satisfy the entropy inequality. Here we give some examples

of entropy pairs for hyperbolic systems explained in §1.3.

(i) Linear Transport Equation. Assuming u is a smooth solution to equation (1.8), it is

clear that taking

η(u) = u, F (u) = cu (1.51)

satisfies (1.45) and thus is an entropy pair of the equation.

(ii) Inviscid Burgers Equation. Similarly, assuming u is a smooth solution to equation

(1.10), then taking

η(u) =
u2

2
, F (u) =

u3

3
(1.52)

satisfies (1.45) and thus is an option of the entropy pair of the equation.
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(iii) The P-system. We consider the P-system (1.11) with gamma-law p(v) = rv−γ .

Assume that u = (v, u)> is the smooth solution. Then we multiply (1.11a) with p(v)

and (1.11b) with u and add the two to obtain

∂t(
u2

2
) + ∂x(vu+

rγ

1− γ
v−γ+1) = 0. (1.53)

Thus we could set the entropy pair of the P-system to be

η(u) =
u2

2
, F (u) = vu+

rγ

1− γ
v−γ+1. (1.54)

Apparently η is a convex function of u.

(iv) Compressible Euler System. We consider the Euler system (1.22) and follow the

process in [32]. As mentioned in §1.3.3, we take the specific entropy to be the

physical specific entropy

s = log(e
1

γ−1ρ−1) =
1

γ − 1
log e− log ρ. (1.55)

Then its derivatives with respect to density and energy are

∂s

∂ρ
= −1

ρ
,

∂s

∂e
=

1

(γ − 1)e
. (1.56)

Assuming a smooth solution, take a dot product of (1.22b) with u and subtracting

(1.22c) we obtain
∂

∂t
(ρe) +∇ · (uρe) + p∇ · u = 0. (1.57)

Now multiply (1.22a) with ∂s
∂ρ

, (1.57) with ∂s
∂e

and use the EOS (1.17), some mathe-

matical computation give us

∂s

∂t
+ u · ∇s = 0. (1.58)
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Then for any scalar differentiable function f , we multiple (1.58) with f ′(s) to obtain

∂f(s)

∂t
+ u · ∇f(s) = 0. (1.59)

For the last step, we multiply (1.59) by ρ, (1.22a) by f(s) and add them up, which

leads to
∂

∂t
(ρf(s)) +∇(uρf(s)) = 0. (1.60)

Therefore taking

η(u) = −ρf(s), F (u) = −u · ∇f(s), (1.61)

satisfy entropy production (1.45). Notice that η is convex function of the conserved

variables u, we require that, see [31]

f ′(s) > 0,
γ − 1

γ
f ′(s) + f ′′(s) > 0. (1.62)

Remark. From the discussion above, we know that there are families of functional

which satisfy condition (1.62). In our work, we typically take either η(u) = −ρs or

the following limit entropy f(s) = (γ − 1)
1
γ exp(s)

γ−1
γ (note that for this choice we

have γ−1
γ
f ′(s) + f ′′(s) = 0) and the limit entropy pair is

η(u) = p
1
γ , F (u) = vp

1
γ . (1.63)

1.6 Elementary Wave Solutions to Riemann Problems

Following [5], we construct the basic solution of Riemann problem mentioned in

§1.4.3. For convenience of our discussion, we restate the conservation equation here

ut + f(u)x = 0, (1.64)
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with a piecewise initial condition

u0(x) = u(x, 0) =

uL if x < 0,

uR if x > 0.
(1.65)

Still we take A(u)
.
= Df(u) to be the Jacobian matrix.

Throughout our analysis, we adopt the following standard assumption, see [44]. Let

λi(u) be the eigenvalues of A(u) and ri(u) be corresponding eigenvectors, with i =

1, · · · ,m. Then the i-th field is either genuinely nonlinear with Dλi(u) · ri(u) > 0 for all

u, or linearly degenerate, with Dλi(u) · ri(u) = 0 for all u. In other word, we don’t allow

partly increase and decrease on the integral curves so there doesn’t exist any local ex-

tremes. We will explain that the solutions of the Riemann problem can only be rarefaction

waves, shocks and contact discontinuities under this assumption.

1.6.1 Elementary Curves

For the conservation laws (1.64) and a fixed state u0 in Rm−space, we introduce two

types of elementary curves connected with u0: the rarefaction curve and the shock curve.

All settings we are going to use here are the same to the descriptions in §1.4, A(u) denotes

the Jacobian matrix of f , λi(u) are eigenvalues of A, li and ri(u) are corresponding left

and right eigenvectors with li · rj = δij be the Kronecker value.

1.6.1.1 The Rarefaction curve

For u0 ∈ Rm, the integral curve of vector field ri through u0 is determined by solving

the following Cauchy problem

du

dσ
= ri(u), u(0) = u0. (1.66)

We denote this curve as

σ 7→ Ri(σ)(u0). (1.67)
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1.6.1.2 The Shock curve

For u0 ∈ Rm and i ∈ {1, · · · ,m}, we consider the curve connected to the right of u0

by an i−shock. which satisfy the Rankine-Hugoniot condition (1.39)

λ(u− u0) = f(u)− f(u0). (1.68)

which could be rewritten as

A(u,u0)(u− u0) = f(u)− f(u0), (1.69)

where

A(u,u0)
.
=

∫ 1

0

A(su + (1− s)u0)ds (1.70)

is the average matrix with u−u0 be the i−th eigenvector of A(u,u0). It has been proved

(1.69) hold if and only if u − u0 is orthogonal to every left j−eigenvector of A(u,u0)

with j 6= i. Thus (1.69) is equivalent to

lj(u,u0) · (u− u0) = 0 for all j 6= i, (1.71)

where lj(u,u0) are the left eigenvectors of A(u,u0). Linearizing (1.71) give us

lj(u0) · (w − u0) = 0 for all j 6= i, (1.72)

which has solutions w = u0 + cri(u0), c ∈ R. Consequently this leads to the so-called

i−shock curve, which is denoted by

σ 7→ Si(σ)(u0). (1.73)

Remark. One can show that the two curves Ri and Si have a second order contact at u0,
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i.e., we have that

|Ri(σ)(u0)− Si(σ)(u0)| = O(1) · σ3. (1.74)

1.6.2 Solutions to Riemann Problems

With the curves introduced above, we are going to construct the general solution to the

Riemann problem.

1.6.2.1 Three Special Cases

Here we introduce three special cases which compose the general solution of the Rie-

mann problem.

(i) Centered Rarefaction Waves. Let the i−th field be genuinely nonlinear, and assume

that uR lies on the positive i−rarefaction curve through uL, i.e., uR = Ri(σ)(uL)

for some σ > 0. For each s ∈ [0, σ], the characteristic speed is defined asλi(s) =

λi(Ri(s)(uL)). By genuinely nonlinearity, the map s 7→ λi(s) is strictly increasing,

so for every λ ∈ [λi(uL), λi(uR)], there exists unique s ∈ [0, σ] such that λ = λi(s).

Therefore, for t ≥ 0, the function

u(t, x) =


uL if x/t < λi(uL),

Ri(s)(uL) if x/t = λi(s) ∈ [λi(uL), λi(uR)],

uR if x/t > λi(uR),

(1.75)

is a piecewise smooth solution of the Riemann problem.

(ii) Shocks. Let again the i−th field be genuinely nonlinear, and uR is connected to uL

by an i−shock, i.e., uR = Si(σ)(uL). Then the function

u(t, x) =

uL if x < λt,

uR if x > λt,
(1.76)

defines a piecewise constant solution to the Riemann problem, where λ .
= λi(uL,uR)
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is the Rankine-Hugoniot speed of the shock, which satisfies

λi(uL) > λi(uL,uR) > λi(uR). (1.77)

(iii) Contact Discontinuities. Assume that the i−th field is linearly degenerate and the

state uR lies on the i−th rarefaction curve through uL, i.e., uR = Ri(σ)(uL) for

some σ. By assumption, the i−th characteristic speed λi is constant along this curve.

Choosing λ = λ(uL), the piecewise constant function (1.76) provides a solution to

the Riemann problem since the Rankine-Hugoniot conditions hold at the point of the

jump

f(uR)− f(uL) =

∫ σ

0

Df(Ri(s)(uL))ri(Ri(s)(uL))ds

=

∫ σ

0

λ(uL)ri(Ri(s)(uL))ds = λi(uL) · [Ri(σ)(uL)− uL].

(1.78)

It then follows by (1.78) that for linearly degenerate fields the shock and rarefaction

curves actually coincide, i.e., Si(σ(u0)) = Ri(σ(u0)) for all σ.

1.6.2.2 The General Solution

The results of §1.6.2.1 could be summarized as follows. For a fixed state uL and

i ∈ {1, · · · ,m}, we define the mixed curve

Ψi(σ)(uL) =

Ri(σ)(uL) if σ ≥ 0,

Si(σ)(uL) if σ < 0.
(1.79)

Then for uR = Ψi(σ)(uL), the solution to the Riemann problem (1.64),(1.65) contains

the elementary waves: a rarefaction wave, a shock or a contact discontinuities. Similar

to the discussion in §1.4.3, we construct the solution by finding the intermediate states

w0 = uL,w1, · · · ,wn = uR such that each pair of adjacent states wi−1,wi are connected
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by an elementary wave, i.e.,

wi = Ψ(σi)(wi−1). (1.80)

Thus the original problem decompose into n Riemann problems

ut + f(u)x = 0, u(0, x) =

wi−1, if x < 0,

wi, if x > 0.
(1.81)

By construction, each of these problems has an entropy admissible solution consisting of

a simple wave of the i−th characteristic family.

(i) The i−th characteristic fleld is genuinely nonlinear and σi > 0. The solution of

(1.81) consists of a centered rarefaction wave. The i−th characteristic speeds range

over the interval [λ−i , λ
+
i ] with λ−i

.
= λi(wi−1) and λ+

i
.
= λi(wi).

(ii) Either the i−th characteristic field is genuinely nonlinear with σi ≤ 0, or the i−th

characteristic field is linearly degenerate with arbitrary σi. Then the solution of (1.81)

consists of an admissible shock or a contact discontinuity, traveling with Rankine-

Hugoniot speed λ−i
.
= λi(wi−1,wi).

As a conclusion, the piecewise smooth solution of system (1.64),(1.65) is defined as

u(t, x) =



w0 = uL if x/t ∈]−∞, λ−1 [,

Ri(s)(wi−1) if x/t = λi(Ri(s)(wi−1)) ∈ [λ−i , λ
+
i [,

wi if x/t ∈ [λ+
i , λ

−
i−1[,

wm = uR if x/t ∈ [λ+
m,∞[.

(1.82)

if all characteristics defined above are finite.

Example 1.6.1. To illustrate the discussion above, we consider the Riemann problem of
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the P-system (1.11). Let u = (v, u)>, it is easy to compute

A(u) =

 0 −1

p′(v) 0

 . (1.83)

The eigenvalues and eigenvectors are

λ1 = −
√
−p′(v), λ2 =

√
−p′(v). (1.84)

r1 =

 1√
−p′(v)

 , r2 =

 −1√
−p′(v)

 . (1.85)

Thus the system is hyperbolic if p′(v) < 0 for all v > 0. Also the system is genuinely

nonlinear if p′′(v) > 0 for all v > 0 since Dλ1 · r1=Dλ2 · r2 = p′′(v)

2
√
−p′(v)

.

The rarefaction waves through uL are given by

R1 = {(v, u); u− uL =

∫ v

vL

√
−p′(s)ds}, (1.86)

and

R2 = {(v, u); u− uL = −
∫ v

vL

√
−p′(s)ds}. (1.87)

The shock curves are computed as

S1 = {(v, u); −(u− uL)2 = (v − vL)(p(v)− p(vL)), λ
.
= −u− uL

v − vL
< 0}, (1.88)

and

S1 = {(v, u); −(u− uL)2 = (v − vL)(p(v)− p(vL)), λ
.
= −u− uL

v − vL
> 0}. (1.89)
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These four curves depart the R2 into four areas:

Ω1, bordering on R1, S2, Ω1, bordering on R1, R2,

Ω1, bordering on S1, S2, Ω1, bordering on S1, R2.
(1.90)

It has been proved that the general solution is determined by the location of uR ∈ R2:

(i) If u ∈ Ω1, the solution consists of two rarefaction waves.

(ii) If u ∈ Ω2, the solution consists of a 1-rarefaction wave and a 2-shock.

(iii) If u ∈ Ω3, the solution consists of two shocks.

(iv) If u ∈ Ω4, the solution consists of a 1-shock wave and a 2-rarefaction.

Remark (Riemann Invariants). For the system of isentropic gas dynamics we could intro-

duce the concepts of a Riemann invariant, a function that is constant along a characteristic

curve of a fixed family (one or two) defined by (1.66), see for examples in [51]. Specifi-

cally in our study of the P-system, we take the families of Riemann invariants to be

w1(u) = u+

∫ ∞
v

dµ, and w2(u) = u−
∫ ∞
v

dµ, (1.91)

with the notation dµ :=
√
−p′(s)ds. For general hyperbolic systems one could read [15]

for more details.
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2. INTRODUCTION TO INVARIANT DOMAIN

In considering the well-posedness of solutions to hyperbolic systems, some certain

types of restrictions must be enforced to guarantee that the solutions are physical. An

typical example to understand such restrictions is the Euler system, for which we enforce

the positivity of density, internal energy and minimum principle of the specific entropy.

In this chapter we will introduce the concepts of invariant domain for general hyperbolic

systems, while examples for the systems discussed in § 1.3 will be explained specifically.

2.1 Integral Average of Riemann Solution

To start with, some important results of the solution to a Riemann problem will be

recalled here, one could read [21] for more details.

We consider Riemann problem (1.64),(1.65) and assume that there is a clear notion for

the solution of it. Namely, we assume that there exists an admissible set A ⊂ Rm such

that the following one-dimensional Riemann problem is (uniquely) solvable

∂tu + ∂x(f(u)) = 0, (x, t) ∈ R× R+, u(x, 0) =

uL if x < 0

uR if x > 0
(2.1)

for any Riemann pair (uL,uR) in A2. We define the characteristic in the same way of

§ 1.6.2.2, which gives us

λ−1 ≤ λ+
1 ≤ · · · ≤ λ−m ≤ λ+

m. (2.2)

Now we assume that the maximum speed of propagation λmax(uL,uR) := max(|λ−1 |, |λ+
m|)

is a finite number, then by the result of (1.82) it follows that for t ≥ 0 we have

u(x, t) =

uL, if x ≤ −tλmax(uL,uR),

uR, if x ≥ tλmax(uL,uR),

(2.3)

We assume also that there exists a convex subset A of A, which we call invariant set,
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such that for any Riemann pair in A × A, the average of the Riemann solution over the

Riemann fan is also in A for all (x, t) ∈ R×R+. The existence of such set has been

established by [9] on a very large class of hyperbolic systems.

Instead of considering the Riemann solution directly, we give the following result

which describes the integral average of solution (2.3).

Lemma 2.1.1. Let uL,uR ∈ A, let u(uL,uR) be the unique Riemann solution to (2.1),

let ū(t,uL,uR) :=
∫ 1

2

− 1
2

u(uL,uR)(x, t)dx and assume that tλmax(uL,uR) ≤ 1
2
, then

ū(t,uL,uR) =
1

2
(uL + uR)− t(f(uR)− f(uL)). (2.4)

Proof. Since tλmax(uL,uR) ≤ 1
2
, we have that

ū(t,uL,uR) =

∫ 1
2

− 1
2

u(uL,uR)(x, t)dx

= (
1

2
− tλmax)(uL + uR) +

∫ tλmax

−tλmax

u(uL,uR)(x, t)dx.

(2.5)

On the other hand, we integrate the equation (2.1) on [−tλmax, tλmax]× [0, t], which leads

to

0 =

∫ t

0

∫ tλmax

−tλmax

utdxdτ +

∫ t

0

∫ tλmax

−tλmax

f(u)xdxdτ

=

∫ tλmax

−tλmax

(u(x, t)− u(x, 0))dx+

∫ t

0

(f(u(tλmax, t))− f(u(−tλmax, t)))dτ

=

∫ tλmax

−tλmax

u(x, t)dx− λ(uL + uR) + t(f(uR)− f(uL)).

(2.6)

which implies that

∫ tλmax

−tλmax

u(uL,uR)(x, t)dx = tλmax(uL + uR)− t(f(uR)− f(uL)). (2.7)

Plug (2.7) into (2.5) proves out result.
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2.2 Invariant Sets and Invariant Domain

Following the discussion in [21], we introduce the notions of invariant sets and invari-

ant domains. The definitions here are slightly different from those in [9], [15], [34], and

[33]. We will associate invariant sets only with solutions of Riemann problems and define

invariant domains only for an approximation process.

Definition 2.2.1 (Invariant Set). We say that a set A ⊂ A ⊂ Rm is invariant for (1.3) if for

any pair (uL,uR) ∈ A× A and any t > 0, the integral average of the entropy solution of

the Riemann problem (2.1) over the Riemann fan, say, 1
t(λ+m−λ−1 )

∫ λ+mt
λ−1 t

u(uL,uR)(x, t)dx,

remains in A.

We now introduce the notion of invariant domain for an approximation process. Let

Xh ⊂ L1(Rd,Rm) be a finite-dimensional approximation space and let Sh : Xh 3 uh 7→

Sh(uh) ∈ Xh be a discrete process over Xh. Henceforth we abuse the language by

saying that a member of Xh, say uh, is in the set A ⊂ Rm when actually we mean that

{uh(x)|x ∈ R} ⊂ A.

Definition 2.2.2 (Invariant Domain). A convex invariant set A ⊂ A ⊂ Rm is said to be an

invariant domain for the process Sh if and only if for any state uh in A, the state Sh(uh) is

also in A.

For scalar conservation equations the notions of invariant sets and invariant domains

are closely related to the maximum principle, see § 2.3.1. In the case of nonlinear systems,

the notion of maximum principle does not apply and must be replaced by the notion of

invariant domain. For example, the invariant domain theory when m = 2 and d = 1 relies

on the existence of global Riemann invariants, the best known examples are the hyperbolic

systems of isentropic gas dynamics in Eulerian and Lagrangian form, i.e., the so-called P-

system, see [51]. For general hyperbolic systems, results of invariant domain property for

various finite volume schemes has been established, we refer the reader to [9, 15, 34, 55].
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2.3 Examples of Invariant Domains of Hyperbolic Systems

Here, we will illustrate the abstract notions of invariant sets and invariant domains with

the examples discussed in § 1.3. At the same time, for each example we are going to give

a brief description of the local speed of propagation, which is the only needed information

of the to be introduced central scheme, see § 3.1.

2.3.1 Invariant Domain of Scalar Equations

Assume m = 1 and d is arbitrary, i.e., (1.3) is a scalar equation. Provided f ∈

Lip(R;Rd), any bounded interval is an admissible set for (1.3). For any Riemann data

uL, uR, the maximum speed of propagation in (2.3) is bounded by λmax(uL, uR) :=

||f ||Lip(umin,umax) where umin = min(uL, uR) and umax = max(uL, uR). If f is convex

and is of class C1, we have λmax(uL, uR) = max(|f ′(uL)|, |f ′(uR)|) if f(uL) ≤ f(uR)

and λmax(uL, uR) = (f(uL) − f(uR))/(uL − uR) otherwise. Any interval [a, b] ⊂ R is

admissible and is an invariant set for (1.3), i.e., if uR, uL ∈ [a, b], then a ≤ u(uL, uR) ≤ b

for all t ≥ 0, i.e., any interval [a, b] is an invariant domain for any numerical scheme which

satisfies a local maximum principle property, see [10] for example.

2.3.2 Invariant Domain of P-system

Here we consider the P-system (1.11) with the gamma-law. Recall that using the nota-

tion dµ :=
√
−p′(s)ds, and assuming

∫∞
1
dµ <∞, the system has two families of global

Riemann invariants:

w1(u) = u+

∫ ∞
v

dµ, and w2(u) = u−
∫ ∞
v

dµ. (2.8)

Note that
∫∞

1
dµ < ∞ if γ > 1. If γ = 1, we take w1(u) = u −

√
r log(v) and w2(u) =

u +
√
r log(v) instead. Let a, b ∈ R, then it can be shown that any set Aab ∈ R+ × R of

the form

Aab := {u ∈ R+ × R|a ≤ w2(u), w1(u) ≤ b} (2.9)
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is an invariant set for the system (1.11), see [34, 64]. Moreover, Aab is an invariant domain

for the Lax-Frederich scheme, see [34, 33], and the Guaranteed Maximum Speed (GMS)

scheme of [21].

Following [21], we give an estimation of the maximum speed in the following result.

Lemma 2.3.1. Let (vL, vR), (uL, uR) ∈ R× R with vL, vR <∞. Then

λmax(uL,uR) =


√
−p′(min(uL, uR)), if uL − uR >

√
(vL − vR)(p(vR)− p(vL),√

−p′(v∗), otherwise,
(2.10)

where v∗ is the unique solution of φ(v) = fL(v) + fR(v) + uL − uR and

fz(v) =


−
√

(p(v)− p(vz)(vz − v) if v ≤ vz,∫ v

vz

dµ if v > vz.
(2.11)

By setting wmax
1 = max(w1(uL), w1(uR)) and wmin

2 = min(w2(uL), w2(uR)) we have

v0 ≤ min(vL, vR, v
∗), i.e., λmax(uL,uR) ≤

√
−p′(v0) where

v0 = (γr)(
4

(γ − 1)(wmax
1 − wmin

2 )
)

2
γ−1 . (2.12)

Remark. The proof of the lemma is established using the characteristic curves described

in Example 1.6.1, one could read [21] for details. It should be noticed that the exact value

of v∗ is computed with v0 while the invariant domain property guarantees that v0 ≤ v∗. In

practice we will use v0 as the estimation of the maximum speed in all numerical tests of

the P-system.

2.3.3 Invariant Domain of Euler System

Here we consider the compressible Euler system (1.16). Taking s to be the physical

specific entropy, it is known that

Ar := {(ρ,m, E)| ρ > 0, e > 0, s ≥ r} (2.13)
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is an invariant set for the Euler system for any r ∈ R. For example, it is shown that Ar

is convex and is an invariant domain for the staggered Lax-Friedrichs scheme, see [15]

and the non-staggered Lax-Friedrichs scheme, see [11]. The Guaranteed Maximum Speed

(GMS) first order scheme from [21] are also invariant domain preserving.

Following [21, 26], the estimation of the local speed of propagation is given as follows.

Let cL := (ρL,mL, EL) and cR := (ρR,mR, ER), where Ez = Ez − 1
2

||m⊥z ||2l2
ρz

, z ∈

{L,R}. Also, we set az =
√

γpz
ρz

to be the sound speed, Az := 2
(γ+1)ρz

, Bz := γ−1
γ+1

pz,

where again z is either L or R. Then the maximum wave speed is given by

λmax(cL, cR) = max(|λ−1 (cL, cR)|, |λ+
3 (cL, cR)|), (2.14)

where

|λ−1 (cL, cR)| = uL − aL(1 +
γ + 1

2γ
(
p∗ − pL
pL

)+)
1
2 , (2.15a)

|λ+
3 (cL, cR)| = uR + aR(1 +

γ + 1

2γ
(
p∗ − pR
pR

)+)
1
2 , (2.15b)

with z+ := max(0, z) and p∗ is the solution to the following function

φ(p) := f(p, L) + f(p,R) + uR − uL, (2.16a)

f(p, z) :=

(p− pz)( Az
p+Bz

)
1
2 if p ≥ pz,

2az
γ−1

(( p
pz

)
γ−1
2γ − 1) if p < pz.

(2.16b)

Remark. In practice, it may take a large number of iterations to compute p∗ with tradi-

tional techniques and one should note that we only need an upper bound on λmax. A fast

algorithm described in [26] gives the guaranteed upper bound to any prescribed accuracy

ε of the type λmax ≤ λ̃max ≤ (1 + ε)λmax and it is shown that

p̃∗ =

aL + aR − γ−1
2

(uR − uL)

aLp
− γ−1

2γ

L + aRp
− γ−1

2γ

R


2γ
γ−1

(2.17)
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is an upper bound for p∗ for γ ∈ (1, 5
3
].
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3. CENTRAL SCHEMES FOR HYPERBOLIC SYSTEMS

In this chapter we will introduce central schemes of approximation orders one, two,

three and four in space. We describe the fully discrete form of these schemes and some

general types of the local polynomial reconstruction used. We have made the following

contributions:

(i) We adopt to the central scheme framework the first order invariant domain preserving

GMS-scheme (see [21]) and thus create a first order central scheme which satisfies

all the invariant domain properties of the underlying PDE.

(ii) We derive an entropy based indicator, which could be used to detect the local smooth-

ness of the solution.

(iii) We apply the smoothness indicator to design a novel local slope reconstruction for

the second order KT-scheme in [41].

(iv) We apply the smoothness indicator to design an adaptive local polynomial recon-

struction for a general high order central scheme up to order four in space.

Notice that in this dissertation all theoretical results and numerical computations will

be made on uniform space discretizations with non-staggered rectangular meshes, i.e.,

in one space dimension we take xj := j∆x, j ∈ Z to be the center of cell Ixj :=

[xj−1/2, xj+1/2], where xj±1/2 := xj ± ∆x
2

denotes the cell interface and ∆x is the mesh

size. All variable are defined on the cell centers xj . Also, tn := n∆t denotes the n−step

of the time discretization. Our presentation is done in the case of one and two space di-

mensions, as typically done in the central schemes literature. However, it is not difficult to

derive analogous results in arbitrary space dimension on rectangular meshes. For further

details on central schemes we refer the reader to [41, 42].
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3.1 A Brief Review of Classical Central Schemes

Central schemes are widely used in approximations of nonlinear hyperbolic conserva-

tion laws (1.3) because they don’t rely on the specific eigenstructure of the system and do

not require exact or approximate Riemann solvers. In particular, we do not have to involve

the characteristic decomposition of the flux f , and the computation of the Jacobian of f

is not required as well. Actually, the only needed information to build a central scheme is

the local speed of propagation λmax. One should notice that in practice we are not going

to use the exact value of λmax. We will only need an upper bound on the speed, see the

discussion in §2.3.

The study of central scheme originated from the first-order Lax-Friedrichs scheme (the

LxF-scheme) which, see [46, 16], owns the following form in one dimensional case:

un+1
j =

unj+1 + unj−1

2
− λ

2
[f(unj+1)− f(unj−1)], (3.1)

where unj is an cell average of u at the grid point xj and tn, λ := ∆t/∆x is the mesh ratio

and. It is known that the central LxF scheme (3.1) enjoys an advantage over the canonical

upwind Godunov type scheme, see [17], that it does not require exact Riemann solvers in

its construction. However, on the other hand the LxF scheme will create a large numerical

dissipation, which prevents sharp resolution at shocks or rarefaction tips.

One natural extension of the LxF-scheme is the Nessyahu-Tadmor scheme (the NT-

scheme), see [53], which has a higher resolution than the LxF-scheme while retains the

simplicity of a Riemann solver free approach. The idea to construct the NT-scheme is to

replace the piecewise constant solution in the LxF-scheme with the MUSCL piecewise

linear second order approximation, see [60], which could efficiently reduce the the exces-

sive numerical dissipations and therefore provide a higher approximation accuracy. Still

the LxF solver is applied, which avoids the complex construction of the Riemann solver.

The NT-scheme in one dimensional case is derived as follows. See [53].

We assume that an approximation to the solution of system(1.3) at time tn is piecewise
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linear approximation of the form

ũ(x, tn) :=
∑
j

[ūnj + (ux)
n
j (x− xj)]1[xj−1/2,xj+1/2], (3.2)

where ūnj ≈
∫
Ixj

u(ξ, tn)dξ/∆x denotes the compute cell average, (ux)
n
j are approxima-

tions to the exact derivatives, which are reconstructed from the cell averages computed

above. The flux integrals of the piecewise-linear interpolant ūnj on [xj, xj+1] leads to the

NT-scheme, see [41]:

ūn+1
j+1/2 =

ūnj + ūnj+1

2
+

∆x

8
((ux)

n
j − (ux)

n
j+1)− λ[f(u

n+1/2
j+1 )− f(u

n+1/2
j )], (3.3)

where the interface values are

u
n+1/2
j = unj −

∆t

2
(fx)

n
j . (3.4)

Therefore, the approximate solution un+1
j at the next time level t = tn+1 is obtained by

evaluating the cell averages of ūn+1
j+1/2 on the staggered meshes, which leads to

un+1
j − unj

∆t
= −

f(u−j+1)− f(u−j−1)

2∆x
+

1

2∆t
(unj+1 − unj )− 1

2∆t
(unj − unj−1), (3.5)

where u−j = unj − 1
2
λ(ux)j .

Remark. If we set (ux)
n
j ≡ 0 in particular, the NT-scheme will reduce to the first-order

LxF-scheme in the staggered form .

3.2 First Order GMS-Scheme

Here we introduce the derive of a first order invariant domain preserving scheme. The

idea is to adopt the invariant domain preserving scheme in [21] to the central scheme

framework and one will see that this new scheme coincides with the fully discrete first

order central scheme in [41]. Fully discrete form for both one dimensional and two di-
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mensional cases will be presented in this section, and a proof of the invariant domain

preserving property will be provided.

3.2.1 One Dimensional Case

We first consider the one space dimensional case of system(1.3).

 ∂tu + ∂xf(u) = 0, for (x, t) ∈ R× R+

u(x, 0) = u0(x)
(3.6)

Using the assumption that the space discretization is uniform, we set the cell centers to be

xj := j∆x, j ∈ Z, and assume that the approximate solution ũn(x) ≈ u(x, tn) at time tn

is a piecewise constant function

ũn(x) :=
∑
j

unj 1[xj−1/2,xj+1/2], xj±1/2 := xj ±
∆x

2
. (3.7)

The values unj , j ∈ Z, are the cell averages of the approximate solution at time tn. The

time step ∆tn := tn+1 − tn is generic, determined by a CFL condition for each n ≥ 0,

and we will denote tn+1 = tn + ∆t where we abuse the notation and drop the dependence

on n in the time step. Then by adopting the GMS-scheme in [21] to the finite volume

framework, the invariant domain preserving first order scheme could be written as the

following form:

un+1
j − unj

∆t
= −

f(unj+1)− f(unj−1)

2∆x
+
λnj+1/2

2∆x
(unj+1−unj )−

λnj−1/2

2∆x
(unj −unj−1), (3.8)

where the quantity λnj+1/2 := λmax(unj ,u
n
j+1,f) denotes the maximum speed of propaga-

tion of the Riemann problem with initial left state unj , right state unj+1 and flux f . One

should notice that only the upper bound of the exact speed is needed, see the examples

in § 2.3. Similar to the discussion in [21], we provide the following result which states

that the invariant domain preserving property of the scheme given by (3.8) holds if the
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following CFL condition holds for all n ≥ 0

max
j

∆tλnj+1/2

∆x
≤ 1

2
. (3.9)

Theorem 3.2.1. Let A ⊂ A be an invariant set for (3.6) in the sense of Definition (2.2.2).

Assume thatA is convex and that for any admissible states uL, uR, the maximum speed of

propagation λmax(uL,uR,f) is finite. Assume that u0
h ∈ A and the CFL condition (3.9)

holds. Then we have:

(i) A is an invariant domain for the process unh 7→ un+1
h where un+1

h is computed with

scheme (3.8) for all n ≥ 0.

(ii) Given n ≥ 0 and j ∈ {1 : I}, let B ⊂ A be a convex invariant set such that unj ∈ B

and unj±1 ∈ B, then un+1
j ∈ B.

Proof. The proof is similar to the proof in [21] that we try to express the update given by

(3.8) in the form of a convex combination of values which belongs to the invariant domain.

For this sake, we introduce the following auxiliary value

ūn+1
j+1/2 :=

1

2
(unj + unj+1)− 1

2λnj+1/2

(f(unj+1)− f(unj )), (3.10)

which under the CFL-condition (3.9) are integral averages of the exact solution of the Rie-

mann problem with a left state unj , a right state unj+1 and a flux f . Then by Lemma 2.1.1

it follows that these states are naturally in the local invariant set of the system.
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Next by (3.8) we have

un+1
j =unj − (

∆t

2∆x
)(f(unj+1)− f(unj−1))

+ (
∆t

2∆x
)λnj+1/2(unj+1 − unj )

− (
∆t

2∆x
)λnj−1/2(unj − unj−1)

=unj − (
∆t

2∆x
)(f(unj+1)− f(unj ) + f(unj )− f(unj−1))

+ (
∆t

2∆x
)λnj+1/2(unj+1 + unj − 2unj )

− (
∆t

2∆x
)λnj−1/2(−unj − unj−1 + 2unj )

=(1− ∆t

∆x
(λnj+1/2 + λnj−1/2))unj

+ (
∆t

∆x
λnj+1/2)ūn+1

j+1/2 + (
∆t

∆x
λnj−1/2)ūn+1

j−1/2.

(3.11)

Then by the CFL condition(3.9) it follows that un+1
j is a convex combination of unj and bar

states ūn+1
j+1/2, ū

n+1
j−1/2. Note that the quantity ūn+1

j+1/2 is exactly of the form ū(t,unj ,u
n
j+1)

with the flux f and a fake time t = 1
2λn
j+1/2

, this proves that ūn+1
j+1/2 := ū(t,unj ,u

n
j+1) ∈ B

for all j ∈ {1 : I}. Then by convexity ofB we have that un+1
j ∈ B if we have unj ∈ B and

unj±1 ∈ B. As a consequence, A is a invariant domain for scheme(3.8), which completes

the proof.

Remark. It is easy to verify that using forward Euler time stepping to the semi-discrete

form of the first order central scheme in [41, Eqn. (4.8)] will result in the same discrete

method of (3.8). Therefore, in the one-dimensional case, the fully discrete first order

central scheme derived from [41] coincides with the invariant domain preserving scheme

when the CFL condition is defined as above and the Euler time stepping is used.

Now we rewrite the fully discrete scheme(3.8) in flux form using the notation uL,n+1
j ,

which indicates the first order method.

uL,n+1
j − unj

∆t
= −

Lnj+1/2 − Lnj−1/2

∆x
(3.12)
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where Lnj+1/2 is the first order interface numerical flux of the form

Lnj+1/2 =
1

2
(f(unj+1) + f(unj ))− 1

2
λnj+1/2(unj+1 − unj ). (3.13)

Remark. The Euler time stepping in (3.12) can be upgraded to any Strong Stability Pre-

serving (SSP) Runge-Kutta (RK) schemes. In practice we take the following version of

the SSP-RK schemes, see [18, 19, 47]. That is, for a system of ODEs

ut = L(u), (3.14)

an optimal third order total variation diminishing(TVD) Runge-Kutta scheme is given by

u(1) = un + ∆L(un),

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆L(u(1)),

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆L(u(2)).

(3.15)

Notice that the SSP-RK schemes has a stronger property than TVD, that is, it could pre-

serve any convex functional bound that is satisfied under the forward Euler integration.

Therefore it could be used for any invariant domain preserving schemes. One could see

the discussion in [25, § 4.5] for more details and references on SSP-RK schemes.

3.2.2 Two Dimensional Case

Now we consider the case of two space dimension in (1.3) with x := (x, y)

 ∂tu + ∂xf(u) + ∂yg(u) = 0, for (x, t) ∈ R2 × R+,

u(x, 0) = u0(x).

(3.16)

Still, we use uniform rectangular mesh with cell centers (xj, yk) := (j∆x, k∆y), j, k ∈

Z, and take the approximate solution ũn(x, y) ≈ u(x, y, tn) at time tn to be a piecewise
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constant function

ũn(x, y) :=
∑
j,k

unj,k1[xj−1/2,xj+1/2]×[yk−1/2,yk+1/2], (3.17)

where the values unj,k, j, k ∈ Z, are the cell averages of the approximate solution at time

tn. The time step is determined in the same way as in the one dimensional case. Namely,

we denote tn+1 = tn + ∆t where we abuse the notation and drop the dependence on n in

the time step. The fully discrete scheme is given as follows

un+1
j,k − unj,k

∆t
=−

f(unj+1,k)− f(unj−1,k)

2∆x

+
λnj+1/2,k

2∆x
(unj+1,k − unj,k)−

λnj−1/2,k

2∆x
(unj,k − unj−1,k)

−
f(unj,k+1)− f(unj,k−1)

2∆y

+
λnj,k+1/2

2∆y
(unj,k+1 − unj,k)−

λnj,k−1/2

2∆x
(unj,k − unj,k−1).

(3.18)

Similar to the one dimensional case, we have the following result of the invariant do-

main preserving property if the local speeds are given by λn,xj+1/2,k = λmax(unj,k,u
n
j+1,k,f),

λn,yj,k+1/2 = λmax(unj,k,u
n
j,k+1, g) and the following CFL condition holds for all n ≥ 0

max
j,k

(∆tλn,xj+1/2,k

∆x
,
∆tλn,yj,k+1/2

∆y

)
≤ 1

4
(3.19)

Theorem 3.2.2. Let A ⊂ A be an invariant set for (3.16) in the sense of Definition (2.2.2).

Assume that A is convex and that for any admissible states uL, uR, the maximum speed

of propagation λmax(uL,uR,F ) is finite, where F = (f , g)>. Assume that u0
h ∈ A and

the CFL condition (3.19) holds. Then we have:

(i) A is an invariant domain for the process unh 7→ un+1
h where un+1

h is computed with

scheme (3.18) for all n ≥ 0.

(ii) Given n ≥ 0 and j, k ∈ {1 : I}, let B ⊂ A be a convex invariant set such that
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unj,k ∈ B and unj±1,k,u
n
j,k±1 ∈ B, then un+1

j,k ∈ B.

Remark. Similar to the one-dimensional case, the proof of Theorem 3.2.2 relies on the

introduction of the intermediate bar states

ūn+1
j+1/2,k =

1

2
(unj,k + unj+1,k)−

1

2λj+1/2,k

(f(unj+1,k)− f(unj,k)), (3.20)

and

ūn+1
j,k+1/2 =

1

2
(unj,k + unj,k+1)− 1

2λj,k+1/2

(f(unj,k+1)− f(unj,k)), (3.21)

which are the integral averages of exact solutions of the Riemann problems under the

CFL-condition (3.19), therefore, these states are naturally in the local invariant set of the

problem due to the definition. Then it follows by convexity that the statement of Theo-

rem(3.2.2) hold.

In order to implement a convex limiting process, the fully discrete first order central

scheme of the flux form is given as follows

uL,n+1
j,k − uL,nj,k

∆t
= −

Ln,xj+1/2,k − L
n,x
j−1/2,k

∆x
−
Ln,yj,k+1/2 − L

n,y
j,k−1/2

∆y
, (3.22)

where the first-order interface fluxes are defined as follows:

Ln,xj+1/2,k =
1

2
(f(unj+1,k) + f(unj,k))−

1

2
λn,xj+1/2,k(u

n
j+1,k − unj,k), (3.23a)

Ln,yj,k+1/2 =
1

2
(g(unj,k+1) + g(unj,k))−

1

2
λn,yj,k+1/2(unj,k+1 − unj,k). (3.23b)

Remark. In the general multidimensional case (d ≥ 2), we have similar results as Theo-

rem 3.2.1 and Theorem 3.2.2 which will hold when the constant in the CFL condition is
1
2d

, i.e.,

max
j1,··· ,jd

(∆tλnj1+1/2,··· ,jd
∆xi

, · · · ,
∆tλnj1,··· ,ji+1/2,··· ,jd

∆xi
, · · · ,

∆tλnj1,··· ,jd+1/2

∆xi

)
≤ 1

2d
, (3.24)
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where λnj1,··· ,ji+1/2,··· ,jd = λmax(unj1,··· ,ji,··· ,jd ,u
n
j1,··· ,ji+1,··· ,jd ,f i) Thus one could see that

this scheme is based on a guaranteed bound on the local maximum wave speed and is

henceforth referred to as the GMS-scheme (guaranteed maximum speed), see [22] for

more details on GMS-schemes.

3.3 Second Order KT-Scheme

In this section we recall the second order central scheme from [41], which we call the

KT-scheme in the rest of the dissertation. It is known that the NT-scheme scheme we in-

troduced in § 3.1 enjoys a high resolution since it could efficiently reduce the numerical

dissipation. However, the influence caused by the numerical dissipations will also accu-

mulate over the time steps and then be observed in certain numerical tests, see [41]. One

solution is to apply a semi-discrete formulation which is known to enjoy a smaller numer-

ical viscosity that is proportional to the vanishing time step ∆t. The KT-scheme, which

is an improvement of the NT-scheme, is designed to have a smaller numerical dissipation,

and are known as the first fully discrete Godunov-type central scheme which admit a semi-

discrete form, see [41]. Same to the discussion in § 3.2, one and two dimensional cases

will be explained separately here.

3.3.1 One Dimensional Case

We first recall the classical NT-scheme in one space dimensional, which is constructed

by computing the integral average over the Riemann fans based over the staggered control

volumes [xj, xj+1] × [tn, tn+1]. The main improvement of the KT-scheme is that a more

precise information of the local propagation of discontinuities is considered, and to com-

pute the integral average over new control volumes [xn,−j+1/2, x
n,+
j+1/2] × [tn, tn+1] centered

at xj+1/2 × [tn, tn+1]. Here xn,−j+1/2 := xj+1/2 − λnj+1/2∆t, xn,+j+1/2 := xj+1/2 + λnj+1/2∆t

are selected to separate the smooth and non-smooth regions of the Riemann fan, where

λnj+1/2 denotes the maximum local propagation speed of discontinuities. Thus the spatial

width of the narrower control volume is 2λnj+1/2∆ t. Consequently, evaluation of cell av-

erages at tn+1 are computed on non-smooth regions [xn,−j+1/2, x
n,+
j+1/2] and smooth regions
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[xn,+j−1/2, x
n,−
j+1/2] separately. Finally, to evaluate the cell averages over the original uni-

formly non-staggered meshes [xj−1/2, xj+1/2], a piecewise-linear reconstruction will be

applied over the nonuniform cells [xn,−j+1/2, x
n,+
j+1/2], which will lead to the KT-scheme as a

result. Now we state the semi-discrete form of the scheme as follows, one could read [41]

for more details.

We assume the same setup of space and time discretization as for first order GMS-

scheme, and assume the approximate solution ũn = u(x, tn) at time t = tn to be piecewise

linear

ũn :=
∑
j

[unj + (ux)
n
j (x− xj)]1[xj−1/2,xj+1/2], xj±1/2 := xj ±

∆x

2
, (3.25)

where the values unj are cell averages of approximate solutions and (ux)
n
j are approxima-

tions of exact derivatives ux at (xj, t
n). The semi-discrete form of the KT-scheme is given

as follows, see [41].

d

dt
uj(t) =−

(f(u+
j+1/2(t)) + f(u−j+1/2(t)))− (f(u+

j−1/2(t)) + f(u−j−1/2(t)))

2∆x

+
λj+1/2(t)(u+

j+1/2(t)− u−j+1/2(t))− λj−1/2(t)(u+
j−1/2(t)− u−j−1/2(t))

2∆x

(3.26)

where u+
j+1/2 := uj+1(t)− ∆x

2
(ux)j+1(t), u−j+1/2 := uj(t) + ∆x

2
(ux)j(t) are the interface

values and λj+1/2(t) = λmax(u−j+1/2(t),u+
j+1/2(t),f) denotes the local maximum speed.

By setting the second order numerical flux to be

Hn
j+1/2 :=

f(un,+j+1/2) + f(un,−j+1/2)

2
−
λnj+1/2

2
(un,+j+1/2 − un,−j+1/2). (3.27)

and using a forward Euler in time we obtain the fully discrete KT-scheme:

uH,n+1
j − unj

∆t
= −

Hn
j+1/2 −Hn

j−1/2

∆x
. (3.28)
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Remark. There are a lot of numerical tests which indicates that the KT-scheme given by

(3.26) is not invariant domain preserving. However, by setting the numerical derivative

(ux)j to be zero in (3.26), the semi-discrete form of KT-scheme will reduce to its first

order form (3.8), which satisfies the invariant domain preserving property.

Remark. For the fully discrete form of the KT-scheme (3.27),(3.28), in order to retain the

high order accuracy, we will apply the third order SSP-RK3 scheme for the forward Euler

time stepping as in the first order case, see [41] for more discussions.

Remark. Similar to the first order case, we are not going to compute the exact estimation

for local speed λj+1/2(t), which relies on the characteristic structure of the system. Instead

the upper bound computed from § 2.3 will be applied in practice. At the same time, in order

to apply a convex flux limiting process to the KT-scheme, we require the CFL condition

to be determined by the first order GMS-scheme.

Remark. As we mentioned before, the term (ux)
n
j denotes the approximation of the

derivative locally at (xj, t
n), which is a main affection of the performance of the numerical

solutions in the sense of reducing the oscillations. There is a library of recipes for non-

oscillatory reconstructions In § 3.3.3 we will explain how to decide such reconstructions

in order to obtain a solution which enjoys a high resolution and be entropy consistent.

3.3.2 Two Dimensional Case

In the case of two space dimensions, we use the same rectangular cell and the same

time discretization as for the first order scheme in §3.2.2. The approximate solution ũn =

u(x, y, tn) is a piecewise linear function given by

ũn(x, y) :=
∑
j,k

[unj,k + (ux)
n
j,k(x− xj) + (uy)

n
j,k(y − yk)]1[xj−1/2,xj+1/2]×[yk−1/2,yk+1/2],

(3.29)

where xj±1/2 := xj ± ∆x
2

, yk±1/2 := yk ± ∆y
2

. The values unj,k are the cell averages

of the approximate solutions and ((ux)
n
j,k, (uy)

n
j,k) is the approximate gradient on cell
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[xj−1/2, xj+1/2] × [yk−1/2, yk+1/2] at time t = tn. Following [41], we set the numerical

fluxes to be

Hn,x
j+1/2,k :=

f(un,+j+1/2,k) + f(un,−j+1/2,k)

2
−
λn,xj+1/2,k

2
(un,+j+1/2,k − un,−j+1/2,k), (3.30a)

Hn,y
j,k+1/2 :=

g(un,+j,k+1/2) + g(un,−j,k+1/2)

2
−
λn,yj,k+1/2

2
(un,+j,k+1/2 − un,−j,k+1/2), (3.30b)

where un,±j+1/2,k := unj+1,k∓ ∆x
2

(unx)j+1/2±1/2,k and un,±j,k+1/2 = unj,k+1∓ ∆x
2

(unx)j,k+1/2±1/2,

with λn,xj+1/2,k = λmax(un,−j+1/2,k(t),u
n,+
j+1/2,k(t),f), λn,yj,k+1/2 = λmax(un,−j,k+1/2(t),un,+j,k+1/2(t), g)

as the local speeds. Then, a forward Euler time step of the semi-discrete KT-scheme can

be written as follows

uH,n+1
j,k − unj,k

∆t
= −

Hn,x
j+1/2,k −H

n,x
j−1/2,k

∆x
−
Hn,y
j,k+1/2 −H

n,y
j,k−1/2

∆y
. (3.31)

3.3.3 Piecewise Linear Reconstructions For KT-Schemes

In order to completely describe the KT-scheme (3.26), the slope reconstructions in

(3.25) and (3.29) are to be determined. It is well known that the unlimited central slope

has many disadvantages in regions which contains discontinuities, therefore a nonlinear

slope reconstruction is needed. A common approach is to use a nonlinear slope limiter

and we recall in this section some of the generally used options. One of our main results

here is to develop a new type of adaptive slope limiter which relies on a entropy based

smoothness indicator and provides a desirable improvement of the performance of the

KT-scheme in non-smooth regions. This technique will also be applied to the polynomial

reconstruction of the for the general high order central scheme. Furthermore instead of

enforcing the local maximum principle, we will take a different aspect of view on the

invariant domain property and briefly introduce the idea of constructing a limiter which

is invariant domain satisfied. For simplicity, we only present the reconstruction process

in one space dimension. The multidimensional case is completed by splitting the local

gradient reconstruction into one dimensional steps.
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To start with we are going to review several slope limiters generally used in central

schemes. In practice, one judge the performance of these limiters by the properties in-

cluding the approximation accuracy, the computation complexity, the convergence to an

entropy satisfied solution and so on. We will try to briefly discuss these properties for

the limiters and therefore introduce two new types of slope limiters: the adaptive MAPR

limiter and the invariant domain preserving limiter. In our discussion, we will denote the

slope limiter with notation σaj (u), where a indicates the type of limiter we use.

(i) We start with the unlimited central slope:

σc
j(u) =

uj+1 − uj−1

2∆x
. (3.32)

The unlimited central slope enjoys a linear complexity to construct and is able to

recover a fully second order accuracy in the regions where u is smooth. However,

applying the central slope will also create undesirable oscillations at discontinuities

as shocks and violation of the local maximum principle, which may lead to a failure

in producing the numerical solution.

(ii) We consider a classical slope reconstructions based on the so-called minmod limiter

which is given by

σm
j (u) = (ux)j := m(

uj+1 − uj
∆x

,
uj − uj−1

∆x
), (3.33)

where the minmod operator is defined as follows

m(x1, x2, . . . , xn) =


min1≤j≤n xj, if xj > 0 ∀j,

max1≤j≤n xj, if xj < 0 ∀j,

0, otherwise.

(3.34)

The minmod limiter is a total variation diminishing(TVD) reconstruction, see [28,
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54, 60], which could efficiently reduce the oscillation at shocks. Also, the minmod

limiter can provide enough artificial viscosity that guarantees the numerical solution

converges stably to the unique entropy satisfied solution for composite waves, see

the KPP-test in [43]. On the other hand, the minmod limiter tends to be more dif-

fusive and less accurate than other limiters. For example, the slope computed via

minmod limiter may diminish at local extrema, thus leads to the so-called clipping

phenomenon, see § 5.11. Similar phenomenon are also observed at contact disconti-

nuities in the Mach 3 test, see § 5.12.

(iii) We introduce a θ-dependent family of minmod-type limiters with 1 ≤ θ ≤ 2, which

is stated as

σm,θ
j (u) = (ux)j := m

(
θ
uj+1 − uj

∆x
,
uj+1 − uj−1

2∆x
, θ

uj − uj−1

∆x

)
, (3.35)

see for example [36, p.1900]. The range of θ (1 ≤ θ ≤ 2) guarantees a local maxi-

mum principle of KT-scheme for scalar equations, which is proved in [41, Cor. 5.1].

However, when computing composite waves, the minmod-θ limiter may produce a

stable wrong shock caused by the overshot, which leads to an wrong solution, see

for example the KPP-test in [43] where the minmod-2 limiter(i.e., θ = 2 in (3.35)) is

applied. The clipping phenomenon is also observed for minmod-θ limiter in the test

of isentropic vortex, see § 5.11.

(iv) There are many other types of second order reconstructions, most notably the so

called Uniformly Non-Oscillatory reconstruction(UNO), introduced by [29], are de-

fined as follows

σu
j (u) = m(∆uj−1 +

1

2
m(∆2uj−1,∆

2uj),∆uj −
1

2
m(∆2uj,∆

2uj+1)), (3.36)

where ∆uj = uj+1 − uj , ∆2uj = uj+1 − 2uj + uj . In general, the UNO-limiter

could provide more accuracy than the classical minmod limiter as well as efficiently
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reducing the oscillation at shocks. However, the UNO limiter is definitely of a high

computation complexity.

At last We refer the reader to [43] for more nonlinear slope reconstructions, and when

is appropriate to apply them.

In order to avoid the clipping phenomenon, another gradient reconstruction, appropri-

ate for unstructured meshes, was introduced in [8]. It is constructed using the so-called

minimum-angle plane reconstruction(MAPR) as follows

σmapr,θ
j (u) = (ux)j := mapr(θj

uj+1 − uj
∆x

,
uj+1 − uj−1

2∆x
, θj

uj − uj−1

∆x
), (3.37)

where

mapr(x1, x2, . . . , xn) = {xi |where |xi| = min
1≤j≤n

|xj|} (3.38)

is the MAPR operator and 1 ≤ θj is a number specified by the user. By taking θj = 1 one

could recover the MAPR reconstruction from [8] and the generalized MAPR (1 ≤ θj ≤ 4)

is a natural analog of the minmod-θ limiter. Apparently our purpose is to apply larger θj in

smooth regions and smaller θj in non-smooth regions. Therefore, we introduce a variable

Rj , which describes the smoothness of the solution and set θnj = 2 − Rn
j in (3.37). Here

we take Rn
j to be the entropy commutator defined in § 3.5. Simultaneously, in order to

enjoy the high accuracy of central slope in smooth regions, we will use θj as a threshold

to construct a adaptive limiter. That is, we apply the MAPR limiter (3.37) in the regions

of non-smooth flow, where non-smooth is defined by θnj ≤ 1.5. If θnj > 1.5 we choose

the central slope, which is defined in (3.32). Note that in the regions of smooth flow the

entropy commutator is almost zero, see § 3.5, therefore θnj ≤ 1.5 could be a good cutoff

for the limiter and one could apply other numbers in practice.

Other than constructing a slope limiter via unj s directly, we can also define an abstract

limiter which guarantees that the second order reconstruction does not violate the local in-

variant domain property. In the scalar case this property coincides with the well known lo-

cal maximum principle and the minmod/minmod-θ limiter both satisfy this property. Note
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that, however, for nonlinear systems the invariant domain depends on the characteristic

structure of the systems, as the Riemann invariant for P-system and the minimum princi-

ple of specific entropy for the Euler system, see § 2.3, therefore, the minmod/minmod-θ

are not an appropriate choice anymore. We call such a limiter an invariant domain pre-

serving limiter, denoted with σinv
j . Namely σinv

j is defined such that the interface values

un,−j+1/2 := unj +
σinv
j ∆x

2
and un,+j−1/2 := unj −

σinv
j ∆x

2
in (3.26) remain in the local invariant

sets defined by the user. More precisely, we have the following definition for the local

abstract limitation.

Definition 3.3.1. Let Aj−1/2 be an invariant set of (1.27a) which contains the states unj−1

and unj and Aj+1/2 be an invariant set of (1.27a) containing unj and unj+1. Then the in-

variant slope σinv
j corresponding to the invariant sets Aj−1/2 and Aj+1/2 is defined as

σinv
j = `

uj+1−uj−1

2∆x
where ` is the largest number in [0, 1] such that un,+j−1/2 ∈ Aj−1/2 and

un,−j+1/2 ∈ Aj+1/2.

The exact computation of such limiter will be given later in § 4.3, see Algorithm 2

while for the time being we still stay in this abstract setting. The key difference between

minmod-type slope limiting (or any other classical limiting) and the invariant domain slope

limiting is that the former one intends to impose a local maximum principle (or reduce

oscillations in the physical space) while the invariant domain slope limiting only limits the

slopes so that the invariant domain property is restricted to be in the phase space at the

interfaces.

As a conclusion of the discussion above, we will present two new types of local slope

reconstructions that we will apply for all our numerical tests.

(i) The first type of reconstruction uses the adaptive slope limiter combined with the

unlimited central slope (3.32) and the MAPR slope limiter (3.37). That is, we apply
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the MAPR limiter for θnj ≤ 1.5 and the central slope for θnj > 1.5

σa
j(u) =

σ
mapr,θ
j (u) if θnj ≤ 1.5,

σc
j(u) if θnj > 1.5,

(3.39)

where "a" refers to adaptive. The value of θ is computed via θnj = 2 − Rn
j where

Rn
j is the entropy based smoothness indicator defined in § 3.5. The invariant domain

preserving property of this slope reconstruction is guaranteed by applying the convex

flux limiting, see Algorithm 1. In the rest of this dissertation We refer to this method

as the MAPR-EV-CL method, where "EV" refers the entropy viscosity commutator

used to determine the number θnj and "CL" refers to the convex flux limiting process

used to impose the invariant domain preserving property.

(ii) The second type of reconstruction uses the invariant domain preserving limiter de-

fined by Definition 3.3.1, which is guaranteed to be invariant domain preserving un-

der a standard CFL condition, see discussions in Theorem 4.3.1 and Theorem 4.3.4;

In the rest of this dissertation we refer to this method as the SO-INV-CL method,

where SO refers to second order, INV refers to the invariant domain preserving prop-

erty and CL refers to the convex slope limiting process used to generate this invariant

domain preserving slope limiter.

Consequently, any other method we used for simulations will be shown as a standard

comparison to these two schemes listed above in all our numerical tests.

3.4 General High Order Central Scheme

The second order KT-scheme (3.26) could be naturally generalized to higher order

cases by replacing the local linear reconstruction with polynomials of a higher degree.

These polynomials are determined by the values of u on a nodal group that relate to the

point of interest, which we call the stencils. Therefore the degree of the polynomial relies

on the size of the stencils. For example, a polynomial defined on a stencil of three grid
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points is of degree two and the corresponding central scheme has a third order accuracy.

However, a higher order reconstructions may be dangerous at discontinuities since it may

cause considerable oscillations. In this section we first introduce the fully discrete form

for the general high order central scheme. Then we will give a brief review of one classical

kind of non-oscillatory reconstruction technique, i.e., the Compact WENO reconstruction.

Also, we will introduce two novel kinds of polynomial reconstructions at the end of this

section.

3.4.1 One Dimensional Case

Here we give the general form of the fully discrete form of the n−th order central

scheme in one dimensional case. Let us consider the hyperbolic system (3.6) of one space

dimension. Without loss of generality, we still take same settings for first order GMS-

scheme and second order KT-scheme, i.e., we take uniform cell Ij = [xj−1/2, xj+1/2] with

cell centers to be xj = j∆x and set tn = n∆t for time discretization. Then we assume the

approximate solution ũn = u(x, tn) at time t = tn to be a piecewise polynomial

ũn :=
∑
j

pj(x)1[xj−1/2,xj+1/2], xj±1/2 := xj ±
∆x

2
. (3.40)

where pj(x) are a collection of degree (n− 1) polynomials which are built such that

pj(x) = u(x) +O(∆xn), ∀x ∈ Ij, (3.41)

therefore the order of the approximation accuracy of ũ is n. Also we require that the

approximation is conservative, i.e., pj(x) should satisfy

∫
Ij

pj(x)dx = unj , ∀j ∈ Z (3.42)
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Now we assume that pj(x) is of the following form

pj(x) := ûnj +
n−1∑
i=1

1

i!
u

(i)
j (x− xj)i. (3.43)

By (3.42) we have

ûnj = unj −
n−1∑
i=1

(1− (−1)i+1)∆xi

(i+ 1)!2i+1
u

(i)
j . (3.44)

Remark. In equation (3.43), u(i)
j denotes the i−th derivative of u(x) at xj , which is

computed with the values of un on local stencils. We could obtain different local recon-

structions by taking different u(i)
j , such as the to be explained CTO-WENO reconstruction.

Remark. In this dissertation we only consider the following two case, i.e.,

pj(x) = ûnj + u′j(x− xj) +
1

2
u′′j (x− xj)2 for n = 3, (3.45)

and

pj(x) = ûnj + u′j(x− xj) +
1

2
u′′j (x− xj)2 +

1

6
u′′′j (x− xj)3 for n = 4. (3.46)

The corresponding ûnj defined by (3.44) are

ûnj = unj −
∆x2

24
u′′j (3.47)

for both n = 3 and 4.

Now we give the fully discrete form of the n−th order central scheme as follows,

which is similar to the second order case (3.27)-(3.28). That is, we take the n−th order

numerical flux to be

Hn
j+1/2 :=

f(un,+j+1/2) + f(un,−j+1/2)

2
−
λnj+1/2

2
(un,+j+1/2 − un,−j+1/2). (3.48)
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and the fully discrete scheme is given by

uH,n+1
j − unj

∆t
= −

Hn
j+1/2 −Hn

j−1/2

∆x
. (3.49)

The only difference to (3.27)-(3.28) is that the interface values we used in (3.48) are com-

puted with

un,+j+1/2 = pj+1(xj+1/2), un,−j+1/2 = pj(xj+1/2). (3.50)

Remark. The local speed of propagation to construct the numerical flux is still computed

via λnj+1/2 = λmax(u−j+1/2,u
+
j+1/2,f), and the upper bound in § 2.3 will be used instead of

the exact evaluation in practice. To advance in time, a SSP method of at least order three

will be applied and we use the SSP-RK3 (3.15) for n = 3 in all our numerical experiments.

For n = 4, we will apply the SSP-RK4 scheme from [18], which is shown as follows. We

consider a system of ODEs

ut = L(u), (3.51)

an optimal fourth order total variation diminishing(TVD) Runge-Kutta scheme is given by

u(1) =un + 0.391752226571890∆L(un),

u(2) =0.444370493651235un + 0.555629506348765u(1)

+ 0.368410593050371∆L(u(1)),

u(3) =0.620101851488403un + 0.379898148511597u(2)

+ 0.251891774271694∆L(u(2)),

u(4) =0.178079954393132un + 0.0.821920045606868u(3)

+ 0.544974750228521∆L(u(3)),

u(4) =0.517231671970585u(2)

+ 0.096059710526147u(3) + 0.063692468666290∆L(u(3))

+ 0.386708617503269u(4) + 0.226007483236906∆L(u(4)).

(3.52)
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Like the SSP-RK3 scheme, the SSP-RK4 scheme is also an invariant domain preserv-

ing update in time. Furthermore, The CFL condition is determined by the corresponding

GMS-scheme in order to apply the convex limiting process.

3.4.2 Two Dimensional Case

Now we consider the case of two space dimensions, which is described in (3.16). Still,

we use uniform rectangular mesh with cell centers (xj, yk) := (j∆x, k∆y), j, k ∈ Z,

and take the approximate solution ũn(x, y) ≈ u(x, y, tn) at time tn to be a piecewise

polynomial function.

ũn(x, y) :=
∑
j,k

pj,k(x, y)1[xj−1/2,xj+1/2]×[yk−1/2,yk+1/2], (3.53)

where pj,k(x, y) are degree (k − 1)− polynomial, which satisfies

∫
[xj−1/2,xj+1/2]×[yk−1/2,yk+1/2]

pj,k(x, y)dxdy = unj,k, ∀j, k ∈ Z. (3.54)

Now we assume that pj,k(x, y) is of the form

pj,k(x, y) := ûnj,k +
k−1∑
l=1

l∑
i=0

1

i!(l − i)!
u(i,l−i)(x− xj)i(y − yk)l−i, (3.55)

where u
(i,l−i)
j,k := ∂lu

∂xi∂yl−i
(xj, yk) is the partial derivative of u at (xj, yk). By (3.54) we

have that

ûnj,k = unj,k −
n−1∑
l=1

l∑
i=0

(1− (−1)i+1)(1− (−1)l−i+1)∆xi∆yl−i

(i+ 1)!(l − i+ 1)!2l+2
u

(i,l−i)
j,k . (3.56)
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Remark. In this dissertation we only consider the following two cases, i.e.,

pj,k(x, y) =ûnj,k + (unx)j,k(x− xj) + (uny )j,k(y − yk)

+
1

2
(unxx)j,k(x− xj)2 +

1

2
(unyy)j,k(y − yk)2,

+ (unxy)j,k(x− xj)(y − yk),

(3.57)

where n = 3 and

pj,k(x, y) =ûnj,k + (unx)j,k(x− xj) + (uny )j,k(y − yk)

+
1

2
(unxx)j,k(x− xj)2 +

1

2
(unyy)j,k(y − yk)2,

+ (unxy)j,k(x− xj)(y − yk) (3.58)

+
1

6
(unxxx)j,k(x− xj)3 +

1

6
(unyyy)j,k(y − yk)3

+
1

2
(unxxy)j,k(x− xj)2(y − yk) +

1

2
(unxyy)j,k(x− xj)(y − yk)2,

where n = 4. The corresponding ûnj defined by (3.56) are

ûnj,k = unj,k −
1

24
(∆x2(unxx)j,k + ∆y2(unyy)j,k) (3.59)

for both n = 3 and 4.

Finally we give fully discrete form of the semi-discrete form of the n−th order central

scheme in two space dimensions, which is similar to the case of KT-scheme.

uH,n+1
j,k − unj,k

∆t
= −

Hn,x
j+1/2,k −H

n,x
j−1/2,k

∆x
−
Hn,y
j,k+1/2 −H

n,y
j,k−1/2

∆y
. (3.60)

The numerical fluxes are defined as, see [40]:

Hn,x
j+1/2,k :=

1

12

(
f(uNWj+1,k) + f(uNEj,k )

+ 4(f(uCWj+1,k) + f(uCEj,k )) + f(uSWj+1,k) + f(uSEj,k )
)

(3.61)
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−
λn,xj+1/2,k

12

(
uNWj+1,k − uNEj,k + 4(uCWj+1,k − uCEj,k ) + uSWj+1,k − uSEj,k

)
,

Hn,y
j,k+1/2 :=

1

12

(
g(uSWj,k+1) + g(uNWj,k )

+ 4(g(uCSj,k+1) + g(uCNj,k )) + g(uSEj,k+1) + g(uNEj,k )
)

(3.62)

−
λn,yj,k+1/2

12

(
uSWj,k+1 − uNWj,k + 4(uCSj,k+1 − uCNj,k ) + uSEj,k+1 − uNEj,k

)
,

where uj,k := pj,k(xj, yk) and

uNCj,k := pj,k(xj, yk+1/2), uSCj,k := pj,k(xj, yk−1/2),

uCEj,k := pj,k(xj+1/2, yk), uCWj,k := pj,k(xj−1/2, yk),

uNEj,k := pj,k(xj+1/2, yk+1/2), uNWj,k := pj,k(xj−1/2, yk+1/2),

uSEj,k := pj,k(xj+1/2, yk−1/2), uSWj,k := pj,k(xj−1/2, yk−1/2),

(3.63)

are the interface values with

λn,xj+1/2,k = max(λNj+1/2,k, λ
C
j+1/2,k, λ

S
j+1/2,k),

λn,yj,k+1/2 = max(λEj,k+1/2, λ
C
j,k+1/2, λ

W
j,k+1/2),

(3.64)

where λXj+1/2,k := λmax(uXEj,k ,u
XW
j+1,k,f) and λYj,k+1/2 := λmax(uNYj,k ,u

SY
j,k+1, g) for X ∈

{S,C,N} and Y ∈ {W,C,E} separately. SSP-RK3 and SSP-RK4 schemes will be ap-

plied for the forward Euler step and the CFL-condition is determined by the first order

GMS-scheme.

3.4.3 Piecewise Polynomial Reconstruction For High Order Central

Scheme

It is well known that by using the polynomial reconstruction in central scheme we can

obtain a numerical solution of arbitrary high order accuracy. However, this approach may

also produce oscillations at discontinuities as shocks. In this section we first introduce
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a classical type of polynomial reconstruction which is naturally non-oscillatory, i.e., the

WENO reconstruction. Then similar to what we did for the KT-scheme, we explain two

novel types of polynomial reconstruction which will also reduce the oscillation efficiently.

For simplicity, our discussion will be restricted to one dimensional case.

We start by introducing the essentially non-oscillatory schemes(ENO-scheme), which,

first introduced in [30], generalizes the Godunov type scheme and the second-order accu-

rate MUSCL reconstruction by designing an essentially non-oscillatory piecewise polyno-

mial reconstruction of the solution from its cell averages. The ENO-scheme successfully

increases the order of accuracy of numerical solutions for hyperbolic conservation laws

which are possibly piecewise smooth with large jump discontinuities by approximating

the solution to a high degree of accuracy in smooth parts, while avoiding Gibbs oscilla-

tions near the discontinuities. Following [1, Chapter 5,Chapter 6], the main idea of the

ENO reconstruction is shown as follows. We consider the hyperbolic system (1.3). Tak-

ing the same space discretization as in § 3.2 and § 3.3, i.e., we take xj = j∆x and take

the non-staggered control mesh to be [xj−1/2, xj+1/2]. In order to obtain a n−th order

accuracy reconstruction of u, we take pj(x) to be a degree n − 1 polynomial defined by

(3.43)-(3.44). Simultaneously, the reconstruction is also required to be as non-oscillatory

as possible. Technically the properties of accuracy (3.41) and the conservation property

(3.42) will be automatically satisfied if pj interpolates ui over the adaptive stencil of grid

points:

Sl := {j − n+ l, · · · , j − 1 + l}, (3.65)

where 1 ≤ l ≤ n is a certain number such that the original function u is smooth in Sl. In

other words, pj is an order (n − 1) polynomial which is defined such that the following

conservation property holds

∫
Ii

pj(x)dx = uni , for i = j − n+ l, · · · , j − 1 + l, (3.66)

for a certain stencil index l = li ∈ {1, · · · , n}, where uni is the cell average of u on Ii at
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time tn.

Remark. It has been proved in [30] that if the assumption that u is smooth in a stencil Sl

with a fixed l holds, then there exits unique order (n − 1) polynomial p(l)
j which satisfies

(3.66).

In order to find such p(l)
j , two approaches are introduced in [30]. The first option is

called the reconstruction via primitive function approach(RP), for which we define the

following primitive function of u(x):

U(x) =

∫ x

−∞
u(x)dx. (3.67)

Thus the point values of the primitive function U(x) at cell interface xj+1/2 could be

evaluated as

U j+1/2 := U(xj+1/2) =
∑
i≤j

∆xuni , (3.68)

where uni denotes the cell average. If we take Pj to be the unique n−th order poly-

nomial which interpolates the interface values of U , which is defined by (3.68), over

the stencil consisted of points {xl−1/2, · · · , xl+n−1/2}, then the order (n − 1) polynomial

pj(x) = d
dx
Pj(x) will uniquely satisfy (3.66). Another option is called the reconstruction

via deconvolution approach(RD), which consider (3.42) as a convolution of u(x) with the

indicator function over Ij . By computing the Taylor expansion of u(x) and substituting

the result in (3.42), one could obtain an upper triangular linear system for computing pj .

By solving the linear system we could obtain the unique interpolation of pj . One could

read [30] for more discussions on ENO-schemes.

From the discussion above, we notice that the purpose of ENO-reconstruction is to

avoid including the discontinuous cells in the stencil. The WENO-scheme, which is first

introduced in [35, 52], is an extension of the ENO-scheme and enjoys the advantages of

high order accuracy by obtaining more smoothness in the numerical fluxes. The main

idea of WENO reconstruction is as follows, see [35, 52, 1]: instead of using only one of
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the candidate stencils to form the reconstruction, one uses a convex combination of all n

stencils S1, · · · , Sn, where Sl := {Ij−n+l, · · · , Ij−1+l} with l ∈ {1, · · · , n}. If we denote

S to be a big stencil combined with all these stencils, then a reconstruction polynomial

p(x) of degree at most n+ 1 could be obtained, which satisfy

p(xj+1/2) = u(xj+1/2) +O(∆xn+1) (3.69)

and ∫
Ij

p(x)dx = unj (3.70)

in S. An explicit form of p is given by

p(x) :=
n∑
l=1

wlpl(x). (3.71)

The coefficient are the weights of the reconstruction, which lead to the term "WENO". If

the function u(x) is smooth all over S, we have that wi are all constant, and thus be called

as linear weights. If u(x) is not smooth on S, we use the so-called non-linear weights

to adaptively avoid including the discontinuous cell in the stencil. In general, the non-

linear weight wi is determined by a smoothness indicator ISl, which measures the relative

smoothness of the u(x) in stencil Sl. In each cell Ij , ISl is defined as follows

ISl =
k∑
i=1

∫ xj+1/2

xj−1/2

∆x2i−1(
di

dxi
pj(x))2dx, l ∈ {1, · · · , n}. (3.72)

A large ISl indicates that the function u(x) is less smooth in the stencil Sl. For the

computation of ISl one could read [35] for reference.

In our work, we will adopt the compact third order WENO-scheme(CTO-WENO) in-

troduced in [49]. The main idea is to introduce one quadratic polynomial and two linear

reconstructions for the interpolants and the weights of the convex combination are set

specifically as to obtain a third-order accuracy in smooth regions. In regions with dis-
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continuities or large gradients, the smoothness indicator will allow the weights to change

automatically such that the WENO reconstruction will switch to a second-order linear

reconstruction. In the reconstruction, only the compact stencils will be used.

Remark. In order to avoid division by zero, a parameter ε will be introduced to the

smoothness indicator, see (3.82). It is proved in [38] that ε should be chosen as k∆xq,

which is proportional to the q−th order of the mesh size ∆x in order to achieve the op-

timal order of accuracy, where q ≤ 3 and pq ≥ 2 with p ≥ 1 be the exponent used in

computing the smoothness indicator, k is defined to be ||f ||2 such that the reconstruction

is invariant under the scaling of f . In all numerical report of this dissertation, we take

p = 2 and q = 2.

For simplicity, here we only give the CTO-WENO reconstruction in one dimensional

case without any derivation. One could read [49, 38] for more technical details. We take

the approximation order to be n = 3 in (3.71) and use l ∈ H := {L,C,R} instead of

{1, 2, 3} to be the stencil index, thus we have

pj(x) =
∑
l∈H

wlpl(x), (3.73)

where pC(x) is a quadratic polynomial and pL(x), pR(x) are both linear on a single side.

One should notice that (3.73) is a convex combination, therefore we have wl ≥ 0 for l ∈ H

and
∑

l∈H wl = 1. Applying (3.66) on l = L,R, it follows that

pL(x) = unj +
unj − unj−1

∆x
(x− xj), (3.74a)

pR(x) = unj +
unj+1 − unj

∆x
(x− xj). (3.74b)

To compute pC(x), we have to introduce an optimal polynomial

popt(x) =
∑
l∈H

clpl(x), (3.75)
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where c stands for "central". Similar to pj(x), (3.75) is also a convex combination with

cl ≥ 0 for l ∈ H and
∑

l∈H cl = 1. Here we say popt(x) is optimal in the sense of

approximation accuracy that

popt(x) = u(x) +O(∆x3), ∀x ∈ Ij, (3.76)

holds for u(x) sufficiently smooth on Ij . By applying (3.66) to popt(x) on Ij−1, Ij, Ij+1 ∈

SC we obtain the following parabola:

popt(x) = ûnj + (unx)j(x− xj) +
1

2
(unxx)j(x− xj)2, (3.77)

where

ûnj = unj −
1

24
(unj+1 − 2unj + unj−1), (3.78a)

(unx)j =
unj+1 − unj−1

2∆x
, (3.78b)

(unxx)j =
unj+1 − 2unj + unj−1

∆x2
. (3.78c)

Remark. We could prove that a polynomial which satisfies (3.66) is uniquely determined

by (3.77)-(3.78). Notice that popt(x) is also obtained by taking (3.45)-(3.47) with additional

restrictions on (unx)j and (unxx)j . Finally, one could prove that (3.76) holds for popt(x).

Now by setting cL = cR = 1
4

and cC = 1
2
, it follows from (3.75),(3.77) and (3.78) that

pC(x) =unj −
1

12
(unj+1 − 2unj + unj−1)

+
unj+1 − unj−1

2∆x
(x− xj) +

unj+1 − 2unj + unj−1

∆x2
(x− xj)2.

(3.79)

In order to complete p(x) for arbitrary u, i.e., there is no assumption of smoothness,

we need to compute coefficients wl for l ∈ H = {L,C,R}. Following [49, 38], we first
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compute the smoothness indicator ISl defined in (3.72) to be

ISL = (unj − unj−1)2, (3.80a)

ISC =
13

12c2
C

(unj+1 − 2unj + unj−1)2 +
1

4
(unj+1 − unj−1)2, (3.80b)

ISR = (unj+1 − unj )2. (3.80c)

and then define

wl =
al∑
k∈H ak

, (3.81)

where

al :=
cl

(ε(∆x) + ISl)p
, for l ∈ H = {L,C,R}. (3.82)

As discussed before, for the optimal accuracy in approximation, we take ε(∆x) = k∆xq

with q = 2, p = 2 and k = ||f ||2.

Remark. Let p(x) be defined by (3.73),(3.74),(3.79),(3.80) and (3.81). It is proved that

(i) If u(x) is smooth in SC , then we have

u(x)− pj(x) = O(∆x3) (3.83)

(ii) If u(x) is smooth in SL or SR and has a discontinuity in the other stencil, then we

have

u(x)− pj(x) = O(∆x2) (3.84)

We just gave a brief review of the CTO-WENO reconstruction, which could be used

to build the third order central scheme. The compact WENO reconstruction enjoys a high

accuracy with small stencils. Also it can capture the shocks efficiently with the help of the

smoothness indicator. However, one could see that even for compact WENO, the compu-

tation cost is still very large. Also, it has been observed in [43] that the WENO recon-

struction can lead to a wrong stable shock in the KPP-test. Thus we are going to introduce
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the following two approaches which could be applied to arbitrary polynomials reconstruc-

tions. Note that each of these two approaches allow us to get a numerical solution which

converges to the unique entropy satisfied solution for composite waves. Still, our discus-

sion will be in one space dimension, the result is easy to generalize to multidimensional

cases.

Now let us assume that the underlying polynomial pj which we use in (3.40) is defined

by (3.43), the two approaches is then given as follows.

(i) The first approach is to apply a same kind of threshold θnj used in § 3.3.3, which is

used to determine the smoothness of the region. Our new reconstruction is built by

using the optimal polynomial if θnj ≤ 1.5 and a MAPR based linear reconstruction if

θnj > 1.5, which is given as follows.

pa
j(x) =

popt(x) if θnj ≤ 1.5,

pmapr(x) if θnj > 1.5,
(3.85)

where "a" refers to adaptive and

pmapr(x) = unj + σmapr,θ
j (x− xj) (3.86)

with σmapr,θ
j defined by (3.37). Still, the value of θ is computed via θnj = 2−Rn

j where

Rn
j is the entropy commutator defined in § 3.5. The invariant domain preserving

property is also imposed via a flux limiting process, see Algorithm 1. In the rest of

this dissertation We refer to this method as the POL-EV-CL method, where "POL"

refers to the polynomial we use, "EV" refers the entropy viscosity commutator and

"CL" refers to the convex flux limiting process. In practice, the MAPR slope limiter

could be replaced by any second order slope limiters which is able to capture the

correct shocks in composite waves.

(ii) Similar to the abstract slope limiter defined in § 3.3.3, we introduce an abstract poly-
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nomial which is of third order accuracy and satisfies the invariant domain property.

Such polynomial is called the invariant domain preserving polynomial, which is de-

noted with pinv
j . Similar to the invariant domain preserving slope limiter, pinv

j is de-

fined such that the interface values un,−j+1/2 := pinv
j (xj+1/2) and un,+j−1/2 := pinv

j (xj−1/2)

used in (3.26) and the state ûnj defined by (3.44) all remain in the local invariant sets

of the system. For this reason we introduce an auxiliary function prj such that

pj(x) = unj + prj(x) for all x ∈ Ij, (3.87)

where "r" refers to reconstruction, then we could give the definition of the abstract

polynomial as follows.

Definition 3.4.1. Let Aj−1/2 be an invariant set of (1.27a) which contains the states

unj−1 and unj and Aj+1/2 be an invariant set of (1.27a) containing unj and unj+1. Then

the invariant polynomial pinv
j corresponding to the invariant sets Aj−1/2 and Aj+1/2

is defined as pinv
j = unj (x) + `prj(x) where ` is the largest number in [0, 1] such that

pinv
j (xj−1/2) ∈ Aj−1/2 and pinv

j (xj+1/2) ∈ Aj+1/2.

Remark. One should notice that the limited polynomial pinv
j satisfies (3.42), i.e., pinv

j

is conservative on Ij and therefore could be used for the local construction for the

high order central scheme.

Thus we could give the second approach of reconstruction uses the invariant domain

preserving limiter defined with Definition 3.4.1, for which the invariant domain pre-

serving property is guaranteed under a standard CFL condition, see discussions in

Theorem 4.3.5 and Theorem 4.3.6; Similar to the second order reconstruction, in the

rest of this dissertation we refer to this method as the POL-INV-CL method, where

"POL" refers to the polynomial we use, "INV" refers to the invariant domain pre-

serving property and "CL" refers to the convex slope limiting.

At the end of this section let us recall the optimal function defined by (3.77)-(3.78).

From the discussion in § 3.4 we know that if we take the local reconstruction to be pj(x) :=
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popt(x), the we have

pj(x)− u(x) = O(∆x3), ∀x ∈ Ij, (3.88)

holds if u(x) are sufficiently smooth on Ij . Also the computation cost of popt is much

cheaper than the compact WENO reconstructions, therefore we will always use popt(x) as

the underlying polynomial for the two approaches explained above. Therefore we will call

the name of these approaches as OPT-EV-CL method and OPT-INV-CL method instead,

where the term "OPT" refers to the optimal function we use.

Remark. One should notice that we apply popt(x) in our approach due to its low com-

plexity of computation. In fact, our approach is robust to be applied to any polynomial

reconstructions such as WENO scheme. The performance of discontinuities will all be

improved via the to be explained convex limiting algorithm. For reference, the second

order optimal polynomial defined in two dimensional case is shown as follows, see [49].

popt(x, y) =ûnj,k + (unx)j,k(x− xj) + (uny )j,k(y − yk)

+
1

2
(unxx)j,k(x− xj)2 +

1

2
(unyy)j,k(y − yk)2,

+ (unxy)j,k(x− xj)(y − yk),

(3.89)

where

ûnj,k = unj,k −
1

24
(∆x2(unxx)j,k + ∆y2(unyy)j,k), (3.90a)

(unx)j,k =
unj+1,k − unj−1,k

2∆x
, (uny )j,k =

unj,k+1 − unj,k−1

2∆y
, (3.90b)

(unxx)j,k =
unj+1,k − 2unj,k + unj−1,k

∆x2
, (unyy)j,k =

unj,k+1 − 2unj,k + unj,k−1

∆y2
, (3.90c)

(unxy)j,k =
unj+1,k+1 − unj+1,k−1 − unj−1,k+1 + unj−1,k−1

4∆x∆y
. (3.90d)

67



3.5 Entropy Based Smoothness Indicator

In § 3.3.3 and § 3.4.3 we introduce a new technique for local reconstruction, that is,

we use a more accurate central unlimited slope/optimal polynomial in smooth regions and

a nonlinear minmod-type/MAPR limited slope(or equivalently a first order polynomial)

in the non-smooth regions. What we want is that the change between the two types of

reconstructions should happen when a physical discontinuity forms. Similar to [23], the

approach we take to detect a discontinuity is to measure an entropy production. Our objec-

tive is to construct a second/third order method that is entropy consistent and at the same

time close to satisfying the invariant domain preserving property. Counter-examples of

schemes that are invariant domain preserving but entropy violating could be seen in [22,

Lemma 3.2, Lemma 4.6, § 6.1] and [21, § 5.1]. However, we do not want to rely totally on

the yet to be explained limiting process to enforce the entropy consistency since the lim-

iting process should be considered as a light post-processing applied to a method which

is already entropy consistent and almost invariant domain preserving. In [23, 24], a high-

order graph viscosity which guarantees the entropy consistency was introduced. However,

we do not want the time discretization to interfere with the estimation of the residual, so

we follow the entropy viscosity commutator approach proposed in [27]. For simplicity,

our discussion of the entropy commutator will be in the one space dimension.

Let (η(u),F (u)) be the entropy pair of system (1.27a), which is defined by Defini-

tion 1.5.3, i.e., η is a convex function of the conserved variables u, F is the entropy flux,

such that DF (u) = η′(u)>Df(u). Following [27, §3.4] we measure the discrepancy in

the chain rule as follows

∆n
j = F (unj+1)− F (unj−1)− η′(unj )>(f(unj+1)− f(unj−1)). (3.91)

Now we set

Cn
j = |F (unj+1)− F (unj−1)|+ |η′(unj )>| · |f(unj+1)− f(unj−1)|, (3.92)
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to be a normalizing coefficient, where we denote |f | := ‖f‖`2 for any vector function f .

Note that Cn
j could be very close to or even equals to zero in smooth regions. Therefore,

in order to avoid division by zero, we introduce

αnj = max(|F (unj+1)|, |F (unj )|, |F (unj−1)|), (3.93a)

βnj = |η′(unj )>| · λmax,n
j · (|unj+1 − unj |+ |unj − unj−1|), (3.93b)

where λmax,n
j := max(λnj+1/2, λ

n
j−1/2) is the global maximum speed of propagation at time

tn and define the normalized entropy viscosity commutator to be

Rn
j =

|∆n
j |

max(Cn
j , εα

n
j , εβ

n
j )
, (3.94)

where ε is a small number, which is typically taken as the square root of the machine error

in practice. By definition we have that Rn
j ∈ (0, 1] since |∆n

j | ≤ Cn
j . Moreover, one

could prove that Rn
j ∼ O(∆x) in smooth regions and Rn

j ∼ 1 at shocks by computing the

Taylor expansion of F ′ = η′ · f ′. One could read [27, §3.4] for more details on entropy

commutators and its applications. Consequently, we could set

θnj = 2−Rn
j . (3.95)

to be the local weights used in the adaptive limiter/polynomial discussed in § 3.3.3 and

§ 3.4.3.
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4. QUASICONCAVITY BASED LIMITING ALGORITHM

In this chapter we introduce two novel techniques which are used to modify an ex-

isting high order scheme and make it to be locally invariant domain preserving. These

techniques are all based on the so called convex limiting, which is first introduced in [27].

Both of these limitations will upgrade the high order scheme with a slightly polishing

process and yet create a limited scheme which is invariant domain preserving and numer-

ically preserves the accuracy of the original scheme. The first approach is called convex

flux limiting process, see Algorithm 1, which will impose a modification on the numerical

flux computed with the adaptive reconstruction σa
j and pa

j . The second approach is called

convex slope/polynomial limiting, which is used to modify the local reconstruction di-

rectly and thus build the limited reconstructions σinv
j and pinv

j , such that the interface values

stay in the local invariant set, see Algorithm 2. Also, we’ve proved in Theorem 3.2.1 and

Theorem 3.2.2 that the first order scheme are always invariant domain preserving. There-

fore, all these limiting process will rely on the first order central scheme (3.12) and (3.28).

For simplicity, the discussion will be focus on one dimensional case while the result for

two dimensional case will also be presented without any derivation.

4.1 Invariant Domains via Quasiconcave Constraints

In order to unify into a single framework all the bounds in phase space that we want to

enforce onto the high order solutions, the notion of quasiconcavity are to be recalled here.

Definition 4.1.1 (Quasiconcavity). Given a convex set A ⊂ Rm, we say that a function

Ψ : A → R is quasiconcave if every upper level set of Ψ is convex; that is, the set

Lλ(Ψ) := {u ∈ A|Ψ(u) ≥ λ} is convex in the range of Ψ for any λ ∈ R.

One should notice that concavity implies quasiconcavity. In all problems we consider,

we assume that the invariant domain could be described as an intersection of quasiconcave

constraints of the form

Ψz(u) ≥ 0, (4.1)
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where z is the notation of the variable to be constrained. We will enforce such quasicon-

cave constraints via both the flux limiting and the slope limiting process. Moreover, in

practice all quasiconcave constraints will be modified to concave constraints in order to

simplify the computation of the limiting process which is much simpler in concave case.

Now we describe the quasiconcave constraints for all examples discussed in § 1.3.

4.1.1 Scalar Equations

For scalar equation described in §1.3.1, the local invariant domain is an interval based

on the local maximum principle and we enforce it by imposing the following constraints:

un,min
j := min(unj , u

n
j±1, ū

n+1
j±1/2), un,max

j := max(unj , u
n
j±1, ū

n+1
j±1/2). (4.2)

Theorem 3.2.1 guarantees that the local maximum principle is satisfied by the first order

method: un,min
j ≤ un+1,L

j ≤ un,max
j . So we have to enforce un,min

j ≤ un+1
j ≤ un,max

j via a

convex limiting process to guarantee the invariant domain preserving property. By setting

Ψ1
j(u) = u− un,min

j and Ψ2
j(u) = un,max

j − u, to imposing the local maximum principle is

transfered to imposing the following two linear (therefore quasiconcave) constraints:

Ψ1
j(u) ≥ 0, Ψ2

j(u) ≥ 0. (4.3)

4.1.2 The P-system

Now we consider the p-system (1.11), see §1.3.2. The invariant domain is constructed

using the Riemann invariants (2.8), we define

wn,max
1,j := max(wn1,j, w

n
1,j±1, w̄

n+1
1,j±1/2), wn,min

2,j := min(wn2,j, w
n
2,j±1, w̄

n+1
2,j±1/2), (4.4)

where wn1,j := w1(unj ), wn2,j := w2(unj ), w̄n+1
1,j±1/2 := w1(ūn+1

j±1/2), w̄n+1
2,j±1/2 := w2(ūn+1

j±1/2).

Theorem 3.2.1 guarantees that wn,min
2,i ≤ wL,n+1

2,i ≤ wL,n+1
1,i ≤ wn,max

1,i . Therefore, the local
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invariant domain to be enforced is an intersection of two concave constraints

wn,min
2,j ≤ wn+1

2,j , wn+1
1,j ≤ wn,max

1,j . (4.5)

By setting Ψ1
j(u) = wn,max

1,j −w1(u) and Ψ2
j(u) = w2(u)−wn,min

2,j , we are going to enforce

the following two concave constraints:

Ψ1
j(u) ≥ 0, Ψ2

j(u) ≥ 0. (4.6)

4.1.3 Euler Equations

Now we consider the Euler system (1.16), see § 1.3.3. By definition the specific en-

tropy is a quasiconcave function of the conserved variables, which implies that Φ(u) :=

s(ρ, e) is quasiconcave. Theorem 3.2.1 guarantees that the first order solution uL,n+1 sat-

isfies the invariant domain property

ρmax
j ≥ ρL,n+1

j , ρL,n+1
j ≥ ρmin

j , eL,n+1
j ≥ 0, sL,n+1

j ≥ smin
j , (4.7)

where
ρn,min
j := min(ρnj , ρ

n
j±1, ρ̄

n+1
j±1/2), ρn,max

j := max(ρnj , ρ
n
j±1, ρ̄

n+1
j±1/2),

en,min
j := min(enj , e

n
j±1, ē

n+1
j±1/2),

sn,min
j := min(Φ(unj ),Φ(unj±1),Φ(ūn+1

j±1/2)).

(4.8)

Therefore, the invariant domain to be enforced to the high order solution uH,n+1 lies in the

intersection of the following four quasiconcave constraints:

ρn,max
j ≥ ρ, ρ ≥ ρn,min

j , e ≥ en,min
j , s ≥ sn,min

j . (4.9)

It is clear that the two constraints on density are linear and thus concave. However, the

other two constraints e ≥ en,min
j and s − sn,min

j ≥ 0 are not concave. One can modify

the constraints by assuming that the density is already positive, and thus make them to
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be concave. For example, the mathematical entropy ρs and the total internal energy ρe

are concave functions of the conserved variables. It follows that the modified constraints

ρe− ρen,min
j ≥ 0 and ρs− ρsn,min

j ≥ 0 are all concave.

In the case of taking the EOS to be the γ-law, we take the physical specific entropy to

be s = log(e
1

γ−1ρ−1), see § 1.5.2.2. Therefore one can impose the the invariant domain by

enforcing the following constraints

ρn,max
j − ρ ≥ 0, ρ− ρn,min

j ≥ 0, ρe− cn,min
j ργ ≥ 0. (4.10)

where cn,min
j = exp((γ−1)sn,min

j ). Note that constraints ρ > 0 and ρe−cn,min
j (ρn+1

j )γ ≥ 0

guarantees that the internal energy e is greater than emin. By setting Ψ1
j(u) = ρn,max

j − ρ,

Ψ2
j(u) = ρ− ρn,min

j and Ψ3
j(u) = ρe− cn,min

j ργ , we enforce the following constraints for

the invariant domain property

Ψ1
j(u) ≥ 0, Ψ2

j(u) ≥ 0, Ψ3
j(u) ≥ 0. (4.11)

4.2 Invariant Domain via Flux Limiting

In this section we develop a novel limiting technique to enforce the quasiconcave con-

straints by adopting the methodology of [27] to the central scheme framework. To our

knowledge, simple linear constraints as the local maximum principle of density can be

easily enforced using the Flux Corrected Transport technique(FCT), see for example [4]

and [65]. However, the FCT approach is designed for box-like limitation and is hard to be

modified to enforce more general convex constraints without losing the approximation ac-

curacy. In our flux limiting technique, the so-called bar states defined by (3.10), (3.20) and

(3.21) is essential to construct the local invariant constraints, see examples of the invariant

bounds (4.2), (4.4) and (4.8). Our discussion will be mainly focused on one dimensional

case while the result of two dimensional case will be presented directly. Also, one should

notice that both the KT-scheme and the CTO-WENO scheme have a similar fully discrete

form while the only difference is the computation of the interface values. Without abuse of
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notation, in all our discussions we will use the notations and settings in § 3.3 to represent

fully discrete form of the high order scheme, which could be either the KT-scheme or the

CTO-WENO scheme.

4.2.1 One Dimensional Case

We subtract the first-order update (3.12) from the high-order update (3.28) and get:

uH,n+1
j = uL,n+1

j − ∆t

∆x
(Hn

j+1/2 −Hn
j−1/2 − Lnj+1/2 + Lnj−1/2). (4.12)

By setting Gn
j+1/2 := 2∆t

∆x
(Hn

j+1/2−Lnj+1/2) to be the high/low order numerical flux differ-

ence, we could rewrite (4.12) as the following convex splitting form

uH,n+1
j =

1

2
(uL,n+1

j −Gn
j+1/2) +

1

2
(uL,n+1

j +Gn
j−1/2). (4.13)

Following [27, §4.2], we introduce a pair of scalar limiting parameters (l+j , l
−
j ) and

create a limited high-order update

un+1
j (l+j , l

−
j ) :=

1

2
(uL,n+1

j − l+j Gn
j+1/2) +

1

2
(uL,n+1

j + l−j G
n
j−1/2). (4.14)

which is supposed to satisfy the invariant domain property. Similar to the FCT scheme,

we will recover the first-order solution if l+j = l−j = 0 and the high-order solution if

l+j = l−j = 1.

We set Ψz
j to be a quasiconcave function where z is one of the constraints describing

the corresponding local invariant set at cell j and denote with Azj the zero level set of

Ψz
j . It then follows by definition that Azj is a convex set. For example, we take Ψρmax

j =

ρmax
j − ρ and Aρmax

j = {u | ρmax
j − ρ ≥ 0} for the Euler system. Our goal is to find the

largest positive numbers `±j ≤ 1 such that un+1
j (l+j , l

−
j ) remains in Azj , that is, we have

Ψz
j(u

n+1
j (l+j , l

−
j )) ≥ 0 for any 0 ≤ l+j ≤ `+

j and 0 ≤ l−j ≤ `−j . In order to simplify the

notations, we denote u+
j (l) := uL,n+1

j − lGn
j+1/2 and u−j (l) := uL,n+1

j + lGn
j−1/2 for any

l ∈ R. Consequently, the following two lemmas describe the idea of the flux limiting
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process for a certain constraint z.

Lemma 4.2.1. Let Ψz
j : A → R be the quasiconcave function mentioned above. Assume

that `z,±j ∈ [0, 1] are such that Ψz
j(u

+
j (`z,+j )) ≥ 0 and Ψz

j(u
−
j (`z,−j )) ≥ 0, we have that

Ψz
j(u

n+1
j (`z,+j , `z,−j )) ≥ 0.

Proof. Let A0(Ψ) = {u ∈ A|Ψ(u) ≥ 0} be the zero level set of Ψ. By definition we have

that inequalities Ψz
j(u

+
j (`z,+j )) ≥ 0 and Ψz

j(u
−
j (`z,−j )) ≥ 0 imply that u+

j (`z,+j ),u−j (`z,−j ) ∈

A0(Ψ). Since un+1
j (`z,+j , `z,−j ) is a convex combination of u+

j (`z,+j ) and u−j (`z,−j ), it fol-

lows that un+1
j (`z,+j , `z,−j ) ∈ A0(Ψ) as well, which leads to Ψz

j(u
n+1
j (`z,+j , `z,−j )) ≥ 0 and

thus complete the proof.

Lemma 4.2.2. Let’s define `z,±j to be

`z,+j =

1 if Ψz
j(u

+
j (1)) ≥ 0,

max{` ∈ [0, 1]|Ψz
j(u

+
j (`)) ≥ 0} otherwise.

(4.15)

`z,−j =

1 if Ψz
j(u

−
j (1)) ≥ 0,

max{` ∈ [0, 1]|Ψz
j(u

−
j (`)) ≥ 0} otherwise.

(4.16)

Now we set `zj+1/2 = min(`z,+j , `z,−j+1), we have that Ψz
j(u

n+1
j (lzj+1/2, l

z
j−1/2)) ≥ 0 for all

lzj+1/2 ∈ [0, `zj+1/2].

Proof. We use the same setting of A0(Ψ) in Lemma 4.2.1. By definition (4.15) we have

that Ψz
j(`

z,+
j ) ≥ 0, which implies that `z,+j ∈ A0(Ψz

j). Also we have 0 ≤ lzj+1/2 ≤ `zj+1/2 ≤

`z,+j , it then follows by the convexity of A0(Ψz
j) that lzj+1/2 ∈ A0(Ψz

j), which implies

Ψz
j(l

z
j+1/2) ≥ 0. (4.17)

At the same time, a similar computation using (4.16) give us

Ψz
j(l

z
j−1/2) ≥ 0. (4.18)
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Now apply Lemma 4.2.2 on (4.17) and (4.18) gives that Ψz
j(u

n+1
j (lzj+1/2, l

z
j−1/2)) ≥ 0,

which completes our proof.

The second-order update un+1
j defined by (4.14) is a convex combination of u+

j and

u−j , both of which satisfy the constraint z due to our settings. Therefore, by Lemma 4.2.1

and Lemma 4.2.2, the limited update

uz,n+1
j =

1

2
u+
j (`zj+1/2) +

1

2
u−j (`zj−1/2). (4.19)

will satisfy the constraint z. Now we are able to describe the full flux limiting process for

all local constraints in the following algorithm.

Algorithm 1 Convex flux limiting

Input: uL,n+1
j , Gn

j+1/2, kmax, z1, . . . , zq.

Output: un+1
j

1: for i = 1 to kmax do

2: for z = 1 to zq do

3: Compute limiting parameters `zj+1/2 via Lemma 4.2.1 and Lemma 4.2.2.

4: end for

5: Set `j+1/2 := minz∈{z1,...,zq} `
z
j+1/2.

6: Update un+1
j = un+1

j (`j−1/2, `j+1/2) via (4.14).

7: Update Gn+1
j+1/2 = 2∆t

∆x
(Hn+1

j+1/2 − L
n+1
j+1/2)

8: end for

9: Return un+1
j .

Remark. The number kmax in Algorithm 1 refers to the loops of the limiting process. We

are supposed to recover a higher approximation accuracy for a larger kmax as we get closer

to the bound ofA0(Ψ). In all our numerical experiments reported in § 5, we take kmax = 2.
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Remark. The computational cost of searching for `z,±j for a given j can be reduced by

setting `+
j = `−j := `j in (4.14) and denote un+1

j (`) := un+1
j (`, `). Then `j is computed

with one single line search

`j =

1 if Ψz
j(u

n+1
j (1)) ≥ 0,

max{` ∈ [0, 1]|Ψz
j(u

n+1
j (`)) ≥ 0} otherwise.

(4.20)

If Ψz
j(u

±
j (`j)) ≥ 0, we could set `j+1/2 = min(`j, `j+1) and replace step 3 with the

computation via (4.20) in Algorithm 1. In practice, the single search is successful most of

the time and therefore we make one single search instead of 2d searches, where d denotes

the space dimension.

4.2.2 Two Dimensional Case

In the case of two space dimensions we will take a similar approach. By subtract-

ing (3.22) from (3.31) and setting Gn,x
j+1/2,k := 4∆t

∆x
(Hn,x

j+1/2,k − Ln,xj+1/2,k), Gn,y
j,k+1/2 :=

4∆t
∆y

(Hn,y
j,k+1/2 − L

n,y
j,k+1/2), we obtain the convex splitting form for the high-order solution

uH,n+1
j,k =

1

4
(uL,n+1

j,k −Gn,x
j+1/2,k) +

1

4
(uL,n+1

j,k +Gn,x
j−1/2,k)

+
1

4
(uL,n+1

j,k −Gn,y
j,k+1/2) +

1

4
(uL,n+1

j,k +Gn,y
j,k−1/2).

(4.21)

By introducing four scalar limiting parameters lx,±j,k and ly,±j,k , the limited second-order up-

date is given by

un+1
j,k (lx,±j,k , l

y,±
j,k ) :=

1

4
(uL,n+1

j,k − lx,+j,k G
n,x
j+1/2,k) +

1

4
(uL,n+1

j,k + lx,−j,k G
n,x
j−1/2,k)

+
1

4
(uL,n+1

j,k − ly,+j,k G
n,y
j,k+1/2) +

1

4
(uL,n+1

j,k + ly,−j,k G
n,y
j,k−1/2)

:=
1

4
ux,+j,k (lx,+j,k ) +

1

4
ux,−j,k (lx,−j,k ) +

1

4
uy,+j,k (ly,+j,k ) +

1

4
uy,−j,k (ly,−j,k ).

(4.22)

where lx,±j,k and ly,±j,k are computed such that each of the four states ux,+j,k (lx,+j,k ), ux,−j,k (lx,−j,k ),

uy,+j,k (ly,+j,k ), uy,−j,k (ly,−j,k ) satisfies the invariant domain property. Similar to the one dimen-
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sional case, we describe a given local constraint z at a cell (j, k) as the zero level setAzj,k of

a quasiconcave function Ψz
j,k and look for the largest positive numbers `x,±j,k , `

y,±
j,k ≤ 1 such

that the four states mentioned above are in Azj,k for any 0 ≤ lx,+j,k ≤ `x,+j,k , 0 ≤ lx,−j,k ≤ `x,−j,k

and 0 ≤ ly,+j,k ≤ `y,+j,k , 0 ≤ ly,−j,k ≤ `y,−j,k . Analogous to the one dimensional case, these

limiters are computed via line searches and one can use a single line search instead of four

by setting l = lx,+j,k = lx,−j,k = ly,+j,k = ly,−j,k , and this will work most of the time.

4.3 Invariant Domain via Slope/Polynomial Limiting

It is well known in literatures that other than the flux limiting, one can also reduce

oscillations via the slope limiting. Both limiting process are different but give similar

numerical results. In this section we describe a convex limiting procedure using slope

limiting for the KT-scheme, which could be extended to the more general polynomial

limiting for general high order schemes. The key difference is that the local invariant sets

to be enforced are now located at cell interfaces and are different from the local invariant

sets at cell centers used in the flux limiting, see § 4.1 and § 4.2.

4.3.1 Slope limiting For Second Order KT-Scheme

Here we will consider the second order KT-scheme. Recall that in the fully discrete

form of the KT-scheme (3.28) in one dimensional case and (3.31) in two dimensional

case, the numerical flux are all computed using the interface values. The core idea of

the slope limiting is to enforce these interface values to stay in a local invariant set via

making modification of the slope limiters which are used to determine these values. Still

the discussion will focus on the one dimensional case and the result of the two dimensional

case.

4.3.1.1 One Dimensional Case

We start with the one dimensional case. Let’s consider the fully discrete form of the

KT-scheme (3.27) and (3.28). Instead of enforcing un+1
j to be in the invariant set, we will

limit the interface values un,±j−1/2 and un,±j+1/2, which are given by the local linear recon-

structions. In general we know that the second order KT-scheme is not invariant domain
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preserving. However, we will prove a theorem that if the KT-scheme are modified such

that those interface values mentioned above are in the given local invariant set, then the up-

graded KT-scheme is going to be invariant domain preserving under a new CFL-condition.

Theorem 4.3.1. Let A be a convex invariant set of (1.27), n ≥ 0 and j ∈ Z be such that

unj and all interface values un,±j±1/2 are in A. Assume that the second-order solution un+1
j

is computed with the KT-scheme (3.27)-(3.28), where λnj−1/2 := λmax(un,−j−1/2,u
n,+
j−1/2,f)

and λnj+1/2 := λmax(un,−j+1/2,u
n,+
j+1/2,f). Let λnj,± := λmax(un,+j−1/2,u

n,−
j+1/2,f) be the in cell

local speed and we define the maximum local speed by λmax
j := max(λnj−1/2, λ

n
j+1/2, λ

n
j,±).

Then under the CFL condition
∆tλmax

j

∆x
≤ 1

4
, we have that un+1

j ∈ A.

Proof. Using the definition of λnj+1/2 we define the following bar state

ūn+1
j+1/2,± :=

un,+j+1/2 + un,−j+1/2

2
−

f(un,+j+1/2)− f(un,−j+1/2)

2λnj+1/2

. (4.23)

By assumption we have that un,+j+1/2 and un,−j+1/2 are all inA, then it follows by Lemma 2.1.1

that ūn+1
j+1/2,± is in the invariant set A. Similarly, we can prove that the bar state defined by

ūn+1
j−1/2,± :=

un,+j−1/2 + un,−j−1/2

2
−

f(un,+j−1/2)− f(un,−j−1/2)

2λnj−1/2

, (4.24)

is also in A. With this notations, we could rewrite the KT-scheme update as follows

un+1
j = unj +

∆t

∆x
λnj+1/2ū

n+1
j+1/2,± +

∆t

∆x
λnj−1/2ū

n+1
j−1/2,±

+
2∆t

∆x

(
−
λnj+1/2u

n,−
j+1/2

2
−
λnj−1/2u

n,+
j−1/2

2
−

f(un,−j+1/2)− f(un,+j−1/2)

2

)
.

(4.25)

We now define another bar state

ūn+1
j,± :=

un,+j−1/2 + un,−j+1/2

2
−

f(un,−j+1/2)− f(un,+j−1/2)

2λmax
j

(4.26)

which is also in the invariant setA since λmax
j ≥ λmax(un,+j−1/2,u

n,−
j+1/2,f), see Lemma 2.1.1.
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Plugging (4.26) into (4.25) and using the fact that
un,+
j−1/2

+un,−
j+1/2

2
= unj , we obtain

un+1
j =

(
1− 4

∆t

∆x
λmax
j

)
unj

+
∆t

∆x
λnj+1/2ū

n+1
j+1/2,± +

∆t

∆x
λnj−1/2ū

n+1
j−1/2,± +

2∆t

∆x
λmax
j ūn+1

j,±

+
∆t

∆x
(λmax

j − λnj−1/2)un,+j−1/2 +
∆t

∆x
(λmax

j − λnj+1/2)un,+j−1/2.

(4.27)

Under the CFL-condition
∆tλmax

j

∆x
≤ 1

4
, we have that un+1

j is a convex combination of

the cell center states unj , the interface states un,+j−1/2, un,+j−1/2 and the bar states ūn+1
j−1/2,±,

ūn+1
j+1/2,±, ūn+1

j,± . By assumption we have that the interface states un,+j−1/2, un,+j−1/2 are in the

invariant set A. Also we have shown that all bar states defined above are in A because of

the definition of λmax
j , then it follows by convexity that un+1

j ∈ A.

Remark. In order to obtain the invariant domain preserving solution we need to design

a limited piecewise linear reconstruction so that the interface values un,±j±1/2 are all in the

local invariant set A. If the local slope is set to be zero we will recover the first-order

solution, which must be in A by Theorem 3.2.1.

Now we are able to describe a convex slope limiting process which will guarantee

that the interface states un,−j−1/2 and un,+j−1/2 defined above are restricted to be in a given

local invariant set A. As before, we are going to impose a finite number of quasiconcave

constraints Ψz
j−1/2, where z ∈ {z1, . . . , zq} describes a certain type of constraint and we

assume that enforcing these constraints will also guarantee that the interface states un,−j−1/2

and un,+j−1/2 are in A as well. Similar to the flux limiting we denote by Azj+1/2 the zero level

set of Ψz
j+1/2, therefore enforcing u ∈ Azj+1/2 is equivalent to enforcing Ψz

j+1/2(u) ≥ 0.

By definition we have un,+j−1/2 = unj − ∆x
2

(unx)j and un,−j−1/2 = unj−1 + ∆x
2

(unx)j−1. In

general we take (unx)j to be the unlimited central slope or any classical slope limiters, see

§ 3.3.3. Here we take a novel approach by setting (unx)j = ljσ
a
j for any j ∈ Z, where

σa
j :=

unj+1−unj−1

2∆x
is the unlimited central slope and lj ∈ [0, 1] is a slope limiter. Thus we
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define the limited interface values as

un,+j−1/2(lj) = unj −
∆x

2
ljσ

a
j , un,−j−1/2(lj−1) = unj−1 +

∆x

2
lj−1σ

a
j−1. (4.28)

Similar to the flux limiting limitation, we need to find the largest positive values lz,−j and

lz,+j−1 such that for a given j both interface values un,+j−1/2(lz,−j ) and un,−j−1/2(lz,+j−1) are in

Azj−1/2. This is described in the following lemma.

Lemma 4.3.2. Let’s define `z,−j and `z,+j−1 to be

`z,−j =

1 if Ψz
j−1/2(un,+j−1/2(1)) ≥ 0,

max{`j ∈ [0, 1]|Ψz
j−1/2(un,+j−1/2(`j)) ≥ 0} otherwise.

(4.29)

`z,+j−1 =

1 if Ψz
j−1/2(un,−j−1/2(1)) ≥ 0,

max{`j−1 ∈ [0, 1]|Ψz
j−1/2(un,+j−1/2(`j−1)) ≥ 0} otherwise.

(4.30)

Then for all lz,−j ∈ [0, `z,−j ] and lz,+j−1 ∈ [0, `z,+j−1], it holds that Ψz
j−1/2(un,+j−1/2(lz,−j )) ≥ 0 and

Ψz
j−1/2(un,−j−1/2(lz,+j−1)) ≥ 0.

Remark. The proof of Lemma 4.3.2 is similar to the proof of Lemma 4.2.2, thus we omit

it here.

Let’s denote un+1
j (lj−1, lj, lj+1) to be the limited second-order update computed with

interface values un,−j−1/2(lj−1),un,+j−1/2(lj),u
n,−
j+1/2(lj),u

n,+
j+1/2(lj+1). Note that we will re-

cover the first-order solution if lj−1 = lj = lj+1 = 0 and the second-order solution if

lj−1 = lj = lj+1 = 1. Our goal is to find a set of local limiters such that the corresponding

solutions will satisfy the invariant domain preserving property. A straightforward applica-

tion of Theorem 4.3.1 and Lemma 4.3.2 gives the following result.

Lemma 4.3.3. Let `z,+j−1, l
z,−
j be the slope limiters computed via Lemma 4.3.2 for any j ∈ Z

and n ≥ 0. If we set `zj = min(`z,−j , `z,+j ) for j ∈ Z, then for all lzj ∈ [0, `zj ] we have that

un+1
j (lzj−1, l

z
j , l

z
j+1) ∈ Azj−1/2 ∪ Azj+1/2.
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Remark. The proof of Lemma 4.3.3 relies on the convexity of Azj−1/2 and Azj+1/2 and is

similar to the proof of Lemma 4.2.1, thus we omit it here.

Remark. Note that, the underlying assumption is that both sets Azj−1/2 and Azj+1/2 are in

a local invariant set A, which guarantees that the solution computed via Lemma 4.3.3 is in

A. Typically we pick up Azj−1/2 and Azj+1/2 specifically such that Azj−1/2 ∪ Azj+1/2 ⊂ Aj ,

which is the invariant set for the flux limiting.

We now describe the slope limiting algorithm for all local constraints as follows.

Algorithm 2 Convex slope limiting

Input: unj , un,+j−1/2, un,−j+1/2, z1, . . . , zq.

Output: un+1
j

1: for z = 1 to zq do

2: Compute limiting parameters `zj via Lemma 4.3.2 and Lemma 4.3.3.

3: end for

4: Set `j := minz∈{z1,...,zq} `
z
j for all j ∈ Z.

5: Update un+1,+
j−1/2 and un+1,−

j+1/2 .

6: Update un+1
j = un+1

j (`j−1, `j, `j+1).

7: Return un+1
j .

4.3.1.2 Two Dimensional Case

In the case of two space dimensions, we limit the second-order solution via a similar

approach. We consider the KT-scheme (3.30)-(3.31), where un,±j+1/2,k and un,±j,k+1/2 are the

interface values computed via local linear reconstructions. The following result establishes

the theory for slope limiting in two dimensional case.
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Theorem 4.3.4. Let A be a convex invariant set of system (1.3) for d = 2, n ≥ 0 and

j, k ∈ Z be such that unj,k and all interface values un,±j±1/2,k and un,±j,k±1/2 are all in A. As-

sume that the second-order solution un+1
j,k is computed with the KT-scheme (3.30)-(3.31),

where λn,xj−1/2,k := λmax(un,−j−1/2,k,u
n,+
j−1/2,k,f), λn,xj+1/2,k := λmax(un,−j+1/2,k,u

n,+
j+1/2,k,f),

λn,yj,k−1/2 := λmax(un,−j,k−1/2,u
n,+
j,k−1/2, g) and λn,yj,k+1/2 := λmax(un,−j,k+1/2,u

n,+
j,k+1/2, g) are

the interface local speeds. In addition we set the in cell local speeds to be λn,xj,k,± :=

λmax(un,+j−1/2,k,u
n,−
j+1/2,k,f) and λn,yj,k,± := λmax(un,+j,k−1/2,u

n,−
j,k+1/2, g) and define the maxi-

mum local speeds in the x− and the y−direction respectively by

λmax,x
j,k := max(λn,xj−1/2,k, λ

n,x
j+1/2,k, λ

n,x
j,k,±), (4.31)

λmax,y
j,k := max(λn,yj,k−1/2, λ

n,y
j,k+1/2, λ

n,y
j,k,±). (4.32)

Then under the CFL condition
∆tλmax,x

j,k

∆x
+

∆tλmax,y
j,k

∆y
≤ 1

4
, we have that un+1

j,k ∈ A.

Remark. The proof for Theorem 4.3.4 could be obtained by repeat the proof for Theo-

rem 4.3.1 in both x− and y− directions, thus we omit it here.

Now we describe the slope limiting algorithm in two dimensional case. First, we define

the limited interface values by

un,+j−1/2,k(l
x
j,k) = unj,k −

∆x

2
lxj,kσ

a,x
j,k , un,−j−1/2,k(l

x
j−1,k) = unj−1,k +

∆x

2
lxj−1,kσ

a,x
j−1,k,

un,+j,k−1/2(lyj,k) = unj,k −
∆y

2
lyj,kσ

a,y
j,k , un,−j,k−1/2(lyj,k−1) = unj,k−1 +

∆y

2
lyj,k−1σ

a,y
j,k−1.

where σa,x
j,k and σa,y

j,k are the two-dimensional central slopes defined by σa,x
j,k :=

unj+1,k−u
n
j−1,k

2∆x

and σa,y
j,k :=

unj,k+1−u
n
j,k−1

2∆y
, lxj,k, l

y
j,k ∈ [0, 1] are the to be determined slope limiters. For

a given constraint z, let Az,xj±1/2,k and Az,yj,k±1/2 be the local invariant sets at cell inter-

faces [xj−1/2, xj+1/2]× [yk−1/2, yk+1/2] such that Az,xj±1/2,k and Az,yj,k±1/2 are all in A. Using

Lemma 4.3.2 and Lemma 4.3.3, we could find largest positive lxj,k, l
y
j,k ∈ [0, 1] such that

un,+j−1/2,k(l
x
j,k),u

n,−
j−1/2,k(l

x
j−1,k) ∈ A

z,x
j−1/2,k and un,+j,k−1/2(lyj,k),u

n,−
j,k−1/2(lyj,k−1) ∈ Az,yj,k−1/2 for

all j, k ∈ Z. Therefore, we obtain the limited solution un+1
j,k which is in A.
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4.3.2 Polynomial Limiting For Third/Fourth Order Central Schemes

As explained in § 4.3.1, the core idea of slope limiting is to limit the interface values

computed via a local slope reconstruction. This idea could be naturally extended to a

central scheme using a polynomial reconstruction of any order by applying a limiter to the

polynomial. We’ve seen in § 3.3 and § 3.4 that a high order central scheme has a similar

fully discrete form to the KT-scheme while the only difference is the numerical flux due to

the local reconstructions of different orders. Therefore, a new CFL-condition is required

for the limited solution to be invariant domain preserving for a general high order central

scheme. Our discussion will be restricted to the third order reconstruction (3.45)-(3.47)

and the fourth order reconstruction (3.57)-(3.59) in one dimensional case. Notice that, in

order to complete the method, we also require that the auxiliary state û defined by (3.47)

and (3.59) are in the corresponding invariant set. For two dimensional case we only present

the result without any derivation.

4.3.2.1 One Dimensional Case

We start by considering the one dimensional case and give the following result, which

is analogous to Theorem 4.3.1

Theorem 4.3.5. Let A be a convex invariant set of system (1.27). Assume that the general

high order solution un+1
j is computed via (3.48)-(3.49), with the local reconstruction de-

fined by (3.45) (third order) or (3.46) (fourth order) and the auxiliary state ûnj defined by

(3.47). Let n ≥ 0 and j ∈ Z be such that unj , all interface values un,±j±1/2 and ûnj are in A.

Also we take λnj−1/2 := λmax(un,−j−1/2,u
n,+
j−1/2,f) and λnj+1/2 := λmax(un,−j+1/2,u

n,+
j+1/2,f) to

be the interface local speeds and let λnj,± := λmax(un,+j−1/2,u
n,−
j+1/2,f) be the in cell local

speed. Then we define the maximum local speed by λmax
j := max(λnj−1/2, λ

n
j+1/2, λ

n
j,±).

Therefore under the CFL condition
∆tλmax

j

∆x
≤ 1

12
, we have that un+1

j ∈ A.

Proof. The proof is similar to Theorem 4.3.1. Using the definition of λnj+1/2 and λnj+1/2
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we define the following bar states

ūn+1
j+1/2,± :=

un,+j+1/2 + un,−j+1/2

2
−

f(un,+j+1/2)− f(un,−j+1/2)

2λnj+1/2

, (4.33a)

ūn+1
j−1/2,± :=

un,+j−1/2 + un,−j−1/2

2
−

f(un,+j−1/2)− f(un,−j−1/2)

2λnj−1/2

, . (4.33b)

By assumption we have that un,±j+1/2 and un,±j−1/2 are all inA, then it follows by Lemma 2.1.1

that ūn+1
j+1/2,± and ūn+1

j−1/2,± are both in the invariant set A. Similarly, we could define

another bar state

ūn+1
j,± :=

un,−j+1/2 + un,+j−1/2

2
−

f(un,−j+1/2)− f(un,+j−1/2)

2λmax
j

. (4.34)

Using the fact that λmax
j ≥ λnj,±, by Lemma 2.1.1 we have that ūn+1

j,± is also in A. Now by

plugging (3.48) into (3.49) and use the bar states defined above, we could rewrite the fully

discrete update as follows

un+1
j = unj −

4∆t

∆x
λmax
j

(u−j+1/2 + u+
j−1/2

2

)
+

∆t

∆x
λnj+1/2ū

n+1
j+1/2,± +

∆t

∆x
λnj−1/2ū

n+1
j−1/2,±

+
2∆t

∆x
λmax
j ūn+1

j,±

+
∆t

∆x
(λmax

j − λnj−1/2)un,+j−1/2 +
∆t

∆x
(λmax

j − λnj+1/2)un,+j−1/2.

(4.35)

Using the fact that u−j+1/2 = pj(xj+1/2) and u+
j−1/2 = pj(xj−1/2) with pj(x) defined by

(3.45), we have that
u−j+1/2 + u+

j−1/2

2
= ûnj +

∆x2

8
u′′j . (4.36)

Also by (3.47) we have that

u′′j =
24

∆x2
(unj − ûnj ). (4.37)
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Now plug (4.36) and (4.37) into (4.35) we obtain

un+1
j = (1− 12∆t

∆x
λmax
j )unj +

8∆t

∆x
λmax
j ûnj

+
∆t

∆x
λnj+1/2ū

n+1
j+1/2,± +

∆t

∆x
λnj−1/2ū

n+1
j−1/2,±

+
2∆t

∆x
λmax
j ūn+1

j,±

+
∆t

∆x
(λmax

j − λnj−1/2)un,+j−1/2 +
∆t

∆x
(λmax

j − λnj+1/2)un,+j−1/2.

(4.38)

Therefore, under the CFL-condition
∆tλmax

j

∆x
≤ 1

12
, we have that un+1

j is a convex combina-

tion of the cell center states unj , the auxiliary state ûnj , the interface states un,+j−1/2, un,+j−1/2

and the bar states ūn+1
j−1/2,±, ūn+1

j+1/2,±, ūn+1
j,± . By assumption we have that the auxiliary state

ûnj and the interface states un,+j−1/2, un,+j−1/2 are all in the invariant set A. Also we have

shown that all bar states defined above are in A because of the definition of λmax
j , then it

follows by convexity that un+1
j ∈ A.

Now we describe the convex polynomial limiting algorithm which enforces the inter-

face states un,−j−1/2, un,+j−1/2 and the auxiliary value ûnj to be in a given local invariant set

A.

For interface states un,−j−1/2 and un,+j−1/2, let’s take the similar settings to the second

order case, that is, we impose a finite number of quasiconcave constraints Ψz
j−1/2, where

each z ∈ {z1, . . . , zq} denotes a certain constraint and we assume that enforcing these

constraints will guarantee that the interface states un,−j−1/2 and un,+j−1/2 are in A. Still we

denote by Azj+1/2 the zero level set of Ψz
j+1/2, so enforcing u ∈ Azj+1/2 is equivalent to

enforcing Ψz
j+1/2(u) ≥ 0.

For the auxiliary state ûnj defined by (3.47), similarly we impose a set of quasiconcave

constraints Ψz
j for the same z ∈ {z1, · · · , zq} mentioned above and we assume that en-

forcing these constraints implies that ûnj is in A. Still we denote by Azj the zero level set

of Ψz
j , therefore enforcing u ∈ Azj is equivalent to enforcing Ψz

j(u) ≥ 0.

Now assume that pj(x) is defined by (3.45) (third order case) or (3.46) (fourth order
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case). Similar to the discussion in § 3.4.3, we introduce an auxiliary function prj(x) such

that

pj(x) = unj + prj(x) for all x ∈ Ij, (4.39)

and we can prove that ∫
Ij

prj(x) = 0. (4.40)

Then by introducing lj ∈ [0, 1] to be the polynomial limiter, we have that the limited

polynomial reconstruction is given by

plj(x) := unj + ljp
r
j(x). (4.41)

Notice that by (4.40) we have ∫
Ij

plj(x) = unj , (4.42)

which implies that plj(x) is conservative on Ij . Now by setting

pr,−j := prj(xj−1/2), pr,+j−1 := prj−1(xj−1/2) (4.43)

we could define the limited interface values as

un,+j−1/2(lj) = plj(xj−1/2) = unj + ljp
r,−
j , (4.44a)

un,−j−1/2(lj−1) = plj−1(xj−1/2) = unj−1 + lj−1p
r,+
j−1. (4.44b)

Also by (3.47) we have that

ûnj = unj −
∆x2

24
u′′j , (4.45)

therefore we could set the limited auxiliary value to be

ûnj (lj) = unj + lju
r
j , (4.46)
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where urj = −∆x2

24
u′′j .

Similar to the KT-scheme, for a given constraint z and index j, let Azj+1/2 and Azj−1/2

be the local invariant sets at cell interfaces xj−1/2 and xj+1/2 separately, such that Azj+1/2

and Azj−1/2 are all in A. Also let Azj be the local invariant sets at cell centers xj , which

is also in A. Then using Lemma 4.3.2 and Lemma 4.3.3, we could find largest positive

lj ∈ [0, 1] such that un,+j−1/2(lj),u
n,−
j−1/2(lj−1) ∈ Azj−1/2 and ûnj (lj) ∈ Azj for all j ∈ Z. By

Theorem 4.3.5 we claim that the limited solution un+1
j is also in A. This procedure can

also be described by Algorithm 2, the only difference is the computation of `zj in Step 2.

4.3.2.2 Two Dimensional Case

In the case of two space dimensions, we limit the high-order solution via a similar

approach. We consider the high order central scheme (3.60)-(3.62), where the interface

values are defined by (3.63). The following result establishes the theory for polynomial

limiting in two dimensional case.

Theorem 4.3.6. Let A be a convex invariant set of system (1.3) with d = 2. Assume that

the high order solution un+1
j,k is computed with the high order central scheme (3.60)-(3.62)

with local reconstruction (3.57) (third order) or (3.58) (fourth order) and auxiliary state

ûnj,k defined by (3.59). Let n ≥ 0 and j, k ∈ Z be such that unj,k, all interface values

defined by (3.63) and ûnj,k are in A. The local speed of propagation λn,xj+1/2,k and λn,yj,k+1/2

are defined by (3.64). Also, we define the in cell local speeds to be

λn,xj,k = max(λNj,k, λ
C
j,k, λ

S
j,k), λn,yj,k,± = max(λEj,k, λ

C
j,k, λ

W
j,k) (4.47)

where λXj,k := λmax(uXWj,k ,uXEj,k ,f) and λYj,k := λmax(uSYj,k ,u
NY
j,k , g) for X ∈ {S,C,N}

and Y ∈ {W,C,E} separately. By setting the local speeds to be λ̃max,x
j,k and λ̃max,y

j,k such

that λ̃max,x
j,k ≥ max(λn,xj−1/2,k, λ

n,x
j+1/2,k, λ

n,x
j,k ) and λ̃max,y

j,k ≥ max(λn,yj,k−1/2, λ
n,y
j,k+1/2, λ

n,y
j,k ), we

define the maximum local speeds in the x− and the y−direction respectively by

λmax,x
j,k = θj,k∆x, λmax,y

j,k = θj,k∆y, (4.48)
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where θj,k := max(
λ̃max,x
j,k

∆x
,
λ̃max,y
j,k

∆y
). Then under the CFL condition ∆tθj,k ≤ 1

16
, we have

that un+1
j,k ∈ A.

Proof. The proof for Theorem 4.3.6 is analogs to the proof of Theorem 4.3.5. First we

consider the x−direction. By definition we have λmax,x
j,k ≥ λ̃max,x

j,k . Therefore, for X ∈

{S,C,N}, we have

1

2
(f(uXWj,k ) + f(uXEj−1,k)− λ

n,x
j−1/2,k(u

XW
j,k − uXEj−1,k))

− 1

2
(f(uXWj+1,k) + f(uXEj,k )− λn,xj+1/2,k(u

XW
j+1,k − uXEj,k ))

=λn,xj−1/2,kū
X
j−1/2,k + λn,xj+1/2,kū

X
j+1/2,k + 2λmax,x

j,k ūXj,k

+ (λmax,x
j,k − λn,xj−1/2,k)u

XW
j,k + (λmax,x

j,k − λn,xj+1/2,k)u
XE
j,k

− 2λmax,x
j,k (uXWj,k + uXEj,k ),

(4.49)

where the bar states are defined by

ūXj−1/2,k :=
uXEj−1,k + uXWj,k

2
−

f(uXWj,k )− f(uXEj−1,k)

2λn,xj−1/2,k

, (4.50a)

ūXj+1/2,k :=
uXEj,k + uXWj+1,k

2
−

f(uXWj+1,k)− f(uXEj,k )

2λn,xj+1/2,k

, (4.50b)

ūXj,k :=
uXWj,k + uXEj,k

2
−

f(uXEj,k )− f(uXWj,k )

2λmax,x
j,k

. (4.50c)

Next we consider the y−direction. By definition we have λmax,y
j,k ≥ λ̃max,y

j,k . Therefore, for

Y ∈ {W,C,E} similarly we have that

1

2
(f(uSYj,k ) + f(uNYj,k−1)− λn,yj,k−1/2(uSYj,k − uNYj,k−1))

− 1

2
(f(uSYj,k+1) + f(uNYj,k )− λn,yj,k+1/2(uSYj,k+1 − uNYj,k ))

=λn,yj,k−1/2ū
Y
j,k−1/2 + λn,yj,k+1/2ū

Y
j,k+1/2 + 2λmax,y

j,k ūYj,k

+ (λmax,y
j,k − λn,yj,k−1/2)uSYj,k + (λmax,y

j,k − λn,yj,k+1/2)uNYj,k

− 2λmax,y
j,k (uSYj,k + uNYj,k ),

(4.51)
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where

ūYj,k−1/2 :=
uNYj,k−1 + uSYj,k

2
−

f(uSYj,k )− f(uNYj,k−1)

2λn,yj,k−1/2

, (4.52a)

ūYj,k+1/2 :=
uNYj,k + uSYj,k+1

2
−

f(uSYj,k+1)− f(uNYj,k )

2λn,yj,k+1/2

, (4.52b)

ūYj,k :=
uSYj,k + uNYj,k

2
−

f(uNYj,k )− f(uNYj,k )

2λmax,y
j,k

. (4.52c)

Now plug (4.49)-(4.52) into the high order central scheme (3.60)-(3.62), we obtain

un+1
j,k = unj,k

− 1

3

∆t

∆x

[
λmax,x
j,k ((uSWj,k + uSEj,k ) + 4(uCWj,k + uCEj,k ) + (uNWj,k + uNEj,k ))

]
− 1

3

∆t

∆y

[
λmax,y
j,k ((uSWj,k + uNWj,k ) + 4(uSCj,k + uNCj,k ) + (uSEj,k + uNEj,k ))

]
+

1

6

∆t

∆x

[
λn,xj−1/2,k(ū

S
j−1/2,k + 4ūCj−1/2,k + ūNj−1/2,k)

+ λn,xj+1/2,k(ū
S
j+1/2,k + 4ūCj+1/2,k + ūNj+1/2,k)

+ 2λmax,x
j,k (ūSj,k + 4ūCj,k + ūNj,k)

+ (λmax,x
j,k − λn,xj−1/2,k)(u

SW
j,k + 4uCWj,k + uNWj,k ) (4.53)

+ (λmax,x
j,k − λn,xj+1/2,k)(u

SE
j,k + 4uCEj,k + uNEj,k )

]
+

1

6

∆t

∆y

[
λn,yj,k−1/2(ūWj,k−1/2 + 4ūCj,k−1/2 + ūEj,k−1/2)

+ λn,yj,k+1/2(ūWj,k+1/2 + 4ūCj,k+1/2 + ūEj,k+1/2)

+ 2λmax,y
j,k (ūWj,k + 4ūCj,k + ūEj,k)

+ (λmax,y
j,k − λn,yj,k−1/2)(uSWj,k + 4uSCj,k + uSEj,k )

+ (λmax,y
j,k − λn,yj,k+1/2)(uNWj,k + 4uNCj,k + uNEj,k )

]
Using interface value defined by (3.63) and the polynomial defined by (3.57)-(3.59), we
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have that
(uSWj,k + uSEj,k ) + 4(uCWj,k + uCEj,k ) + (uNWj,k + uNEj,k )

= 12ûnj,k +
3∆x2

2
(unxx)j,k +

∆y2

2
(unyy)j,k.

(4.54)

and
(uSWj,k + uNWj,k ) + 4(uSCj,k + uNCj,k ) + (uSEj,k + uNEj,k )

= 12ûnj,k +
∆x2

2
(unxx)j,k +

3∆y2

2
(unyy)j,k.

(4.55)

Now plug (4.54) and (4.55) into (4.53) and use the fact that ûnj,k = unj,k− 1
24

(∆x2(unxx)j,k+

∆y2(unyy)j,k) from (3.59), also notice that by (4.48) we have that
λmax,x
j,k

∆x
=

λmax,y
j,k

∆y
= θj,k. It

follows that (4.53) could be rewritten as

un+1
j,k = (1− 16∆tθj,k)u

n
j,k + 8∆tθj,kû

n
j,k

+
∆tλn,xj−1/2,k

∆x

(ūSj−1/2,k + 4ūCj−1/2,k + ūNj−1/2,k

6

)
+

∆tλn,xj+1/2,k

∆x

(ūSj+1/2,k + 4ūCj+1/2,k + ūNj+1/2,k

6

)
+ 2∆tθj,k

(ūSj,k + 4ūCj,k + ūNj,k
6

)
+
(
∆tθj,k −

∆tλn,xj−1/2,k

∆x

)(uSWj,k + 4uCWj,k + uNWj,k
6

)
(4.56)

+
(
∆tθj,k −

∆tλn,xj+1/2,k

∆x

)(uSEj,k + 4uCEj,k + uNEj,k
6

)
+

∆tλn,yj,k−1/2

∆y

(ūWj,k−1/2 + 4ūCj,k−1/2 + ūEj,k−1/2

6

)
+

∆tλn,yj,k+1/2

∆y

(ūWj,k+1/2 + 4ūCj,k+1/2 + ūEj,k+1/2

6

)
+ 2∆tθj,k

(ūWj,k + 4ūCj,k + ūEj,k
6

)
+
(
∆tθj,k −

∆tλn,yj,k−1/2

∆y

)(uSWj,k + 4uSCj,k + uSEj,k
6

)
+
(
∆tθj,k −

∆tλn,yj,k+1/2

∆y

)(uNWj,k + 4uNCj,k + uNEj,k
6

)
It is clear that (4.56) is a convex combination of values in A if the CFL condition
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∆tθj,k ≤ 1
16

holds. Therefore we have that un+1
j,k is in A, which completes our proof.

Finally we give the following approach which describes the polynomial limiting algo-

rithm for two dimensional case. For simplicity we denote [xj−1/2, xj+1/2]×[yk−1/2, yk+1/2]

by Ij,k in our discussion. Similar to the discussion in § 4.3.2.1, we introduce the auxiliary

functions prj,k(x, y) such that

pj,k(x, y) = unj,k + prj,k(x, y) for all (x, y) ∈ Ij,k, (4.57)

and have ∫
Ij,k

prj,k(x, y) = 0. (4.58)

Then by introducing lj,k ∈ [0, 1] to be the polynomial limiter, we could give the limited

polynomial reconstruction as

plj(x, y) := unj,k + lj,kp
r
j,k(x, y). (4.59)

Notice that by (4.58) we have

∫
Ij,k

plj,k(x, y) = unj,k, (4.60)

which implies that plj,k(x, y) is conservative on Ij,k. Now by setting

pr,NCj,k := prj,k(xj, yk+1/2), pr,SCj,k := prj,k(xj, yk−1/2),

pr,CEj,k := prj,k(xj+1/2, yk), pr,CWj,k := prj,k(xj−1/2, yk),

pr,NEj,k := prj,k(xj+1/2, yk+1/2), pr,NWj,k := prj,k(xj−1/2, yk+1/2),

pr,SEj,k := prj,k(xj+1/2, yk−1/2), pr,SWj,k := prj,k(xj−1/2, yk−1/2),

(4.61)

we could define the limited interface values as

uXYj,k (lj,k) = unj,k + lj,kp
r,XY
j,k , (4.62)
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where XY ∈ IXY := {SW,SC, SE,CW,CE,NW,NC,NE}. Also we define the lim-

ited auxiliary state to be

ûnj,k(lj,k) = unj,k + lj,k(−
1

24
(∆x2

(
unxx)j,k + ∆y2(unyy)j,k)

)
, (4.63)

for ûnj,k is defined by (3.59). Similar to the one dimensional case, for a given constraint z

and index j, k, let Az,XYj,k be the local invariant sets for the (j, k)−cell, such that

Az,XYj,k ∈ A, for X ∈ {S,C,N}, Y ∈ {W,C,E},

Az,NEj−1,k−1 ∈ A, Az,NCj,k−1 ∈ A, Az,NWj+1,k−1 ∈ A,

Az,CEj−1,k ∈ A, Az,CWj+1,k ∈ A,

Az,SEj−1,k+1 ∈ A, Az,SCj,k+1 ∈ A, Az,SWj+1,k+1 ∈ A.

(4.64)

Then using Lemma 4.3.2 and Lemma 4.3.3, we could find largest positive lj,k ∈ [0, 1] such

that
uXYj,k (lj,k) ∈ Az,XYj,k , for XY ∈ IXY ,

ûnj,k(lj,k) ∈ A
z,CC
j,k ,

(4.65)

and
uNEj−1,k−1(lj−1,k−1) ∈ Az,NEj−1,k−1, uNCj,k−1(lj,k−1) ∈ Az,NCj,k−1,

uNWj+1,k−1(lj+1,k−1) ∈ Az,NWj+1,k−1,

uCEj−1,k(lj−1,k) ∈ Az,CEj−1,k, uCWj+1,k(lj+1,k) ∈ Az,CWj+1,k ,

uSEj−1,k+1(lj−1,k+1) ∈ Az,SEj−1,k+1, uSCj,k+1(lj,k+1) ∈ Az,SCj,k+1,

uSWj+1,k+1(lj+1,k+1) ∈ Az,SWj+1,k+1,

(4.66)

hold for all j, k ∈ Z. Therefore, we claim that the limited solution un+1
j,k is in A.

4.4 Application to Compressible Euler Systems

In this section, we will illustrate how to apply the three types of convex limiting pro-

cesses stated in § 4 for hyperbolic systems discussed in § 1.3. More specifically, we will

explain how to implement the quasiconcave limitations defined in § 4. In general the
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constraints we considered could be divided into linear constraints and nonlinear concave

constraints. Examples for linear constraints are maximum/minimum principle for u in

scalar equations and for the density ρ in Euler systems. Example for nonlinear concave

constraints are the constraints on Riemann invariants w1, w2 in the P-system and minimum

principle of specific entropy s in the Euler system. For simplicity we will only explain how

to apply the limiting process on the compressible Euler system, which covers both the lin-

ear constraint and nonlinear concave constraint. In all our discussion, we have to modify

some of the denominators in order to avoid division by zero. A typical way is to add a

small number to the denominator. Usually this small number is computed by timing ε to

a fixed bound of the local invariant set, where ε = 10−16 is the machine error. Still, our

discussion will be restricted to one space dimension.

Now let’s we consider the compressible Euler system (1.16) and the quasiconcave

constraints defined in § 4.1.3. We illustrate the flux limiting, slope limiting and polynomial

limiting separately as follows.

4.4.1 Flux limiting

Using the same notation as in § 4.1.1, we define Gn
j+1/2 := (Gρ,n

j+1/2, G
m,n
j+1/2, G

E,n
j+1/2)>,

u+
j (l) := (ρ+

j (l),m+
j (l), E+

j (l))> and u−j (l) := (ρ−j (l),m−j (l), E−j (l))>, where u+
j (l) =

uL,n+1
j − l+j Gn

j+1/2 and u−j (l) = uL,n+1
j + l−j G

n
j−1/2. Then we perform the flux limiting

process as follows:

4.4.1.1 Limitation On Density

To limit the first component of the density ρ, we first set

ψ1,+
j (l) := Ψ1

j(ρ
+
j (l)) = ρn,max

j − ρL,n+1
j + lGρ,n

j+1/2, (4.67a)

ψ2,+
j (l) := Ψ2

j(ρ
+
j (l)) = ρL,n+1

j − lGρ,n
j+1/2 − ρ

n,min
j , (4.67b)
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and compute the limiters for ρ+
j by

lρ,+j =


min(

|ρn,max
j −ρL,n+1

j |
|Gρ,n
j+1/2

|+ερj
, 1) if ψ1,+

j (1) < 0,

1 if ψ1,+
j (1) ≥ 0 & ψ2,+

j (1) ≥ 0,

min(
|ρL,n+1
j −ρn,min

j |
|Gρ,n
j+1/2

|+ερj
, 1) if ψ2,+

j (1) < 0,

(4.68)

where we take ερj = ερn,max
j to avoid division by zero. For the second component of ρ, we

set

ψ1,−
j (l) := Ψ1

j(ρ
−
j (l)) = ρn,max

j − ρL,n+1
j + lGρ,n

j−1/2, (4.69a)

ψ2,−
j (l) := Ψ2

j(ρ
−
j (l)) = ρL,n+1

j − lGρ,n
j−1/2 − ρ

n,min
j , (4.69b)

and compute lρ,−j using the same approach. Therefore, the limiter on density is defined by

lρj = min(lρ,+j , lρ,−j ).

4.4.1.2 Limitation On Specific Entropy

For limitation on the specific entropy s, we use functions ψ3,+
j (l) := Ψ3

j(u
+
j (l)) =

(ρL,n+1
j − lGρ,n

j+1/2)(e(uL,n+1
j − lGn

j+1/2)) − cn,min
j (ρL,n+1

j − lGρ,n
j+1/2)γ and ψ3,−

j (l) :=

Ψ3
j(u

+
j (l)) = (ρL,n+1

j −lGρ,n
j−1/2)(e(uL,n+1

j −lGn
j−1/2))−cn,min

j (ρL,n+1
j −lGρ,n

j−1/2)γ , both of

which are concave down of l. We define ls,+j as follows. If ψ3,+
j (min(1, lρ,+j )) ≥ 0, we take

ls,+j = min(1, lρ,+j ); if ψ3,+
j (0) > 0 and ψ3,+

j (min(1, lρ,+j )) < 0, we define ls,+j to be the

unique positive root of ψ3
j (l) = 0; if ψ3

j (0) = 0 and ψ3
j (min(1, lρ,+j )) < 0, then ψ3

j (l) = 0

has exactly two roots and we take ls,+j to be the largest nonnegative root of ψ3
j (l) = 0. Also

we compute ls,−j using the same approach. Therefore we define the limiter for the specific

entropy to be lsj = min(ls,+j , ls,−j ).

Remark. If ψ(l) is a concave down function of l, la, lb ∈ R be such that ψ(la) > 0 and

Ψ(lb) < 0, we could combine the secant method and the Newton method to compute the

root l0 of f with la < l0 < lb. By doing so we could always guarantee that ψ(l0) ≥ 0,

which implies that u(l0) is inside or on the boundary of the zero level set of ψ.
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Remark. Recall that the constraint ρe − cn,min
j ργ ≥ 0 guarantees e ≥ en,min

j only if we

have already limited ρ such that ρ ≥ 0, see § 4.1.3. Therefore we use min(1, lρj ) instead of

1 in our limiting process of the specific entropy

4.4.2 Slope limiting

We first construct the local invariant constraints at cell interface xj−1/2 by setting

ρn,min
j−1/2 := min(ρnj , ρ

n
j−1, ρ̄

n+1
j−1/2), ρn,max

j−1/2 := max(ρnj , ρ
n
j−1, ρ̄

n+1
j−1/2),

sn,min
j−1/2 := min(Φ(unj ),Φ(unj−1),Φ(ūn+1

j−1/2)),
(4.70)

where Φ(u) = s(ρ, e) as defined in § 4.4.1. Analogous to the flux limiting case, we set

Ψ1
j−1/2(u) = un,max

j−1/2 − ρ, Ψ2
j−1/2(u) = ρ− ρn,min

j−1/2,

Ψ3
j−1/2(u) = ρe− cn,min

j−1/2ρ
γ,

(4.71)

where cn,min
j−1/2 = exp((γ−1)sn,min

j−1/2). We impose the invariant domain property by enforcing

Ψ1
j−1/2(u),Ψ2

j−1/2(u),Ψ3
j−1/2(u) ≥ 0 on each interface. Using the same notation as in

§4.3.1, we denote σa
j := (σa,ρ

j , σa,m
j , σa,E

j )> to be the unlimited central slope and define the

limited interface values as follows

u−j+1/2(l) := unj +
∆x

2
lσa
j , u+

j−1/2(l) := unj −
∆x

2
lσa
j . (4.72)

Thus we could perform the slope limiting to the solutions on the boundary.

4.4.2.1 Limitation On Density

Depending on the sign of σρj , we limit the density ρ as follows:

(i) If σρj > 0, we set

lρj = min(
|ρn,max
j+1/2 − ρnj |

|∆x
2
σa,ρj |+ ερj+1/2

,
|ρnj − ρ

n,min
j−1/2|

|∆x
2
σa,ρj |+ ερj−1/2

, 1), (4.73)
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where ερj+1/2 = ερn,max
j+1/2 and ερj−1/2 = ερn,min

j−1/2.

(ii) If σρj < 0, we set

lρj = min(
|ρnj − ρ

n,min
j+1/2|

|∆x
2
σa,ρj |+ ερj+1/2

,
|ρn,max
j−1/2 − ρnj |

|∆x
2
σa,ρj |+ ερj−1/2

, 1). (4.74)

where ερj+1/2 = ερn,min
j+1/2 and ερj−1/2 = ερn,max

j−1/2.

(iii) If σρj = 0, we take lρj = 1.

4.4.2.2 Limitation On Specific Entropy

For limitation on the specific entropy s, we will enforce Ψ3
j+1/2(u−j+1/2(l)) ≥ 0 and

Ψ3
j−1/2(u+

j−1/2(l)) ≥ 0. Therefore we denote ψ+
j (l) = Ψ3

j+1/2(u−j+1/2(l)) and ψ−j (l) =

Ψ3
j−1/2(u+

j−1/2(l)). Note that ψ+
j and ψ−j are both concave-down of l. Following the same

approach as in §4.4.1.2, we compute ls,+j and ls,−j using the Newton-Secant approach and

the slope limiter for density lρj . Then, the slope limiter for the specific entropy is defined

as lsj = min(ls,+j , ls,−j ). After all limitation we obtain the following result.

Lemma 4.4.1. Let lj = lsj for all j ∈ Z, then for any l ∈ [0, lj] and z = 1, 2, 3, we have

that Ψz
j−1/2(u+

j−1/2(l)) ≥ 0 and Ψz
j+1/2(u−j+1/2(l)) ≥ 0.

4.4.3 Polynomial Limiting

The polynomial limiting process is similar to the slope limiting process. The difference

is that we also have to limit the auxiliary value ûnj .

Similar to § 4.4.2, we first set the invariant constraints at cell interface to be

ρn,min
j−1/2 := min(ρnj , ρ

n
j−1, ρ̄

n+1
j−1/2), ρn,max

j−1/2 := max(ρnj , ρ
n
j−1, ρ̄

n+1
j−1/2),

sn,min
j−1/2 := min(Φ(unj ),Φ(unj−1),Φ(ūn+1

j−1/2)),
(4.75)

where Φ(u) = s(ρ, e) as defined in § 4.4.1.while the corresponding quasiconcave con-
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straints are written by

Ψ1
j−1/2(u) = un,max

j−1/2 − ρ, Ψ2
j−1/2(u) = ρ− ρn,min

j−1/2,

Ψ3
j−1/2(u) = ρe− cn,min

j−1/2ρ
γ.

(4.76)

Using the same notation in (4.43), see § 4.3.2.1, we define

u−j+1/2(l) := unj + lpr,+j , u+
j−1/2(l) := unj + lpr,−j , (4.77)

where pr,+j := (pρ,r,+j , pm,r,+j , pE,r,+j )> and pr,−j := (pρ,r,−j , pm,r,−j , pE,r,−j )>.

For the auxiliary value û, we set the invariant constraints to be

ρn,min
j := min(ρnj , ρ̄

n+1
j+1/2, ρ̄

n+1
j−1/2), ρn,max

j := max(ρnj , ρ̄
n+1
j+1/2, ρ̄

n+1
j−1/2),

sn,min
j := min(snj , s̄

n+1
j+1/2, s̄

n+1
j−1/2)

(4.78)

and set the corresponding quasiconcave constraints to be

Ψ1
j(u) = ρn,max

j − ρ, Ψ2
j(u) = ρ− ρn,min

j ,

Ψ3
j(u) = ρe− cn,min

j ργ,
(4.79)

where cn,min
j = exp((γ − 1)sn,min

j ). Using the notation in (4.46), see § 4.3.2.1, we define

ûnj (lj) = unj + lurj , (4.80)

where urj := (uρ,rj ,um,rj ,uE,rj )>.

Using the notations defined above, we are able to limit the density and specific entropy

separately as follows.

4.4.3.1 Limitation On Density

Here we apply the limiting process on density ρ. Note that it includes a limitation on

the interface values and a limitation on the auxiliary values.
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(i) We first limit the interface values by setting

lρ = min(lρ,+j , lρ,−j ), (4.81)

where

lρ,+j =



|ρn,max
j+1/2

−pρ,r,+j |

|pρ,r,+j |+ερ
j+1/2

if pρ,r,+j > 0,

|pρ,r,+j −ρn,min
j+1/2

|

|pρ,r,+j |+ερ
j+1/2

if pρ,r,+j < 0,

1 if pρ,r,+j = 0,

(4.82)

and

lρ,−j =



|ρn,max
j−1/2

−pρ,r,+j |

|pρ,r,+j |+ερ
j−1/2

if pρ,r,−j > 0,

|pρ,r,+j −ρn,min
j−1/2

|

|pρ,r,+j |+ερ
j−1/2

if pρ,r,−j < 0,

1 if pρ,r,−j = 0,

(4.83)

Still we take ερj+1/2 = ερn,max
j+1/2 or ερj+1/2 = ερn,min

j+1/2 to avoid division by zero.

(ii) To limit the auxiliary values we set

lρ,cj =



|ρn,max
j −ρrj |
|ρrj |+ε

ρ
j

if ρrj > 0,

|ρrj−ρ
n,min
j |

|ρrj |+ε
ρ
j

if ρrj < 0,

1 if ρrj = 0,

(4.84)

where ερj = ερn,max
j or ερj = ερn,min

j .

Thus we take the limiter for density to be

lρj = min(lρ,+j , lρ,−j , lρ,cj ). (4.85)
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4.4.3.2 Limitation On Specific Entropy

Still our limitation of the specific entropy will be applied to the interface values and

auxiliary values separately.

(i) We limit the interface values by enforcing Ψ3
j+1/2(u−j+1/2(l)),Ψ3

j−1/2(u+
j−1/2(l)) ≥ 0.

Similarly we denote ψ+
j (l) = Ψ3

j+1/2(u−j+1/2(l)) and ψ−j (l) = Ψ3
j−1/2(u+

j−1/2(l)),

which are both concave-down functions of l. Following the same approach as in

§4.4.1.2, we compute ls,+j and ls,−j using the Newton-Secant approach with lρj to be

the starting point. Therefore, the polynomial limiter based on the interface values is

defined by ls,±j = min(ls,+j , ls,−j ).

(ii) We limit the auxiliary value in a similar way, that is, we enforce Ψ3
j(û

n
j (l)) ≥ 0.

Similarly we take ψj(l) := Ψ3
j(û

n
j (l)), which is a concave down function of l. Still

Newton-Secant method with lρj will be used to compute ls,cj .

A straightforward result of the limitation discussed above is shown as follows

Lemma 4.4.2. Let lj = lsj := min(ls,+j , ls,−j , ls,cj ) for all j ∈ Z, then for any l ∈ [0, lj], we

have Ψz
j−1/2(u+

j−1/2(l)) ≥ 0, Ψz
j+1/2(u−j+1/2(l)) ≥ 0 and Ψz,r

j (ûnj (l)) ≥ 0, Ψz,r
j (ûnj (l)) ≥ 0

for z = 1, 2, 3.

4.5 Local Relaxations

It has been observed in many instances that enforcing strict local bounds in the limiting

process may reduce the approximation accuracy of the scheme. In the scalar case it is well

known that enforcing strict local maximum principle will lead to the so-called clipping

phenomenon, therefore the rate of L∞−error is reduced. In the case of systems, such

effects can be observed when the local states are close to the boundary of the invariant

domain. One could read [37, § 3.3] and [27, § 4.7] for further discussions on the Euler

system, especially for the relaxation of the minimum principle on the specific entropy. In

this section, we follow the approach from [27, §4.7], which was originally proposed for
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the Euler system, and apply it in more general settings. The core idea of this approach is

to design a local relaxation for the constraints defined in § 4.1. By adding this relaxation

to the constraints, we’ve observed in all numerical tests that the limited method still keeps

the accuracy of the unlimited method. For simplicity we restrict our discussion to one

dimensional case while the case of two space dimensions is actually analogous.

To start with, let Ω be the computational domain in R and h denote the mesh size. That

is, we take h := ∆x
|Ω| with |Ω| being the diameter of the set. Le z denote the quantity to be

limited. To simplify our discussion into one single case, a modification will be applied to

the sigh of each constraint. For example, z could be −w1, w2 for the P-system, see §4.1.2,

or z could be ρ,−ρ, s for Euler system, see §4.1.3. We give the following two types of

relaxations.

(i) Limitation on a constraint z which describes a smooth curved part of the boundary.

For example, z = −w1, w2 in the p-system, or z = s in the Euler system, let xij =

1
2
(xi + xj) and denote Ikj the index set of the local stencil. For example, I2

j =

{j, j ± 1}. We then define ∆znj := maxj 6=i∈Ij(z
n(xij)− zmin

j ) and set

zmin,1
j := zmin

j −min(rh|zmin
j |, |∆znj |). (4.86)

Then zmin,1
j will be used instead of zmin

j as the bound of the local invariant sets.

(ii) Limitation on constraint z which describes the linear part on the boundary. For ex-

ample, z = u or z = −u in scalar equations, and z = ±ρ in the Euler system. Setting

∆kznj to be the k−th difference of znj defined locally, we then define

∆2znj :=
1

2card(Ij)
∑
j 6=i∈Ij

(
1

k!
∆kzni +

1

k!
∆kznj ) (4.87)

and

∆̃2znj := m{ 1

k!
∆kzni |i ∈ Ij}, (4.88)

where m is the minmod operator defined in § 3.3.3. The relaxed bound of local
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invariant set is defined as

zmin,2
j := zmin

j −min(rh|zmin
j |, |∆2znj |), (4.89a)

z̃min,2
j := zmin

j −min(rh|zmin
j |, |∆̃2znj |). (4.89b)

Then zmin,2
j or z̃min,2

j will be used instead of zmin
j as the bounds of local invariant sets.

It is observed in the numerical tests that both of these two bounds defined by (4.89)

are robust and give similar results.

Remark. In both (4.86) and (4.89), we take rh = min(1, h1.5) to restrict the relaxation

by O(h1.5). This restriction will enforce the original invariant domain as h approaches to

zero, one could see [27, §4.7] for more details.
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5. NUMERICAL ILLUSTRATIONS

In this chapter, we report numerical test to illustrate the performance of the two limit-

ing techniques mentioned in § 4. Our code is constructed using finite volume method on

uniform cells of size ∆x = h (in one dimensional case) or ∆x = ∆y = h (in two dimen-

sional case). Time stepping is done by using SSP-RK3 methods, which is three stages and

of third-order accuracy, see [56] and [39]. In our computation, we use a adaptive time step

computed by ∆tn = CFL× h
λmax,n , where λmax,n := maxj{λnj+1/2} is the global maximum

speed of the method used at time tn. For any p ∈ [1,∞],we introduce a consolidated error

indicator at time t by adding the relative error in Lp−norm of all conserved variables:

δk,αp (t) =
∑
i

||uih(t)− ui(t)||Lp(D)

||ui(t)||Lp(D)

, u = (u1, u2, . . . , um), (5.1)

where α = f or s, corresponding to the flux limiting or the slope/polynomial limiting error

and k is the approximation order. For the Euler system, in all tests we take the EOS to be

the γ-law, i.e., p = (γ − 1)ρe. Four new limiting methods are to be tested: for KT-scheme

we test MAPR-EV-CL for flux limiting and SO-INV-CL for slope limiting; for third order

central scheme we test POL-EV-CL for flux limiting and POL-INV-CL for slope limiting.

The classical Minmod method (i.e., we apply the minmod slope limiter given in § 3.3.3

in the KT-scheme) will be also reported for comparison, while the flux limiting process

is applied to guarantee the invariant domain property. Note that the MAPR-EV limiter

defined in (3.38) is only applied when θnj ≤ 1.5 and in the regions of smooth flow we use

σmapr,θ =
unj+1−unj−1

2h
for KT-scheme and the optimal polynomial popt for general high order

schemes. The relaxation we used in the report are defined by (4.86) for the linear part of

the boundary of local invariant set and (4.89a) for the nonlinear part.
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5.1 Linear Transport Equation

We first consider the one dimensional linear transport equation (1.8) with c = 1, i.e.,

ut + ux = 0. We consider a smooth initial condition from [39]

u0(x) = u(x, 0) = sin(πx− sin(πx)/π) x ∈ [−1, 1]. (5.2)

The exact solution is given by

u0(x, t) = sin(π(x− t)− sin(π(x− t))/π) x ∈ [−1, 1]. (5.3)

The computation is done on [0, 1] for 0 ≤ t ≤ 0.5. The results is shown in Table 5.1-

Table 5.4. It is observed that we’ve recovered fully second order and third order con-

vergence rate for both L1−error and L∞−error with our schemes. The convex limiting

process doesn’t affect the approximation accuracy at all.

Table 5.1: 1D linear transport equation, L1−convergence test for second order central
scheme with CFL=0.25.

# of cells
Minmod limiter MAPR-EV-CL limiter SO-INV-CL limiter
δ2,f

1 (t) rate δ2,f
1 (t) rate δ2,s

1 (t) rate
100 2.86E-03 9.37E-04 4.68E-04
200 7.59E-04 1.91 2.33E-04 2.01 1.16E-04 2.01
400 2.05E-04 1.89 5.81E-05 2.00 2.91E-05 2.00
800 5.41E-05 1.92 1.44E-05 2.01 7.26E-06 2.00

1600 1.42E-05 1.93 3.61E-06 2.00 1.81E-06 2.00
3200 3.68E-06 1.95 9.01E-07 2.00 4.54E-07 2.00
6400 9.48E-07 1.96 2.25E-07 2.00 1.13E-07 2.00
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Table 5.2: 1D linear transport equation, L1−convergence test for third order central
scheme with CFL=0.25.

# of cells
OPT-EV-CL limiter OPT-INV-CL limiter
δ3,f

1 (t) rate δ3,s
1 (t) rate

100 5.17E-05 5.17E-05
200 6.50E-06 2.99 6.50E-06 2.99
400 8.14E-07 3.00 8.14E-07 3.00
800 1.02E-07 3.00 1.02E-07 3.00

1600 1.28E-08 3.00 1.28E-08 3.00
3200 1.59E-09 3.00 1.59E-09 3.00
6400 1.99E-10 3.00 1.99E-10 3.00

Table 5.3: 1D linear transport equation, L∞−convergence test for second order central
scheme with CFL=0.25.

# of cells
Minmod limiter MAPR-EV-CL limiter SO-INV-CL limiter
δ2,f
∞ (t) rate δ2,f

∞ (t) rate δ2,s
∞ (t) rate

100 1.52E-02 6.10E-03 4.68E-04
200 6.23E-03 1.29 2.65E-03 1.20 1.16E-04 2.01
400 2.51E-03 1.31 1.03E-03 1.36 2.91E-05 2.00
800 1.02E-03 1.30 3.92E-04 1.39 7.26E-06 2.00

1600 4.10E-04 1.32 1.55E-04 1.34 1.81E-06 2.00
3200 1.65E-04 1.31 5.90E-05 1.39 4.54E-07 2.00
6400 6.60E-05 1.32 2.38E-05 1.31 1.13E-07 2.00

Table 5.4: 1D linear transport equation, L∞−convergence test for third order central
scheme with CFL=0.25.

# of cells
OPT-EV-CL limiter OPT-INV-CL limiter
δ3,f
∞ (t) rate δ3,p

∞ (t) rate
100 1.31E-04 1.31E-04
200 1.64E-05 3.00 1.64E-05 3.00
400 2.05E-06 3.00 2.05E-06 3.00
800 2.57E-07 3.00 2.57E-07 3.00

1600 3.21E-08 3.00 3.21E-08 3.00
3200 4.01E-09 3.00 4.01E-09 3.00
6400 5.03E-10 3.00 5.03E-10 3.00
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5.2 Burgers’ Equation

We consider the one dimensional Burgers equation defined by (1.10) with the initial

condition

u(x, 0) =


0 if x < 0.25,

4x− 1 if 0.25 ≤ x < 0.5,

1 if 0.5 ≤ x ≤ 1,

(5.4)

and a exact solution which has a gradient in BV:

u(x, t) =


0 if x < 0.25,

4x− 1

4t+ 1
if 0.25 ≤ x < 0.5 + t,

1 if 0.5 + t ≤ x ≤ 1.

(5.5)

The computation is done for 0 ≤ t ≤ 0.4 and the results are reported in Table 5.5-Table 5.8

and Figure 5.1-Figure 5.2. We observe that using the method based on the MAPR limiter

gives the optimal rate in both L1 and L∞. This is a super-convergence effect that we

observe for scalar equations, see the middle graph shown in Figure 5.1. However, the

methods based on the minmod and the invariant domain slope limiter have a convergence

rate of L − 1error around 4
3

which is expected for a method based on mass lumping, see

[20] for details. Also, using a third order method with the novel polynomial limiter will

recover a L1−convergence rate of 1.5. Moreover, both the convex flux limiting process

and the convex slope/polynomial limiting process doesn’t affect the convergence rate of

the unlimited method.

5.3 The KPP-Test

We consider the so-called KPP-test, a two dimensional scalar conservation equation

with a non-convex flux, see [43, §5.3] for more details. This test checks if the high or-

der method has enough viscosity to resolve correctly the composite wave structure of the
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Table 5.5: 1D Burgers’ equation, L1−convergence tests for second order central scheme
with CFL = 0.25.

# of cells
Minmod limiter MAPR-EV-CL limiter SO-INV-CL limiter
δ2,f

1 (t) rate δ2,f
1 (t) rate δ2,s

1 (t) rate
100 1.17E-03 2.03e-04 6.47E-04
200 4.24E-04 1.47 5.55e-05 1.87 2.30E-04 1.49
400 1.56E-04 1.44 1.50e-05 1.89 8.47E-05 1.44
800 5.93E-05 1.40 3.96e-06 1.92 3.28E-05 1.37

1600 2.28E-05 1.38 1.04e-06 1.93 1.28E-05 1.35
3200 8.89E-06 1.36 2.72e-07 1.93 5.10E-06 1.33
6400 3.48E-06 1.35 7.03e-08 1.95 2.03E-06 1.33

Table 5.6: 1D Burgers’ equation, L1−convergence tests for third order central scheme
with CFL = 0.25.

# of cells
OPT-EV-CL limiter OPT-INV-CL limiter
δ3,f

1 (t) rate δ3,p
1 (t) rate

100 4.03E-04 4.33E-04
200 1.38E-04 1.55 1.46E-04 1.57
400 4.82E-05 1.52 5.03E-05 1.53
800 1.68E-05 1.52 1.74E-05 1.53

1600 5.90E-06 1.51 6.05E-06 1.52
3200 2.06E-06 1.52 2.10E-06 1.52
6400 7.28E-07 1.50 7.38E-07 1.51

Table 5.7: 1D Burgers’ equation, L∞−convergence tests for second order central scheme
with CFL = 0.25.

# of cells
Minmod limiter MAPR-EV-CL limiter SO-INV-CL limiter
δ2,f
∞ (t) rate δ2,f

∞ (t) rate δ2,s
∞ (t) rate

100 1.11E-02 4.19E-03 1.11E-02
200 6.94E-03 0.68 2.33E-03 0.85 6.95E-03 0.68
400 4.33E-03 0.68 1.26E-03 0.88 4.34E-03 0.68
800 2.71E-03 0.68 6.70E-04 0.91 2.71E-03 0.68

1600 1.70E-03 0.68 3.50E-04 0.94 1.70E-03 0.68
3200 1.06E-03 0.67 1.80E-04 0.96 1.06E-03 0.67
6400 6.70E-04 0.67 9.18E-05 0.97 6.70E-04 0.67
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Table 5.8: 1D Burgers’ equation, L∞−convergence tests for third order central scheme
with CFL = 0.25.

# of cells
OPT-EV-CL limiter OPT-INV-CL limiter
δ3,f
∞ (t) rate δ3,p

∞ (t) rate
100 9.35E-03 9.18E-03
200 5.70E-03 0.71 5.64E-03 0.70
400 3.45E-03 0.73 3.43E-03 0.72
800 2.07E-03 0.73 2.07E-03 0.73

1600 1.24E-03 0.74 1.24E-03 0.74
3200 7.42E-04 0.74 7.43E-04 0.74
6400 4.43E-04 0.74 4.43E-04 0.74

Figure 5.1: Burgers: CFL= 0.25, t = 0.4. Left: Minmod limiter; Center: MAPR-EV-CL;
Right: SO-INV-CL.

Figure 5.2: Burgers: CFL= 0.25, t = 0.4. Left: OPT-EV-CL limiter; Right: OPT-INV-CL
limiter.
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unique entropy solution, see Figure 5.3 and Figure 5.4.

∂tu+ ∂x sinu+ ∂y cosu = 0, u(x, y, 0) =


14π
4
, if

√
x2 + y2 ≤ 1,

π
4
, otherwise.

(5.6)

All schemes are able to resolve correctly the composite wave structure. Note that if we

use the MAPR limiter with θ = 2 the method will fail to converge to the correct solution,

see [43] for details.

Figure 5.3: KPP-wave: CFL= 0.25, t = 1, 40000 cells. Left: Minmod limiter; Center:
MAPR-EV-CL; Right: SO-INV-CL.

5.4 The P-System

We consider the P-system (1.11), with its pressure given by the gamma-law p(v) =

rv−γ . In the numerical example we take γ = 3, and compute the Riemann problem with

initial data (vl, ul) = (1, 0) and (vr, ur) = (2
2

γ−1 , 1
γ−1

). The computation is done on the

segment [0, 1], and the separation point between the left and right states is x0 = 0.75. The
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Figure 5.4: KPP-wave: CFL= 0.25, t = 1, 40000 cells. Left: OPT-EV-CL limiter; Right:
OPT-INV-CL limiter.

exact solution is a single rarefaction wave, see [27, §5] for more details on this test.

v(x, t) =


1 if

x− x0

t
≤ −1,

(
x− x0

t
)
−2
γ+1 if − 1 ≤ x− x0

t
≤ −2−

γ+1
γ−1 ,

2
2

γ−1 otherwise.

(5.7)

u(x, t) =



0 if
x− x0

t
≤ −1,

2

γ − 1
(1− (

x− x0

t
)
γ+1
γ−1 ) if − 1 ≤ x− x0

t
≤ −2−

γ+1
γ−1 ,

1

γ − 1
otherwise.

(5.8)

The L1−convergence rate is around 4
3

for all second order methods, see Table 5.9 and

about 1.5 for all third order methods, see Table 5.10. Both convex limiting process does

not affect the rate of the unlimited scheme.
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Table 5.9: The p-system, expansion wave, convergence tests for second order scheme with
CFL = 0.25.

# of cells
Minmod limiter MAPR-EV-CL SO-INV-CL
δ2,f

1 (t) rate δ2,f
1 (t) rate δ2,s

1 (t) rate
100 4.61E-03 2.26E-03 2.27E-03
200 2.02E-03 1.19 9.59E-04 1.24 9.53E-04 1.25
400 8.72E-04 1.21 3.88E-04 1.31 3.91E-04 1.29
800 3.54E-04 1.30 1.51E-04 1.36 1.53E-04 1.35
1600 1.44E-04 1.30 6.00E-05 1.33 6.05E-05 1.34
3200 5.80E-05 1.31 2.42E-05 1.31 2.43E-05 1.32

Table 5.10: The p-system, expansion wave, convergence tests for third order scheme with
CFL = 0.25.

# of cells
POL-EV-CL limiter POL-INV-CL limiter
δ3,f

1 (t) rate δ3,p
1 (t) rate

100 3.65E-03 5.95E-03
200 1.33E-03 1.46 2.03E-03 1.55
400 4.72E-04 1.50 7.94E-04 1.35
800 1.63E-04 1.54 2.62E-04 1.60
1600 5.69E-05 1.52 8.63E-05 1.60
3200 1.98E-05 1.52 2.92E-05 1.56
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5.5 The Euler System, 1D Smooth Wave

We start with a one-dimensional test whose purpose is to estimate the convergence rate

of the methods on a very smooth solution. We set v(x, t) = 1, p(x, t) = 1 and

ρ(x, t) =

1 + 26(x1 − x0)−6(x− t− x0)3(x1 − x+ t)3, if x0 ≤ x− t < x1,

1 otherwise,
(5.9)

where x0 = 0.1, x1 = 0.3 and γ = 7
5
. This is an exact solution for Euler, see [27, §5]

for more details. The numerical solution is computed from t = 0 to t = 0.1. The results

are shown in Table 5.11 and Table 5.12. We could see that the best rate we have for the

second order scheme is about 2, which is obtained using the MAPR-EV limiter. The best

rate we have is about 2.2, which could be gained by using both of the wo novel polynomial

limiters.

Table 5.11: 1D smooth wave, L∞−convergence tests for second order scheme with CFL =
0.25.

# of cells
Minmod limiter MAPR-EV-CL SO-INV-CL
δ2,f
∞ (t) rate δ2,f

∞ (t) rate δ2,s
∞ (t) rate

100 1.53E-01 3.40E-02 2.75E-02
200 6.64E-02 1.21 8.09E-03 2.07 6.68E-03 2.04
400 2.83E-02 1.23 2.45E-03 1.72 3.32E-03 1.01
800 1.17E-02 1.27 6.55E-04 1.90 1.15E-03 1.54
1600 4.78E-03 1.29 1.70E-04 1.94 3.44E-04 1.74
3200 1.93E-03 1.31 4.35E-05 1.97 9.20E-05 1.90

5.6 The Euler System, 1-Rarefaction Wave

We consider the Riemann problem with the following initial data: (ρL, vL, pL) =

(3, cL, 1), (ρR, vR, pR) = (1
2
, vL + 2

γ−1
(cL − cR), pL(ρR

ρL
)γ), where cL =

√
γpL/ρL, cR =√

γpR/ρR and γ = 7
5
. The exact solution is described in Table 5.13, where we set
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Table 5.12: 1D smooth wave, L∞−convergence tests for third order scheme with CFL =
0.25.

# of cells
POL-EV-CL limiter POL-INV-CL limiter
δ3,f
∞ (t) rate δ3,p

∞ (t) rate
100 2.43E-02 2.53E-02
200 4.44E-03 2.45 4.33E-03 2.55
400 1.03E-03 2.11 1.02E-03 2.08
800 2.51E-04 2.04 2.50E-04 2.03
1600 5.73E-05 2.13 5.72E-05 2.13
3200 1.26E-05 2.18 1.26E-05 2.18

ξ := x−x0
t

, see [27, §5]. The numerical solution is computed starting from initial time

Table 5.13: Solution to the 1−rarefaction wave.

ξ ≤ vL − cL vL − cL ≤ ξ ≤ vR − cR vR − cR ≤ ξ

ρ ρL ρL( 2
γ+1

+ γ−1
γ+1

vL−ξ
cL

)
2

γ−1 ρR
v vL

2
γ+1

(cL + γ−1
2
vL + ξ) vR

p pL pL( 2
γ+1

+ γ−1
γ+1

vL−ξ
cL

)
2

γ−1 pR

t = 0.2
vR−cR

and running to final time t = 0.2. The results are given in Table 5.14 and

Table 5.15.

5.7 The Euler System, Sod Shock Tube

Now we consider the Riemann problem which is called the Sod shock tube. The initial

data is defined as (ρL, vL, pL) = (1, 0, 1) and (ρR, vR, pR) = (0.125, 0, 0.1). The exact

solution is given by Table 5.16 where ξ = x−x0
t

, x0 = 0.5, λ1 = −0.07027, v∗ = 0.92745,

λ3 = 1.75216, ρ∗L = 0.42632, ρ∗R = 0.26557, p∗ = 0.30313. The computation is done on

[0, 1] starting from initial time t = 0 to final time t = 0.1. The result is given by Table 5.17

and Table 5.18
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Table 5.14: 1D Euler, 1-rarefaction wave, L1−convergence tests for second order scheme
with CFL = 0.25.

# of cells
Minmod limiter MAPR-EV-CL OPT-INV-CL
δ2,f

1 (t) rate δ2,f
1 (t) rate δ2,s

1 (t) rate
100 1.63E-02 1.89E-02 1.45E-02
200 7.51E-03 1.12 4.61E-03 2.04 4.31E-03 1.75
400 3.15E-03 1.25 1.36E-03 1.76 1.31E-03 1.72
800 1.23E-03 1.36 4.34E-04 1.65 4.12E-04 1.67
1600 4.71E-04 1.38 1.44E-04 1.59 1.37E-04 1.59
3200 1.84E-04 1.36 4.91E-05 1.55 5.02E-05 1.45

Table 5.15: 1D Euler, 1-rarefaction wave, L1−convergence tests for third order scheme
with CFL = 0.25.

# of cells
OPT-EV-CL limiter OPT-INV-CL limiter
δ3,f

1 (t) rate δ3,p
1 (t) rate

100 1.22E-02 1.28E-02
200 3.24E-03 1.91 3.28E-03 1.97
400 9.92E-04 1.71 1.01E-03 1.70
800 3.32E-04 1.58 3.34E-04 1.59

1600 1.12E-04 1.56 1.13E-04 1.57
3200 3.88E-05 1.53 3.90E-05 1.53

Table 5.16: Solution to the Sod shock tube.

ξ ≤ −
√

1.4 −
√

1.4 < ξ ≤ λ1 λ1 < ξ ≤ v∗ v∗ < ξ ≤ λ3 λ3 < ξ

ρ ρL (5
6
− ξ

6
√

1.4
)5 ρ∗L ρ∗R ρR

v vL
5
6
(
√

1.4 + ξ) v∗L v∗R vR
p pL (5

6
− ξ

6
√

1.4
)7 p∗ p∗ pR

Table 5.17: 1D Euler, Sod shock tube, L1−convergence tests for second order scheme
with CFL = 0.25.

# of cells
Minmod limiter MAPR-EV-CL limiter SO-INV-CL limiter
δ2,f

1 (t) rate δ2,f
1 (t) rate δ2,s

1 (t) rate
100 1.39E-01 1.13E-01 1.08E-01
200 7.56E-02 0.87 6.72E-02 0.75 6.33E-02 0.78
400 4.16E-02 0.86 3.63E-02 0.89 3.42E-02 0.89
800 2.25E-02 0.88 1.91E-02 0.93 1.81E-02 0.92

1600 1.23E-02 0.87 9.99E-03 0.93 9.53E-03 0.92
3200 6.83E-03 0.85 5.24E-03 0.93 5.05E-03 0.92
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Table 5.18: 1D Euler, Sod shock tube, L1−convergence tests for third order scheme with
CFL = 0.25.

# of cells
OPT-EV-CL limiter OPT-INV-CL limiter
δ3,f

1 (t) rate δ3,p
1 (t) rate

100 1.07E-01 1.03E-01
200 6.37E-02 0.74 6.06E-02 0.77
400 3.39E-02 0.91 3.24E-02 0.90
800 1.73E-02 0.97 1.67E-02 0.96

1600 8.67E-03 1.00 8.44E-03 0.99
3200 4.35E-03 0.99 4.25E-03 0.99

5.8 The Euler System, Leblanc Shock Tube

We continue with a Riemann problem that is known in the literature as the Leblanc

shock tube. The initial data is defined as (ρL, vL, pL) = (1, 0, 1
15

) and (ρR, vR, pR) =

(0.001, 0, 2
3
× 10−7). The exact solution is given by Table 5.19 where ξ = x−x0

t
, x0 = 3,

λ1 = 0.495761, v∗ = 0.621821, λ3 = 0.829228, ρ∗L = 0.054087, ρ∗R = 0.003998, p∗ =

0.000515698. The computation is done on [0, 9] starting from initial time t = 0 to final

time t = 6. The result is given by Table 5.20-Table 5.21 and Figure 5.5-Figure 5.6. We

could observe that the performance of all method are similar. Also, since the solution is

close to vacuum, we can not obtain the solution without the convex limiting process.

Table 5.19: Solution to the Leblanc shock tube.

ξ ≤ −1
3

−1
3
< ξ ≤ λ1 λ1 < ξ ≤ v∗ v∗ < ξ ≤ λ3 λ3 < ξ

ρ ρL (0.75− 0.75ξ)3 ρ∗L ρ∗R ρR
v vL 0.75(1

3
+ ξ) v∗L v∗R vR

p pL
1
15

(0.75− 0.75ξ)5 p∗ p∗ pR
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Table 5.20: 1D Euler, Leblanc shock tube, L1−convergence tests for second order scheme
with CFL = 0.25.

# of cells
Minmod limiter MAPR-EV-CL limiter SO-INV-CL limiter
δ2,f

1 (t) rate δ2,f
1 (t) rate δ2,s

1 (t) rate
100 1.25E-01 1.31E-01 1.19E-01
200 8.91E-02 0.49 7.36E-02 0.83 7.65E-02 0.64
400 5.78E-02 0.63 4.39E-02 0.74 4.60E-02 0.73
800 3.29E-02 0.81 2.37E-02 0.89 2.47E-02 0.9

1600 1.85E-02 0.83 1.26E-02 0.91 1.29E-02 0.93
3200 9.30E-03 0.99 6.50E-03 0.95 6.64E-03 0.96

Table 5.21: 1D Euler, Leblanc shock tube, L1−convergence tests for third order scheme
with CFL = 0.25.

# of cells
OPT-EV-CL limiter OPT-INV-CL limiter
δ3,f

1 (t) rate δ3,p
1 (t) rate

100 1.11E-01 1.06E-01
200 5.73E-02 0.95 6.51E-02 0.70
400 3.44E-02 0.74 3.84E-02 0.76
800 1.77E-02 0.96 1.96E-02 0.97

1600 9.49E-03 0.90 1.03E-02 0.94
3200 4.68E-03 1.02 5.02E-03 1.03

Figure 5.5: Leblanc: CFL= 0.25, t = 6. Left: Minmod limiter; Center: MAPR-EV-CL;
Right: SO-INV-CL.
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Figure 5.6: Leblanc: CFL= 0.25, t = 6. Left: OPT-EV-CL limiter; Right: OPT-INV-CL
limiter.

5.9 The Euler System, Collela Blast Wave

We consider the well known Woodward-Collela blast wave. The computations are

done on the domain D = (0, 1) with CFL=0.25. The initial condition is defined with

ρ(x, 0) = 1, v(x, 0) = 0 and

p(x, 0) =


1000, if 0 ≤ x < 0.1,

100, if 0 ≤ 0.1 ≤ x < 0.9,

0.01, if 0 ≤ 0.9 < x ≤ 1.

(5.10)

The initial time is t = 0 and the final time is t = 0.038. The results are shown in Figure 5.7

and Figure 5.8. We could see the the MAPR limiter has the best performance for second

order case, while the SO-INV-CL method has the bes performance for third order case.

It is observed that all limiting techniques has efficiently reduced the oscillation of the

numerical solution.

5.10 The Euler System, Shu-Osher Shock Tube

Here we consider the so-called Shu-Osher shock tube to test whether the limited

scheme could capture both small-scale smooth flow and shocks. The computations are
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Figure 5.7: Collela blast wave: CFL= 0.25, t = 0.038. Left: Minmod limiter; Center:
MAPR-EV-CL; Right: SO-INV-CL.

Figure 5.8: Collela blast wave: CFL= 0.25, t = 0.038. Left: OPT-EV-CL limiter; Right:
OPT-INV-CL limiter.

done on the domain D = (0, 10) with CFL=0.25. The initial condition is defined by

(ρ, v, p) =

(3.857143, 2.629367, 10.333333), if x ≤ 1.8,

(1 + 0.2 sin(5x), 0, 1) otherwise,
(5.11)

see [56]. The initial time is t = 0 and the final time is t = 1.8. The results are shown

in Figure 5.9 and Figure 5.10. One could see that the third order scheme has a better

performance in the sense of capturing the shock. Also, there will be strong oscillations if

we don’t apply the limiting process.
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Figure 5.9: Shu Osher shock tube: CFL= 0.25, t = 1.8. Left: Minmod limiter; Center:
MAPR-EV-CL; Right: SO-INV-CL.

Figure 5.10: Shu Osher shock tube: CFL= 0.25, t = 1.8. Left: OPT-EV-CL limiter;
Right: OPT-INV-CL limiter.

5.11 The Euler System, Isentropic Vortex

We consider a two-dimensional problem introduced in [63]. The flow field is isen-

tropic; i.e., the solution is smooth and does not involve any steep gradients or disconti-

nuities. Let ρ∞ = P∞ = T∞ = 1, u∞ = (1, 1)T be free stream values. We define the

following perturbation values for the velocity and the temperature:

δu(x, t) =
β

2π
exp(

1− r2

2
)(−x̄2, x̄1), δT (x, t) =

(γ − 1)β2

8γπ2
exp(1− r2), (5.12)

where β = 5 is a constant defining the vortex strength, γ = 7
5
, x̄ = (x1−xc

1(t), x2−xc
2(t)),

where xc(t) = (x0
1+t, x0

2) is the position of the vortex, and r2 = ‖x̄‖2
`2 . The exact solution
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is a passive convection of the vortex with the mean velocity u∞:

ρ(x, t) = (T∞ + δT )1/(γ−1), u(x, t) = u∞ + δu, p(x, t) = ργ. (5.13)

We perform the numerical computations in the rectangle D = (0, 20)×(0, 20) from

t = 0 until t = 2, and we take x0
1 = x0

2 = 10. The results are shown in Table 5.22-

Table 5.23 and Figure 5.11-Figure 5.12. In this test it is critical to use local relaxation in

the convex limitation process, see Section 4.5, to achieve the optimal convergence order.

Both the MAPR-EV-CL and the SO-INV-CL methods are optimal in this case.

Table 5.22: Isentropic vortex test case, l∞-convergence tests for second order scheme with
CFL = 0.25.

# of cells
Minmod limiter MAPR-EV-CL SO-INV-CL
δ2,f
∞ (t) rate δ2,f

∞ (t) rate δ2,s
∞ (t) rate

2500 2.66E-01 1.25E-01 8.66E-02
10000 1.19E-01 1.17 1.85E-02 2.75 1.85E-02 2.22
40000 5.82E-02 1.03 3.57E-03 2.38 3.57E-03 2.38

160000 2.94E-02 0.99 7.08E-04 2.34 7.08E-04 2.34

Table 5.23: Isentropic vortex test case, l∞−convergence tests for third order scheme with
CFL = 0.25.

# of cells
OPT-EV-CL limiter OPT-INV-CL limiter
δ3,f
∞ (t) rate δ3,p

∞ (t) rate
2500 4.91E-02 6.68E-02
10000 8.53E-03 2.53 8.53E-03 2.97
40000 1.08E-03 2.98 1.08E-03 2.98

160000 1.18E-04 3.19 1.18E-04 3.19
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Figure 5.11: Isentropic vortex at t = 2, CFL = 0.25. Left: Minmod limiter; Center:
MAPR-EV-CL; Right: SO-INV-CL.

Figure 5.12: Isentropic vortex at t = 2, CFL = 0.25. Left: OPT-EV-CL limiter; Right:
OPT-INV-CL limiter.
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5.12 The Euler System, Mach 3 Test

Now we consider the classical Mach 3 flow in a wind tunnel with a forward facing

step. The computational domain is D = (0, 3)× (0, 1)\(0.6, 3)× (0, 0.2); the geometry of

the domain is shown in Figure 5.13. The initial data is ρ = 1.4, p = 1, v = (3, 0)>. The

inflow boundary conditions are ρ|{x=0} = 1.4, p{x=0} = 1, v{x=0} = (3, 0)>. The outflow

boundary conditions are free, i.e., we do nothing at {x = 3}. On the top and bottom

boundaries of the channel we enforce v · n = 0. The computation is done from t = 0 to

t = 4 and the results are shown in Figure 5.13. The MAPR-EV scheme (center) will not

run without convex limiting and the results are clearly superior in the region of the contact

wave. The INV-CL scheme (bottom) has some instability in the contact but the resolution

is not satisfactory at this mesh size. The minmod method (top) is the most stable and also

the most diffusive scheme in this case, see Figure 5.13.
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Figure 5.13: Mach 3 step, density at t=4, CFL=0.25. Top: Mimmod limiter; Center:
MAPR-EV-CL; Bottom: SO-INV-CL.
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6. CONCLUSIONS

In this thesis, we developed a new class of the so-called central schemes that preserve

an invariant domain property of the the hyperbolic systems that is approximated. To the

best of our knowledge, this is the first time this type of methods, second and higher order,

are developed in the finite volume framework. The new methods are Riemann solver free

and thus be easy to implement. We considered the central scheme of second, third and

fourth order, which are not guaranteed to be invariant domain preserving. The local invari-

ant domains are described using quasiconcave constraints. The cell interface values are

computed via the local nonlinear reconstructions which are derived via what we call con-

vex limiting. We developed two types of convex limiting techniques to modify the central

scheme. One method is the convex flux limitation which modifies the numerical flux used

to create the central scheme update. The other method is a nonlinear local reconstruction

(slope or polynomial), which modifies the local numerical solution to enforce the inter-

face values to be in the invariant domain. Both techniques require a first order invariant

domain preserving scheme to complete the limiting process. Extensive numerical exper-

iments have been done for both techniques and we have observed that both methods are

able to efficiently reduce oscillations at discontinuities like shocks and contacts and at the

same time retain the approximation accuracy of the underlying central schemes. The new

schemes are therefore very robust, could be used in computations near vacuum, composite

waves, and easily can be extended to arbitrary space dimensions.
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