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ABSTRACT  

Computer simulation studies aimed at elucidating the phase behavior of crude oils inevitably 

require atomistically-detailed models of representative molecules. For the lighter fractions of 

crudes, such molecules are readily available, as the chemical composition can be resolved 

experimentally. Heavier fractions pose a challenge, on one hand due to their polydispersity and on 

the other due to poor description of the morphology of the molecules involved. The Quantitative 

Molecular Representation (QMR) approach is used here to generate a catalogue of 100 plausible 

asphaltene and resin structures based on elemental analysis and 1H – 13C NMR spectroscopy 

experimental data. The computer-generated models are compared in the context of a review of 

previously proposed literature structures and categorized by employing their molecular weights, 

double bond equivalents (DBE) and hydrogen to carbon (H/C) ratios. Sample atomistic molecular 

dynamics simulations were carried out for two of the proposed asphaltene structures with 

contrasting morphologies, one island-type and one archipelago-type, at 7 wt% in either toluene or 

heptane. Both asphaltene models, which shared many characteristics in terms of average molecular 

weight, chemical composition and solubility parameters showed marked differences in their 

aggregation behavior. The example showcases the importance of considering diversity and 

polydispersity when considering molecular models of heavy fractions.   
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INTRODUCTION 

The molecular modelling of petroleum fluids imposes particular challenges that do not surface 

when studying other complex fluids. Crude oils are mixtures of many hundred thousand or more 

constituents with an extraordinary polydispersity in terms of molecular weight and morphology, 

albeit some remarkable similarities in terms of chemical nature. While relatively routine 

techniques such as gas chromatography provide information on the lighter ends, which can be 

uniquely identified, the intermediate molecular weight fractions become increasingly complex to 

isolate and identify. Through thermal fractionation, even more information can be garnered about 

some of the intermediate molecular weight fractions, and a rather fine “lumping” of some of the 

presumed components can be made into pseudo-components. However, even up to this 

intermediate molecular weight, the complexity of the saturate and the aromatic fractions becomes 

evident.1,2  For the heavier fractions (i.e. those characterized by 30 or more heavy atoms) it is 

customary to “give up” in the attempt to describe the individual constituents of the mixture and 

the characterization is made in terms of a practical (but very unsatisfactory from a molecular 

viewpoint) fractionation into resins and asphaltenes.  

Asphaltenes are the heaviest of the polar constituents in crude oil, defined in terms of their 

insolubility in nonpolar solvents n-heptane while being soluble in aromatic solvents, such as 

toluene and benzene.3 They are of particular concern in the oil industry as a fraction of the 

asphaltenes of certain crudes may precipitate spontaneously upon decompression during 

production. Their behavior has puzzled researchers for decades: many crudes with a high 

asphaltene content are produced for decades without any precipitation of solids (i.e. Boscan crudes, 

which may have up to 17 wt% of asphaltenes), while some light Arabian crudes with only a few 

percent of asphaltenes are particularly prone to solid deposition.  Solid organic deposits are formed 

either by the crystallization of paraffins and/or the precipitation of certain types of asphaltenes, 

which can plug the porous media of the reservoir and/or pipes, resulting in increased efforts in oil 

extraction, decreased production rates and negative financial effects.4  

The complexity of the asphaltene fraction, the fact that its geological history and origin are 

determinant and the insistence of attempting to assign a “universal” model molecule to what is in 

essence a solubility class, have all conspired against obtaining clear insights on the phase behavior 
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of these fractions. Discussions focusing on quantifying apparently simple general properties, such 

as the average molecular weight of an asphaltene, have become open, and sometimes bitter 

debates.5,6,7 The efforts to experimentally determine the nature of the “prototypical” asphaltene 

molecule have been metaphorized8 by using the Hindu tale of a group blind men attempting to 

agree on the description of an elephant after each of them only had the experience of each touching 

a different part of the animal; proclaiming that the elephant is like a tree (by whom had touched 

its legs), or like a snake (by whom had touched its nose), a wall (by touching its side), and so forth. 

In analogy, the only possible way to describe asphaltene fractions (or molecules) is to take into 

account a large amount of inferred experimental information to build a picture of the most likely 

scenario. Despite decades of extensive research involving both experimental work and theoretical 

modelling, many aspects of the physical behavior and aggregation mechanisms of asphaltenes 

remain inconclusive, such as the discrepancy in aggregation number and cluster size between some 

experimental X-ray and neutron scattering results.9 Noteworthy, high resolution atomic force 

microscopy (AFM) studies,10,11 have provided a unique vision (in the literal sense of the word) of 

the heavy fractions of crude oils molecules, suggesting some of them present cores composed 

primarily of polynuclear aromatic hydrocarbons (PAH) with side aliphatic chains.12 This model is 

usually referred to as an “island” morphology, as opposed to the “archipelago” structures where a 

larger number of smaller aromatic moieties are linked together by aliphatic chains. The core 

structures “seen” with AFM have been used as the basis for proposing asphaltene models.13 The 

most recent comprehensive characterizations performed using extrographic fractionation and 

ultrahigh-resolution mass spectrometry seem to indicate that, as one would expect, asphaltenes 

comprise a structural continuum of both continental (island) and archipelago motifs.14, 15, 16 

In this scenario, not surprisingly, the theoretical descriptions lag behind. Any equation-of-state 

modelling of asphaltene phase behavior and/or deposition process will invariably suffer from the 

lack of an appropriate description of what, in essence, is a continuous molecular distribution, and 

as such, current models struggle to provide quantitative predictions.17 Molecular modelling can 

come to aid in the understanding of the physical behavior of asphaltenes in solutions. The first step 

to simulating a crude oil, however, is to construct accurate molecular structures of asphaltenes 

from our limited anecdotal evidence. This contribution is aimed at providing a discrete set of 

plausible molecular models that can be used directly in the molecular simulation of crude oils. 
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MOLECULAR MODELS FOR ASPHALTENES 

A Brief Historical Perspective 

The first suggestions 

A variety of model asphaltenes have been published in the literature representing a wide range 

of molecular weights and structural types, all based either on particular experimental data and/or 

heuristic and plausibility arguments. Here we do not attempt to make an abridged review of the 

literature on the subject nor a judgmental analysis, but rather focus on the (sometimes circular) 

progress that has been made in the past decades in the elucidation of asphaltene and resin molecular 

structures. More extensive reviews of molecular modelling of asphaltenes can be found in 

references 18, 19 and others included in this manuscript.  The inclusion (or exclusion) of a 

particular model in this discussion is not a prejudice for or against any particular model and/or 

research group.  It is worth noting, however, that the PAHs in multiple reprinted drawings do not 

follow Clar’s rule,20,21 show atypical numbers of bonds with the neighboring aromatic rings, and/or 

are not Kekulé resonance structures; figures with such PAHs are marked with asterisks (*). Models 

structures marked in such a way should not be employed as presented and should be modified 

appropriately. Separately, some proposed models do not contain heteroatoms and lack polarity; 

figures with such models are marked with daggers (†).  

In 1974, Yen22  proposed arguably the first reported “drawing” of an asphaltene model, a 

hypothetical structure from a Lagunillas oil shown in Figure 1. It is a polymeric structure where 

the monomer unit has an empirical formula of C74H87NS2O and a molecular weight of 1071 Da; 

the positions of all substituents are arbitrary, and are pieced together by analyzing five major 

hydrogen types detected using nuclear magnetic resonance (NMR) – aromatic, α-substituted, 

naphthenic, methylene and saturated methyl types. It has historically been misinterpreted as a 

single molecule, when in fact the author describes asphaltenes as having at least three said 

monomers.  A similarly related model, proposed by Speight and Moschopedis23 is shown in Figure 

2. With a molecular formula of (C79H92N2S2O)3 and a molecular weight of 3449 Da, the model 

was constructed with the assumption that asphaltenes, viewed structurally, were condensed 

polynuclear aromatic ring systems bearing alkyl side-chains. The use of NMR data along with 

direct observation with scanning tunneling microscopy led to hypothetical asphaltene structures 

from a Mayan crude oil, known as the Zajac model.24 A widely cited version of the Zajac model 
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(Figure 3) consists of a molecular formula of C54H57NS and a molecular weight of 752 Da, with 

nine aromatic rings, two alicyclic rings in the fused aromatic region, a single aliphatic chain 

containing an isopropyl group, and nitrogen and sulfur heteroatoms in pyridinic and thiophenic 

forms, respectively.25 The original authors noted that small structures were found in the presence 

of much larger structures, but could not determine whether the large structures were aggregates of 

smaller units or large single structures connected by aliphatic linkages. The latter option would 

eventually be known as the archipelago structural type, which was not widely recognized at the 

time. Figure 4 shows a molecular representation of a Ratawi asphaltene with a molecular formula 

of C70H94 and molecular weight of 944 Da drawn based on liquid- and solid-state NMR, proposed 

by Storm et al.26  The model relied on using of the chemical relationship between the amounts of 

bridgehead carbons and the size of certain polynuclear aromatics, and suggested the use of smaller 

molecular sizes and shorter aliphatic groups. 

 

Figure 1. A monomer unit from one of the first depictions of asphaltenes corresponding to the 
formula C74H87NS2O, from a Lagunillas oil proposed by Yen.22 
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Figure 2. Hypothetical structure of a segment (monomer) of a petroleum asphaltene, 
(C79H92N2S2O)3, proposed by Speight and Moschopedis.23 Reprinted with permission from ref. 23. 
Copyright 1982 American Chemical Society.  

 

 

Figure 3.  (*) Hypothetical asphaltene molecule structure proposed by Zajac et al.24. n=7 aliphatic 
carbon atoms. Reprinted with permission from the author.  

 

Figure 4. (*†) Molecular representations of a Ratawi asphaltene based on liquid- and solid-state 
NMR, proposed by Storm et al.26  Reprinted with permission from ref. 26  Copyright 1994 American 
Chemical Society.  
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The mega-asphaltene proposals  

One of the first and possibly most long-standing debates in the asphaltene literature surrounds 

the specification of an average molecular weight for prototypical asphaltenes. Reported molecular 

weights of petroleum asphaltenes range anywhere from 400 Da to 10 000 Da, although most 

current estimates are closer to the 800 - 1500 Da average value.27,28,29,30,31,32 In context, the larger 

values contributed to the proposal of molecular pictures of large asphaltenes, such as those 

provided by INTEVEP-Petróleos de Venezuela S. A. and investigated by researchers from the 

Venezuelan Institute of Scientific Research (IVIC). These were models of a “continental” 

morphology (similar to “island” motifs, but with a much larger PAH core). An example is given 

in Figure 5, where two-dimensional and space-filling drawings of an asphaltene studied by 

Murgich et al.33 are shown. These are among the earliest models of asphaltenes to be employed 

directly in molecular modelling, which constituted a “heroic” computational effort at the time. The 

asphaltene structure in Figure 5 has a molecular formula of C149H175N3O2S2 and a molecular 

weight of 2104 Da. The space-filling drawing of the asphaltene structure demonstrates the 

complexity and stability of the conformation, and the models were reported to have maintained 

similar appearances while interacting with toluene, cyclohexane and n-octane solvents. Another 

example is given in Figure 6, where one of the several structures for the asphaltene samples from 

Venezuelan crudes proposed by Rogel and Carbognani 34  is shown. Molecular dynamics 

simulations were carried out to estimate the densities of the structures, which were found to show 

the correct tendencies, but were often underestimated compared to experimental values. The 

authors reported that asphaltenes from unstable crude oils and deposits exhibited higher densities, 

higher aromaticities, and lower hydrogen-to-carbon ratios than asphaltenes from stable crude oils. 
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Figure 5. Model asphaltene structure, C149H175N3O2S2, studied by Murgich et al.33 . This was one of 
the first models used in molecular mechanics simulations. Reprinted with permission from ref. 33. 
Copyright 1996 American Chemical Society. 

 

 

Figure 6.  (*†) Model MG27, one of several average structures for the asphaltene samples proposed 
by Rogel and Carbognani 34 with a formula of C87H92S1 and a MW of 1170 Da. Reprinted with 
permission from ref. 34. Copyright 2003 American Chemical Society.  

Strausz et al.31  championed the use of the ruthenium ion catalyzed oxidation (RICO) reaction 

on asphaltenes in an attempt to obtain information about the sizes of aromatic regions and alkyl 

side chains, about the naphthenic rings attached to aromatic fragments, and about the bridges 

between aromatic and naphthenic fragments. Along with the results from NMR and pyrolysis 

studies, they constructed a hypothetical asphaltene model based on Alberta asphaltenes, as shown 

in Figure 7. The model presented a paradigm change in the way asphaltenes are conceptualized, it 

consisted of smaller aromatic and naphthenic units linked by aliphatic bridges (instead of a single 

condensed aromatic system with a large number of rings). The model has an elemental formula of 

C420H496N6S14O4V, an H/C atomic ratio of 1.18 and a molecular weight of 6191 Da. Further 

examples of these macro-archipelago models are shown in Figure 8, again inferred from 

information from analytical methods and elemental properties, with a combined molecular formula 
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of C490H528N4O5S15, and a molecular weight of 7034 Da.35  The type and distribution of aromatic 

main units, aliphatic chain structures, functionalities, and naphthenic structures were deduced from 

and based on RICO, pyrolysis gas chromatography (py/GC) and NMR data. Notably, the organic 

phase from the RICO reaction of the asphaltene contained sulfur and nitrogen heteroatoms, and 

because the X-ray photoelectron spectroscopy (XPS) study revealed that the sulfur structures were 

sulfide, thiophenic and sulfoxide, the existence of sulfides and nitrogen-containing saturated 

structures in asphaltene structures was proven. Other examples of large archipelago structures have 

been proposed by Sheremata et al.36 (see Figure 17 and discussion in the next section) and those 

suggested by Ali, Ghaloum and Hauser37 (Figure 9) who subjected two asphaltene samples from 

Kuwaiti residual oils to preparative gel-permeation chromatography (GPC), before analyzing them 

using NMR and XRD studies to investigate the relationship between the molecular size of the 

asphaltene fraction and its structural features.   

 

Figure 7. Hypothetical mega-archipelago asphaltene molecule structure, C420H496N6S14O4V, 
proposed by Strausz et al. 31 Reprinted with permission from ref. 31. Copyright 1992 Elsevier.  
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Figure 8. Model structures of asphaltene with a combined molecular formula of C490H528N4O5S15 
studied by Artok et al.35 Note that there are four distinct archipelago models in the figure.  Reprinted 
with permission from ref. 35. Copyright 1999 American Chemical Society.  

 

Figure 9. (*) Structure representation (C367H418S12N3) of asphaltene GPC Fractions derived from 
Kuwaiti residual oils.37 The lower right-side fragment does not have a valid Kekulé structure. 
Reprinted with permission from ref. 37. Copyright 2006 American Chemical Society.  

 

Recent models 
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At the start of the century, Mullins et al.38 championed a series of asphaltene prototypes based 

heavily on results from fluorescence depolarization measurements arguing that mean molecular 

weights should be roughly 750 Da with a range of 500-1000 Da. Mullins et al. proposed that the 

typical asphaltene molecules were characterized by a single dominating polycyclic aromatic 

hydrocarbon (PAH) core consisting of 4-10 fused rings per asphaltene molecule. Four of the 

original examples are shown in Figure 10 with molecular formulas of C51H62S (top left), C66H81N 

(top right), C56H71N (bottom left) and C42H54O (bottom right) and molecular weights of 707 Da, 

888 Da, 758 Da and 575 Da, respectively. The Mullins molecules (also referenced in the context 

of a proposal of an aggregation model called the Yen-Mullins model39,40) have had an overarching 

influence in the way the community depicted asphaltene molecules and many subsequent works 

have either employed the models directly 41 , 42 , 43  or have been inspired by them, sometimes 

correcting some of the irregularities in the original models. 44, 45  

 

Figure 10. The asphaltene structures (modified Yen model) , C51H62S (top left), C66H81N (top right), 
C56H71N (bottom left) and C42H54O (bottom right), proposed by Mullins.39 Reprinted with 
permission from ref. 39. Copyright 2010 American Chemical Society. 

The “island” nature of the Mullins’ models influenced, but did not dominate, the propositions 

and models for years to come. The asphaltene model shown in Figure 11, built based on samples 

characterized by elemental, molecular weight and NMR (1H and 13C) analyses to assist in the 

investigation of the toluene-insoluble and toluene-soluble asphaltene fractions, is an example46.  
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Figure 11. Model structure for an asphaltene of C76H73NSO proposed by Acevedo et al.46 Reprinted 
with permission from ref. 46 . Copyright 2004 American Chemical Society. 

   

However, one encounters in the recent literature many other propositions, which somehow 

interpolate between the characteristics of the island and archipelago motifs. Figure 12 shows a 

further four examples of medium-sized asphaltenes where the island, continental and archipelago 

motifs are evidenced. These models were based on establishing the number of saturated and 

unsaturated rings using their molecular formulas and the percentage of aromatic carbon obtained 

mainly by analysis of NMR data, which were then used to adjust the structures and estimate the 

size and position of alkyl chains. It is worth reiterating that some of the models shown fail to be 

valid structures and/or fail to have the expected heteroatoms and/or polarity and have not stood 

the test of time. 
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Figure 12.  (a) Example of a model structure representing asphaltene samples from Khafji oil 
proposed by Takanohashi et al. 47  (b) (*†) Model structures for Asphaltene A, (C69H73N2O), 
proposed by Carauta et al.48 (c) Asphaltene models representing Kuh-e-Mond oils (C95H102O2NS4) 
proposed by Sayyad Amin et al.49  (d) Molecular representations of interfacially active asphaltene 
(IAAs), (C97H117NO4S4) proposed by Yang et al. 50   Reprinted with permission from ref. 47. 
Copyright 2004 Taylor & Francis. Reprinted with permission from ref. 48. Copyright 2005 
American Chemical Society. Reprinted with permission from ref. 49 Copyright 2011 Elsevier. 
Reprinted with permission from ref. 50. Copyright 2015 American Chemical Society.  

 

There is now a much more modern view that has been also supported by extensive experimental 

evidence that there are asphaltene molecules with PAH cores with heteroatoms, alkyl side chains 

and some have alkyl bridges joining PAH cores. These bridges may also contain heteroatoms such 

as S and O. Molecular weight seems to be in the 1000 +/- 300 Da region. This restricted portrayal 

is insufficient to fully characterize the complexity present in this class of molecules. The number, 

size, shape, distribution and location of aromatic cores and aliphatic chains, as well as the presence 

of heteroatoms, all contribute delicately to the physical behavior of the molecule and affect its 
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aggregation, flocculation and deposition mechanisms. 51  Unsurprisingly, there is no universal 

agreement on the subject. There is experimental evidence14 that two main structural motifs exist, 

called popularly archipelago-type and continental-type asphaltenes, hence from a modelling and/or 

theoretical perspective, it is useful to have a spectrum (or at the very least a pair) of models that 

span these two extremes. An example are the asphaltene models proposed by Ungerer et al.52 with 

H/C ratios of 1.2 and molecular weights between 1300 Da and 1360 Da. The archipelago-type and 

continental-type asphaltenes have molecular formulas of C93H116O2S2 and C94H112O2S2, 

respectively. As illustrated in Figure 13, archipelago asphaltenes consist of small aromatic PAH 

domains connected by aliphatic chains while island asphaltenes feature a single large aromatic 

core, decorated by aliphatic chains connected to the edge of the core and are, by virtue of the sheer 

shape and relative size of their PAH cores, more prone to aggregation52,53. Another example of 

pairs of proposed models where an island is assessed side-by-side to an archipelago one of roughly 

the same size is given by Headen et al.19  (c.f. Figure 19) and by Kuznicki et al54, 55.   

 

Figure 13. Pair of Archipelago-type asphaltene (left), C93H116O2S2, and continental-type asphaltene 
(right), C94H112O2S2, models studied by Ungerer et al. 52 

 

Resins 

Resin structures are much less discussed in the literature. The fact that they have lower molecular 

weights make them inherently less prone to precipitating. From the scarce available data, it is 

known that the resins are highly polydisperse and may be classified into three broad groups: 

saturated, aromatics and mixed, depending on the largest fragment present in the molecules. The 
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aromatic resins are likely to interact with similar aromatic regions in the asphaltenes and form 

molecular aggregates with them. It makes sense, then, to select resins of the aromatic group as part 

of the molecular aggregates (clusters) to be formed. Two examples are provided in Figure 15, 

others are given in ref. 56. 

 

Figure 14. Model structures of resins, (left) Resin structure with a molecular formula of C26H32O 
and MW of 360.5 Da proposed by Collell et al.57 Reprinted with permission from ref. 57. Copyright 
2014 American Chemical Society. (right) resin with molecular formula C49H70S1, studied by 
Murgich et al.33 Reprinted with permission from ref. 33. Copyright 1996 American Chemical 
Society.  

 

Model chemical compounds 

In the same way one can derive models for molecules from heuristic arguments in order to test 

their performance in silico, a similar exercise can be performed by synthesizing molecules (or by 

employing existing chemicals), to test the performance of asphaltene-like molecules under 

experimental conditions.58,59,60  The reader is referred to a recent review by Sjöblom et al. 61 for a 

comprehensive account of the state of the art. Clearly, this approach is hampered by the difficulties 

associated with the practical aspects of organic chemical synthesis and is limited to structures 

based on the availability of chemically reactive building blocks. In some cases, these synthesized 

molecules have also been studied by computer simulation. The advantage here is that both the 

experiments and the simulations are probing the same molecular system and any disparity in results 

can be traced to deficiencies in either experimental or simulation protocols.    

QUANTITATIVE MOLECULAR REPRESENTATION (QMR) 
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Previous Deployments 

From the above discussion, it becomes apparent that the literature is riddled with models for 

asphaltene molecules with an extremely wide variability in terms of morphology and size. Even 

upon narrowing down parameter space in terms of molecular weight, chemical composition, 

degree of aromaticity, etc., most references present at the most a handful of plausible chemical 

descriptions of molecules. It is anticipated that the large diversity of naturally-occurring molecules 

will not be appropriately modelled with a small discrete set of representative models, which 

diminishes the (most likely to be key) effects of polydispersity and mixture behavior in computer 

simulation studies. 

Crude oil is the result of an extraordinarily complex set of chemical reactions. Its generation 

starts with the decomposition of biopolymers into lighter molecular fragments that are later bonded 

back together in a rather random way to form a geopolymer (kerogen). Kerogen contains also 

smaller molecules that are trapped in the voids present in its structure. Under proper conditions of 

pressure and temperature (the oil window, 80 to 120 °C), the geopolymer breaks down into smaller 

molecular fragments that form, with the many trapped molecules, crude oil and gas. The low 

temperatures involved (<120 °C) in the transformations of the geopolymers are such that not all 

possible chemical reactions are allowed between the elements contained in the biopolymers. Then, 

not all possible combination of the atoms forming the original biopolymer will, then, be present in 

the crude oils. The number of different molecules is enormous in crude oils but not as astronomical 

as predicted by simple combinatorics. There is a general consensus between petroleum 

geochemists that all crude oils are formed by the same type of compounds. The main differences 

are in the amount of each of the compounds found in a particular crude. Figure 15 shows the 13C -

NMR spectra of the purified asphaltenes of two crudes of very different origins and contrasting 

characteristics. From the similarity found between the spectra, it is clear that the asphaltenes share 

significant commonalities and only subtle variations are found between those obtained from 

different crudes. 
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Figure 15. NMR spectra of asphaltenes extracted from Boscan (a heavy aromatic crude from 
Venezuela) and Duri (a light paraffinic crude from Indonesia) crudes. Adapted from ref. 62.  

 

It is known that one can relate components of the saturated fraction with the aromatic part: the 

same structure of saturated polycyclics is found in molecules of the aromatic fraction. What 

follows from this argument is that if one selects some plausible building blocks, one can then form 

plausible molecules from a rearrangement of the chemical moieties, subject to a number of known 

experimentally accessible boundary conditions.  

Most proposed asphaltene models in the literature were built upon heuristic arguments, and those 

that relied on experimental data still required decisions to be manually made on certain qualitative 

levels. It is in this space that this manuscript is positioned: we use a systematic approach, the 

quantitative molecular representation (QMR) methodology36, 63 , 64   to generate populations of 

molecular structures based on experimental data, in an attempt to introduce diversity and 

arguments that are more quantitatively measurable and less focused on one single average 

generalized structure.  

 

Klein and co-workers63,65 are the first to report the construction of asphaltene molecules using a 

Monte Carlo method by stochastically assembling 10 000 different molecules based on an off-

shore Californian asphaltene sample, a Kern River heavy oil and sour import heavy gas oil. 

Important structural attributes including the number of aromatic rings, naphthenic rings and 

different lengths of aliphatic chains were adjusted according to their quantitative probability 

DuriBoscan
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density functions. Other reports from the group66 described resin molecule attributes in terms of 

quantitative probability density functions, and optimized the properties of Monte Carlo-

constructed molecules against experimental data from 1H NMR spectroscopy, elemental analysis, 

and vapor-pressure osmometry (VPO) studies. Further to this they reported67 a hybrid Monte 

Carlo-quadrature method, which analyzed molecules as collections of molecular attribute building 

blocks, each represented by a probability distribution function that was sampled via a Monte Carlo 

simulation yielding a large ensemble of representative molecules, designed such that the properties 

of the ensemble were restrained by experimentally measured analytical data. A quadrature method 

was then used to select an optimal small set (∼10–20) of molecules, with mole fractions optimized 

to match experimental data with key analytical properties of a complex petroleum feedstock. 

Recently, the method was further refined and applied to Turkish asphaltenes.68 A pair of the 

generated molecules is shown in Figure 16.  

 

 

 
 

Figure 16. Island (left) and archipelago (right) models of asphaltenes generated by stochastic 
molecular reconstruction proposed by  structure generated through stochastic assembly proposed by 
Denitz et al.68 

 

Sheremata et al.36 further developed the QMR generation model to incorporate structural data from 
13C NMR spectroscopy, a distribution of molecular building blocks following the archipelago-type 

structural framework, as well as both thioether and alkyl bridges. The authors reported a series of 

QMR-generated archipelago-type asphaltenes: C283H337N3O4S9, C230H302N4O2S10 and 
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C318H395N6O6S8V, with molecular weights of 4133 Da, 3476 Da and 4705 Da, respectively, of 

which the final molecule is shown in Figure 17. The non-rigid asphaltene structures were 

constructed segment by segment via a Monte Carlo methodology, and nonlinearly optimized based 

on elemental and NMR spectroscopy (both 13C and 1H) analyses for Athabasca asphaltenes. The 

resulting structure is reminiscent of the mega-asphaltenes, most likely due to the imposition of the 

boundary condition of having a MW close to 4k Da.    

 

 

Figure 17. Archipelago-type asphaltene, C318H395N6O6S8V, generated by Sheremata et al.36 using a 
QMR algorithm. Reprinted with permission from ref. 36. Copyright 2004 American Chemical 
Society.  

 

Figure 18 shows one of the asphaltene models generated by Frigerio and Molinari69 using the 

Scienomics Materials Processes and Simulation (MAPS) platform. 70  Similar to the QMR 

approach, asphaltene molecules were virtually assembled from molecular building blocks which 

were selected from structures and functional groups that were detected in asphaltenes by 
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experimental characterization, such as chemolysis and pyrolysis. Seventeen molecules were 

chosen and published, with molecular weights ranging from 347 Da to 1625 Da, from a larger 

generated population by selecting the best fits to the chemical characterization data, which 

consisted of elemental analysis, GPC and 1H – 13C NMR results. Rueda-Velázquez and Gray71 

also offer a proposition of building distributions of asphaltenes by Monte Carlo constructions 

attempting to map to molecular weight distributions, although no explicit structures were 

published. 

 

 

Figure 18. (*) A representative asphaltene model from of a population generated using the 
Scienomics Materials Processes and Simulation (MAPS) platform70 reported by Frigerio and 
Molinari69 Reprinted with permission from ref. 69. Copyright 2011 Elsevier.  

The procedures of Sheremata et al.36 generated large archipelago-type structures by connecting 

building blocks only through alkyl chains. Boek et al. 64, 72, 73  extended the approach by also 

including other linkages, generating continental structures with larger aromatic cores. The set of 

asphaltene and resin structures (examples provided in Figure 19) were simulated in heptane and 

toluene. Asphaltene aggregation was reported in both heptane and toluene systems, but the 

aggregates persisted for longer in heptane than in toluene. On the other hand, the resin structures 

formed no aggregates in toluene, with some aggregation occurring in heptane. The Headen 

models19 have been employed in extraordinarily long simulations (over 0.5 µs) revealing how 

aggregation is a “slow” process as compared to the solvent dynamics. These models and modified 

versions have been used in a number of simulation studies. 73,1974,75,76,77 So called “digital oils”, 

including an in silico production of whole crudes 78, 79, of petroleum fractions80, and vacuum 
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residue fractions81 have also been produced in a similar fashion. A related procedure, labelled 

“structure-oriented lumping” 82 has been also extended to vacuum residue fractions.83   

 

 

Figure 19. QMR-generated archipelago-type (left) “Asphaltene A” and continental-type (right) 
“Asphaltene C” proposed by Headen et al.73 Reprinted with permission from ref. 73. Copyright 2009 
American Chemical Society. 

 

Methodology 

The QMR approach developed and described in detail by Boek et al64 is used to generate 

asphaltene and resin structures based on elemental analysis, 1H – 13C NMR data of an Athabasca 

bitumen (data set ‘S’ reported by Sheremata et al.36) and two new asphaltene samples (data sets 

‘C’ and ‘G’), as presented in the Supporting Information.  

The reported asphaltenes have been precipitated and purified using different procedures. It is 

expected that the final composition of the resulting asphaltenes will be different. It is quite difficult 

to estimate the impact of these variations on the structure of the resulting average molecules. There 

is no work, to the best of our knowledge, that deals with the impact of these variations on the 

resulting structure. However, we have found that the C-13 NMR spectra of the asphaltene of the 

Boscan heavy crude differed only slightly for samples obtained in laboratories using different 

procedures. This suggest that the impact of the purification method, at least on this crude is 

relatively small. Nevertheless, further work is required to determine how much the precipitation 

and purification methods influence the resulting average structure of the asphaltenes. 
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The QMR procedure starts with the generation of a large population of 5000 to 10 000 potential 

asphaltene and resin molecules, each constructed by connecting smaller molecular segments 

following defined chemical rules. Two types of building blocks are used – aromatic sheets and 

aliphatic chains. The aromatic sheets were extended with naphthenic rings. The aliphatic chains 

were then attached to the aromatic cores, forming a single unit. The aliphatic chains consisted of 

between 1 to 50 carbons, and included n-alkanes, branched alkanes and chains that comprised 

heteroatoms. A non-linear optimization procedure (see Supporting Information) was used to select 

small subsets of molecules from the initial population that gave the best match with experimental 

data by considering the input and output parameters for each of 18 properties: molecular weight, 

elemental compositions from elemental analyses, and 1H – 13C NMR data. A target average MW 

of ~1000 Da for the optimized subsets was chosen in line with recent estimates.84,85 For the 

generation of continental-type and archipelago-type asphaltenes, the numbers of aromatic unit 

sheets per molecule were limited to one and eight, with maximum numbers of 20 and 10 aromatic 

rings per unit sheet, respectively. 

 

CATALOGUE OF ASPHALTENE AND RESIN MOLECULAR MODELS 

A catalogue of 100 QMR-generated molecular models of asphaltenes and resins was produced, 

which is summarized in the Supporting Information. For each structure, the molecular formula, 

MW, H/C ratio, DBE, elemental weight percentages (wt%), the total number of aromatic rings  

and those in the largest aromatic core are reported. In the Supporting Information we include a 2D 

and 3D visualization for each molecule. The 2D structures were built and displayed using 

MarvinSketch (version 15.3.30.0). 86   The output files were then read by Avogadro (version 

1.2.0),87 an open-source molecular builder and visualization tool, which generated the 3D display 

structure. The catalogue is by no means comprehensive nor represents an ultimate collection of 

structures. Heavy metals, e.g. nickel and vanadium porphyrins, present only in ppm quantities and 

oxygenated and/or carboxylic moieties, which are relevant in adsorption on surfaces, all contribute 

to the collective behavior of asphaltenic systems, but were not considered in the ensemble. It is 

clearly inferred from experiments that these chemical groups will play an important role in the 

precipitation of asphaltenes but with the finite size of accessible atomistic simulations limited to 

thousands of molecules, it is still difficult to include them in appropriate and meaningful quantities. 
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Molecules A1 to A69 were generated with the continental-type structural configuration, of which 

A1 to A40 were based on data set ‘S’, and A41 to A69 were based on data set ‘G’. Molecules A70 

to A100 were generated with the archipelago-type structural configuration based on data set ‘C’. 

Aromatics, resins, and asphaltenes form a continuum88,89 of increasing molar mass, polarity, and 

heteroatom content, the catalogue also presents a distribution of molecules, where molecules that 

could either be resins or asphaltenes are present. In a recent study,90 Arabian heavy oil (ARH) 

samples were analyzed by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR 

MS) based on saturates, aromatics, resins, and asphaltenes (SARA) fractionations. The average 

carbon number and double bond equivalent (DBE) of the resin fraction were reported to be 37.9 

and 15.9, respectively. For the asphaltene fraction, they were reported to be 44.7 and 19.9 

respectively. To reflect these results, molecules with 7 or less aromatic rings in total (models A90 

to A101) have been categorized as resins, such that the maximum carbon number, DBE and MW 

reach 36, 16 and 523 Da respectively. The classification is by no means definitive. 

Distribution histograms of the MWs, carbon numbers, H/C ratios, DBEs and largest aromatic 

core sizes of the QMR-generated molecules are shown in Figure 20. The MWs of the QMR-

generated island-type asphaltene structures average at 872 Da and range from 572 Da to 1147 Da. 

For the MWs of the archipelago-type asphaltene and resin structures, the averages are at 946 Da 

and 375 Da, and range from 748 Da to 1273 Da and 268 Da to 523 Da, respectively. The MW 

distribution is shown to peak around the 1000 Da region. The average DBEs of the continental-

type asphaltenes, archipelago-type asphaltenes and resins are 35, 29 and 12 respectively. A 

mapping of DBE vs. carbon numbers of the QMR-generated structures along with a few of the 

proposed structures reviewed in the earlier section ‘A Brief Historical Perspective’ are presented 

in figure 21. These representations have been used recently by Rodgers et al. to present 

experimental data from direct mass spectral detection which help quantify the general structure of 

the asphaltenes.91 In this representation, for example, the continental molecules are characterized 

by generally higher DBE values. Regions for the island-type and archipelago-type structures were 

roughly drafted based on observation of the conformations in the catalogue.  Asphaltene and resin 

regions suggested by Cho et al.90 are shown to agree well with the catalogue molecules. Also in 

the plot, we mark the upper and lower boundaries of compositional space as suggested by 

Podgorski et al. 92 In all of these boundaries, the molecules suggested in the catalogue seem to 



 
25 

straddle the general experimental observations and are similar to other representations in the 

literature. 

 
 

Figure 20.  Distribution histograms of the (a) MW, (b) DBE, (c) H/C ratios, (d) and largest aromatic 
core sizes of the QMR-generated molecules.  
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Figure 21. Double bond equivalents (DBE) as a function of carbon numbers for some of the 
molecules described in the text and the catalogue molecules (QMR). Dotted regions correspond to 
the experimental asphaltene (gray) and resin (orange) regions reported by Cho et al.Error! Bookmark not 

defined.  Grey line is the theoretical upper bound for DBE, green line is the asphaltene/maltene 
boundary as proposed by Podgorski et al. 92 

 

SIMULATION OF ASPHALTENE AGGREGATION THROUGH MOLECULAR 

DYNAMICS 

The physical behavior of asphaltenes depend on an exquisite balance between the intermolecular 

forces of all the molecules present in the system and these in turn depend on not only the molecular 

structural properties, but also the number and nature of the elements (particularly heteroatoms) 
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present in the systems. While the catalogue has a large variety of molecular models, we have 

chosen, without prejudice to the other members of the ensemble, two representative examples of 

similar molecular weight but very different morphology to present as an example: molecule A18 

(Figure 22) an island-type asphaltene model featuring a large aromatic core at the center, and 

molecule A81 (Figure 23), an archipelago-type asphaltene model featuring smaller aromatic 

islands connected and extended by chains. Both molecules are almost isomeric, with similar 

chemical structure, MW (968 and 984 Da respectively) and solubility parameter (18.8 MPa0.5 and 

18.7 MPa0.5 respectively).  

 
 

Figure 22. Molecule A18, C68H73NS2, an island-type asphaltene structure, in 2D (left) and 3D 
(right). 

 

 

Figure 23. Molecule A81, C69H77NS2, an archipelago -type asphaltene structure, in 2D (left) and 
3D (right) 
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Classical atomistic MD simulations of the asphaltene models A18 and A81, separately in toluene 

or heptane, were carried out utilizing intra- and intermolecular potentials of the OPLS-AA force-

field93 to describe interatomic forces, which had been shown to work well for aromatic liquids in 

reproducing experimental data.94 27 asphaltene molecules and the required solvent molecules to 

provide for a 7 wt% asphaltene concentration were initially placed in random positions and 

equilibrated before running the system in the isobaric−isothermal (NPT) ensemble. Temperatures 

and pressures were maintained at 298 K and 1 bar using the Nosé−Hoover and Parinello−Rahman 

algorithms, respectively.95 All simulations were carried out using the GROMACS MD simulation 

code (version 4.6).96  The leapfrog MD algorithm and the Verlet scheme was used with cubic 

simulation cells with periodic boundary conditions.  Bond lengths were regulated using the LINCS 

algorithm.97 The time step is set at 1 fs and the cutoff of non-bonded interactions is set at 1 nm, 

while long-range electrostatic interactions are accounted for by the particle-mesh Ewald (PME) 

implementation.95 The simulations were run for at least 120 million time steps, or 120 ns, and the 

system sizes were ∼10 nm in each dimension. The GROMACS utility g_clustsize was used to 

calculate the average (excluding monomers) and maximum asphaltene cluster sizes and numbers 

of clusters over time from the simulation trajectory file. Molecules that were less than 3.5 Å from 

each other were considered to be clustered (although different criteria may lead to slightly different 

profiles).53 
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Figure 24. Snapshots of equilibrium configurations at 1 bar and  298 K of a 7 wt% asphaltene in 
pure solvent after 120 ns of simulations. (a) Molecule A18 (island) in toluene  (b) Molecule A18 
(island) in heptane (c) Molecule A81 (archipelago) in toluene  (d) Molecule A81 (archipelago) in 
heptane. Cyan, white, blue and yellow spheres represent the carbon, hydrogen, nitrogen and sulfur 
atomic centers, respectively. Solvent molecules are not shown for clarity. The simulation cell 
boundaries are shown in blue. 

 

As expected, asphaltene aggregation levels are shown to be higher in heptane than in toluene for 

both asphaltene models. For the simulations in heptane, the maximum cluster sizes approached the 

total numbers of asphaltenes in the system, 27, suggesting that finite-size effects were in place and 

the system was essentially phase-separating into an asphaltene rich phase and a supernatant 

solvent. For the simulations in toluene, however, the development of smaller aggregates 

demonstrated the balance between the energetically favorable cohesion and the entropically 

unfavorable aggregation.  

(a) (b)

(c) (d)
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In spite of the similarities, the morphology of the asphaltenes plays a crucial role13: there is a 

marked difference between the aggregation behavior of the archipelago-type asphaltene when 

compared to the more compact island-type. Figure 24 shows snapshots of typical equilibrated 

configurations.98 In toluene, the more compact (island) A18 molecules shows some appreciable 

aggregation (Figure 24a). The system size is small and it is not possible to conclude whether the 

system is fully phase separated or not. For this particular asphaltene, a concentration of 7% might 

be above its solubility limit. The A18 molecules shows a noticeable aggregation on heptane (Figure 

24b). The stacking of the PAH cores is apparent in the middle of the sub-figure. Given a longer 

simulation time, it is plausible that the system undergoes a complete phase separation19. The twin 

molecule A81, on the other hand exhibits a very different behavior, it is seen to be very soluble in 

toluene (Figure 23c) , with only a small number of dimers, trimers, etc. present. In heptane, A81 

phase separates clearly. Again, the presence of more than one cluster in the cell is most likely an 

artifact of the (relatively) small simulation times rather than the presence of a recognizable stable 

“nanoggregate”.53 In the Supporting Information we provide for time-resolved graphs which track 

the average and maximum size clusters seen in the simulations along with the total number of 

cluster seen in the simulation cells. The classification of asphaltenes into “good” and “bad” or 

equivalently “soluble” and “insoluble”99  seems to be intricately linked to the archipelago or 

continental nature of the model, although clearly many other factors apart from the morphology of 

the molecules are presumably behind these differences e.g. hydrogen bonds, polarity, acid-base 

interactions, presence of nickel and vanadium porphyrins, etc.  

CONCLUSIONS 

A catalogue of 100 QMR-generated continental-type asphaltene, archipelago-type asphaltene 

and resin molecular structures is reported, with molecular weights ranging from 268 Da to 1273 

Da. The catalogue is by no means comprehensive or unique and in some sense, it might be argued 

that the effort is futile given that there are tens of thousands of plausible elemental compositions 

for asphaltenes.100 The aggregation mechanisms that classify asphaltenes as “good” or “bad” 

crucially depend on the molecular structural properties and in this sense the catalogue may be used 

as a starting point for the study of more complex asphaltene mixture behavior. The collection 

presented in the catalogue, is of course very dependent on the, arguably arbitrary, selection of 
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molecular weight distributions, maximum and minimum number of rings present in the molecules 

and the number and type of heteroatoms.  

 

Atomistic molecular dynamics simulations of ~100 000 atoms and 120 ns were carried out to 

showcase the physical aggregation behavior of two examples from the catalogue; a continental-

type asphaltene A18 and archipelago-type asphaltene A81 in explicit solvents of either heptane or 

toluene, under ambient conditions. At this level of detail, for a small sample of 27 identical 

asphaltene molecules and reasonably high concentrations (hence less solvent molecules) the 

system sizes were ∼100 Å in each dimension. Providing that the radius of gyration of asphaltenes 

(or asphaltene clusters) in toluene is ∼50-100 Å, as seen by small-angle scattering,101 the system 

sizes in this study of ∼100 Å in each dimension inevitably suffer from finite-size system effects. 

A recent direct comparison between MD simulation and scattering, for more concentrated 

solutions, shows that simulation boxes of a similar size fail to replicate the observed SANS 

scattering.76 As such, in order to fully observe asphaltene aggregation mechanisms, understand the 

effect of polydispersion and to attempt to monitor the kinetics of cluster formations, amongst 

others, simulations with length and time scales of several orders of magnitude larger are necessary. 

However, these simulations shown herein are already large by the standards of current 

computational power, and represent the practical upper length and time scale limits for atomistic 

simulations. One way forward is to coarse-grain (CG) the intermolecular potentials102,103,53,104 in 

such a way that groups of atoms are represented by larger but fewer beads, increasing the particle 

sizes and dramatically reducing the number of inter-particle calculations, hence enabling longer 

time steps and giving access to length and time scales of higher orders. 

Evidently, asphaltenes and resins are very polydisperse at the molecular level, much in the same 

way all snowflakes in a snow storm are unique. Following the analogy, in spite of the impossibility 

of obtaining “the” asphaltene molecule, one could expect to find some repeating patterns and 

characteristics which would allow an ensemble of prototypical or surrogate molecules to be used 

as appropriate models for the discrete molecular modelling of these families of fluids. While 

current computational power casts a limitation on the practical maximum number of molecules in 

a simulation, the remarkable advances in computational technologies suggest that in a matter of 
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time we will have the possibility of modelling fully polydisperse mixtures of heavy crudes and 

other complex fluids. Our catalogue of plausible molecules provides a self-consistent starting 

point, which along with other similar collections provide the starting elements of a whole new age 

of in silico studies. 

ASSOCIATED CONTENT 
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The Supporting Information is available free of charge on the ACS Publications website at DOI: 

XX.XXXX/pubs.acs.org and includes links to simulation files, clustering analysis of models A18 

and A81 in toluene and heptane, discussions on molecular morphologies which have been ruled 

out and the raw NMR data.  

A catalogue of 100 QMR-generated asphaltene and resin molecular structures is provided as part 

of the supporting information. 
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