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Abstract. The Nazarov-Sodin constant describes the average number of nodal set compo-
nents of Gaussian fields on large scales. We generalise this to a functional describing the
corresponding number of level set components for arbitrary levels. Using results from Morse
theory, we express this functional as an integral over the level densities of different types
of critical points, and as a result deduce the absolute continuity of the functional as the
level varies. We further give upper and lower bounds showing that the functional is at least
bimodal for certain isotropic fields, including the important special case of the random plane
wave.

1. Introduction

1.1. The Nazarov-Sodin constant. Let f : R2 → R be a stationary planar Gaussian field
normalised to have zero mean and unit variance. The nodal set of f is the random set

N = {x ∈ R2 : f(x) = 0}.
Let κ : R2 → [−1, 1] denote the covariance kernel of f , i.e. κ(x) = E[f(x)f(0)]. We assume
throughout that κ is C4+, which ensures that almost surely f is C2+. Since κ is positive
definite, continuous and κ(0) = 1, by Bochner’s theorem there exists a probability measure ρ
such that

(1.1) κ(x) =

∫
R2

ei〈t,x〉 dρ(t);

this is known as the spectral measure of f and must be Hermitian (that is, ρ(−A) = ρ(A) for
all Borel sets A). Since f is uniquely determined by its covariance function (Kolmogorov’s
theorem), (1.1) shows that f is uniquely determined by ρ.

The geometric properties ofN are of interest, in part, because in the case that f is a random
eigenfunction of the Laplacian they relate to a significant conjecture in the physics literature:
the Berry conjecture [4]. A summary of this conjecture and other research on this topic may
be found in [16]. One of the main analytical results concerning this set, due to Nazarov and
Sodin ([11] and [14]), states that the number of components of N in a large domain scales
like the area of the domain. Specifically, if NR denotes the number of components of N
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inside the centred ball of radius R > 0, then provided f is ergodic, there exists a constant
cNS = cNS(ρ) ≥ 0 such that

NR/(πR
2)→ cNS

as R→∞, where convergence occurs almost surely and in L1. Nazarov-Sodin also obtained
analogous results in higher dimensions and for Gaussian ensembles on manifolds [11]. In the
case that f is not ergodic, it has been shown [9] (under the additional assumption that ρ has
compact support) that the expected number of nodal components, scaled by the area, still
converges, i.e.

E[NR]/(πR2)→ cNS

as R → ∞. Further, in [9] it was also shown that among fields with compactly supported
spectral measures the constant cNS varies continuously with ρ (in the weak-∗ topology).

1.2. The main results. The first contribution of this paper is to extend the results of
Nazarov-Sodin and [9] to arbitrary levels. For u ∈ R2 and R > 0 let B(u,R) be the ball of
radius R centred at u. Let N` = {x ∈ R2 : f(x) = `} denote a level set of f and let NLS,R(`)
be the number of components of N` contained in B(0, R) (i.e. those which intersect B(0, R)
but not ∂B(0, R)). Let P be the set of Hermitian probability measures ρ on R2 such that
the support of ρ is not contained in two lines through the origin, and

∫
R2 |λ|4+εdρ(λ) < ∞

for some ε > 0. Each element of P can be associated with a planar, stationary, normalised,
Gaussian field f by (1.1); henceforth we refer to f simply as the Gaussian field with spectral
measure ρ. The assumptions on P ensure that f is almost surely C2+ and that ∇2f(0) is a
non-degenerate Gaussian vector.

Theorem 1.1. Let f be the Gaussian field with spectral measure ρ ∈ P. For each ` ∈ R,
there exists cNS(ρ, `) ≥ 0 such that

E[NLS,R(`)] = cNS(ρ, `) · πR2 +O (R)

as R → ∞. The constant implied by the O(·) notation may depend on ρ but is independent
of `. If f is also ergodic, then

NLS,R(`)/(πR2)→ cNS(ρ, `)

almost surely and in L1.

When considering arbitrary levels, it can be advantageous to work with excursion sets
rather than level sets. Let NES,R(`) denote the number of components of {x ∈ R2 : f(x) > `}
contained in B(0, R) (the subscript ‘ES’ is chosen to denote excursion sets).

Theorem 1.2. Let f be the Gaussian field with spectral measure ρ ∈ P. For each ` ∈ R,
there exists cES(ρ, `) ≥ 0 such that

E[NES,R(`)] = cES(ρ, `) · πR2 +O (R)

as R → ∞. The constant implied by the O(·) notation may depend on ρ but is independent
of `. If f is also ergodic, then

NES,R(`)/(πR2)→ cES(ρ, `)

almost surely and in L1.
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Remark 1.3. Our use of the domain B(0, R) in the definitions of NLS,R(`) and NES,R(`) is
mainly for simplicity, and after minor modifications the proofs of Theorems 1.1 and 1.2 go
through equally well for rescaled copies of any bounded reference domain Ω ⊂ R2, provided
that Ω is convex and ∂Ω is piecewise smooth (and probably more generally as well). Moreover
the limiting constants cNS and cES do not depend on Ω (after replacing the scaling factor
πR2 by Area(Ω)R2).

Remark 1.4. Theorem 1.2 can also be applied to lower excursion sets (the components of
{x ∈ R2 : f(x) < `}) since f is symmetric and {x ∈ R2 : f(x) < `} = {x ∈ R2 : −f(x) > −`}.
Theorem 1.2 can then be used to prove Theorem 1.1 by making use of Euler’s formula to show
that the number of level set components NLS,R(`) is equal to the number of upper and lower
excursion set components in B(0, R) and a bounded error term (see the proof of Lemma 2.5
for details of this argument).

The symmetry of f along with the observations in the previous remark immediately give
the following corollary.

Corollary 1.5. Let f be the Gaussian field with spectral measure ρ ∈ P. Then

(1) cNS(`) = cNS(−`) for all ` ∈ R,
(2) cNS(`) = cES(`) + cES(−`) for all ` ∈ R,
(3) cNS(0) = 2cES(0).

Theorems 1.1 and 1.2 are, in isolation, only a modest improvement on previous results;
they could likely be proven by slightly adapting the analysis in [11] and [9]. The main novelty
of our work is to relate the functionals cNS and cES to the density of critical points of f of
different types and at different levels. To state the relationship, we shall require in particular
a classification of the saddle points of the field into two types:

Definition 1.6. Let x0 be a saddle point of a function g : R2 → R such that there are no other
critical points at the same level as x0. We say that x0 is an upper connected saddle if it is
in the closure of only one component of {x ∈ R2 : f(x) > f(x0)}. Similarly, x0 is said to be
lower connected if it is in the closure of only one component of {x ∈ R2 : f(x) < f(x0)}.

A Gaussian field f which is aperiodic1 almost surely has no two critical points at the same
level (see Lemma 2.4), and we will show that for such fields, all saddle points of f satisfy
exactly one of the two conditions in Definition 1.6. In the case that f is periodic, we will
require a more general definition for classifying saddle points as upper or lower connected,
which is given in Section 3.

Previous work has shown that, for sufficiently regular isotropic2 Gaussian fields, the ex-
pected number of local maxima, local minima or saddle points with value in a certain interval
can be expressed as the integral of an explicit density function [5]. In Section 3 we prove the
following version of this result, which applies to more general Gaussian fields and also isolates
the upper and lower connected saddles, but does not explicitly identify the densities. This
proposition uses Definition 3.1 for upper and lower connected saddle points (which coincides
with Definition 1.6 for aperiodic fields).

1The field f is periodic if there exists x 6= 0 with κ(x) = 1 and is aperiodic otherwise.
2A Gaussian field is said to be isotropic if its covariance function κ(x) can be expressed as a function of |x|

where |·| denotes the Euclidean norm.
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Proposition 1.7. Let f be the Gaussian field with spectral measure ρ ∈ P. Then there exist
non-negative functions pm+, pm−, ps+, ps− and ps on R such that the following holds. Let
Ω ⊂ R2 be compact and ∂Ω have finite Hausdorff-1 measure. Let ` ∈ R and let Nm+, Nm−,
Ns+, Ns− and Ns denote the number of local maxima, local minima, upper connected saddles,
lower connected saddles and saddles of f in Ω with level above ` respectively. Then

E[Nh] = Area(Ω)

∫ ∞
`

ph(x) dx

for h = m+,m−, s+, s−, s. Furthermore, these functions can be chosen to satisfy the relations
pm+(x) = pm−(−x), ps+(x) = ps−(−x) and ps− + ps+ = ps, and such that pm+, pm− and ps
are continuous.

The main theorems of the paper give an explicit expression for the functionals cNS and cES
in terms of the densities introduced in Proposition 1.7. As a result, we deduce the absolute
continuity of these functionals as the level varies. In the case of spectral measures with
compact support, we also show the joint continuity of these functionals with respect to both
the level and the spectral measure.

Let Pc denote the set of spectral measures ρ ∈ P such that the support of ρ is contained
in the closure of B(0, 1). By rescaling the axes, the results we state for Pc can be shown to
hold for any spectral measures with compact support.

Theorem 1.8. Let f be the Gaussian field with spectral measure ρ ∈ P and let pm+, pm−,
ps+, ps− denote the densities specified in Proposition 1.7. Then

(1.2) cNS(ρ, `) =

∫ ∞
`

pm+(x)− ps−(x) + ps+(x)− pm−(x) dx

and

(1.3) cES(ρ, `) =

∫ ∞
`

pm+(x)− ps−(x) dx

and hence cNS and cES are absolutely continuous in `. In addition cNS and cES are jointly
continuous in (ρ, `) ∈ Pc × R where Pc is given the weak-∗ topology.

Remark 1.9. Theorem 1.8 provides a new tool with which to analyse the Nazarov-Sodin
constant. Since the densities pm+ , pm− and ps are in principle known by the Kac-Rice formula,
our result demonstrates that the study of the Nazarov-Sodin constant can be reduced to an
analysis of the density ps− (or, equivalently, ps+ = ps−ps−), which may be an easier quantity
to handle. In Section 1.3 we use this fact to derive bounds on cNS and cES .

Remark 1.10. Theorems 1.1, 1.2 and 1.8 can be generalised to many examples of non-Gaussian
stationary random fields, since our proof requires only that the field satisfies certain topologi-
cal properties almost surely and is sufficiently regular to apply the Kac-Rice formula (see the
more general version of our main results stated in Propositions 2.6 and 2.7 below).

We also believe Theorems 1.1, 1.2 and 1.8 could be generalised to higher dimensions,
with the analogues of (1.2) and (1.3) still valid once the saddle points defining ps+ and
ps− are replaced with critical points of index 1 and d − 1 respectively (using the general
Definition 3.1 for upper and lower connected saddles, which would no longer be equivalent
to Definition 1.6 in the aperiodic case). However, since some of the topological arguments in
the proof increase in complexity in higher dimensions, in the interest of simplicity we do not
pursue this generalisation here.
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Let us mention the key intuition behind the proof of Theorem 1.8. This theorem is based
on a deterministic relationship between the excursion sets and critical points of sufficiently
regular planar functions which is closely related to Morse theory. The excursion set of such a
function above a level deforms continuously as the level increases, provided it does not pass
through a critical point. In particular, there is no change in the number of components of the
excursion set. When passing through a critical point, the topology of the excursion set changes
in a way that is predicted by Morse theory and depends on the index of the critical point. For
local maxima and local minima, the number of components of the excursion set changes in a
consistent way. For saddle points, the change in the number of components is determined by
whether it is upper connected or lower connected (see Figure 1). Ultimately, Theorem 1.8 is
a probabilisitic expression, in the setting of Gaussian fields, of this deterministic relationship
between excursion set components and critical points of various types.

x1

{f = `}

{f = `+ ε}
x2

{f = `}

{f = `− ε}

Figure 1. The number of excursion set components increases by one on pass-
ing through the lower connected saddle x1 and is constant on passing through
the upper connected saddle x2.

We also briefly discuss the assumptions required for our results. Recall that P consists of
the Hermitian probability measures ρ on R2 which are not supported on two lines through
the origin, and such that

∫
R2 |λ|4+εdρ(λ) <∞ for some ε > 0. The moment condition ensures

that f is almost surely C2+ which is necessary to apply the topological arguments that we
borrow from Morse theory. The condition on spt(ρ) is equivalent to requiring that ∇2f(x)
is a non-degenerate Gaussian vector for all x ∈ R2. This assumption is used with the Kac-
Rice theorem (see Section 2) to show certain non-degeneracy properties of f which are again
necessary for our topological arguments.

It is natural, therefore, to ask whether our results still apply when this non-degeneracy
assumption is removed. While we suspect that this is true, we are not able to show it with
our methods. On the other hand, for a certain special case of non-trivial degenerate field –
namely, the case where ρ is supported on at most five points – we are able to give a complete
description of cNS and cES , which in particular shows that the main results hold also in this
case (see Section 1.4 below).

1.3. Bounds on cNS and cES. It is possible to bound the expected number of excursion sets
or level sets of stationary Gaussian fields using local estimates (i.e. estimates which depend
only on the derivatives of κ at the origin). Here we outline how these estimates apply to
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the functionals cES and cNS and how they can be better characterised by making use of our
results.

Corollary 1.11. Let f be a Gaussian field with spectral measure ρ ∈ P and covariance
function κ, then for ` ∈ R

(1.4) cES(`)− cES(−`) = det∇2κ(0)
`

2π
φ(`)

where φ denotes the standard normal probability density function.

Remark 1.12. Since −∇2κ(0) is the covariance matrix of ∇f(0), this result implies that the
difference cES(`)−cES(−`) depends only on the covariance of∇f(0) and not on the covariance
of higher order derivatives of f .

Remark 1.13. This result was proven for isotropic fields in [15] using a winding number
calculation. We prove this result using Theorem 1.8 which simplifies the calculation in the non-
isotropic case and also highlights an interesting identity. Specifically, the proof is as follows:
substituting (1.3) into the left hand side of (1.4) and using the symmetries pm+(x) = pm−(−x),
ps+(x) = ps−(−x) and ps− + ps+ = ps, we see that

cES(`)− cES(−`) =

∫ ∞
`

pm+(x)− ps(x) + pm−(x)

= E(Nm+ −Ns +Nm−)

where Nm+ , Ns and Nm− are the number of critical points above level ` as defined in Proposi-
tion 1.7 for Ω = B(0, 1/

√
π). Lemma 11.7.1 of [1] states that this alternating sum is precisely

the right hand side of (1.4).
The alternating sum of critical points of a function of different indices above a certain level

can be used to calculate the Euler characteristic of the excursion set of the function above
the level (see Chapter 9 of [1]). When working on finite subsets of the plane, boundary effects
must be considered, but these become negligible as the area of the subset increases. Formally,
if we let ϕ(A) denote the Euler characteristic of a set A, then Theorem 11.7.2 of [1] gives
an expression for the expected Euler characteristic of an excursion set on a cube (including
boundary effects) which implies that

cES(`)− cES(−`) = lim
R→∞

1

R2
E
(
ϕ
(
{x ∈ [0, R]2 : f > `}

))
Corollary 1.11 immediately gives a lower bound for cES(`) since cES(−`) ≥ 0. We now

consider an upper bound on cNS . This is most easily formulated when f is an isotropic
Gaussian field. In this case its covariance function may be expressed as κ(x) = K(|x|). It is
shown in [5] that

(1.5) λ :=
−
√

3K(2)(0)√
K(4)(0)

∈ (0,
√

2] and η2 :=
−6K(2)(0)

K(4)(0)
∈ [0,∞)

parameterise the critical point densities pm+ , pm− and ps of isotropic fields in any dimension.
It can also be shown that, for planar isotropic fields, if λ =

√
2 then κ(x) = J0(

√
8/η2 |x|),

where J0 is the 0-th Bessel function. When η2 = 8, this particular field is known as the
random plane wave (hereafter abbreviated to RPW), and is an object of great interest as it
is the subject of the Berry conjecture [16].
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Proposition 1.14 ([15]). Let f be an isotropic Gaussian field with spectral measure ρ ∈ P
and covariance function κ(x) = K(|x|), then for ` ≥ 0

(1.6) cNS(`) ≤ λ2

πη2
φ(`)

(
2
√

3− λ2

λ
φ
(
λ`/
√

3− λ2
)

+ `
(

2Φ
(
λ`/
√

3− λ2
)
− 1
))

.

where φ and Φ denote the standard normal probability density and cumulative density func-
tions respectively.

In particular, if λ2 > 6e
2e+π ≈ 1.9 then by Corollary 1.11, cNS(0) < cNS(1) so that cNS is

at least bimodal (that is, it has at least two local maxima).

Remark 1.15. This result is proven in [15] using the method of ‘flip points’. Specifically, for
any fixed direction u, the number of level set components at level ` in a finite region is bounded
above by half the number of points t in the region such that f(t) = ` and ∂uf(t) = 0 where
∂u denotes the partial derivative in the direction u. The expected number of such points can
be computed using the Kac-Rice formula. For isotropic fields, the choice of direction u is
irrelevant. This method could also be applied to non-isotropic fields, and the bound could be
optimised over the direction u, but we omit this for simplicity.

It is also possible to construct an upper bound on cNS using the inequality 0 ≤ ps− ≤ ps
and the densities pm+ , ps and pm− , which are explicitly known for isotropic fields. However
this bound is larger than the bound in (1.6) at all levels `.

Remark 1.16. Figure 2 shows lower and upper bounds for cES and cNS for the RPW based
on (1.4), (1.6) and the equality cNS(`) = cES(`) + cES(−`) (recall that λ =

√
2 and η2 = 8

in this case). Although these bounds are not particularly tight for ` close to 0, they quickly
become accurate as |`| increases. For ` ≥ 1 both the upper and lower bounds on cNS(`) are
within 5.1% of the true value (since the upper bound is within 5.1% of the lower bound) while
for ` ≥ 1.5 both bounds are within 0.6% of the true value.

For fields with lower values of λ, the percentage difference between the upper and lower
bounds on cNS(`) is a bit larger. Figure 3 shows the corresponding bounds on cES and
cNS for the Bargmann-Fock field: the centred, planar Gaussian field with covariance kernel
κ(x) = exp(−|x|2/2), for which λ = 1 and η2 = 2. In this case for ` ≥ 1 the upper and
lower bounds on cNS(`) are within 42% of the true value, and the corresponding accuracies
for ` ≥ 1.5, ` ≥ 2 and ` ≥ 2.5 are 15%, 6% and 2% respectively.

(a) (b)

Figure 2. Subfigures 2a and 2b show lower bounds (solid) and upper bounds
(dashed) for cES(ρ, `) and cNS(ρ, `) respectively in the RPW case, for which
λ =
√

2 and η2 = 8.
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(a) (b)

Figure 3. Subfigures 3a and 3b show lower bounds (solid) and upper bounds
(dashed) for cES(ρ, `) and cNS(ρ, `) respectively, where ρ is the density of a
standard two-dimensional Gaussian random vector (i.e. the spectral measure
of the Bargmann-Fock field), for which λ = 1 and η2 = 2.

Remark 1.17. Corollary 1.11 states that cES(ρ, `) > 0 for all ` > 0, and so cNS(ρ, `) > 0 for
all ` 6= 0, however the positivity of cNS(ρ, 0) is not addressed by this method. In [11] Nazarov
and Sodin provide sufficient conditions for the positivity of cNS(ρ, 0) in terms of the spectral
measure which cover almost all non-degenerate cases.

The only current quantitative lower bound for cNS(ρ, 0) has been proven for the RPW. In
this case it has been shown that cNS(0) ≥ 4.8×10−6 (see [8]) although numerical simulations
suggest that cNS(0) ≈ 0.0589/(4π) ≈ 0.00469 (see [3] and references therein).

Although the bounds in the previous two corollaries can be proven by local methods (i.e.
without using our analysis of saddle points) there is no scope for improving these estimates
using the same methods. However it may be possible to get tighter bounds on cNS and cES
through Theorem 1.8 and a better characterisation of ps− .

Using the explicitly known densities pm+ , pm− and ps along with Theorem 1.8 allows us to
derive some monotonicity properties of cES and cNS .

Corollary 1.18. Let f be an isotropic Gaussian field with spectral measure ρ ∈ P and λ
defined as above. Then cES(ρ, `) and cNS(ρ, `) are strictly decreasing in ` for ` >

√
2/λ, so

that any local maxima of cNS must be contained in [−
√

2/λ,
√

2/λ] and any local maxima of
cES must be contained in (−∞,

√
2/λ]. If λ =

√
2, then cES(`) is non-decreasing on (−∞, 0].

1.4. A special class of degenerate fields. As mentioned above, our methods do not cover
the case in which ρ is supported on two lines through the origin. In this section we consider
a certain special class of such fields for which we can give a more or less complete description
of cNS and cES .

If the spectral measure ρ is supported on a single line through the origin, it is well known
that f is almost surely constant in one direction and so in particular has no compact level
domains. In this case, all of our results hold trivially with cNS , cES and the critical point
densities identically equal to zero. The simplest non-trivial case of degenerate ρ /∈ P are
spectral measures which are supported on four or five points. In this case, we can compute
cES and cNS explicitly.

Recall that a random variable Y is said to be Rayleigh distributed with parameter σ2 > 0,

denoted Y ∼ Ray(σ), if P(Y ≤ x) = 1− e−x2/(2σ2) for all x ≥ 0.
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Proposition 1.19. Let f be the Gaussian field with spectral measure

ρ = αδ0 +
β

2
(δK + δ−K) +

γ

2
(δL + δ−L)

where β, γ > 0, α = 1− β − γ ≥ 0 and K,L ∈ R2 are linearly independent. Then

E[NES,R(`)] = cNS(`) · πR2 +O(R)

and
E[NLS,R(`)] = cES(`) · πR2 +O(R)

where
cNS(`) = |K × L| · P (|Y1 − Y2| ≤ `+X0 ≤ Y1 + Y2) ,

cES(`) = |K × L| · P (|Y1 − Y2| ≤ |`+X0| ≤ Y1 + Y2) ,

× denotes the cross product, X0 ∼ N (0, α), Y1 ∼ Ray(
√
β), Y2 ∼ Ray(

√
γ) and X0, Y1, Y2 are

independent. Moreover the constants implied by the O(·) notation in these expressions are
independent of `.

So in particular, cNS(`) = 0 if and only if ` = α = 0. If cNS(`) 6= 0 then NLS,R(`)/(πR2)
converges in L1 to a non-constant random variable and hence does not converge a.s. to a
constant, and this statement also holds for cES and NES,R(`)/(πR2).

Furthermore there exist functions pm+, ps−, pm−, ps+ and ps satisfying the conclusions of
Proposition 1.7, and these are defined by

pm+(x) = pm−(−x) = |K × L| · pX0+Y1+Y2(x)

ps−(x) = ps+(−x) = |K × L| · pX0+|Y1−Y2|(x)

where pZ denotes the probability density of a random variable Z. Therefore the equalities in
the conclusion of Theorem 1.8 hold for f .

Remark 1.20. A stationary centred continuous Gaussian field is ergodic if and only if its
spectral measure has no atoms [12, Section 6.1], and so the fields considered in this proposition
are not ergodic. The fact that NLS,R(`)/(πR2) does not generally converge to cNS(`) for these
fields shows that the ergodicity requirement in the second part of Theorems 1.1 and 1.2 cannot
be entirely relaxed.

Remark 1.21. It has previously been shown that if spt(ρ) has precisely four points then
cNS(0) = 0 (see [9]). Proposition 1.19 shows that cNS(0) > 0 when spt(ρ) has five points,
and that cNS(`) > 0 for ` 6= 0 when spt(ρ) has four or five points.

Remark 1.22. Figures 4 and 5 show cES and cNS for different values of α, β, γ when K = (1, 0)
and L = (0, 1). Figure 4 suggests that cNS is bimodal whenever α = 0 (we know that it is
at least bimodal, since cNS(0) = 0 and cNS(`) > 0 for ` 6= 0 in this case), however for α > 0
cNS can be bimodal or unimodal. Combining this observation with Corollary 1.11 raises the
interesting question of determining for which Gaussian fields cNS(`) is bimodal.

Remark 1.23. Figures 4 and 5 also suggest that the derivatives of cES and cNS need not be
continuous at zero when α = 0. This can be verified analytically since

c′ES(`) = ps−(`)− pm+(`)

and these densities are explicitly known. In particular, it can be shown that pY1+Y2 is ev-
erywhere continuous, whereas p|Y1−Y2| has a jump discontinuity at zero (but is continuous
elsewhere). So c′ES is continuous except at zero. An analogous calculation permits the same



10 ON THE NUMBER OF EXCURSION SETS OF PLANAR GAUSSIAN FIELDS

conclusion for c′NS . On the other hand, when α 6= 0, cES and cNS are continuously differen-
tiable everywhere. A major unresolved question arising from our work is to determine whether
cNS and cES are continuously differentiable more generally (outside degenerate cases).

Figure 4. The functions cES(`) (left) and cNS(`) (right) with α = 0 for
β − γ = 0 (solid), β − γ = 0.5 (dashed) and β − γ = 0.9 (dotted) respectively.

Figure 5. The functions cES(`) (left) and cNS(`) (right) with β = γ for
α = 0.1 (solid), α = 0.3 (dashed) and α = 0.6 (dotted) respectively.

1.5. Summary of the rest of the paper. The remainder of the paper is organised as fol-
lows. In Section 2 we state the main (completely deterministic) topological lemma underlying
our results (Lemma 2.5) and combine this with Proposition 1.7 to prove Theorems 1.1, 1.2
and 1.8 and their corollaries. In Section 3 we give the full definition of upper/lower connected
saddle points and prove Proposition 1.7. In Section 4 we prove Lemma 2.5 via a series of steps,
and also prove Proposition 1.19, thereby completing the proof of all results in the paper.

2. Proof of the main results

The first step in proving Theorems 1.1, 1.2 and 1.8 is to translate our assumptions on
the Gaussian field f into topological properties; these properties differ slightly depending on
whether or not f is periodic.

Definition 2.1. We say that a function g : R2 → R is doubly periodic if there exist two linearly
independent vectors y, z ∈ R2 such that for all x ∈ R2, g(x + y) = g(x) = g(x + z). We say
that g is singly periodic if it is not doubly periodic and there exists y ∈ R2\{0} such that for
all x ∈ R2, g(x) = g(x+ y). If neither of these conditions holds we say that g is aperiodic.
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We note that this definition applies to deterministic functions. We say that a random
field f is doubly periodic if there exist linearly independent vectors y, z ∈ R2 such that with
probability one, f(x+ y) = f(x) = f(x+ z) for all x ∈ R2. We make an analogous definition
for singly periodic fields, and we say that a random field is aperiodic if it is neither doubly
periodic nor singly periodic. The Gaussian field with spectral measure ρ is doubly periodic
if and only if there exists A ∈ GL(2,R) such that {Ax : x ∈ spt(ρ)} ⊂ Z2, and similarly is
singly periodic if and only if it is not doubly periodic and there exists A ∈ GL(2,R) such that
{Ax : x ∈ spt(ρ)} ⊂ Z× R.

For our purposes, it is more natural to consider periodic functions as being defined on the
torus or cylinder, and so we will specify the topological properties of Gaussian fields in terms
of these domains.

For any doubly periodic function g : R2 → R we can choose two linearly independent
vectors y, z ∈ R2 satisfying the conditions in Definition 2.1 with minimum distance to the
origin, and g is then specified entirely by its values on the parallelogram

P := {x ∈ R2 : x = ty + sz, t, s ∈ [0, 1)}.

We call this the associated parallelogram for g and call y, z periodic vectors for g (they are not
unique since we could also choose −y,−z). By identifying P with the 2-dimensional torus T,
we let gT be g defined on the torus. By the choice of y, z above, when g is a stationary random
field there are no two distinct points in P on which g is almost surely equal.

If g is singly periodic then we can choose y ∈ R2\{0} satisfying the conditions in Defini-
tion 2.1 with minimum distance to the origin; we call this a periodic vector for g. By rotating
the axes we may assume that g is periodic in the direction of the x-axis (i.e. y = (y1, 0)) so that
g is specified entirely by its values on [0, y1]×R. This strip can be identified with the infinite
cylinder C := S1×R under the quotient relationship that x ∼ z if and only if x−z = (my1, 0)
for some m ∈ Z. We will often work with the compact subset C(n) := [0, y1]× [−n, n] under
the same quotient relationship. We let gC and gC(n) denote g restricted to these surfaces under
the previous identification.

We next introduce some elements of Morse theory, in particular the concept of a Morse
function on a manifold; here we follow [7]. The precise definition that we use for a manifold
and related terms are contained in Section 3, however we emphasise that, unless explicitly
stated, a manifold M may or may not have a boundary ∂M . We also emphasise that we will
only ever work with M being the plane R2, the closure of the disc B(0, R), the torus T, or
the cylinders C and C(n), and so it is sufficient to bear these examples in mind.

Definition 2.2. Let M be an n-dimensional Riemannian manifold and f ∈ C2(M). (If ∂M 6=
∅, we take this to mean that for any coordinate chart x, the function f ◦x−1 can be extended
to a C2 function on an open subset of Rn. In particular this means that f |∂M is twice
continuously differentiable.) We say that f is Morse if the following hold (with any condition
depending on ∂M holding implicitly if M has no boundary):

(1) The critical points of f and f |∂M are non-degenerate;
(2) None of the critical points of f are contained in ∂M ;
(3) If ∇f is tangent to ∂M at p and u is a unit vector normal to ∂M at p, then

∂∇f(p)∂uf(p) 6= 0 where ∂∇f(p) and ∂u denote the directional derivatives in the di-
rections ∇f(p) and u respectively;

(4) The critical points of f and f |∂M all occur at distinct levels.
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If M is a manifold without boundary this simplifies to the requirement that all critical points
of f are non-degenerate and occur at distinct levels.

We note that in the above definition f |∂M is viewed as a function on the (n−1)-dimensional
manifold ∂M so that a critical point of f |∂M is not necessarily a critical point of f .

Using the definition of a Morse function, we next introduce a set of conditions that a
stationary random field must satisfy in order for our main results to hold. In the lemma that
immediately follows, we will claim in particular that these conditions are satisfied for the
Gaussian field with spectral measure ρ ∈ P, but we have chosen to isolate these conditions
to illustrate the limited role of Gaussianity in the proof of the main results.

We say that a point t ∈ ∂M is a tangent point of f if t is a critical point of the restricted
function f |∂M (the name comes from the fact that the level set {f = f(t)} will be tangent
to ∂M at t). We will also use the term ‘tangent point’ to describe a local extremum of the
restriction of f to a finite union of line segments. Let Ntang(A) denote the number of tangent
points of f in A (where A is the boundary of a manifold or a finite union of line segments)
and Ncrit(M) the number of critical points of f in M . We will only use these terms when
A and M are compact, so that by the first point in the definition of a Morse function, the
number of critical and tangent points will be finite.

Conditions 2.3. A stationary random field f satisfies the following:

(1) If f is aperiodic, then for each R > 0, f |
B(0,R)

is almost surely Morse (taking a union

over R ∈ N, this implies also that f is almost surely Morse on R2);
(2) If f is doubly periodic, then fT is almost surely Morse;
(3) If f is singly periodic, then for each n ∈ N, fC(n) is almost surely Morse (taking a

union over N, this implies that fC is almost surely Morse);
(4) If f is periodic and L ⊂ R2 is a line segment of length R, then E(Ntang(L)) = cθR for

a constant cθ > 0 that depends only on the direction of L;
(5) E(Ncrit(B(0, R))) = cR2 for a constant c > 0;
(6) E(Ntang(∂B(0, R))) = O(R) as R→∞.

Lemma 2.4. Let f be the Gaussian field with spectral measure ρ ∈ P. Then f satisfies
Conditions 2.3.

Proof. All six conditions are established using variations of the Kac-Rice formula. This is
an important tool in the study of Gaussian fields, and random functions more generally,
which relates moments of the number of zeroes of a field to conditional moments of its gradi-
ent/derivative. See [13] for an introduction to the Kac-Rice formula or [1, Chapter 11] for a
rigorous derivation.

(1)-(3). We first note that since f ∈ C2(R2) almost surely by assumption, f |M ∈ C2(M)

almost surely whenever M is B(0, R), T or C(n). Corollary 11.3.5 of [1] states that f |M has the
first two properties of a Morse function if there exists a countable atlas {xi}i∈I such that for

each i ∈ I, the covariance kernel of f (i) := f |M ◦x−1
i is C4+ (on its domain of definition) and

the Gaussian vectors (∂xf
(i)(0), ∂xxf

(i)(0), ∂xyf
(i)(0)) and (∂yf

(i)(0), ∂yyf
(i)(0), ∂xyf

(i)(0))
are non-degenerate (where ∂x denotes taking the derivative with respect to the first vari-
able, ∂xx denotes taking the second derivative with respect to the first variable and we make
analogous definitions for ∂y, ∂yy and ∂xy). For each choice of M that we consider (i.e. B(0, R),

T or C(n)) it is clear that we can choose a finite atlas of charts xi and that f |M ◦ x−1
i will be

a translation of f (restricted to some open set) for each such chart. Therefore the covariance
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kernel of f (i) is a restriction of κ, which is C4+ by assumption, and all that remains is to
show that (∂xf(t), ∂xxf(t), ∂xyf(t)) and (∂yf(t), ∂yyf(t), ∂xyf(t)) are non-degenerate Gauss-
ian vectors for any t ∈ R2. By assumption ∇f(t) and ∇2f(t) are non-degenerate Gaussian
vectors for any t ∈ R2. It is a standard fact, for Gaussian fields with constant variance, that
∇f(t) and ∇2f(t) are independent for fixed t (see e.g. [1, Chapter 5]) and this proves the
necessary non-degeneracy. (This part of the result does not depend on whether f is periodic.)

We note that f |
B(0,R)

has the third property of a Morse function provided that there is no

θ ∈ [0, 2π] such that

0 = g1(θ) :=

(
cos(θ)
sin(θ)

)T
∇f(p)

0 = g2(θ) :=

(
cos(θ)
sin(θ)

)T
∇2f(p)

(
− sin(θ)
cos(θ)

)
where p = (R cos(θ), R sin(θ)) (see Figure 6).

θ0

∇f(p)

p

u

∂B(0, R)

Figure 6. If p = (R cos(θ), R sin(θ)) and ∇f(p) is orthogonal to u :=
(cos(θ), sin(θ)), we require that ∂∇f(p)∂uf(p) 6= 0.

Bulinskaya’s lemma (see, for example, Lemma 11.2.10 of [1]) states that P(g−1
1 (0)∩g−1

2 (0) =
∅) = 1 provided that the univariate densities of g1 and g2 are each bounded uniformly in θ.
Each gi is a one dimensional Gaussian field, and so its density is bounded by a constant times
the inverse of its standard deviation. Since gi(θ) is a linear combination of a non-degenerate
Gaussian vector it has non-zero variance for each θ, so on the compact region [0, 2π] these
variances are bounded away from zero, as required.

The proof that fC(n) satisfies the third property of a Morse function is near identical. The

argument above can be repeated for the boundary S1×{−n, n}. Finally, fT trivially satisfies
the third property of a Morse function.

Next we consider the fourth property of a Morse function. We first suppose f is aperiodic

and define h1 : Tk → R5 where Tk =
{

(s, t) ∈ B(0, R)
2 | d(s, t) ≥ 1/k

}
by

h1(s, t) =

 ∇f(s)
∇f(t)

f(s)− f(t)

 .

Again, Bulinskaya’s lemma (Lemma 11.2.10 of [1]) states that P(h−1
1 (0) = ∅) = 1 provided

that the univariate densities of h are bounded uniformly in Tk. The first four components have
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identical univariate Gaussian distributions for each (s, t) which are trivially bounded. The
final component is distributed normally with variance 2(1−κ(s−t)). Since f is aperiodic, the
variances are bounded away from 0 on Tk and so the densities are bounded above uniformly.
Taking the countable union of Tk for k ∈ N shows that almost surely there are no points
s, t ∈ B(0, R) with s 6= t such that ∇f(s) = ∇f(t) = 0 and f(s) = f(t).

Let f∂(θ) be a parametrisation of f |∂B(0,R). To show that f has no two tangent points
at the same level and no tangent points at the level of any critical point, we apply identical
arguments to the following two functions:

h2(θ, ω) =

 f ′∂(θ)
f ′∂(ω)

f∂(θ)− f∂(ω)

 and h3(t, θ) =

 ∇f(t)
f ′∂(θ)

f(t)− f∂(θ)

 .

This completes the proof that f |
B(0,R)

is a Morse function. When f is doubly periodic, we

can repeat these arguments with

Tk =
{

(s, t) ∈ P 2
k : d(s, t) ≥ 1/k

}
where Pk = {ay + bz : a, b ∈ [0, 1− 1/k]} and y, z are the periodic vectors of f to show that
fT is Morse. Finally in the singly periodic case we consider Ck = [0, y1 − 1/k] × [−n, n] and
Tk =

{
(s, t) ∈ C2

k : d(s, t) ≥ 1/k
}

where y = (y1, 0) is the periodic vector of f . This completes
the proof of the first three points of the lemma.

(4). Let L be a line segment of length R and u a unit length vector parallel to L. Applying
a Kac-Rice formula (for the particular form, see Corollary 11.2.2 of [1]) to f |L and using the
stationarity of f along with the independence of ∇f(t) and ∇2f(t), we see that

E(Ntang(L)) =

∫
L
E(|∂uuf(t)| | ∂uf(t) = 0)p∂uf(t)(0) dt

= R p∂uf(0)(0)E(|∂uuf(0)|) =: cθR

where p∂uf(0) is the probability density of ∂uf(0), and cθ <∞ since ∂u∂uf(0) can be expressed

as a linear combination of components of the non-degenerate Gaussian vector ∇2f(0) and so
has finite moments of all orders.

(5). Applying the same Kac-Rice formula to f , and using the same arguments as above,
shows that

E(Ncrit(B(0, R))) =

∫
B(0,R)

E(|det∇2f(t)| | ∇f(t) = 0)p∇f(t)(0) dt

= πR2p∇f(0)(0)E(|det∇2f(0)|) =: cR2.

(6). We now explicitly parametrise f |∂B(0,R) as g(θ) := f(R cos(θ), R sin(θ)) and note that

(2.1)

g′(θ) =−R sin(θ)∂xf(p) +R cos(θ)∂yf(p)

g′′(θ) =−R cos(θ)∂xf(p)−R sin(θ)∂yf(p)

+R2 sin2(θ)∂xxf(p)− 2R2 sin(θ) cos(θ)∂xyf(p) +R2 cos2(θ)∂yyf(p)

where p = (R cos(θ), R sin(θ)). Since ∇f(p) and ∇2f(p) are independent, a simple calculation
shows that (g′(θ), g′′(θ)) has non-degenerate distribution, so we can apply a Kac-Rice formula
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(specifically, Corollary 11.2.2 of [1]) to show that

(2.2)

E(Ntang(∂B(0, R))) = E
(
#{θ ∈ [0, 2π]

∣∣ g′(θ) = 0}
)

=

∫ 2π

0
E
(
|g′′(θ)|

∣∣ g′(θ) = 0
)
pg′(θ)(0) dθ.

Since f is stationary

Var
(
g′(θ)

)
= R2E

(
(− sin (θ) ∂xf(0) + cos (θ) ∂yf(0))2

)
.

The expectation on the right side of this equation is non-zero for each θ, since ∇f(0) is
non-degenerate, and by compactness is bounded away from zero uniformly in θ. Therefore,
by considering the density of a Gaussian random variable, there exists c0 > 0 such that
pg′(θ)(0) ≤ c0/R for all θ ∈ [0, 2π] and R > 0.

Using this observation, along with the fact that ∇f(0) is independent of ∇2f(0), and
substituting (2.1) into (2.2), we see that there exists a constant c1 > 0 independent of θ and
R such that

E(Ntang(∂B(0, R))) ≤ c1R

∫ 2π

0
E (|∂xxf(0)|+ |∂yyf(0)|+ |∂xyf(0)|) dθ

+ c1

∫ 2π

0
E
(
|∂xf(0)|+ |∂yf(0)|

∣∣ sin(θ)∂xf(p) = cos(θ)∂yf(p)
)
dθ

= O(R). �

We now introduce the deterministic relationship between level sets and critical points that
is the foundation of our results. We denote the number of critical points of f in B(0, R) of type
h with level in [`1, `2] by Nh,R[`1, `2], where h = m+,m−, s+, s− denotes local maxima, local
minima, upper connected saddles and lower connected saddles respectively (for an aperiodic
function that is Morse on R2, Definition 1.6 defines the upper/lower connected saddle points;
the definitions in the general case will be given in Section 3). Let us also generalise our earlier
notation: for a deterministic, planar function f , we denote the number of components of
{f = `} and {f ≥ `} in B(0, R) by NLS,R(`) and NES,R(`) respectively.

In the case of a singly periodic function f : R2 → R we also need to define internal and
external rectangular tilings of B(x,R) which have a finite number of horizontal and vertical
line segments as boundary. Let (y1, 0) be the periodic vector of f , and let S(n1, n2) =
[n1y1, (n1 + 1)y1] × [n2, n2 + 1] where n1, n2 ∈ Z. We define Bint(x,R) to be the union over
n1, n2 ∈ Z of all S(n1, n2) contained in B(x,R). Similarly we define Bext(x,R) to be the
union over n1, n2 ∈ Z of all S(n1, n2) which intersect B(x,R).

Lemma 2.5. Let f : R2 → R be a deterministic function. Suppose first that f is aperiodic
and assume that f and f |

B(0,R)
are Morse. Then there exists c > 0, independent of f , such

that for each ` ∈ R,

(2.3) NLS,R(`) = Nm+,R[`,∞)−Ns−,R[`,∞) +Ns+,R(`,∞)−Nm−,R(`,∞) + η`,R

and

(2.4) NES,R(`) = Nm+,R[`,∞)−Ns−,R[`,∞) + γ`,R

where

(2.5) max{|η`,R|, |γ`,R|} ≤ cNtang(∂B(0, R)).
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Suppose instead that f : R2 → R is doubly periodic and assume that fT is Morse and f |∂P
has a finite number of local extrema. Then there exists a constant cf > 0 depending only on
P , such that, for each R > 0 and ` ∈ R, (2.3) and (2.4) hold with (2.5) replaced by

max{|η`,R|, |γ`,R|} ≤ cf · (R+Ntang(∂B(0, R))) .

Finally, suppose that f : R2 → R is singly periodic with periodic vector (y, 0) and assume that
fC(n) is Morse for each n ∈ Z and that Ntang({0} × [−2R, 2R]) < ∞. Then (2.3) and (2.4)
still hold with (2.5) replaced by

max{|η`,R|, |γ`,R|} ≤ cf

(
Ntang(∂Bint(0, R)) +Ntang(∂Bext(0, R))

+Ncrit(B(0, R+ rf )\B(0, R− rf ))

)
where cf and rf are constants that depend only on the periodic vector y = (y1, 0) of f (so in
particular, they are independent of ` and R).

The proof of Lemma 2.5 is contained in Section 4. The error term in the above estimate can
be intuitively understood as the result of boundary effects from working with the domain
B(0, R) in the definition of NLS,R and NES,R, and although it appears quite complicated
(especially in the case of singly periodic functions), when applied to the Gaussian field f it is
bounded in expectation by O(R) as a result of Lemma 2.4.

We are now ready to state the core technical results of the paper, which are versions of
Theorems 1.1, 1.2 and 1.8 that hold for arbitrary random fields (i.e. not necessarily Gaussian)
using only the properties contained in Conditions 2.3.

Proposition 2.6. Let f be a stationary random field satisfying Conditions 2.3. For each
` ∈ R

E (NLS,R(`)) = cNS(`) · πR2 +O(R)

as R→∞, where

cNS(`) :=
1

π
E
(
Nm+,1[`,∞)−Ns−,1[`,∞) +Ns+,1(`,∞)−Ns−,1(`,∞)

)
.

The constant implied by the O(·) notation may depend on the distribution of f but is inde-
pendent of `. If in addition f is ergodic, then

1

πR2
NLS,R(`)

L1,a.s.−−−−→ cNS(`).

Proposition 2.7. Let f be a stationary random field satisfying Conditions 2.3. For each
` ∈ R

E (NES,R(`)) = cES(`) · πR2 +O(R)

as R→∞, where

cES(`) :=
1

π
E(Nm+,1[`,∞)−Ns+,1[`,∞)).

The constant implied by the O(·) notation may depend on the distribution of f but is inde-
pendent of `. If in addition f is ergodic, then

1

πR2
NES,R(`)

L1,a.s.−−−−→ cES(`).
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Remark 2.8. Since f is stationary, we could equivalently define cNS(`) in Proposition 2.6 as

cNS(`) =
1

πR2
E
(
Nm+,R[`,∞)−Ns−,R[`,∞) +Ns+,R(`,∞)−Ns−,R(`,∞)

)
for any R > 0 or make an analogous definition for cES(`) in Proposition 2.7.

Together with Lemma 2.4 and Proposition 1.7, these propositions imply Theorems 1.1
and 1.2, and also the first two parts of Theorems 1.8.

Proof of Proposition 2.6. As f is stationary, the expected number of critical points of f of a
particular type in a domain is proportional to the area of the domain. Since the field satisfies
Conditions 2.3 we can apply Lemma 2.5, and taking expectations yields

E(NLS,R(`)) = πR2cNS(`) +O(R).

Sending R→∞ proves the first two statements of the proposition.
The remainder of the proof follows the general roadmap of the original derivation of the

existence of the Nazarov-Sodin constant in [11]. Suppose that f is ergodic and let N
(u)
h,R denote

the number of critical points of type h in B(u,R) with level in [`,∞) or (`,∞) for h = m+, s+

and h = m−, s− respectively. The ‘sandwich estimate’ of [11] (Lemma 1) can be slightly
altered to show that for any r ∈ (0, R)

1

πR2

∫
B(0,R−r)

N
(u)
h,r

πr2
du ≤

N
(0)
h,R

πR2
≤ 1

πR2

∫
B(0,R+r)

N
(u)
h,r

πr2
du.

Applying Wiener’s ergodic theorem (see [11, Section 6.1]) both of these integrals converge

almost surely and in L1 to the limit E
(
N

(0)
h,1

)
/π. So in particular, N

(0)
h,R/(πR

2) has the same

limit, and
1

πR2

(
N

(0)
m+,R

+N
(0)
s+,R
−N (0)

s−,R −N
(0)
m−,R

)
L1

−→ cNS(`).

Applying Lemma 2.5 with the bound on E(|η`,R|) implied by Conditions 2.3 shows that

1

πR2
E
(∣∣∣NLS,R(`)−N (0)

m+,R
−N (0)

s+,R
+N

(0)
s−,R +N

(0)
m−,R

∣∣∣) = o(1)

as R→∞. Combining these results completes the proof of L1 convergence.

We now extend our notation by defining N
(u)
LS,r to be the number of components of {f = `}

in B(u, r). The original ‘sandwich estimate’ of [11] states that

1

πR2

∫
B(0,R−r)

N
(u)
LS,r

πr2
du ≤

N
(0)
LS,R

πR2
≤ 1

πR2

∫
B(0,R+r)

Ñ
(u)
LS,r

πr2
du

where Ñ
(u)
LS,r is the number of components of {f = `} which intersect B(u, r). Since

Ñ
(u)
LS,r = N

(u)
LS,r +O (#{x ∈ ∂B(u, r) | f(x) = `})

we can rearrange this estimate as

(2.6)

∣∣∣∣∣∣N
(0)
LS,R

πR2
− 1

πR2

∫
B(0,R)

N
(u)
LS,r

πr2
du

∣∣∣∣∣∣ ≤ 1

πR2

∫
B(0,R+r)\B(0,R−r)

N
(u)
LS,r

πr2
du

+
c0

πR2

∫
B(0,R+r)

#{x ∈ ∂B(u, r) | f(x) = `}
πr2

du
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for some universal constant c0 > 0. Applying Lemma 2.5 inside the integral term on the left
hand side of (2.6) shows that

(2.7)

∣∣∣∣∣∣N
(0)
LS,R

πR2
− 1

πR2

∫
B(0,R)

N
(u)
m+,r

πr2
+
N

(u)
s+,r

πr2
−
N

(u)
s−,r

πr2
−
N

(u)
m−,r

πr2
du

∣∣∣∣∣∣
≤ 1

πR2

∫
B(0,R+r)\B(0,R−r)

N
(u)
LS,r

πr2
du

+
c0

πR2

∫
B(0,R+r)

#{x ∈ ∂B(u, r) | f(x) = `}
πr2

du

+
cf
πR2

∫
B(0,R)

r +Ntang(B(u, r))

πr2
du

+
cf
πR2

∫
B(0,R)

Ntang(Bint(u, r)) +Ntang(Bext(u, r))

πr2
du

+
cf
πR2

∫
B(0,R)

Ncrit(B(u, r + rf )\B(u, r − rf ))

πr2
du.

(The upper bound here is a result of adding the upper bounds on the error terms in Lemma 2.5
in the cases that f is aperiodic, doubly periodic and singly periodic respectively, so that we
can deal with all three cases at once.) From Wiener’s ergodic theorem, the integral term
within the absolute value signs will converge almost surely to cNS(`) and the first integral
term on the right hand side will converge almost surely to zero. Applying the same argument
to the remaining integral terms shows that they will each converge to a constant, Φ1(r), Φ2(r),
Φ3(r) and Φ4(r) respectively, where

Φ1(r) =
c0

πr2
E (#{x ∈ ∂B(0, r) | f(x) = `}) ,

Φ2(r) =
cf
πr

+
cf
πr2

E (Ntang(B(0, r))) ,

Φ3(r) =
cf
πr2

(E (Ntang(Bint(0, r))) + E (Ntang(Bext(0, r)))) ,

Φ4(r) =
cf
πr2

E (Ncrit(B(u, r + rf )\B(u, r − rf ))) .

We now fix r > 0 and take the limit superior of (2.7) as R→∞ to show that

(2.8) lim sup
R→∞

∣∣∣∣∣∣N
(0)
LS,R

πR2
− cNS(`)

∣∣∣∣∣∣ ≤ Φ1(r) + Φ2(r) + Φ3(r) + Φ4(r)

almost surely. Since the number of boundary points of f at level ` is deterministically bounded
above by a constant times the number of tangent points, we see that Φ1(r) ≤ c1Φ2(r) for
some c1 > 0. Conditions 2.3 imply that Φ2(r)+Φ3(r)+Φ4(r) = o(1) as r →∞. Therefore we
may take a countable sequence rn →∞, such that (2.8) holds almost surely for each rn and

the right hand side of (2.8) becomes arbitrarily small, to show that N
(0)
LS,R/(πR

2) converges

almost surely to cNS(`). �
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Proof of Proposition 2.7. This follows the proof of Proposition 2.6 almost exactly. Taking
expectations of the second part of Lemma 2.5, using the stationarity of f and the bound on
E(Ntang(∂B(0, R))) implied by Conditions 2.3 proves the first two statements of the theorem.

The proof of the remainder of the theorem follows identically by defining N
(u)
ES,r as the

number of components of {f ≥ `} contained in B(u, r), Ñ
(u)
ES,r as the number of components

of {f ≥ `} intersecting B(u, r) and noting that the difference in these two terms is also
bounded above by the number of tangent points of ∂B(u, r). �

To complete the proof of Theorem 1.8, it remains only to show the joint continuity of cNS
with respect to the level and spectral measure.

Proof of Theorem 1.8 (Joint continuity). By Prokhorov’s theorem the weak-∗ topology on Pc
is metrisable and so we can use the sequential definition of continuity for cNS and cES . Let
(ρn, `n) be a sequence in Pc × R converging to (ρ, `). By the triangle inequality

(2.9) |cNS(ρn, `n)− cNS(ρ, `)| ≤ |cNS(ρn, `n)− cNS(ρn, `)|+ |cNS(ρn, `)− cNS(ρ, `)|.
Theorem 1.3 of [9] states that the second term on the right hand side converges to 0 with n in
the special case ` = 0. However the proof of this theorem can be repeated verbatim replacing
the field fρ with fρ − ` to show that |cNS(ρn, `)− cNS(ρ, `)| → 0.

Now assume that `n ≤ `. By the first part of Theorem 1.8 we see that

(2.10) |cNS(ρn, `n)− cNS(ρn, `)| ≤ (4/π)Eρn
(
N

(n)
crit[`n, `]

)
where N

(n)
crit[`n, `] denotes the number of critical points of fn (the Gaussian field with spectral

measure ρn) in the circle of radius 1 with level in [`n, `]. By the Kac-Rice theorem (Corollary
11.2.2 of [1])

(2.11)

Eρn
(
N

(n)
crit[`n, `]

)
=

∫
B(0,1)

E
(
|det∇2fn(t)|1fn(t)∈[`n,`] | ∇fn(t) = 0

)
p∇fn(t)(0) dt

= π E
(
|det∇2fn(0)|1fn(0)∈[`n,`]

)
p∇fn(0)(0)

≤ E
(
|det∇2fn(0)|2

) 1
2 P (fn(0) ∈ [`n, `])

1
2

1

2

1√
det Var(∇fn(0))

where we have used the independence of a field and its gradient at a point along with the
Cauchy-Schwarz inequality. It is well known that the covariance structure of a stationary
Gaussian field along with its derivatives at a point can be expressed in terms of the spectral
measure (see [1, Chapter 5]). For example,

Var(∂xfn(0)) =

∫
R2

λ2
1 dρn(λ)

with similar expressions for other derivatives and covariances. Since all spectral measures we
are considering are supported on B(0, 1), the definition of weak-∗ convergence implies that the
covariance structure associated with each ρn at the origin converges to that of ρ. Specifically,
if f denotes the field with spectral measure ρ, then

Var(fn(0),∇fn(0),∇2fn(0))→ Var(f(0),∇f(0),∇2f(0)).

Applying this to (2.11), we see that det Var(∇fn(0)) is bounded away from 0 in n. Simi-
larly E

(
|det∇2fn(0)|2

)
is uniformly bounded above in n. Finally we note that Var(fn(0))

is uniformly bounded away from 0, so that choosing `n sufficiently close to ` ensures that
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P (fn(0) ∈ [`n, `]) is arbitrarily small. An identical argument works for `n ≥ `, and so com-
bining these observations with (2.9)–(2.11) shows that

|cNS(ρn, `n)− cNS(ρ, `)| n→∞−−−→ 0

as required. The proof of continuity of cES(ρ, `) is almost identical. Although Theorem 1.3 of
[9] is stated only for level sets, the proof of this result can be adapted to apply to excursion
sets with no changes of any substance. �

Proof of Corollary 1.18. Since f is isotropic we can use the explicitly derived critical point
densities for local maxima, local minima and saddle points from [5]. We recall that these are
parametrised in terms of λ ∈ (0,

√
2] and η2 ∈ [0,∞) as defined by (1.5). If 0 < λ <

√
2 then

pm+(x) = pm−(−x) =
1

πη2

(
λ2(x2 − 1)φ(x)Φ

(
λx√

2− λ2

)
+
λx
√

2− λ2

2π
e
− x2

2−λ2

+

√
2√

π(3− λ2)
e
− 3x2

2(3−λ2) Φ

(
λx√

(3− λ2)(2− λ2)

))

ps(x) =
1

πη2

√
2√

π(3− λ2)
e
− 3x2

2(3−λ2)

where φ and Φ denote the standard normal probability density function and cumulative
density function respectively. If λ =

√
2 then

pm+(x) = pm−(−x) =

√
2

π3/2η2

(
(x2 − 1)e−

x2

2 + e−
3x2

2

)
1x≥0

ps(x) =

√
2

π3/2η2
e−

3x2

2 .

By Theorem 1.8,

cNS(`+ ε)− cNS(`) ≤
∫ `+ε

`
pm−(x) + ps(x)− pm+(x) dx.

We denote the integrand above by I(x). In the case λ ∈ (0,
√

2), evaluating this expression
using the standard Gaussian inequality 1− Φ(x) ≤ (1/x)φ(x) shows that

I(x) ≤ ε

πη2

(√
2− λ2

π

1

x

2− λ2

λ
e
− x2

2−λ2 − λ2

√
2π

(x2 − 1)e−
x2

2

)
which is negative for x >

√
2/λ. For λ =

√
2 and x > 0

I(x) ≤ − ε

4π
√

2π
(x2 − 1)e−

x2

2

which is negative for x > 1 =
√

2/λ. Similarly we have

cES(`+ ε)− cES(`) ≤
∫ `+ε

`
ps(x)− pm+(x) dx,

which is less than our upper bound for cNS(`+ ε)− cNS(`), and the first result follows.
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When λ =
√

2 and ` ≤ 0 we see that pm+(`) = 0 and so by Theorem 1.8

cES(`+ ε)− cES(`) =

∫ `+ε

`
ps−(x) dx ≥ 0.

Therefore cES is weakly increasing in this case. �

3. Critical point densities

In this section we prove Proposition 1.7. We begin by giving the definition for lower and
upper connected saddle points in full generality. Let M be a manifold and let A ⊂ M . We
say that A is simple if it is compact, connected and every loop in A (i.e. every continuous
map h : S1 → A) is M -contractible. We will be solely interested in the case that A is a
component of an excursion set of f : M → R. For such A, and in the case that M is simply
connected (e.g. for M = R2 or B(0, R)), the condition of being simple is just the same as
being bounded.

Definition 3.1. Let M be a 2-dimensional Riemannian manifold without boundary and let
f : M → R be a Morse function with a saddle point x ∈M such that f(x) = `. For c ≤ `, let
Ac denote the component of {f ≥ c} containing x and for c > ` let Ac = A` ∩ {f ≥ c}. We
say that x is lower connected if either of the following conditions hold for ε > 0 sufficiently
small:

(1) A`−ε is simple and A`+ε consists of two simple components; or
(2) A`−ε is not simple but A`+ε has a simple component.

We say that x is upper connected if it is a lower connected saddle for −f .

A`−ε A`+ε

∞ ∞

A`−ε A`+ε

(a)

A`−ε A`+ε

A`−ε

A`+ε

(b)

Figure 7. Subfigures 7a and 7b give two examples of the excursion sets
(shaded) at a level below and above a lower connected saddle point in R2

and T respectively (the dashed rectangles in 7b are identified with the torus
by the standard quotient relation).

When f is an aperiodic Gaussian field, by Lemma 2.4 it will be Morse on R2 so we may take
this as our Riemannian manifold and use the definition of lower/upper connected saddle points
directly (we show in Section 4 that this definition coincides with that given in Section 1). If
f is doubly periodic, recall that it is completely specified by its values on the associated
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parallelogram P which we identify with the torus. We then say that a saddle point of f is
lower connected if it corresponds to a lower connected saddle of fT by the definition above (see
Figure 8). Similarly if f is singly periodic we say that a saddle point of f is lower connected
if it corresponds to a lower connected saddle point of fC . Upper connected saddle points are
defined analogously.

A`−ε A`+ε

Figure 8. Passing through the lower connected saddle points of a doubly
periodic function increases the number of compact excursion sets.

The following lemma shows that our above definitions partition the set of saddle points in
all cases of interest.

Lemma 3.2. Let f be a stationary random field satisfying Conditions 2.3. Then with prob-
ability one all saddle points of f are either upper connected or lower connected but not both.

This result is proven in Section 4. We are now ready to prove Proposition 1.7.

Proof of Proposition 1.7. Let f be the Gaussian field with spectral measure ρ ∈ P. We fix
a compact Ω ⊂ R2 such that ∂Ω has finite Hausdorff-1 measure and consider Nh(`), the
number of critical points of f |Ω of type h with value greater than `, where h = m−, s,m+

correspond to local minima, saddle points and local maxima respectively. If (f(0),∇2f(0))
has a non-degenerate distribution, then by a Kac-Rice formula (specifically, Corollary 11.2.2
of [1], which requires that ∂Ω has finite Hausdorff-1 measure)

(3.1)

E(Nh(`)) =

∫
Ω
E(|det∇2f(t)|1Index∇2f(t)=i,f(t)>` | ∇f(t) = 0)p∇f(t)(0) dt

= Area(Ω)p∇f(0)(0)E(|det∇2f(0)|1Index∇2f(0)=i,f(0)>`)

= Area(Ω)p∇f(0)(0)

∫ ∞
`

E(|det∇2f(0)|1Index∇2f(0)=i | f(0) = u)φ(u) du

where i is the index corresponding to h and φ denotes the standard Gaussian probability
density. The third equality follows from the definition of conditioning on a Gaussian vari-
able. If (f(0),∇2f(0)) has a degenerate distribution then f(0) can be expressed as a linear
combination of the elements of ∇2f(0) almost surely. Substituting in this expression for f(0)
allows us to apply Kac-Rice and the arguments above to derive (3.1) in this case too. Then,
by Gaussian regression, E(|det∇2f(0)|1Index∇2f(0)=i | f(0) = u) is a continuous function of
u (see, e.g., Proposition 1.2 of [2]). This proves the existence and continuity of the densities
pm+ , pm− and ps, and the fact that pm+(x) = pm−(−x) follows from the symmetry of f .

Since E(Ns[0, `, ]) =
∫ `

0 ps(x)dx, we know that E(Ns[0, `]) is absolutely continuous in `. It
is also clear that for any `1 < `2, E(Ns+ [`1, `2]) ≤ E(Ns[`1, `2]) so E(Ns+ [0, `]) is absolutely
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continuous in `. Therefore there exists a function ps+ : R→ [0,∞) such that

E(Ns+ [0, `]) =

∫ `

0
ps+(x) dx.

Since E(Ns[0,∞)) is finite, the monotone convergence theorem shows that ps+ ∈ L1(R). By
symmetry of the Gaussian distribution, and the definition of lower connected saddles, this
also shows the existence of ps−(x) = ps+(−x). The fact that ps− + ps+ = ps follows from
Lemma 3.2. �

4. Topological lemmas

In this section we prove the deterministic Lemma 2.5 using topological arguments. We also
establish Lemma 3.2 and Proposition 1.19 using similar methods, thereby completing the
proof of all results in the paper.

To prove Lemmas 2.5 and 3.2 we require several results from Morse theory which we now
introduce. We note that several aspects of this theory require us to work with compact
manifolds, and so in the aperiodic and singly periodic cases we work with B(0, R) and C(n)
rather than directly with R2 and C; in the doubly periodic case, by contrast, we work directly
with the torus T. We also emphasise that we only ever work with the five examples of
manifolds just mentioned, so it is sufficient to have them in mind.

Recall that, for a Morse function f defined on a manifold M , the tangent points of f are
defined as the critical points of f |∂M .

Theorem 4.1 (Theorem 7 of [7]). Let M be a compact n-dimensional Riemannian manifold
and let f : M → R be a Morse function. If f has no critical or tangent points with value in
[a, b] then {f ≥ b} is homotopy equivalent to {f ≥ a}.

We define a k-cell to be a copy of the closed unit disc in Rk and temporarily denote this
by Bk. If Y is a topological space then we define the following operation to be ‘attaching
a k-cell to Y ’. First we find a continuous function g : ∂Bk → Y , then we take the disjoint
union Y t Bk and identify each point in ∂Bk with its image under g. By attaching a 0-cell,
we simply mean taking the disjoint union of Y and a single point.

Theorem 4.2 (Theorem 8 of [7]). Let M be a compact 2-dimensional Riemannian manifold
and let f : M → R be a Morse function. If t is a critical point of f of index k with f(t) = `,
then for ε > 0 sufficiently small, {f ≥ ` − ε} is homotopy equivalent to {f ≥ ` + ε} with
a (2 − k)-cell attached. If t is a tangent point and `, ε are defined in the same way, then
{f ≥ `− ε} is homotopy equivalent to either {f ≥ `+ ε} or {f ≥ `+ ε} with a k-cell attached
for some k ∈ {0, 1, 2}.

These theorems are proven using methods very similar to those of the standard proofs for
manifolds without boundary which can be found in almost any text on Morse theory.

We now work towards a proof of Lemma 2.5. First we will need another definition which, in
the case of aperiodic or singly periodic fields, identifies a subset of the upper/lower connected
saddle points which have unfavourable topological properties (for our purposes). Recall that
if M is a manifold then A ⊂ M is said to be simple if A is compact, connected and every
loop in A is M -contractible. In the case that M = R2 or B(0, R) and A is an excursion set
component, this is just the condition that A is bounded.
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Definition 4.3. Let M∞ be a Riemannian 2-manifold without boundary, with f∞ ∈ C2(M∞)
a Morse function on M∞, and let M be a compact submanifold of M∞ with boundary, with
f := f∞|M a Morse function on M . Let x0 be a saddle point of f at level ` and let Ac be
defined as in Definition 3.1 for f∞. If x0 is lower connected, then we say that it is four-arm
in M if, for ε > 0 sufficiently small, all of the simple components of A`+ε intersect ∂M .
Similarly, we say that an upper connected saddle is four-arm in M if it satisfies the previous
condition for −f (and −`).

We say that x0 is an infinite-four-arm saddle point if A`+ε has two unbounded components
for all ε > 0 sufficiently small.

Remark 4.4. In the proof of Lemma 3.2, we will show that when M∞ = R2 (the most
important case for our analysis), the level set at the level of an infinite-four-arm saddle takes
the form shown in Figure 9b. This corresponds to the way an ‘infinite-four-arm event’ is
typically defined in the percolation literature: as two disjoint paths joining a point to infinity
which are separated by two ‘dual’ paths joining the same point to infinity. For other choices
of M∞ (such as M∞ = C) the level set at the level of an infinite-four-arm saddle may look
quite different, so that this terminology is less intuitive.

Let us explain the importance of four-arm saddles. If f is aperiodic, then its lower connected
saddle points are defined so as to correspond to an increase in the number of excursion set
components in R2. However if such a saddle point is four-arm in B(0, R), then this increase

cannot be observed from inside B(0, R) since the excursion sets that are created when passing
through the saddle intersect ∂B(0, R) (see Figure 9). The case when f is singly periodic is
similar (in the case that f is doubly periodic we do not have to worry about such saddles).
Infinite-four-arm saddle points will be relevant when we prove Lemma 3.2. Fortunately we
can control the number of four-arm saddles which occur in terms of the boundary behaviour
of f .

− −
+

+

{f = `}

B(0, R)

(a) An upper connected saddle that is four-

arm in B(0, R).

+ +

−

−

∞

∞ ∞

∞{f = `}

(b) An infinite-four-arm saddle point in R2.

Figure 9

Lemma 4.5. Let M∞ be a Riemannian 2-manifold without boundary and f∞ ∈ C2(M∞). Let
M be a compact submanifold of M∞ with boundary and f := f∞|M be Morse. Let N4-arm(M)
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be the number of saddle points of f∞ contained in M which are four-arm in M or infinite-
four-arm. Then

N4-arm(M) ≤ 3Ntang(∂M).

Intuitively this bound follows because as we raise the level past a saddle which is four-arm
in B(0, R) or an infinite-four-arm saddle we separate two components of {f ≥ `} ∩ ∂B(0, R)
(i.e. the boundary components are no longer in the same excursion set component). The total
number of such separations which may occur is bounded above by the number of boundary
excursion components at different levels, which in turn is bounded by the number of tangent
points. This is formalised in the proof below.

Proof. We describe an algorithm which will create an injective mapping from the lower con-
nected saddle points which are four-arm in M to the tangent points of f in ∂M . Let x1, . . . , xm
denote all such saddle points arranged in order of increasing level, i.e. f(xi) < f(xi+1). We
fix ε > 0 such that there are no tangent points with value in [f(xi) − ε, f(xi) + ε] for any i

and these intervals are disjoint for different i. For each i = 1, . . . ,m, we define S
(i)
1 , . . . , S

(i)
mi

to be the simple components of {f ≥ f(xi) + ε} which intersect ∂M .
We proceed by induction. Let A− denote the component of {f ≥ f(x1)− ε} containing x1.

Since x is lower connected and four-arm in M , A− will contain some S
(1)
j (it may contain

two such elements: see Figure 10), and so we make a preliminary association between x1 and

S
(1)
j .

A− S
(1)
jS

(1)
j′

{f ≥ f(x1) + ε}

∞

A−

{f ≥ f(x1) + ε}

S
(1)
j

Figure 10. Since x1 is a lower connected saddle point, A− may contain either
one (left) or two (right) simple component of {f ≥ f(x1) + ε}.

We now assume inductively that for each x1, . . . , xn we have either a preliminary association

with some S
(n)
j (which differs across points) or a final association to some tangent point with

value less than f(xn).
We consider xn+1 and let A− denote the component of {f ≥ f(xn+1)− ε} containing xn+1.

First suppose that A− is contained in some S
(n)
j which has a preliminary association with

some xi (where i ≤ n). Then A− must be simple, as it is a subset of S
(n)
j , and so, by the

definition of a lower connected four-arm saddle point, this means that A− must contain two

different components S
(n+1)
p and S

(n+1)
q . We then make a preliminary association between

xn+1 and S
(n+1)
p and make a new preliminary association between xi and S

(n+1)
q (so we remove

the old association between xi and S
(n)
j ). If A− is contained in some S

(n)
j which does not have

a preliminary association or if A− is not contained in any S
(n)
j then we choose some S

(n+1)
p

contained in A− (which must exist since xn+1 is four-arm in M) and make a preliminary
association between this and xn+1.
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Now suppose that xi, where i ≤ n, has a preliminary association with S
(n)
j . If the maximum

level of any point in S
(n)
j is less than f(xn+1) then we make a final association between xi and

the highest such point in ∂M ∩ S(n)
j , which is by definition a tangent point. We also remove

the preliminary association between xi and S
(n)
j . Otherwise S

(n)
j must be a superset of S

(n+1)
k

for some k, and we then make a new preliminary association between xi and S
(n+1)
k . We

perform this process for all preliminary associations which remain after the step described in
the previous paragraph, which completes the inductive step. This algorithm will cease after

the m-th step, at which stage if a point xi has a preliminary association with some S
(n+1)
j we

make a final association between xi and the highest tangent point of S
(n+1)
j .

The end result of this algorithm is an injective mapping, defined by the final associations,
from the set of lower connected saddles which are four-arm in M to the tangent points of f .
An identical argument applied to −f creates such a map for the the upper connected saddles
which are four-arm in M . A very similar algorithm can be applied to the infinite-four-arm
saddles of f , except that the inductive step is slightly simpler. Combining these results proves
the lemma. �

Our next result is a preliminary version of Lemma 2.5 for Morse functions on manifolds
without boundary. This setting allows us to prove the desired relationship between the number
of excursion set components and critical points in the simpler case that all critical points have
different levels.

Lemma 4.6. Let M∞ be a Riemannian 2-manifold without boundary and f ∈ C2(M∞) be
a Morse function. Let M be a compact submanifold of M∞ and f := f∞|M be Morse. For
` ∈ R, let Nsimple(`) be the number of simple components of {f ≥ `} which do not intersect
the boundary of M and let Nm+(`) and Ns−(`), be the number of local maxima and lower
connected saddle points respectively of f with level in [`,∞]. Then

Nsimple(`) = Nm+(`)−Ns−(`) + ζ

where |ζ| ≤ 5Ntangent. So in particular, if M has no boundary then ζ = 0.

The proof involves applying the Morse theorems to each critical/tangent point to derive the
change in the number of simple components at the corresponding levels and then summing
these changes.

Proof. First suppose that f has no critical or tangent points with level in [a, b]. By Theo-
rem 4.1, {f ≥ b} is a deformation retract of {f ≥ a} under some map h : {f ≥ a} × [0, 1]→
{f ≥ a}. In particular, this is also true for each component of {f ≥ b} and the component of
{f ≥ a} in which it is contained. Since h is a homotopy, the number of simple components
is the same in each set. If A is a component of {f ≥ a} which does not intersect ∂M , then
we claim that A ∩ {f ≥ b} does not intersect ∂M . To see why, suppose A intersects ∂M but
A∩ {f ≥ b} does not. Then by considering the infimum `∗ of ` ∈ [a, b] such that A∩ {f ≥ `}
does not intersect ∂M and taking a sequence of points in A∩{f ≥ `∗−1/n}∩∂M we see that
A∩{f ≥ `∗} contains a tangent point at level `∗ ∈ [a, b], which is a contradiction. Combining
all these observations, we see that Nsimple is constant on intervals which contain no critical
or tangent points.

Now let x be a critical or tangent point of f at level c and take ε > 0 small enough to apply
Lemma 4.2. We consider in turn the different types of critical or tangent point and calculate
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Nsimple(c − ε) − Nsimple(c + ε). Let Ac−ε denote the component of {f ≥ c − ε} containing x
and Ac+ε = Ac−ε ∩ {f ≥ ` + ε}. We note that to determine Nsimple(c − ε) − Nsimple(c + ε)
it is enough to consider Ac−ε and Ac+ε, since by the arguments in the previous paragraph,
the number of simple components of {f ≥ `} in M\Ac−ε which do not intersect ∂M will be
constant as ` varies in [c− ε, c+ ε].

If x is a local maximum, then by Lemma 4.2, Ac−ε is homotopy equivalent to Ac+ε with
a 0-cell attached. So in particular {f ≥ c − ε} has one more component than {f ≥ c + ε},
and this extra component is M -contractible. Since the extra component contains a local
maximum, (which cannot be in ∂M) for ε > 0 sufficiently small, this component is disjoint
from ∂M and so Nsimple(c− ε)−Nsimple(c+ ε) = 1.

If x is a local minimum, then Ac−ε is homotopy equivalent to Ac+ε with a 2-cell attached.
Attaching a 2-cell does not change the number of components of {f ≥ c + ε}, and does not
affect whether the component it is attached to is simple or not. Once again since the local
minimum is not in ∂M , restricting ε sufficiently small ensures that the attached 2-cell does
not intersect ∂M and so Nsimple(c− ε)−Nsimple(c+ ε) = 0.

Next we suppose that x is a saddle point, so that by Lemma 4.2, Ac−ε is homotopy equiv-
alent to Ac+ε with a 1-cell attached. So in particular, Ac+ε consists of either one or two
components. First we note that if Ac−ε is simple and does not intersect ∂M , then any compo-
nents of Ac+ε have both these properties, therefore Nsimple(c− ε)−Nsimple(c+ ε) ≤ 0. If Ac−ε
is simple but intersects ∂M , then by repeating the sequential argument in the first paragraph
of this proof we see that Ac+ε must intersect ∂M and so cannot consist of two simple com-
ponents disjoint from the boundary. Furthermore, if Ac−ε is not simple, then by the above
homotopy, Ac+ε cannot consist of two simple components. Combining these two observations
show that Nsimple(c− ε)−Nsimple(c+ ε) ≥ −1. So the number of simple components disjoint
from ∂M is either constant or increases by one on passing through the saddle point. If x is not
a lower connected saddle, then by definition Nsimple(c− ε)−Nsimple(c+ ε) = 0, if x is a lower
connected saddle which is not four-arm in M , then Nsimple(c− ε)−Nsimple(c+ ε) = −1 and if
x is a lower connected saddle which is four-arm in M , then Nsimple(c− ε)−Nsimple(c+ ε) = 0.

Finally let x be a tangent point, so that Ac−ε is homotopy equivalent to Ac+ε with a k-cell
attached for some k ∈ {0, 1, 2}. In each case, Ac+ε has at most two simple components disjoint
from ∂M , so |Nsimple(c− ε)−Nsimple(c+ ε)| ≤ 2.

Now suppose that there are no critical or tangent points at level `. Since Nsimple(a)→ 0 as
a→∞, we see that Nsimple(`) equals the sum of the finite number of jumps Nsimple(c− ε)−
Nsimple(c + ε) at each level c with a critical/tangent point. This sum equals the number of
local maxima of f above level ` minus the corresponding number of lower connected saddles
with an error ζ bounded in absolute value by N4-arm(M) + 2Ntang(M). By Lemma 4.5,
|ζ| ≤ 5Ntang(M).

Finally, we note that {f ≥ `} = ∩ε>0{f ≥ `− ε} and that the intersection of a decreasing
family of compact, connected sets is connected, so that Nsimple(`− ε) = Nsimple(`). Therefore
we can apply the above argument to the level `− ε such that there are no critical or tangent
points with level in [`− ε, `) to prove the result. �

With the above preliminary lemma, the proof of Lemma 2.5 in the case of aperiodic func-
tions is straightforward.

Proof of Lemma 2.5 in the case of aperiodic functions. Let f be an aperiodic function satis-
fying the assumptions of Lemma 2.5. Applying Lemma 4.6 with M = B(0, R) and M∞ = R2

gives exactly the stated relationship for excursion sets. To complete the proof, we prove a
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corresponding relationship for level sets. We fix a level ` and let fR = f |
B(0,R)

, we construct

a graph on the vertex set

V := {Components of {fR ≥ `}} ∪ {Components of {fR ≤ `}}

by declaring two vertices to be joined by an edge if they have non-empty intersection. Clearly
the graph is bipartite and each edge corresponds to a component of {f = `}. This graph is
acyclic, and so by Euler’s formula

#{Components of {fR = `}} =#{Components of {fR ≥ `}}
+ #{Components of {fR ≤ `}} − 1

The number of components of {fR = `} which intersect ∂B(0, R) is bounded above by the
number of tangent points of f in ∂B(0, R), and the same bound holds for the components of
{fR ≥ `} and {fR ≤ `}. Therefore we can express the equation above as

NLS,R(f, `) = NES,R(f, `) +NES,R(−f,−`) + η(1)(`)

where |η(1)(`)| ≤ 4Ntang(∂B(0, R)). Applying the first part of this lemma to each of the
NES,R terms here then completes the proof. �

For the periodic cases, the argument is a little more technical since we cannot apply
Lemma 4.6 to B(0, R) directly. Instead, we tile B(0, R) with translated parallelograms or
rectangles, apply Lemma 4.6 to fT or fC(n) on each translated domain and aggregate the
results.

Proof of Lemma 2.5 in the case of periodic functions. Let f be a doubly or singly periodic
function satisfying the assumptions of Lemma 2.5. It suffices to prove the excursion set rela-
tionship, since the level set relationship will follow by the same argument as in the aperiodic
case.

Suppose f is doubly periodic with periodic vectors y, z ∈ R2 and associated parallelogram
P . By assumption, fT is a Morse function almost surely. Suppose that {fT ≥ `} has Nsimple

simple components.
Let A be a component of {f ≥ `} and A′ be the corresponding component of {fT ≥ `}. If A

is compact, then clearly A′ cannot contain a non-T-contractible loop, and so it is simple. Since
f |∂P has a finite number of local extrema, {f ≥ `} ∩ ∂P has a finite number of components.
Therefore if A intersects the boundary of a translated parallelogram P + n1y + n2z where
n1, n2 ∈ Z then it must contain the translation of one of these boundary components. So if A
is unbounded, it must contain a path joining two translated versions of the same boundary
component, which implies that A′ is not simple.

We can tile R2 with the translated parallelograms P + n1y + n2z where n1, n2 ∈ Z. We
associate each bounded component A of {f ≥ `} to a particular translation P + n1y + n2z
of P such that (P + n1y + n2z) ∩ A 6= ∅, Nsimple components are mapped to each translated
parallelogram and if A is associated with P , then A+n1y+n2z is associated with P+n1y+n2z.
If A is a component of {f ≥ `} contained in B(0, R) then it must be associated with a
parallelogram which intersects B(0, R), therefore

(4.1) NES,R(`) ≤ Nsimple ·#{Translations of P in B(0, R+ d)}

where d = diam(P ). Similarly, each compact component of {f ≥ `} which is associated
with a parallelogram inside B(0, R) must be in B(0, R) unless it intersects ∂B(0, R), but
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the number of such intersections is bounded above by the number of tangent points of f to
B(0, R). Therefore

(4.2) Nsimple ·#{Translations of P in B(0, R)} −Ntang(∂B(0, R)) ≤ NES,R(`)

The number of translated parallelograms contained in the ball of a given radius can be ap-
proximated by a generalisation of Gauss’ circle problem. It is shown in [10] that

#{Translations of P in B(0, R)} =
πR2

Area(P )
+ o(R)

as R→∞. So combining this with (4.1) and (4.2)

NES(R, `) = Nsimple ·
πR2

Area(P )
+O(R+Ntang(∂B(0, R)))

as R→∞.
Now suppose that {fT ≥ `} contains m local maxima. Reasoning as above, it is clear that

m ·#{Translations of P in B(0, R)} ≤ Nm+,R[`,∞)

≤ m ·#{Translations of P in B(0, R+ d)}
and so

Nm+,R[`,∞) = m · πR2

Area(p)
+O(R)

with an analogous result holding for lower connected saddles. Applying Lemma 4.6 to fT (i.e.
with the setting M∞ = M = T) then shows that

NES,R(`) = Nm+,R[`,∞)−Ns−,R[`,∞)) +O(R+Ntang(∂B(0, R)))

as R→∞ where the constant in the O(·) notation is independent of `, as required (although
it may depend on d).

Now suppose that f is singly periodic with periodic vector y = (y1, 0) and define R(n) =
[ny1, (n+ 1)y1)×R. By assumption f almost surely has a finite number of tangent points in
[0, y1]×{n1} or {n2y1}× [−R,R] for any n1, n2 ∈ Z or R > 0. Repeating the argument from
the doubly periodic case then shows that the compact components of {f ≥ `} correspond
precisely to the simple components of {fC ≥ `}.

As before, we can associate each compact component of {f ≥ `} with a translated rectangle
R(n) for n ∈ Z, in such a way that if A is a compact component of {f ≥ `} which is mapped
to R(n) then A intersects R(n), and if A′ = A+ y then A′ maps to R(n+ 1).

We recall our earlier definitions: if S(n1, n2) = [n1y1, (n1 + 1)y1] × [n2, n2 + 1] where
n1, n2 ∈ Z, then we define Bint(x,R) to be the union over n1, n2 ∈ Z of all S(n1, n2) contained
in B(x,R). Similarly we define Bext(x,R) to be the union over n1, n2 ∈ Z of S(n1, n2) which
intersect B(x,R). We now fix R > 0 and define mn for n ∈ Z to be the largest integer such
that

[ny1, (n+ 1)y1]× [−mn,mn] ⊂ B(0, R)

and note that under the standard quotient relationship, this rectangle can be identified with
C(mn).

Let Nsimple(fC(mn), `) denote the number of simple components of {f |C(mn) ≥ `} which do
not intersect ∂C(mn). By the mapping described above, there will be at least Nsimple(fC(mn), `)
compact components of {f ≥ `} which are associated with R(n) and intersect [ny1, (n +
1)y1] × [−mn,mn]. If any of these components intersect ∂Bint(0, R), then they will do so at
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distinct components of {f |∂Bint(0,R) ≥ `} and so in particular the number of such components
intersecting the boundary is at most the number of tangent points on ∂Bint(0, R). Therefore

NES(R, `) ≥
∑
n

Nsimple(fC(mn), `)−Ntang(∂Bint(0, R))

We can then apply Lemma 4.6 to fC(mn) (i.e. with the setting M∞ = C and M = C(mn)) for
each n to get this inequality in terms of local maxima and lower connected saddles points.
Let r = max{

√
2, y1}. Then since Bint(0, R) covers B(0, R− r) we see that

NES(R, `) ≥Nm+(R, `)−Ns−(R, `)− 2Ntang(∂Bint(0, R))−Ncrit(B(0, R)\B(0, R− r))

This gives the required lower bound for NES(R, `). The upper bound follows from a very
similar argument. First we define Mn to be the largest integer such that

[ny1, (n+ 1)y1]× [Mn − 1,Mn] ⊂ Bext(0, R)

so that B(0, R) is covered by the finite union of rectangles [ny1, (n+1)y1]× [−Mn,Mn]. Then

NES(R, `) ≤
∑
n

Nsimple(fC(Mn), `)

and by applying Lemma 4.6 to each cylinder we see that

NES(R, `) ≤Nm+(R, `)−Ns−(R, `)−Ntang(∂Bint(0, R))−Ncrit(B(0, R+ r)\B(0, R))

as required. �

We next complete the proof of Lemma 3.2. Again we shall separate the argument into the
aperiodic case and the periodic cases, so that the reader interested only in the aperiodic case
can access the simplest version of the argument. Since in this case we work only with the
manifolds R2 and B(0, R), we replace the condition that an excursion set component A is
simple with the equivalent condition that it is bounded.

Proof of Lemma 3.2 in the case of aperiodic fields. Let f be an aperiodic stationary field sat-
isfying Conditions 2.3. Let g : R2 → R be a Morse realisation of f and assume that g|

B(0,n)

is Morse for all n ∈ N. Let x be a lower connected saddle of g at level `.
The first step is to show that, with probability one, x is not also an upper connected saddle

of g. For ε > 0 sufficiently small, let A`−ε be the component of {g ≥ `− ε} containing x and
A`+ε = A`−ε∩{g ≥ `+ε}. From the definition of a lower connected saddle point, we have three
cases to consider. In the first two cases we use the fact that g is Morse to (deterministically)
rule out the possibility of x being upper connected; we show that the third case occurs with
zero probability and can therefore be neglected.

1)A`−ε is unbounded and A`+ε has one bounded and one unbounded component.
Let S denote the bounded component of A`+ε. We start by choosing n sufficiently large

that B(0, n) contains a neighbourhood of S and a neighbourhood of x. We let A′`−ε be the
component of {g|

B(0,n)
≥ ` − ε} containing x and A′`+ε denote A`−ε ∩ {g ≥ ` + ε}. We can

apply Theorem 4.2 to −g to deduce that B(0, n) ∩ {g ≤ ` + ε} is homotopy equivalent to

B(0, n)∩{g ≤ `−ε} with a 1-cell, denoted γ, attached. By reducing ε we can ensure that A′`+ε
has two components, and so both end-points of γ must be contained in the same component
of B(0, n) ∩ {g ≤ `− ε}. This will in turn be contained in a component of {g ≤ `− ε} which

we denote by B. Clearly B ∪ γ is bounded if and only if B is, therefore B(0, n)∩ {g ≤ `− ε}
and B(0, n) ∩ {g ≤ ` + ε} have the same number of bounded components. This holds for
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any n sufficiently large (possibly after reducing ε) but if x were upper connected we could

find m large enough that B(0,m) ∩ {g ≤ ` − ε} has one more bounded component than

B(0,m) ∩ {g ≤ ` + ε} (this argument is stated more formally in the proof of Lemma 4.6).
Therefore x is not an upper connected saddle point.

2) A`−ε is bounded and A`+ε has two bounded components.
The arguments in the previous case are also valid in this case where S is chosen to be either
of the two components of A`+ε.

3)A`−ε is unbounded and A`+ε is bounded and connected.
We will show that when f is aperiodic, it almost surely has no saddle points of this type.
We fix R > 0 and let gR = g|B(0,R) which we assume is Morse. For y ∈ R2 we define Ay,−ε
to be the component of {g ≥ g(y) − ε} containing y and Ay,ε = Ay,−ε ∩ {g ≥ g(y) + ε}. Let
x1, . . . , xn be the saddle points of gR for which Axi,−ε is unbounded but Axi,ε is bounded for
all ε > 0 sufficiently small. We then choose a fixed ε sufficiently small that this condition
holds for each i and such that gR has no other critical points and no tangent points in
{gR(xi) − 3ε ≤ gR ≤ gR(xi) + 3ε} for any i. This ensures the intervals [g(xi) − ε, g(xi) + ε]
are non-overlapping for i = 1, . . . , n. Finally we assume that the xi are ordered so that
g(xi) < g(xj) for i < j.

Since Axi,−ε is unbounded for each i, we see that

B−i := Axi,−ε ∩ ∂B(0, R)

is non-empty for each i. Since there are no tangent points with level in [gR(xi)−ε, gR(xi)+ε],
we can repeat the arguments in the proof of Lemma 4.6 to show that

B+
i := Axi,ε ∩ ∂B(0, R)

is non-empty and has the same number of components as B−i for each i = 1, . . . , n (see

Figure 11). Suppose there exists a point y ∈ B−i ∩ B
−
j for some i < j. Since Axj ,−ε is

unbounded and path connected, there exists an unbounded path started at y and contained
in {g ≥ g(xj)− ε)}. Since y ∈ Axi,ε which is path connected, this path must also be contained
in Axi,ε which is bounded. This contradiction implies that B−1 , . . . , B

−
n are disjoint. Since

each of these sets must have a local maximum, we see that n ≤ Ntang(∂B(0, R)). Since f is
stationary, we know that the expected number of lower connected saddle points x contained
in B(0, R) for which Ax,−ε is unbounded and Ax,ε is bounded for ε > 0 sufficiently small is
c0R

2 for some c0 ≥ 0. However by the argument just given, this number is bounded above
by the expected number of tangent points of f to ∂B(0, R) which is O(R) by Conditions 2.3.
Hence c0 = 0 so f almost surely has no saddle points of this type.

We have shown that the set of lower connected saddles of f is almost surely disjoint from
the set of upper connected saddles. Using the same notation as above, we will now show that
any saddle point of g must be lower connected or upper connected, completing the proof of
the lemma.

For a small neighbourhood N of x, {g > `}∩N and {g < `}∩N each have two components.
Since g is Morse, it has no other critical points at level ` and so the level set {g = `} consists
of non-intersecting curves except for the component which contains x. Since g has no infinite-
four-arm saddles there are two mutually exclusive possibilities to consider; either there exists
a path in {g < `} joining the two components of {g < `}∩N or there exists a path in {g > `}
joining the two components of {g > `} ∩N .

We now show that in the first case x will be lower connected. By symmetry, this will imply
that in the second case, x is upper connected and so complete the proof for aperiodic fields.
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∂B(0, R)

B+
i

Axi,ε

∞

Axi,−ε

B−i

∂B(0, R)

Figure 11. We show that almost surely an unbounded excursion set compo-
nent of f cannot split into two bounded excursions set components by passing
through a saddle point.

We fix a path γ in {g < `} connecting the components of {g < `} ∩N . From the existence of
γ it is clear that A`\{x} has two components B1, B2 and that without loss of generality, B1

is bounded (see Figure 12).

{g ≥ `}

N

γ

Figure 12. The existence of the path γ implies that x is a lower connected
saddle point.

For ε > 0 sufficiently small, A`+ε therefore has at least one bounded component B1 ∩ {g ≥
` + ε}. If A`−ε is compact for some ε > 0 then clearly B2 is also bounded and so A`+ε has
two bounded components so x is lower connected. If A`−ε is unbounded for arbitrarily small
ε we can assume that A`+ε has an unbounded component, by the argument given above, and
so x is again lower connected. We note that this also proves the equivalence of Definition 3.1
in the aperiodic case and Definition 1.6. �

Proof of Lemma 3.2 in the case of periodic fields. The arguments here are very similar to those
in the aperiodic case (i.e. replacing the condition of boundedness with the more general con-
dition of simplicity). Let f be a stationary field satisfying Conditions 2.3. Let g : M → R be
a Morse realisation of f restricted to M , where M is one of T or C depending on whether f
is doubly periodic or singly periodic. We also assume that g|C(n) is Morse for all n ∈ N in the
singly periodic case. Let x be a lower connected saddle of g at level `.

Again the first step is to show that, with probability one, x is not an upper connected
saddle of g. For ε > 0 sufficiently small, let A`−ε be the component of {g ≥ `− ε} containing
x and A`+ε = A`−ε∩{g ≥ `+ ε}. Again we have three cases to consider, the first two of which
are proven deterministically:

1)A`−ε is not simple and A`+ε has one simple and one non-simple component.
Let S denote the simple component of A`+ε. If f is singly periodic, we set Mc = C(n) where n
is sufficiently large that Mc contains a neighbourhood of S and a neighbourhood of x. If f is
doubly periodic we take Mc = M = T. We define A′`−ε to be the component of {g|Mc ≥ `− ε}
containing x and A′`+ε := A′`−ε ∩ {g|Mc ≥ ` + ε}. By Theorem 4.2 applied to −g we deduce
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that Mc ∩ {g ≤ ` + ε} is homotopy equivalent to Mc ∩ {g ≤ ` − ε} with a 1-cell, denoted γ,
attached. By reducing ε we can ensure that A′`+ε has two components, and so both end-points
of γ must be contained in the same component of Mc∩{g ≤ `−ε}. This will then be contained
in a component of {g ≤ `− ε} which we denote by B. If B is not simple, then clearly B ∪ γ
is not simple. Suppose that B is simple but B ∪ γ is not simple, then B ∪ γ must contain a
loop, denoted η, which is not M -contractible and in particular η must intersect γ. However
B is path connected and B ∪ γ ‘surrounds’ a region which is homotopy equivalent to S and
so must be simple (See Figure 13 for an example of these sets in the doubly periodic case).

γ

B

{g ≥ `− ε}

S

{g ≥ `+ ε}

Figure 13. An example of the excursion sets at a level below (left) and above
(right) a saddle point at level ` for which A`−ε is not simple and A`+ε has one
simple and one non-simple component when M = T.

Therefore η is homotopy equivalent to a loop which is contained in B and so B is not simple,
which is a contradiction. We have shown that B ∪ γ is simple if and only if B is, therefore
Mc∩{g ≤ `−ε} and Mc∩{g ≤ `+ε} have the same number of simple components. This holds
for any Mc sufficiently large (possibly after reducing ε) but if x were upper connected we could
find Mc such that Mc ∩ {g ≤ ` − ε} has one more simple component than Mc ∩ {g ≤ ` + ε}
(again, we note that this argument is stated more formally in the proof of Lemma 4.6). We
conclude that x is not an upper connected saddle point.

2) A`−ε is simple and A`+ε has two simple components.
Once again, the arguments in the previous case are also valid in this case where S is chosen
to be either of the two components of A`+ε.

3)A`−ε is not simple and A`+ε is simple (in particular, connected).
We can repeat the argument given in this section of the proof for aperiodic fields to show
that if f is singly periodic then A`−ε must be bounded. Clearly in the doubly periodic case,
A`−ε ⊂ T must also be bounded. We therefore choose a compact domain Mc ⊂ M of the
form T or C(n) for some n which contains a neighbourhood of A`−ε. Let B1, . . . , Bn denote
the components of {g ≤ `+ ε}∩Mc which intersect A`+ε. Since A`+ε is simple, we know that
one of these sets is not simple and the remainder are. (One of the sets will ‘surround’ A`+ε
which in turn will ‘surround’ the remaining sets.) Without loss of generality, we assume B1

is not simple. By Theorem 4.2, A`−ε is homotopy equivalent to A`+ε with a 1-cell, denoted
γ attached. Clearly γ is contained in B1, otherwise A`+ε ∪ γ would be simple. If M = C
then B1\γ has two components and each of these components contains a loop which is not
C-contractible (since A`+ε ∪ γ is compact and so separated from ∞ and −∞ by B1\γ). If
M = T then B1\γ may have one or two components, in either case each component will
contain a non-T-contractible loop (to see this, consider a path on either side of γ which then
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traverses the boundary of A`+ε). This means that passing through the saddle point x can
only create non-simple components of {g ≤ `− ε}, so x is not upper connected.

This completes the proof that the sets of upper and lower connected saddle points of f
are almost surely disjoint. We continue to use the notation defined above, and we now show
that any saddle point of g must be lower connected or upper connected. As in the aperiodic
case, Lemma 4.5 and Conditions 2.3 allow us to conclude that f almost surely has no infinite
four-arm saddles.

Suppose that f is doubly periodic so that g is defined on the torus T. We fix a small
neighbourhood N of x such that {g > `} ∩N has precisely two components denoted N1, N2.
If γ : [0, 1]→ T is a path contained in {g > `}∪{x}, we say that γ cuts through x if x ∈ γ[0, 1]
and for every t ∈ (0, 1) such that γ(t) = x, for ε > 0 sufficiently small γ((t− ε, t)) ⊂ N1 and
γ((t, t + ε)) ⊂ N2 (intuitively, this means that the image of γ just before hitting x is always
on the same side of the saddle point; see Figure 14). We make an analogous definition for
paths contained in {f < `} ∪ {x}.

{g ≥ `}

γ1

{g ≥ `}

γ2

{g ≥ `}

γ3

Figure 14. The paths γ1 and γ2 cut through x but γ3 does not.

First we suppose that there exists a T-contractible loop γ in {g < `} ∪ {x} which cuts
through x. Since x is a saddle point, it is clear that A`+ε must have two components, one of
which is surrounded by γ and so is simple. If A`−ε is simple, then both components of A`+ε
must be simple. If A`−ε is not simple, we know from Lemma 4.6 that A`+ε can contain at
most one simple component. In either case, we see that x is lower connected. By symmetry,
x is upper connected if there exists a T-contractible loop in {g > `} ∪ {x} cutting through x.

Now we suppose that all loops cutting through x are non-T-contractible. We define C+ to
be the union of {x} and the components of {g > `} which x is in the closure of. We define C−
to be the analogous set for {g < `}. At least one of C+ or C− must contain a non-contractible
loop cutting through x (in order to stop any paths in C+ cutting through x from joining to
form a loop, there must be a loop in T\C+ cutting through x which blocks them, and since
x is the only critical point at level `, such a ‘blocking’ loop can be found in C−). We also
note that both C+ and C− must contain non-T-contractible loops (if C+ was simple, then we
could find a T-contractible loop in C− cutting through x, and this argument is symmetric).

Suppose that γ1 is a loop contained in C+ which cuts through x. If every non-T-contractible
loop in C+ intersects x, then C+\{x} is simple, so A`+ε is simple and hence x is lower
connected. Therefore we may assume that C+ contains a non-T-contractible loop γ2 which
does not intersect x. Let η1 and η2 be two loops which generate the fundamental group of T,
we denote the concatenation of n copies of η1 and m copies of η2 by nη1 +mη2. We suppose
γ1 ' n1η1 +m1η2 and γ2 ' n2η1 +m2η2 where ' denotes being T-homotopic. It is known (see
[6, Section 1.2.3]) that any loop homotopic to n1η1 +m1η2 must intersect any loop homotopic
to n2η1 +m2η2 unless n1m2 = n2m1.
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If n1m2 6= n2m1 then we know that any non-contractible loop in C− must intersect either
γ1 or γ2. Since C− ∩ C+ = {x} clearly such a loop must intersect γ1 at x. By the previous
paragraph this means that C−\{x} is simple and so x is upper connected.

If n1m2 = n2m1 then by choosing a path ξ in C+\{x} which joins γ1 to γ2 we consider the
concatenated loop

m1γ1 + ξ + n1(−γ2) + (−ξ)
where − denotes inverting the direction of the path. This path is contained in C+ and cuts
through x (since γ1 does but γ2 and ξ do not hit x) and since n1m2 = n2m1 this loop is
T-contractible. However this contradicts the above supposition, so this case is not possible.
This completes the proof in the doubly periodic case. The proof in the singly periodic case is
simply a repetition of parts of the proof for aperiodic and doubly periodic fields, so we omit
it. �

All that remains is to complete the calculations for the special class of degenerate fields.

Proof of Proposition 1.19. We recall that a random variable Y is Rayleigh distributed with
parameter σ > 0 if

P(Y ≤ x) = 1− e−x2/(2σ2)

for all x ≥ 0, and we denote this as Y ∼ Ray(σ). If Y ∼ Ray(σ) and θ is an independent
uniform-[0, 2π] random variable then it is well known that Y cos(θ) ∼ N (0, σ2).

Let f be the Gaussian field with spectral measure

ρ = αδ0 +
β

2
(δK + δ−K) +

γ

2
(δL + δ−L)

where α+ β + γ = 1 so that the covariance function of f is

κ(x) = α+ β cos(2πK · x) + γ cos(2πL · x)

Then f has the representation

(4.3) f(x) = X0 + Y1 cos(2πK · x+ θ1) + Y2 cos(2πL · x+ θ2)

where X0 ∼ N (0, α), Y1 ∼ Ray(
√
β), Y2 ∼ Ray(

√
γ), the θi are uniformly distributed on

[0, 2π] and all of these random variables are independent. (By well known properties of the
Rayleigh distribution, the field defined by the right hand side of (4.3) will have Gaussian
finite dimensional distributions and simple calculations show that the covariance function of
this field is κ.)

Let

u =
1

K1L2 −K2L1

(
L2

−L1

)
v =

1

K1L2 −K2L1

(
K2

−K1

)
and P = {tu + sv : t, s ∈ [0, 1]}. Then P is the parallelogram associated with f and we
consider fT to be the restriction of f to P when P is identified with the two dimensional
torus. By rotating the axes, we may assume that K1 > 0 (since this does not affect the
definition of cNS). Some basic calculations show that, on the event

{Y1 6= 0} ∩ {Y2 6= 0} ∩
{
Y1 ±

√
γ

β

L2
1

K2
1

Y2 6= 0

}
,

fT has four critical points which occur at different levels and are all non-degenerate. Therefore
fT is almost surely a Morse function. Moreover, the critical points of fT −X0 occur at levels
−Y1 − Y2,−|Y1 − Y2|, |Y1 − Y2|, Y1 + Y2. Clearly the critical points at levels Y1 + Y2 and
−Y1 − Y2 are a local maximum and local minimum respectively. We can use Lemma 4.6 to
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characterise the other two critical points and the number of simple components of {fT−X0 ≥
`}, denoted Nsimple(`), at different levels. Specifically, since {fT − X0 ≥ Y1 + Y2} = ∅ and
{fT −X0 ≥ −Y1 − Y2} = T, we see that Nsimple(`) = 0 whenever |`| > Y1 + Y2. Then, since
the critical points at level Y1 +Y2 and −Y1−Y2 must be a local maximum and local minimum
respectively, applying Lemma 4.6 shows that Nsimple(`) does not change as ` passes through
−Y1 − Y2 and decreases by one as ` passes through Y1 + Y2. Therefore

Nsimple(`) =


0, if ` > Y1 + Y2,

1, if ` ∈ (|Y1 − Y2|, Y1 + Y2),

0, if ` ∈ (−Y1 − Y2,−|Y1 − Y2|),
0, if ` < −Y1 − Y2.

Now assume that θ1 = θ2 = 0. Then by traversing the parallelogram P across one of its edges
(depending on which of Y1, Y2 is bigger) we can find a closed path which is not T-contractible,
on which fT − X0 is bounded below by |Y1 − Y2|, so in particular is positive. This shows
that {fT−X0 ≥ 0} has a non-simple component (for general values of θ1, θ2, such a path will
also exist, but it will be translated). Since {fT −X0 ≥ |Y1 − Y2|} consists of a single simple
component, this implies that the critical point at level |Y1 − Y2| must be a lower connected
saddle point. Then by Lemma 4.6 we see that

Nsimple(`) =

{
1, if ` ∈ (|Y1 − Y2|, Y1 + Y2],

0, otherwise.

It is then clear that

pm+(x) =
1

Area(P )
pX0+Y1+Y2(x) and ps−(x) =

1

Area(P )
pX0+|Y1−Y2|(x).

Arguments given in the proof of Lemma 2.5 for periodic functions show that

NES,R(`) = 1`−X0∈(|Y1−Y2|,Y1+Y2] ·
πR2

Area(P )
+O(R+Ntang(∂B(0, R))).

Arguing as in the proof of Lemma 2.4 it can be shown that E(Ntang(∂B(0, R)) = O(R) as
R→∞. Then for ` ∈ R

E
(∣∣∣∣NES,R(`)

πR2
− 1

Area(P )
1`−X0∈(|Y1−Y2|,Y1+Y2]

∣∣∣∣) = O

(
1

R

)
,

so that NES,R(`)/(πR2) converges in L1 to the random variable 1
Area(P )1`−X0∈(|Y1−Y2|,Y1+Y2]

which is non-deterministic provided α > 0 or ` > 0. In particular, this convergence shows
that

cES(`) := lim
R→∞

1

πR2
E(NES,R(`)) =

1

Area(P )
P(`−X0 ∈ (|Y1 − Y2|, Y1 + Y2]).

We can repeat these arguments for the sum of upper and lower excursion sets to derive the
corresponding expression for cNS(`). �
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