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SYMPOSIUM
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Analyses” presented at the annual meeting of the Society for Integrative and Comparative Biology, January 3–7, 2018 at
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Synopsis Circulating glucocorticoids (GCs) are the most commonly used biomarkers of stress in wildlife. However,

their utility as a tool for identifying and/or managing at-risk species has varied. Here, we took a very broad approach to

conservation physiology, asking whether International Union for the Conservation of Nature (IUCN) listing status

(concern versus no obvious concern) and/or location within a geographic range (edge versus non-edge) predicted

baseline and post-restraint concentrations of corticosterone (CORT) among many species of birds and reptiles. Even

though such an approach can be viewed as coarse, we asked in this analysis whether CORT concentrations might be

useful to implicate species at risk. Indeed, our effort, relying on HormoneBase, a repository of data on wildlife steroids,

complements several other large-scale efforts in this issue to describe and understand GC variation. Using a phyloge-

netically informed Bayesian approach, we found little evidence that either IUCN status or edge/non-edge location in a

geographic distribution were related to GC levels. However, we did confirm patterns described in previous studies,

namely that breeding condition and evolutionary relatedness among species predicted some GC variation. Given the

broad scope of our work, we are reluctant to conclude that IUCN status and location within a range are unrelated to GC

regulation. We encourage future more targeted efforts on GCs in at-risk populations to reveal how factors leading to

IUCN listing or the environmental conditions at range edges impact individual performance and fitness, particularly in

the mammals, amphibians, and fish species we could not study here because data are currently unavailable.

Introduction

The first efforts in ecology were largely physiological

(Cooke et al. 2013). The father of animal ecology,

Victor Shelford (Shelford 1911), comprehensively

identified factors affecting plant and animal distribu-

tions, predominantly focusing on energy balance,

thermal relationships, and other physiological pro-

cesses to explain why some species, and not others,
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thrived in some areas. In modern times, efforts to

use physiology to understand geographic distribu-

tions have morphed into at least two subdisciplines.

One is the description of basic physiological patterns

at large spatiotemporal scales, a discipline termed

macrophysiology. Macrophysiology has been very in-

sightful for some plants, invertebrates and ectother-

mic vertebrates (Chown et al. 2004). For instance, by

comparing rare plant species to common ones within

the same genus, researchers revealed traits that make

rare species distinctive as conservation priorities

(Dunbar-Co et al. 2009). This approach for verte-

brates, especially in the context of conservation,

has been rare (Jessop et al. 2013b). Explicit focus

on conservation, however, is the basis of a second

subfield: conservation physiology (Wikelski and

Cooke 2006). Conservation physiologists seek to

use physiological data to predict how natural and

anthropogenic stressors pose a challenge to popula-

tion viability and animal welfare. To date, almost all

research in the discipline has involved vertebrates

(Cooke et al. 2013), and the majority of studies

have relied on a particular group of steroid hor-

mones, the glucocorticoids (GCs).

GCs have been favored in conservation physiology

because they often relate to individual health and

even fitness (Dantzer et al. 2014), making them po-

tential predictors of population viability. These hor-

mones are also quite simple to measure, being easily

detectable in the blood or even feathers, fur, urine,

blow (in the case of cetaceans), and feces. GCs also

have many functions relevant to conservation inter-

ests (Angelier and Wingfield 2013; Sorenson et al.

2017). GCs are integral to water balance

(McCormick and Romero 2017) and coordinating

key life history stage transitions (Crespi et al.

2013), however, they have mostly been studied be-

cause of their impacts on energy metabolism (i.e.,

baseline GCs). In particular, GCs are critical for

how individuals respond to unfamiliar, unpredict-

able, and often adverse conditions (i.e., responses

to acute stressors such as severe weather or short-

term food unavailability [Romero and Wingfield

2015]). In conservation physiology, GCs are typically

portrayed as biomarkers of stress. The implicit as-

sumption has been that GC disregulation implicates

organisms in need of aid, although description of

genuine disregulation is quite difficult (Tarlow and

Blumstein 2007; Lindenmayer et al. 2013; Dantzer

et al. 2014; Kilvitis et al. 2017). A prime recent ex-

ample involves Cape mountain zebras (Lea et al.

2018). There, zebra fecal GCs were higher where

grass forage was low and inversely related to female

fecundity and subsequent population growth in the

same sites. Overall, conservation physiology aspires

to use GCs to indicate cause–effect relationship be-

tween stressors and population dynamics (Wikelski

and Cooke 2006; Madliger et al. 2015), which could

lead to suitable mitigation or remediation options

(Cooke et al. 2013).

In many ways, a zeal for GCs as biomarkers of

wildlife stress is justified (Martin et al. 2016a). GC

measurements, in an appropriate context, have long

been recognized as useful to determine exposure to

various pesticides, herbicides, and other anthropo-

genic toxins (Martin et al. 2010; Rohr et al. 2013).

Likewise, multiple large-scale analyses have revealed

that anthropogenic disturbances are associated with

altered GCs (Dickens and Romero 2013; Dantzer

et al. 2014; Kleist et al. 2018). For instance, GC reg-

ulation in Magellanic penguins (Spheniscus magella-

nicus) (Walker et al. 2005), marine iguanas

(Amblyrhynchus cristatus [Berger et al. 2007]), and

hoatzins (Opisthocomus hoazin [Mullner et al. 2004])

is altered by tourism. Translocation into captive

breeding programs or to more favorable parts of the

range also affects GCs (Dickens et al. 2009), as do

changes in conspecific density, with high densities

and frequent territorial incursions increasing GCs in

all vertebrate classes (Creel et al. 2013). The trouble

with using GCs as biomarkers of stress for conserva-

tion aims is that relationships between GC concentra-

tions and individual fecundity, survival, and

recruitment are often complex (Breuner et al. 2008;

Bonier et al. 2009; Sorenson et al. 2017). The implicit

assumption of much conservation endocrinology, that

“high” GCs indicate at-risk organisms (Dantzer et al.

2014; McCormick and Romero 2017), is probably un-

tenable. Indeed, baseline GCs can increase, decrease,

or remain unchanged in response to (chronic) stres-

sors (Dickens and Romero 2013).

On the other hand, large-scale comparisons

among species have revealed that simple descriptions

of GC regulation can be insightful about challenges

faced by populations. Hau et al. (2010) found that

baseline GCs (i.e., those measured from blood taken

quickly upon organism capture) were higher in spe-

cies with shorter breeding seasons and smaller body

mass. By contrast, GCs measured after a short phys-

ical restraint (i.e., stress responses) varied inversely

with body mass and positively with annual adult

survival rates. In another study, avian species that

maintained high residual reproductive value after

their first reproductive events mounted weaker GC

responses than species with faster-paced reproductive

life histories (Bokony et al. 2009). Finally, and most

relevant to the present study, GCs have been revealed

to have some value for understanding how species

IUCN conservation status for glucocorticoid in species 801
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might respond to global change (Jessop et al. 2013a):

among 22 reptile and 66 bird species, combinations

of a few variables (e.g., body mass, net primary pro-

ductivity, and latitude) explained appreciable (14%

and 33%, respectively) variation in GC responses to

restraint.

The above broad comparative studies raise the

possibility that a few measures of GCs might impli-

cate at-risk species, which could help direct resource

manager efforts to taxa most needing attention. Even

though such a study could not indicate the causes of

the distress that species experience, the availability of

HormoneBase and the insight offered by prior broad

comparative studies support effort to query the util-

ity of GCs as a coarse bellwether of conservation

risk. Ideally, as in the zebra study discussed above

(Lea et al. 2018), one would characterize how indi-

vidual variation in physiology predicts fitness in the

same animals in response to adversity. However, if

species prone to conservation concern generally reg-

ulate GCs differently than those that cope well with

adversity, one might be able to implicate vulnerable

species before concerted, expensive, and labor-

intensive management efforts ensue.

To test the utility of GCs as such a proxy for

conservation risk at the species level, we used

HormoneBase (Vitousek et al. 2018), a database con-

taining >6580 entries on glucocorticoid and andro-

gen hormone levels in 474 species. First, we asked

whether International Union for the Conservation of

Nature (IUCN) status predicted baseline and post-

restraint GCs in birds and reptiles, as these two ver-

tebrate groups were the only groups with sufficient

data for this analysis. The IUCN is a global organi-

zation charged with assigning a “concern” status to

many of the world’s species. It categorizes extinction

risk, including “red list” assignment to some,

depending on traits such as a geographic distribu-

tion, demographic structure, and population size and

trend (Baillie et al. 2004). According to the IUCN,

86–88% of all birds, mammals, and amphibians

assessed in 2010 were somehow threatened, usually

by habitat alteration and/or loss (IUCN 2012). We

asked whether GCs differ systematically between spe-

cies of least concern (i.e., the IUCN category for

species with no known threats) versus species in all

“concern” categories. There were insufficient species

in various categories of concern to make compari-

sons at a higher resolution (see below). Also, we felt

that multiple forms of selection and/or phenotypic

plasticity (Patterson et al. 2011; Wada 2014) made

directional predictions between GCs and risk status

difficult at the level of our analysis. The most

straightforward expectation would be high GCs in

species of concern. However, the reverse pattern

was also plausible because (1) chronic stressors could

lead to habituation of the hypothalamic–pituitary–

adrenal axis (HPA), (2) exposure to adversity in

early-life or selection could favor damped GC

responses, or (3) adrenal insufficiency could lead to

low GCs in at-risk populations. A third possibility

was simply that phylogeny was the strongest driver

of variation, an observation consistent with previous

work (Jessop et al. 2013b). Our interest was solely to

determine whether general patterns between IUCN

status and GCs were detectable given the great en-

thusiasm for GCs in conservation physiology.

Follow-up work involving data not available in

HormoneBase would be necessary to discern why

particular directional patterns occurred, which we

describe in the “Discussion” section.

Our second interest was to reveal whether popu-

lations from the edges of geographic distributions

regulate GCs differently than populations from range

cores. This comparison was partly motivated by con-

servation interests, as at-risk populations commonly

dwell at the margins of species distributions where

habitat suitability is probably poor compared with

the core. However, this part of our analysis was

also motivated by work from some authors of the

present paper (Martin et al. 2005; Liebl and Martin

2012, 2013; Martin and Liebl 2014; Martin et al.

2015, 2016a) and others (Atwell et al. 2012; Brown

et al. 2015). Recurrently, GC responses to restraint

have been found stronger at range edges than range

cores. Although direct evidence does not yet exist

regarding the eco-evolutionary reasons for these pat-

terns, some evidence indicates that strong stress

responses at range edges might facilitate particular

behaviors conducive to success in novel and/or chal-

lenging areas (Martin and Fitzgerald 2005; Liebl and

Martin 2012, 2014). In the present study, we

expected post-restraint GCs to be higher if samples

were collected from the margins versus the core of a

species’ range. We did not make directional predic-

tions for baseline GCs, but we conducted the explor-

atory analysis to search for patterns that might be of

future value to conservation biologists.

We, as others in conservation endocrinology,

chose to focus on GCs because of their salience to

homeostasis (Sapolsky et al. 2000). When GCs are

disregulated, gluconeogenesis, water and electrolyte

balance, and a host of other processes compromise

nerve signaling, muscle contraction, immune

defenses, and eventually reduce physical perfor-

mance, often leading to death (McCormick and

Romero 2017). We chose to study the two forms

of GC data available in HormoneBase (baseline and

802 L. B. Martin et al.
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post-restraint), as GC effects vary depending on

which receptors they engage. Baseline GC levels,

the effects of which are predominantly mediated by

mineralocorticoid receptors, are usually interpreted

to reflect integrated energetic expenditures over

long time periods (Crespi et al. 2013). That is, base-

line GCs often increase moderately with energetic

demands, including increases in physical workload,

thermoregulatory, reproductive, or defensive (e.g.,

immunity) needs. Both high and low baseline GCs

can therefore have negative health consequences

depending on how long and by how much concen-

trations diverge from typical circadian/circannual

rhythms (McEwen and Wingfield 2003; Romero

et al. 2009; Martin et al. 2016c). By contrast, post-

restraint GCs are mostly regulated through lower-

affinity glucocorticoid receptors (GRs). Transient

elevations of GCs work through GRs to facilitate

emergency life processes that help animals avoid, en-

dure, recover, or cope with stressors (Wingfield et al.

1998). If stressors continue or intensify, and individ-

uals are not able to escape or habituate, persistent

GC elevations can lead to pathology, as systems re-

main engaged beyond the point that they are pro-

tective (Korte et al. 2005; Martin 2009). Below, we

describe how we used HormoneBase to discern

whether IUCN status and point of sample collection

within a species’ range predict GCs in several species

of wild birds and reptiles.

Methods

HormoneBase

Over the course of several years, we searched the

literature to find all published accounts of circulating

GC concentrations in wild organisms. The details

about this search and the resultant database are

explained in a recent publication (Vitousek et al.

2018). There as here, we analyzed only data on cir-

culating corticosterone (CORT) concentrations, as

comparisons of GC metabolites and/or fecal GCs

were unavailable and would be difficult to interpret

in any case due to interspecific variation in digestive

physiology (Goymann 2012). We excluded mammal

(M), amphibian (A), and fish (F) samples from our

analysis for one or more of the following reasons: (1)

too few species have an IUCN status (A), (2) ma-

rine/aquatic species ranges were impossible to de-

scribe in the same way as terrestrial birds and

reptiles (F), and/or (3) entries in HormoneBase

were too few to make meaningful comparisons (M

and A). We also had to exclude some species of

marine birds because their ranges could not be

described in a manner comparable to non-marine

species. We focused on CORT as it is the most

widely-measured GC in birds and reptiles.

Statistical analysis

We used Bayesian-informed generalized linear

mixed-effect models in the R package MCMCglmm

(Hadfield 2010) to ascertain whether (1) IUCN sta-

tus and (2) location within a species range where

samples were collected predicted baseline and post-

restraint concentrations of CORT. For IUCN status,

we used the IUCN Red List website (http://www.

iucnredlist.org) to assign all species for which we

had data to a category. There are four categories of

concern (near-threatened, vulnerable, endangered,

and critically endangered) and one of “least concern”

assigned by IUCN, but there were too few data for

species in “concern” categories for us to analyze data

based on original assignments. Subsequently, all spe-

cies of any level of concern were collapsed into a

single “concern” category and these species com-

pared with the remaining “least concern” species.

This approach resulted in 1153 measures of baseline

glucocorticoids from 139 species assigned to “least

concern,” and 228 from 22 species assigned to

“concern”(Supplementary Table S1). For post-re-

straint CORT we had 410 glucocorticoid measures

from 79 species assigned to “least concern” and 78

measures from 13 species assigned to “concern”

(Supplementary Table S2).

To categorize location of capture within each spe-

cies’ range, we used IUCN distribution maps in con-

junction with Google Earth (https://earth.google.

com/web) and geographic coordinates (from the

original papers reported in HormoneBase) to assign

each HormoneBase entry to one of three categories.

For each species, we determined whether samples

were collected within the inner 10% of the area of

a species’ range (i.e., core), the outer 10% of a spe-

cies’ range (i.e., edge), or the intervening 80% (i.e.,

intermediate). However, as our expectations were

that range edges would be most different (and de-

manding) from other parts of the range (and to

maximize statistical power), we collapsed the core

and intermediate samples into a single category

(i.e., non-edge), and used this binary predictor in

all final analyses. We conducted separate analyses

for IUCN status and site within the geographic dis-

tribution. Although many species of concern (in

regards to IUCN status) have narrow distributions,

our interests in the two factors were distinct. This

approach resulted in 326 “edge” and 526 “non-edge”

baseline CORT data points from 78 and 43 species,

IUCN conservation status for glucocorticoid in species 803
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respectively (Supplementary Table S3). For post-

restraint CORT, we had 175 “edge” and 146 “non-

edge” data points from 51 and 28 species, respectively

(Supplementary Table S4).

As the broad comparative approach we took

might obscure subtle relationships, we took several

steps to disentangle focal predictors from other var-

iables that might influence CORT. First, to account

for variability in assay methodology (Fanson et al.

2017), we used laboratory identity as a random ef-

fect. Although this factor might not capture all po-

tential sources of variation in CORT data, it should

encompass substantial variation in many aspects of

methodology and importantly it was the only rele-

vant methodological variable we had available for the

majority of data. Second, because our analyses often

included multiple observations of the same species,

we included species as a random effect. Third, we

included several variables as covariates in models

that are known or expected to affect GCs. We in-

cluded altitude and latitude at the site of collection,

mean body mass of individuals in the collected pop-

ulation (Haase et al. 2016), and breeding status

(breeding versus non-breeding, with breeding being

the reference state in models [Romero 2002]).

HormoneBase was the source of all of these covari-

ates for the sake of consistency in analytical efforts

among projects (Johnson et al. 2018). We also

attempted to use ambient temperature (mean and

standard deviation) in the month in which samples

were collected, but as that approach greatly dimin-

ished our sample sizes, we did not include climate

variables in our analysis. We included all samples

from HormoneBase in our analysis as long as

authors identified them as baseline.

Finally, we used a tree developed specifically for

analyses of HormoneBase data in this SICB sympo-

sium (Johnson et al. 2018) as our phylogenetic hy-

pothesis to account for potential phylogenetic

structure in the relationship between GCs and the

predictor variables, which was converted into an

inverted phylogenetic covariance matrix prior to

analyses. We allowed the model to estimate Pagel’s

k, and we report the posterior mode from the

MCMC chain. Pagel’s k ranges from 0 to 1 and

reflects no and high phylogenetic signal, respectively.

We used uninformed priors in the models; default

priors for all fixed effects and, reflecting an inverse-

Gamma distribution, we used V¼ 1 and l¼ 0.02 for

the variance components of each random effect. We

scaled all continuous predictors (i.e., z-transforma-

tions) to facilitate direct comparisons of variable

effects in models to each other. We conducted the

IUCN and geographic distribution analyses

separately, as inclusion of both predictors in models

would have greatly reduced our sample sizes (due to

missing IUCN or distribution data for some

HormoneBase entries).

We used an all-subsets approach in model selec-

tion. Specifically, from our global model we ranked

models using the Deviance Information Criteria

(DIC) using the dredge function in the MuMIn R

package (Barton 2009) and considered all models

DIC� 2 from the top ranked model as competitive.

All model runs were based on 2000 samples drawn

from 50,000 MCMC iterations, a burn-in of 10,000,

and a thinning rate of 20. For each global model,

plus all strongly ranked models (i.e., DIC � 2), we

verified that MCMC chains were mixing by visually

inspecting trace and density plots and ensuring that

autocorrelation of sampled iterations was less than

0.1. Finally, using the R package coda (Plummer

et al. 2008), we verified that four independent chains

converge using the Gelman–Rubin statistic. We also

calculated marginal (fixed effects only) and condi-

tional (fixed and random effects) R2 for all posterior

models (Nakagawa and Schielzeth 2013). We used

two pieces of evidence to determine whether a pre-

dictor had a strong effect: (1) whether predictors

occurred in well-supported models (i.e., DIC� 2)

and (2) whether the 95% credible intervals, calcu-

lated from the posterior means, excluded zero

(bolded terms in relevant tables).

Results

IUCN status

The top models for baseline CORT always included

breeding status and latitude, but none included

IUCN status, and all marginal R2 values for all mod-

els were very low (Table 1). In all models, breeding

birds had higher baseline CORT than non-breeding

birds and Pagel’s k values were high (Table 2).

Latitude was negatively related to baseline CORT

in only one model, and CIs overlapped zero for all

other terms in all other models. Models for post-

restraint CORT also always included breeding status,

and two models included IUCN category (Table 3);

again though, marginal R2 was low for all models.

Most models also included body mass. However,

only breeding status CIs did not overlap zero in

the top models (Table 4); again, breeding status

was related to post-restraint CORT concentrations.

Although IUCN was included in two of the five top

models, its influence was very modest. Pagel’s k val-

ues were also high for all models.
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Geographic distribution

Location in the range was included in two of the top

models for baseline CORT, but breeding status and

latitude were included in all models, and body mass

and altitude were included in many models

(Table 5). All marginal R2 values were low. Only

breeding status and altitude affected baseline CORT

(Table 6). Range location CIs always overlapped zero

when it was included as a predictor; the same was

true for all other variables in the best-fit models.

Pagel’s k was also high in all four models. For

post-restraint CORT, only two models were

supported, both of which included breeding status

and body mass (Table 7), but marginal R2 values

were again very low. Breeding animals had higher

post-restraint CORT in all models, but no other

effects, including range location, were strong based

on CIs overlapping zero (Table 8). Pagel’s k values

were high for both models.

Discussion

We investigated whether IUCN status and location

within the geographic range predicted GC concen-

trations in birds and reptiles because GCs enable

Table 1 Top models predicting variation among avian and reptilian baseline corticosterone entries in HormoneBase (IUCN status)

Model Terms in model df Loglikelihood DIC Delta Weight Marginal R2 Conditional R2

1 Breeding þ latitude þ body mass 7 �1223.29 2614 0 0.246 0.01 0.92

2 Breeding þ latitude 6 �1223.67 2614.5 0.41 0.200 0 0.93

3 Breeding þ latitude þ altitude þ body mass 8 �1223.63 2615.3 1.26 0.131 0.01 0.93

4 Breeding þ latitude þ altitude 7 �1224 2615.7 1.68 0.106 0.01 0.93

Table 2 Composition of top models for baseline corticosterone, IUCN analysis

Model Predictor Post.mean Lower 95% Upper 95% Effective sample size

1 (Intercept) 1.363 �0.390 3.293 2000

(k¼0.93) Latitude (scaled) �0.133 �0.244 �0.029 2000

Body mass (log, scaled) 0.098 �0.030 0.221 2000

Breeding (6) �0.134 �0.228 �0.041 1936

2 (Intercept) 1.464 �0.333 3.351 2000

(k¼0.92) Latitude (scaled) �0.119 �0.236 �0.016 2000

Breeding (6) �0.134 �0.230 �0.041 2000

3 (Intercept) 1.409 �0.416 3.221 2000

(k¼0.93) Latitude (scaled) �0.113 �0.225 �0.010 2000

Body mass (log, scaled) 0.097 �0.013 0.228 2000

Altitude (scaled) 0.044 �0.020 0.107 2000

Breeding (6) �0.135 �0.225 �0.036 2276

4 (Intercept) 1.478 �0.371 3.279 2000

(k¼0.91) Latitude (scaled) �0.097 �0.207 0.013 2182

Altitude (scaled) 0.042 �0.022 0.109 2138

Breeding (6) �0.134 �0.225 �0.039 2136

Bolded text highlights terms with credible intervals that do not overlap zero.

Table 3 Top models predicting variation among avian and reptilian post-restraint corticosterone entries in HormoneBase (IUCN

status)

Model Terms in model df Loglikelihood DIC Delta Weight Marginal R2 Conditional R2

1 Breeding þ body mass 6 �264.888 619 0 0.172 0.005 0.93

2 Breeding þ IUCN þ body mass 7 �264.681 619.3 0.32 0.146 0.006 0.93

3 Breeding þ latitude þ body mass 7 �264.687 620 1.03 0.103 0.005 0.93

4 Breeding þ IUCN þ latitude þ body mass 8 �264.739 620.3 1.32 0.089 0.007 0.93

5 Breeding 5 �265.583 620.6 1.63 0.076 0.002 0.93
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individuals to adjust their phenotypes to variation in

environmental conditions (Hau et al. 2016). Unlike

most other biomolecules (Martin et al. 2011), GCs

can enduringly or reversibly modulate the properties

of many tissues, giving them a molecular form of

functional pleiotropy that orients organismal pheno-

types to a shared life priority (McGlothlin and

Ketterson 2008; Ketterson et al. 2009; Cohen et al.

2012; Martin and Cohen 2014). Such extensive effects

of GCs make them both potential facilitators and

impediments to conservation interests, depending on

their collective effects across tissues and contexts.

Overall, we found little evidence that IUCN status

(some level of concern versus least concern) or loca-

tion within the geographic range (edge versus non-

edge) predicted baseline and post-restraint CORT

concentrations of several bird and reptile species.

Null results are always difficult to discuss and in-

terpret, but our rediscovery of previously described

interspecific patterns (e.g., effects of breeding status

on CORT) gives us confidence that our analysis was

appropriately executed. As with previous work

(Casagrande et al. 2018), we found seasonal changes

in the regulation of GCs breeding (Romero 2002)

even though we used a very coarse surrogate for breed-

ing status (yes/no). Likewise, we have strong evidence

for effects of phylogeny (all k> 0.90) on both forms of

CORT (Jessop et al. 2013b), and we found effects of

latitude on BL CORT consistent with other studies

(Hau 2010, 4767). In light of these rediscoveries and

the exceptionally broad scope of our work, we think it

is reasonable to conclude that IUCN listing for species

and edge/non-edge status of populations are unrelated

to CORT in birds and lizards. For these reasons, we

discourage simple future efforts to use CORT as a bio-

marker of stress at such very broad scales. Below

though, we discuss a few potential reasons why other

studies of GCs in the service of conservation are war-

ranted, and we propose some potentially useful ways

forward at multiple levels of analysis.

Table 4 Composition of top models for post-restraint corticosterone, IUCN analysis

Model Predictor Post.mean Lower 95% Upper 95% Effective sample size

1 (Intercept) 2.906 1.674 4.217 2000

(k¼0.93) Breeding (6) �0.178 �0.280 �0.068 2000

Body mass (log, scaled) 0.085 �0.027 0.192 2000

2 (Intercept) 2.941 1.685 4.164 2000

(k¼0.93) Breeding (6) �0.183 �0.299 �0.082 2000

IUCN �0.102 �0.440 0.208 2146

Body mass (log, scaled) 0.091 �0.023 0.198 2000

3 (Intercept) 2.883 1.529 4.152 2131

(k¼0.93) Latitude (scaled) �0.010 �0.104 0.078 2223

Breeding (6) �0.178 �0.277 �0.062 2000

Body mass (log, scaled) 0.089 �0.026 0.194 2000

4 (Intercept) 2.896 1.639 4.262 2000

(k¼0.92) IUCN �0.112 �0.411 0.229 2000

Latitude (scaled) �0.013 �0.097 0.088 2000

Breeding (6) �0.181 �0.287 �0.062 2000

Body mass (log, scaled) 0.097 �0.019 0.214 2000

5 (Intercept) 3.011 1.770 4.280 2000

(k¼0.92) Breeding (6) �0.174 �0.280 �0.066 2000

Bolded text highlights terms with credible intervals that do not overlap zero.

Table 5 Top models predicting variation among avian and reptilian baseline corticosterone entries in HormoneBase (geographic range)

Model Terms in model df Loglikelihood DIC Delta Weight Marginal R2 Conditional R2

1 Breeding þ range þ latitude þ altitude 8 �708.403 1534.6 0 0.239 0.01 0.94

2 Breeding þ range þ latitude þ altitude þ body mass 9 �707.89 1534.9 0.28 0.208 0.01 0.95

3 Breeding þ latitude þ altitude þ body mass 8 �708.817 1535.5 0.83 0.157 0 0.95

4 Breeding þ latitude þ body mass 7 �709.065 1535.7 1.03 0.142 0 0.94
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IUCN status

IUCN status did not predict baseline or post-re-

straint CORT in birds and reptiles well in spite of

quite large sample sizes and phylogenetic coverage.

Our care to include several covariates in our analyses

also should have helped tease out any relationships
between IUCN status and CORT variation if they

exist. The most likely reasons we did not reveal ap-

preciable effects of IUCN status on CORT is that (1)

variation in CORT is strongly context-dependent

(Busch and Hayward 2009) and (2) IUCN status is

Table 6 Composition of top models for baseline corticosterone, range analysis

Model Predictor Post.mean Lower 95% Upper 95% Effective sample size

1 (Intercept) 2.204 0.189 4.160 2024

(k¼0.95) Range �0.083 �0.242 0.084 2000

Latitude (scaled) �0.053 �0.159 0.043 1859

Altitude (scaled) 0.092 0.018 0.166 2000

Breeding (6) �0.167 �0.277 �0.054 2150

2 (Intercept) 2.156 0.084 4.256 2000

(k¼0.95) Latitude (scaled) �0.061 �0.165 0.039 2000

Range �0.091 �0.259 0.071 2000

Altitude (scaled) 0.091 0.017 0.165 2000

Breeding (6) �0.166 �0.275 �0.047 2000

Body mass (log, scaled) 0.060 �0.069 0.209 2000

3 (Intercept) 2.038 0.077 4.202 2023

(k¼0.94) Latitude (scaled) �0.060 �0.164 0.037 1847

Altitude (scaled) 0.104 0.031 0.179 2000

Breeding (6) �0.165 �0.282 �0.052 2000

Body mass (log, scaled) 0.057 �0.085 0.196 2000

4 (Intercept) 2.125 �0.085 3.991 2000

(k¼0.95) Latitude (scaled) �0.054 �0.143 0.051 2000

Altitude (scaled) 0.103 0.027 0.173 1875

Breeding (6) �0.163 �0.280 �0.041 2245

Bolded text highlights terms with credible intervals that do not overlap zero.

Table 7 Top models predicting variation among avian and reptilian post-restraint corticosterone entries in HormoneBase (geographic

range)

Model Terms in model df Loglikelihood DIC Delta Weight Marginal R2 Conditional R2

1 Breeding þ body mass 6 �170.157 406.5 0 0.244 0.01 0.94

2 Breeding þ latitude þ body mass 7 �170.26 407.1 0.65 0.176 0 0.94

Table 8 Composition of top models for post-restraint corticosterone, range analysis

Model Predictor Post.mean Lower 95% Upper 95% Effective sample size

1 (Intercept) 3.747 2.037 5.595 2299

(k¼0.95) Breeding (6) �0.247 �0.395 �0.121 2000

Body mass (log, scaled) 0.066 �0.040 0.165 2303

2 (Intercept) 3.694 1.974 5.440 2000

(k¼0.95) Breeding (6) �0.259 �0.405 �0.137 2000

Latitude (scaled) �0.031 �0.125 0.061 1829

Body mass (log, scaled) 0.072 �0.030 0.177 2000

Bolded text highlights terms with credible intervals that do not overlap zero.
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too imprecise an indicator of stress experienced by

wildlife. In regards to the former, context-

dependence is the rule more than the exception for

HPA function, the neuroendocrine axis regulating

the release of CORT into the bloodstream. CORT

and other HPA regulatory elements fluctuate over

several timescales (Woods and Wilson 2014), and

these fluctuations are integral to CORT achieving

its physiological functions. Baseline CORT largely

works in a permissive manner, enhancing the actions

of catecholamines, preparing the immune system for

insult, stimulating lipolysis and gluconeogenesis, and

increasing food consumption and deposition of en-

ergy stores (Sapolsky et al. 2000). Conversely, post-

restraint CORT mediates emergency life history

responses, inducing rapid and transient changes

that help an individual flee, endure, actively cope

with, and recover from adversity (Wingfield et al.

1998). Perhaps had we included life history stage,

health, sex, and variation, and other traits of indi-

viduals (Korte et al. 2005), we might have revealed

effects of IUCN status on CORT. Repeatedly, breed-

ing status was one of the best predictors of CORT

variation. We were unable to include more precise

variables because HormoneBase does not include

data at the individual animal level and because of

the exceptional inherent diversity in life history strat-

egies among the species we considered.

Even had we individual-level data or the ability to

describe species in a more specific way, we might not

have detected effects of IUCN status on CORT.

Others have used GCs for conservation pursuits be-

cause of their utility as proxies for individual health

and fitness (Strasser and Heath 2013), and the most

informative studies, in terms of linking physiology to

conservation risk or mitigation opportunity, have

been at the level of populations (Mart�ınez-Mota

et al. 2007; Homyack 2010). For instance, within

species, individuals with lower body condition often

have higher baseline GCs (Lindström et al. 2005;

Angelier et al. 2009). However, relationships between

CORT and aspects of fitness are complex (Schoenle

et al. 2018), so even population-level comparative

work risks imprecision. For example, baseline

CORT in tree swallows (Tachycineta bicolor) was

only elevated in some populations when food restric-

tion was imposed on females during the period when

offspring were being fed (Madliger and Love 2014);

outside this period and/or in other populations,

baseline CORT did not change with food restriction.

In house sparrows (Passer domesticus), the direction

of the relationship between baseline CORT and re-

productive success flipped depending on the breed-

ing stage; before egg-laying, the relationship was

positive but during offspring provisioning, it was

negative (Ouyang et al. 2011). These studies and

the absence of intelligible patterns in our study high-

light that for conservation purposes, we probably

need to characterize better how HPA responses to

adversity mediate fitness among individuals within

populations (see below).

A second likely reason for no influence of IUCN

status on CORT is the breadth of factors that leads to

IUCN listing in the first place. Listing represents the

integration of several different forms of information

about a species as well as trends of focal populations

(IUCN 2012). This complex algorithm for listing

means that organisms can occupy the most dire rank-

ings for quite different reasons. Many of the most

threatened species are listed because of very narrow

geographic ranges (i.e., endemics), whereas others are

listed because their populations are declining over

large spatial scales (e.g., habitat destruction), and still

others are listed because of particularly vulnerable life

stages (e.g., marine turtles). Conservation threats also

equate to sources of selection in an evolutionary

sense, so when selection acts at different points of

life, CORT variation can be driven in a particular

direction, obscuring any interspecific patterns. In

white-crowned sparrows (Zonotrichia leucophrys), for

example, survival selection favored high post-restraint

CORT, but fecundity selection favored weaker CORT

responses to restraint (Patterson et al. 2011). We fo-

cused on adult animals here to try to moderate age-

dependency in our comparisons, but ideally, one

would analyze data from multiple age classes (and

other sensitive categories mediating listing) to reveal

what about IUCN listing instigates GC variation.

Our perspective is that IUCN status, as a species-

level designation, is probably just too coarse a cate-

gory to relate to GCs or most any other form of

physiological variation in the service of conservation.

Moreover, as many data in HormoneBase will have

come from samples available from the least sensitive

parts of a species range (because managers are prob-

ably often reluctant to permit capture and handling

of critically endangered species), it might be even less

likely that coarse analyses would reveal patterns. By

contrast, some populations of IUCN-listed species

might have been restricted to protected but other-

wise suboptimal habitats. Without sampling from

multiple points across the range of an IUCN-listed

species, it might be hard to link IUCN status and GC

variation. Some populations will simply experience

less stress than others. Although it is as yet unclear

which of the two above factors predominate in our

study, it is sensible that future conservation endocri-

nology efforts take a more focused approach.
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Geographic range

Although the “edge” term appeared in the two top
models for baseline CORT, its explanatory power
was weak compared with other factors. Much like
IUCN status, capture location (i.e., edge/non-edge)
is probably too imprecise a way to describe adversity
of conditions at a site. Our main motivation for
conducting this comparison came from previous
work on range-expanding populations; the roles of
GCs in individual fitness is probably quite distinct in
range-edge organisms relative to those enduring con-
ditions for generations at the core. In light of the
present results, if we are to discern whether and how
location within a range influences GCs, or vice versa,
we will need to investigate directly the forces induc-
ing variation in the first place. Although repeatability
of both stress-induced GC and baseline concentra-
tions are high in birds (Taff et al. 2018), both meas-
ures are also strongly influenced by environmental
conditions. Data in HormoneBase represent a mix
of within- and among-individual variation, yet with-
out repeated GC measures from individuals, one will
remain unable to separate these sources of variation
(Baugh et al. 2014). Environmentally-induced varia-
tion is important functionally, but it does not cap-
ture as well how GCs mediate fitness and thus
success or failure in marginal areas (Hau et al.
2016). Moreover, because relationships between fit-
ness and GCs can be non-linear and vary among
populations (Martin et al. 2005; Busch and
Hayward 2009; Crespi et al. 2013), it will be imper-
ative to study some populations intensively to reveal
how GCs mitigates population dynamics at various
sites (Zanette et al. 2011; Dantzer et al. 2013; Kleist
et al. 2018). Perhaps if we could have compared
relationships between GCs and fitness among edge
and non-edge sites, we would have revealed interest-
ing patterns. Such data are not available in
HormoneBase, however, largely because those data-
sets remain relatively rare. In the future, efforts to
link GCs and geographic distribution should focus
on how GCs support population viability, but per-
haps expand their perspectives on the functions of
GCs. So far, conservation and comparative endocri-
nologists have focused mostly on the role of CORT
in energy balance (Vera et al. 2017). However, GCs
have manifold effects (Dallman et al. 2007) including
those that mitigate responses to infections (Gervasi
et al. 2016; Martin et al. 2016b; Gervasi et al. 2017)
and even water balance (Vera et al. 2017). These
well-known effects of GCs have been little considered
for affecting the viability or distribution of popula-
tions, even species in marginal habitats where desert-
ification (Hofmeister and Rubenstein 2016), climate

change, or other challenges to water balance are be-
coming more common.

Suggestions for future conservation physiology

involving GCs

Our results suggest that future work attend to the

particular pathways by which GCs affect individual

fitness instead of taking coarse comparative

approaches, even with large databases. We do not

mean to disparage all future large-scale comparative

conservation endocrinology efforts, as they could be

insightful. For instance, because GCs are deposited

into fur, feather, feces, and other tissues at slower

rates than they are released and metabolized in the

blood, it might be informative to compare GCs from

other tissues as proxies of IUCN listing or other

forms of conservation risk at broad (i.e., species)

levels. Typically though, nuanced approaches to GC

conservation physiology will probably be more in-

sightful (Chown and Gaston 2016). The work of

Valladares et al. (2014) is a great example; they stud-

ied how relationships between phenotypic plasticity

and the thermal niche could be used to improve

forecasts of species responses to environmental

change. We encourage that researchers interested in

GCs as a biomarker of wildlife stress also consider

the physiological functions of GCs and the context in

which it is measured.

As an example of a future promising approach,

consider how habitat degradation and destruction

could work through GCs to affect mammalian ex-

tinction risk. Habitat degradation and destruction

are the main threats to extinction for most vertebrate

species (Drake and Griffen 2010), but risk changes

depending on variation in environmental factors,

body size, and intrinsic traits (e.g., life history sched-

ules) among and within species/populations. Large

mammals, particularly those from the tropics (Fritz

et al. 2009), tend to have higher extinction risks be-

cause of their low reproductive rates. However, spe-

cies above a 3-kg body size threshold are

disproportionately (negatively) impacted by environ-

mental (and intrinsic) factors including human pop-

ulation density (Cardillo et al. 2004). To discern

whether GCs can serve as biomarkers with genuine

conservation value, one could track serum (or pos-

sibly fecal) GCs in at-risk populations, expecting

GCs to become increasingly disregulated as popula-

tions experience critical slowing down, points on

population growth trajectories at which rates of re-

covery from small perturbations decrease (Drake and

Griffen 2010). These quite involved efforts would be

prohibitive in many systems, but their execution in a
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few species could provide valuable guidance for par-

ticularly threatened species.

Note too that for GCs to be supported as genu-

inely useful biomarkers, one will need to link con-

centrations in single measurements to the regulatory

plasticity of the HPA that mediates GC effects on

performance and fitness (Guindre-Parker 2018).

Although aspects of GC regulation are sometimes

inter-related (Liebl et al. 2013), one should not as-

sume that single measures are proxies for the flexible

changes in hormone concentrations that mediate

function and fitness. GCs regulatory flexibility prob-

ably represents an important form of phenotypic

flexibility (Martin and Cohen 2014; Martin and

Liebl 2014; Martin et al. 2015; Hau et al. 2016;

Taff and Vitousek 2016; Kilvitis et al. 2017), which

is beneficial when it allows an individual to alter its

phenotype to match a changing environment

(DeWitt et al. 1998). In fluctuating environments

flexible individuals may be more competitive and

have higher reproductive success and survival than

inflexible (canalized) individuals, although outcomes

will be contingent on the time scale over which envi-

ronments fluctuate and whether regulation can keep

pace. Conversely, although more canalized individu-

als may have a lower potential to adapt to fluctuat-

ing environments, they may be more successful

under stable conditions, especially if plasticity is

costly (DeWitt et al. 1998). It would be insightful

to determine whether HPA regulatory flexibility pre-

dicts stable and/or unstable population dynamics,

ideally using state-based population models (Crespi

et al. 2013).

A final lucrative consideration for conservation

endocrinology is to account for the form of chronic

stress that is leading populations or species to be of

concern in the first place (Dickens and Romero

2013). In terms of their endocrinological effects,

chronic stressors tend to take two forms (Mart�ı
and Armario 1998). In chronic continuous stress

(e.g., some adverse social situations), stressor expo-

sure is omnipresent. In these scenarios, HPA habit-

uation often occurs and GC elevations subside or

even decrease relative to levels measured prior to

stressor exposure. The other form, chronic intermit-

tent stress, involves exposure to a series of stressors

on a consistent or rotating basis. Animals in these

conditions do not habituate and maintain high levels

of GCs for long periods. We already know from

populations of no obvious concern that GCs can

be low at certain times of year in challenging envi-

ronments (e.g., high latitudes), presumably to allow

individuals to continue to breed in spite of subopti-

mal conditions (Wingfield and Sapolsky 2003).

Growing evidence also suggests that selection often

favors dampened GC stress responses in human-

disturbed areas too (Partecke and Gwinner 2007;

Atwell et al. 2012). We recognize that it will be

very difficult to conduct involved endocrinological

studies on many threatened and endangered wildlife,

but more physiologically-nuanced approaches are

critical if GCs are to serve as a broadly-useful con-

servation tool. The distinct research methods and

lexicons of physiology and conservation biology

alone make collaborations challenging (Lennox and

Cooke 2014), but the payoff is mutual awareness

and, ideally, realized conservation aspirations

(Redpath et al. 2013).
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