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Abstract  26 

The juvenile life stage is a crucial determinant of forest dynamics and a first indicator of changes to 27 

species’ ranges under climate change. However, paucity of detailed re-measurement data of 28 

seedlings, saplings and small trees means that their demography is not well understood at large 29 

scales, and rarely represented in forest models in detail. In this study we quantify the effects of 30 

climate and density dependence on recruitment and juvenile growth and mortality rates of thirteen 31 

species measured in the Spanish Forest Inventory. Single-census sapling count data is used to 32 

constrain demographic parameters of a simple forest juvenile dynamics model based on the Perfect 33 

Plasticity Approximation model (PPA) within a likelihood-free parameterisation method, Approximate 34 

Bayesian Computation. Our results highlight marked differences between species, and the important 35 

role of climate and stand structure, in controlling juvenile dynamics. Recruitment had a hump-shaped 36 

relationship with conspecific density, and for most species conspecific competition had a stronger 37 

negative effect than heterospecific competition. Mediterranean species showed on average higher 38 

mortality and lower growth rates than temperate species, and in low density stands recruitment and 39 

mortality rates were positively correlated. Under climate change our model predicted declines in 40 

recruitment rates for almost all species. Reliable predictive models of forest dynamics should include 41 

realistic representation of critical early life-stage processes and our approach demonstrates that 42 

existing coarse count data can be used to parameterise such models. Approximate Bayesian 43 

Computation may have wide application in many fields of ecology to unlock information about past 44 

processes from single survey observations.  45 

 46 

Key-words: Approximate Bayesian Computation; forest inventory; growth; juvenile dynamics; 47 

mortality; recruitment; predictive modelling.  48 

 49 
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Introduction 51 

 52 

Understanding the processes driving juvenile tree dynamics is crucial to making defensible, long-53 

term predictions of forest dynamics and distribution shifts (Kobe et al. 1995, Ibáñez et al. 2007) 54 

because filtering at early life stages is a critical determinant of long-term composition (Kobe 1996, 55 

Metz et al. 2010, Green et al. 2014). Tree species’ distributions have been observed to be shifting 56 

under climate change (e.g. Peñuelas et al. 2007), and climate-induced shifts may halve the value of 57 

European forests by 2100 (Hanewinkel et al. 2013). The increased availability of large scale, long-58 

term forest inventory datasets has led to dramatic improvements in the understanding of adult tree 59 

growth and mortality, but such datasets rarely contain multi-temporal information on individual 60 

juveniles. Instead, studies of juveniles have typically involved tracking stems in small plots and/or at 61 

only a few sites (e.g. Clark et al. 1998, Ibáñez et al. 2007, Metz et al. 2010, Matías et al. 2011), 62 

providing few insights into critical landscape-level dynamics.  63 

 Forest dynamics models applied at large scales typically use simplistic approaches to 64 

incorporate information about early life stages (e.g. Vanderwel et al. 2013). The most basic approach 65 

is to assume that recruitment into the smallest size class is unlimited (Clark et al. 1998); treat 66 

recruitment as a function of asymmetric competition for light and shade tolerance (Pacala et al. 67 

1996), a function of stand basal area characteristics (Kolbe et al. 1999), or parameterise recruitment 68 

according to ingrowth into a minimum inventory data size class (Vanderwel et al. 2013). In contrast, 69 

smaller scale spatially-explicit individual-based models typically use seed dispersal kernels, with 70 

seedling establishment in locations with probability dependent on the distance to conspecific adults, 71 

species, adult size and shading (e.g. SORTIE, Pacala et al. 1996; TROLL, Jérôme 1999). 72 

Parameterisation of this approach requires large amounts of fine-scale multi-temporal data that is 73 

often not available at landscape-scales. 74 

 Competitive and facilitative processes strongly influence juvenile dynamics, and the 75 

presence and density of conspecific and heterospecific adults are well-recognised determinants of 76 

seedling establishment and sapling success in reaching the canopy (e.g. Gomez-Aparicio et al. 77 

2008, Comita et al. 2014). These biotic interactions may influence recruitment success and range 78 

shifts under climate change (McCarthy-Neumann and Ibáñez 2012, Katz and Ibáñez 2016, Ettinger 79 
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and HilleRisLambers 2017) but remain under-studied. In addition, seedling recruitment is affected 80 

by canopy gaps and competition from understory shrubs (Beckage et al. 2000), soil moisture, 81 

drought and precipitation (Urbieta et al. 2008, Gomez-Aparicio et al. 2008, Mendoza et al. 2009), 82 

and facilitation through protection from water and radiation stress by 'nurse' plants (Gómez-Aparicio 83 

et al. 2004, Gomez-Aparicio et al. 2008, Plieninger et al. 2010).  84 

 This study presents a new method to unlock information on recruitment, growth and survival 85 

rates of juveniles from large-scale plot networks. Such datasets, though increasingly available to 86 

researchers, are not collected with the aim of understanding juvenile dynamics, such as the annual 87 

recruitment rates required by many forest dynamics models. In order to use traditional likelihood 88 

methods to fit an annual recruitment rate model we would require annual recruitment observations 89 

that is typically not available at large scales – so new statistical techniques are needed to extract 90 

this information. We use data from two Spanish Forest Inventories (IFN, MMA 1996, 2007) which 91 

systematically and periodically re-samples millions of trees with diameter breast height (DBH) > 7.5 92 

cm across the country. Only counts of smaller stems, without tagging or re-measurement, are 93 

recorded, so whilst the dynamics of adult trees can be tracked through re-measurement, those of 94 

small stems may be viewed a hidden process with no recruitment rate data available to constrain a 95 

model to through a likelihood approach. Here, we used a simple forest dynamics simulator based on 96 

the Perfect Plasticity Approximation, PPA, model (Purves et al. 2008) to model juvenile dynamics 97 

and compare the number of juveniles predicted by the model with actual numbers recorded in the 98 

inventory, using the likelihood-free approach, Approximate Bayesian Computation (ABC), to find the 99 

best fit juvenile recruitment, growth and mortality model parameters. ABC is unlike other model fitting 100 

methods because it does not require the computation of a likelihood function calculated from 101 

response data (data on individual juvenile stem recruitment or dynamics) for models, and can 102 

parameterise a model using summary data only (such as our stem count data). ABC has huge 103 

promise as a method in systems where the data needed to accurately describe processes is 104 

unavailable or not practical to collect (Beaumont, 2010). ABC is increasingly used in areas including 105 

epidemiology and genetics (Bertorelle et al. 2010) and, to a lesser extent, ecology (Jabot and Chave 106 

2009, Csilléry et al. 2010, Clarke et al. 2016). 107 
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 The Mediterranean is a biodiversity hotspot highly vulnerable to the effects of climate change 108 

(Thuiller et al. 2005) and defensible projections of species’ distribution changes is a pressing need. 109 

Climate change may be accelerating low regeneration in some Spanish forests, and concerning 110 

mismatches between juvenile and adult distributions have been observed (e.g. Plieninger et al., 111 

2010; Urbieta et al., 2011). Our results quantify the variation in recruitment and juvenile growth and 112 

mortality between species and functional groups, trade-offs in rates at the juvenile life stage, test the 113 

influence of climate and con- and hetero-specific competition on juvenile performance, and predict 114 

changing rates under climate change. 115 

 116 

Materials and methods 117 

The Approximate Bayesian Computation (ABC) approach 118 

ABC methods represent a significant statistical advance in fitting models when the likelihood cannot 119 

be formulated or is computationally prohibitive to analyse (Sisson et al. 2007). ABC estimates model 120 

parameters for complex processes where only coarse-scale, aggregated data are available (as here, 121 

where annual recruitment rates are not known but total numbers of small stems are observed). To 122 

fit the particle (parameter set) 𝑝 of a given model 𝑓 (the forest simulation model in our application), 123 

which predicts an quantity 𝑦. Without observed data of 𝑦, 𝑦0, we cannot use a likelihood approach 124 

to estimate the posterior of 𝑝. However, with data on one or more observed summary statistics of 𝑦, 125 

𝑆(𝑦0), we can use ABC to infer best-fit values p using a rejection algorithm, thereby approximating 126 

the posterior.   127 

Here, we used an ABC Sequential Monte Carlo algorithm (ABC-SMC; Sisson et al. 2007, Beaumont 128 

et al. 2009). ABC-SMC repeatedly resamples from previous sets of particles with decreasing 129 

tolerance levels, producing a series of sets of particles representing improving approximations to the 130 

true posterior. ABC-SMC works as follows: for iterations t=1...T, N independent particles are 131 

sampled from the distribution 𝜋(𝑝|𝑑(𝑆(𝑦0), 𝑆(𝑦̂)) ≤ 𝜀𝑡), with ε1 > ε2 >...> εT 0. If t>1, particles are 132 

sampled from the previous distribution (t-1), using weighted sampling (weights 𝜔𝑖
(𝑡−1)

) particles that 133 

better approximate 𝜋(𝑝|𝑦) are re-sampled more often:  134 

ABC-SMC 135 
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 1.When t=1, for i=1...N  136 

  a. Sample particles from the prior, 𝑝𝑖
(1)

~𝜋(𝑝), and generate 𝑦̂ ~ 𝑓(𝑦|𝑝𝑖
(1)

) until  137 

  𝑑(𝑆(𝑦0), 𝑆(𝑦̂)) < 𝜀1, 138 

  b.  Set all weights equal, as 𝜔𝑖
(1)

= 1/N, 139 

  c. Set Σ1 to be twice the empirical variance of particles {𝑝𝑗
(1)

}. 140 

2. For t=2...T 141 

  a. For i=1...N  142 

  i. Sample particle p* from the previous particle distribution, denoted {𝑝𝑗
(𝑡−1)

}, with  143 

  weights 𝜔𝑗
(𝑡−1)

, 144 

  ii. Perturb p* according to a transition kernel, 𝑝∗∗ ~ 𝑁(𝑝∗|Σ𝑡−1),  145 

 iii. Use the simulation model 𝑓 to generate 𝑦∗∗ ~ 𝑓(𝑦|𝑝∗∗). If 𝑑(𝑆(𝑦0), 𝑆(𝑦∗∗)) < 𝜀𝑡, set 146 

  𝑝𝑖
(𝑡)

= 𝑝∗∗, otherwise return to 2ai. 147 

 b. For i=1...N  148 

  Calculate the weight of each particle according to: 149 

𝜔𝑖
(𝑡)

∝
 𝜋 (𝑝𝑖

(𝑡)
)

∑ 𝜔𝑗
(𝑡−1)

𝐾𝑡 (𝑝𝑖
(𝑡)

|𝑝𝑗
(𝑡−1)

)𝑁
𝑗=1

 150 

  where 𝐾𝑡 (𝑝𝑖
(𝑡)

|𝑝𝑗
(𝑡−1)

) is the multivariate normal density with variance Σt-1. 151 

 c. Set Σ𝑡 to be twice the empirical variance of particles {𝑝𝑗
(𝑡)

}.     (1) 152 

 153 

The ABC-SMC algorithm described in eqn 1 fit our model’s parameters, but suffered low acceptance 154 

rates (frequent rejection at 2aiii), and was slow to deliver the full particle sample. We therefore used 155 

a modified ABC-SMC with adaptive weighting, ABC-SMC-AW (Bonassi and West 2015). ABC-SMC-156 

AW alters the weighting 𝜔𝑗 of each particle 𝑝𝑗 according to the value of the metric 157 

𝑑 (𝑆(𝑦0), 𝑆(𝑓(𝑦|𝑝𝑗))), drawing particles with new weights 𝜈𝑗 at step 2ai in eqn 1, calculated as 158 

follows: 159 

 160 



7 
 

for j=1...N  𝜈̂𝑗
(𝑡−1)

∝ 𝜔𝑗
(𝑡−1)

𝐾𝑡 (𝑆(𝑦0)|𝑆 (𝑓 (𝑦|𝑝𝑗
(𝑡−1)

))) 161 

for j=1...N 𝜈𝑗
(𝑡−1)

=
𝜈̂𝑗

(𝑡−1)

∑ 𝜈̂𝑖
(𝑡−1)𝑁

𝑖=1

 162 

   (2) 163 

Here, 𝐾𝑡 is a multivariate normal distribution with variance equal to the empirical variance of 164 

𝑆 (𝑓 (𝑦|𝑝𝑗
(𝑡−1)

)). 165 

 166 

Forest Inventory Data 167 

Data came from the second and third Spanish Forest inventories (IFN2 and IFN3; MMA, 1996, 2007), 168 

which sampled over 70,000 re-measured plots systematically on a 1 km2 grid across Spain. IFN plots 169 

were sampled using a variable radius concentric plots. All trees DBH > 7.5 cm were measured in a 170 

plot of radius 5 m, DBH > 12.5 cm in a plot radius 10 m, DBH > 22.5 cm in a plot radius 15 m and 171 

DBH > 42.5 cm in a plot radius 25 m. In the central 5 m radius plot, counts of ‘large saplings’ with 172 

heights > 130 cm and DBH in the range 2.5 - 7.5 cm were recorded, along with a categorical measure 173 

of the presence/absence of ‘small saplings’ (heights > 130 cm and DBH < 2.5 cm). Here we refer to 174 

all stems between 1 cm and 7.5 cm DBH as ‘juveniles’. 175 

 We used plots with no recorded management or unnatural source of regeneration recorded 176 

in the IFN3, and without planted pines stems, following Ruiz‐ Benito et al. (2012). We selected 13 177 

species to parameterise models of juvenile dynamics for; all had at least 300 plots containing at least 178 

one adult tree (Fig. 1). These comprised seven conifers and six angiosperms; temperate conifers 179 

(Pinus sylvestris, Pinus uncinata), Mediterranean confiers (Pinus pinea, Pinus halepensis, Pinus 180 

nigra, Pinus pinaster, Juniperus thurifera), temperate angiosperms (Quercus petraea, Quercus 181 

pyrenaica, Fagus sylvatica) and Mediterranean angiosperms (Quercus faginea, Quercus ilex, 182 

Quercus suber,). Small stems may be either saplings or resprouts (a common feature of some 183 

Mediterranean oaks; Grove and Rackham, 2001), but we were unable to differentiate between these 184 

in the data.  185 

 186 

Overview of the modelling approach 187 
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The number of juvenile stems occurring in an inventory-plot is the result of both establishment and 188 

demographic processes. We characterised four key processes - the probability of occurrence of 189 

juveniles in a plot, the annual rate of recruitment of new stems, and the growth and mortality rates 190 

of juveniles. We used a multi-step Bayesian model-fitting approach describe below to parameterise 191 

these from the inventory data, separating climate and forest structural effects on recruitment. The 192 

first and second processes relate to recruitment: we chose to determine the probability of juvenile 193 

occurrence by climate, and the annual recruitment rate using conspecific density and competitive 194 

factors. Fitting these two separately (following Zhu et al. 2015) avoided overfitting and allowed us to 195 

make best use of the data available by incorporating all inventory information on stems < 7.5 cm 196 

DBH. The probability of juvenile occurrence was estimated using an MCMC approach on inventory 197 

presence/absence data, and recruitment, growth and mortality rates were estimated using the ABC 198 

approach with a forest simulator (the PPA) and inventory juvenile count data. 199 

 200 

MCMC-derived estimates of probability of occurrence of juveniles  201 

First, we quantified the probability of the occurrence of juveniles of any size of each species as a 202 

function of climatic conditions. We extracted annual precipitation (AP, mm), mean annual 203 

temperature (AVT, °C) and drought length (DL, months) from Gonzalo Jiménez (2010). We used 204 

inventory information on large and small saplings to calculate presence/absence information for 205 

58,616 unmanaged plots in IFN3. We used MCMC to fit the probability of the occurrence of juveniles, 206 

tested logistic models with climatic predictors in quadratic form in all possible permutations, and 207 

compared models using AIC (see supporting information, Tables S8 – S10). The best-fit model was:  208 

𝑃(𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒 ) =
1

1+exp (−𝑘)
 , where 209 

𝑘 = 𝑎0 + 𝑎1𝑎2𝐴𝑉𝑇 − 𝑎2𝐴𝑉𝑇2 + 𝑎3𝑎4𝐴𝑃 − 𝑎4𝐴𝑃2 + 𝑎5𝑎6𝐷𝐿 − 𝑎6𝐷𝐿2  (3) 210 

 211 

We assigned positive priors for parameters 𝑎1 − 𝑎6 , resulting in prior quadratic maxima within the 212 

climatic ranges of the data. 213 

 214 

Annual juvenile recruitment rate  215 
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We hypothesis that recruitment rates increase with conspecific adult density (potential parent trees), 216 

and are impacted by con- and hetero-specific competition. We used crown area index (CAI, projected 217 

crown area per unit of ground) to represent both. CAI has been used within several forest models 218 

(e.g. Bohlman and Pacala 2011, Coomes et al. 2012, Vanderwel et al. 2013) and was a good 219 

predictor for our data in growth and mortality functions (see below, and supporting information Tables 220 

S1 – S7). We applied species-specific crown width allometric equations to calculate CAI of all adults 221 

(>7.5 cm DBH) (𝐶𝐴𝐼𝑎𝑙𝑙) and of conspecifics only (𝐶𝐴𝐼𝑠𝑝) in each inventory plot (allowing for the 222 

variable-radius plot structure), for both inventories to calculate temporal changes in competitive 223 

environment within the simulations (see supporting information text and Tables S1-S3, Fig. S1).  224 

 We define and model recruitment rate as: 225 

                          # new stems growing through a 1 cm DBH threshold per year 226 

 = 𝑝0𝐶𝐴𝐼𝑠𝑝exp (−𝑝1(𝐶𝐴𝐼𝑎𝑙𝑙 − 𝐶𝐴𝐼𝑠𝑝) − 𝑝2𝐶𝐴𝐼𝑠𝑝)          (4) 227 

 228 

Where 𝑝0 − 𝑝2 are parameters fit by the ABC-SMC-AW algorithm. We define the expected annual 229 

rate of recruitment of a species in a given 5 m radius subplot as the probability of recruitment 230 

occurring (eqn 3) multiplied by the rate of recruitment (eqn 4). 231 

 232 

Juvenile growth and mortality rates constrained by informative priors 233 

Many different recruitment, growth and mortality rates could combine to give the observed stem 234 

counts, yet not all are reasonable given ecological knowledge of demographic processes. We 235 

constructed priors for growth and mortality rates of juveniles small adult tree data in the inventories. 236 

We fitted species-specific growth and mortality functions to data from re-measured trees 7.5 - 10 cm 237 

DBH within an MCMC framework, comparing alternative models containing size and competition 238 

effects using AIC. The best-fit models were: 239 

 Annual growth rate (cm/year) = 𝑝3𝐷𝐵𝐻 ( 1 + 𝑝4𝐶𝐴𝐼𝑎𝑙𝑙)⁄    (5) 240 

 Annual mortality rate =𝑙𝑜𝑔𝑖𝑡(𝑘) ; 𝑘 = 𝑝5 + 𝑝6𝐷𝐵𝐻 + 𝑝7𝐶𝐴𝐼𝑎𝑙𝑙  (6) 241 

(see supporting information text and Tables S4 – S8, Figs S2 and S3 for a full methodology and 242 

results). These functional forms were used within the simulation model (eqn 7 below), with juvenile 243 
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growth and mortality parameter values 𝑝3 − 𝑝7 fit within the ABC-SMC-AW framework. Parameter 244 

values from the small adult data were used as strong priors for parameters 𝑝3 − 𝑝7 within the ABC-245 

SMC-AW framework.  246 

 247 

Simulation model 248 

We used a simple cohort-based forest dynamics model to generate juvenile tree densities that were 249 

compared with the inventory count data using the ABC-SMC-AW framework (eqns 2, 3). The model 250 

simulated size structure and density of juveniles in each plot from their recruitment, growth and 251 

mortality rates, taking plot data on climate and competitive environment as inputs. Our simulator was 252 

based on the PPA model of Purves et al. (2008) which simulates cohorts rather than tracking 253 

individual stems, reducing complexity whilst retaining the ability to reproduce many of the features 254 

of spatially explicit models (Strigul et al. 2008). We simulated dynamics over 100 years (time steps) 255 

using annual time steps to reduce census interval-dependence of results (Kohyama et al. 2018), with 256 

species fitted separately. For each cohort i at time t we recorded the density deni,t (#stems / 5 m 257 

radius plot) and diameter DBHi,t (cm). After 100 time steps densities for all cohorts in the range 2.5 258 

cm < DBH < 7.5 cm were summed to give a model-predicted density directly comparable to the 259 

inventory count data. The simulation model ran independently on each plot, as follows: 260 

Forest dynamics simulation model (based on PPA): 261 

For each time step (t=1...T) 262 

 1. Calculate plot conditions (𝐶𝐴𝐼𝑎𝑙𝑙 and 𝐶𝐴𝐼𝑠𝑝) for time t. 263 

 2. For all existing juvenile cohorts (i=1...N) 264 

 a. Reduce stem density according to the mortality rate (eqn 6): 265 

    deni,t=(1-P(mortalityi,t-1)) x deni,t-1 266 

 b. Increase stem size according to the growth rate (eqn 5): 267 

    DBHi,t = DBHi,t-1 + growth 268 

 3. With probability according to climatic conditions (eqn 3), create a new cohort of stems with 269 

 DBH = 1 cm, with density according to the recruitment rate (eqn 4).             270 

(7) 271 
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 272 

Implementation of ABC-SMC-AW to derive juvenile demographic rates 273 

We set wide uniform positive prior distributions for recruitment parameters (eqn 4): p0~U[0,50], 274 

p1~U[0,5] and p2~U[0,5]. Note that the ABC-SMC-AW algorithm could select negative values for p1 275 

and p2 –for example to represent a facilitation– if data support was strong. For parameters p3-p7 276 

(eqns 6 and 7) we used Gaussian priors with means set to the means fitted on small adult growth 277 

and mortality data (supporting information Tables S6 and S7) and standard deviations set as 10% 278 

of the MCMC posterior estimate. Prior distributions were used as initial sampling distributions for all 279 

parameters.  280 

 We chose two summary statistics, the observed mean and standard deviation of the count of 281 

juvenile stems, and used absolute difference as the metric of comparison for both (d in eqn 1). We 282 

simulated 1000 particles in 9 SMC steps, with tolerance levels starting at 4 and reduced to 0.02 for 283 

both statistics (reduction of tolerance by 25% for the first two steps, 50% for the next two, and 75% 284 

for the last five). 285 

 Temporal variation in competitive environment (𝐶𝐴𝐼𝑠𝑝 and 𝐶𝐴𝐼𝑎𝑙𝑙) was simulated using IFN2 286 

values for the first 90 steps of the simulation, and altering values during the final 10 time steps 287 

(corresponding to a 10-year time interval between inventories) using a linear relationship between 288 

IFN2 and IFN3 values. All algorithms (MCMC, ABC-SMC-AW and forest simulation model) were 289 

coded in C and complied in a CentOS 7.3 environment with compiler GCC 4.8.5. Statistical packages 290 

for a range of different ABC algorithms are available for use ‘off-the-shelf’, including several R 291 

packages (such as abc; Csilléry et al., 2012). 292 

 293 

Results 294 

ABC model implementation and fit 295 

Time to convergence of each ABC-SMC-AW iteration varied between species, with all but one (P. 296 

halepensis, Fig. 2) species’ fits completing 10 iterations. Final estimate model particles’ simulations 297 

had mean and standard deviation of juvenile counts within 0.02 of observations, or 0.06 for P. 298 

halepensis (observed means were 0.16 - 2.40 stems/5 m radius plot, standard deviations 0.63 - 299 
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4.58). We compared model predictions with data graphically and analysed posterior particle values 300 

to examine model performance. For all species, the fitted model was able to predict stem counts 301 

within the range of observations along gradients of conspecific and heterospecific crown area (Figs 302 

2 and supporting information S4). However, model predictions did not capture all variability observed 303 

in the data for all species. Predictions are shown using mean parameter values taken from the final 304 

iteration, however for some parameters, credible intervals contained zero (Table 1), though these 305 

may be inflated as a result of the ABC approach (Csilléry et al. 2010). 306 

 307 

Climatic controls on probability of occurrence of juveniles  308 

The best-fit model probability of occurrence was the full model (eqn 3) for all but one species, and 309 

was used for all species within the simulation model (eqn 7) (details in supporting information text 310 

and Tables S9 and S10). Probability of occurrence of juveniles was strongly controlled by climate for 311 

all species, with large variation in the peak of juvenile occurrence for each species (Fig. 3). The 312 

model predicted maximum recruitment probability at higher mean annual temperatures, lower annual 313 

rainfall rates and longer droughts for Mediterranean species than temperate species (average 314 

13.0°C vs 8.3°C, 685 mm vs 1086 mm and 0.9 months vs 0.4 months, respectively, see Fig. 3). 315 

Maximum probability of occurrence and probability predicted at the centre of each species’ climatic 316 

range were higher for conifers than angiosperms (maximum 0.20 vs 0.14, average 0.10 vs 0.03), 317 

and for temperate than Mediterranean species (maximum 0.18 vs 0.14, average 0.08 vs 0.05). 318 

 319 

Predicted recruitment, growth and mortality rates of juveniles 320 

Expected recruitment rate varied strongly between species (fitted parameters Table 1), and was 321 

strongly affected by competitive environment (parameters 𝑝1and 𝑝2 in Table 1 and Fig. 4). In their 322 

average climatic and competitive conditions (supporting information Table S12), conifer species 323 

showed higher rates than angiosperms (19.5 vs 8.3 new 1 cm stems/ha/year) and temperate species 324 

showed higher rates than Mediterranean species (17.1 vs 12.6 stems/ha/year). Species’ predicted 325 

recruitment rates in monospecific stands (𝐶𝐴𝐼𝑎𝑙𝑙=𝐶𝐴𝐼𝑠𝑝) in their average climate were on average 326 

higher for temperate conifers than Mediterranean conifers, but lower for temperate angiosperm than 327 

Mediterranean angiosperms, in both low and higher density stands (Table 2). For most species, 328 
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recruitment rate showed an overall hump-shaped relationship with conspecific density, with 329 

increases at low levels and declines at higher (Figs 2 and 4). Comparing from low to mid-density 330 

monospecific stands, most Mediterranean species showed a decline and most temperate species 331 

an increase in recruitment rates, but with large differences between species’ rates (Table 2). Most 332 

species’ recruitment rates showed a stronger negative effect of increases in conspecific than 333 

heterospecific crown area (𝑝1 < 𝑝2 for 10 of 13 species), with on average stronger effects in higher 334 

competition (higher 𝑝1 and 𝑝2) for temperate than Mediterranean species.  335 

 Predicted growth and mortality rates were highly variable between species, and between 336 

groups of species (Fig. 4, supporting information Table S11). In all conditions simulated in Table 2 337 

conifer juveniles had higher growth and mortality rates than angiosperm juveniles, and 338 

Mediterranean species had lower growth and higher mortality rates than temperate species. Growth 339 

rates of conifer species showed more rapid decline in higher competition than angiosperms (higher 340 

average 𝑝4, eqn 5, Fig. 4), though there was little difference between average mortality responses, 341 

or between temperate and Mediterranean species. In species’ average environments and in low 342 

monospecific stands (Table 2), mortality and recruitment rates were significantly positively correlated 343 

to each other, and to the probability of occurrence of juveniles (p<0.05).  344 

 Under a simple climate change scenario of +2 °C AVT, -20% AP and +20% DL, most species’ 345 

probability of occurrence of recruitment and expected recruitment rates at the centre of their climate 346 

ranges showed substantial decline (Table 3). Temperate species showed a stronger decline, 347 

averaging 65%, whilst Mediterranean species had average decline of 19%. Three Mediterranean 348 

species, P. pinea, P. halepensis and Q. ilex showed increases in this changed climate (of 84%, 43% 349 

and 3% respectively). 350 

 351 

Discussion 352 

Drivers of recruitment, growth and mortality: implications for modelling 353 

This study demonstrates the ability of ABC to quantify annual recruitment rates and juvenile 354 

dynamics from summarised data (Figs 2 and supporting information S4). Coarse juvenile data is 355 

widely available in national forest inventory datasets and permanent plot networks and our 356 

statistically rigorous approach could be used to both unlock understanding of processes affecting 357 
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regeneration across large regions, and improve large-scale demographic model accuracy. Our 358 

approach using annual time steps accounted for time-variation in plot structure, reducing the bias in 359 

rate estimation (Kohyama et al. 2018). 360 

 We quantified the influence of climate, conspecific and heterospecific competition on juvenile 361 

processes, and found strong differences among species, even within groupings (Figs 3 and 4). 362 

Conifer species showed higher probability of occurrence and recruitment rates than angiosperms 363 

growing under similar conditions, in agreement with comparisons between Mediterranean pine and 364 

oak regeneration levels (Urbieta et al. 2011). Increasing conspecific density had a stronger effect in 365 

reducing overall recruitment rates than heterospecific competition for most species, consistent with 366 

the Janzen–Connell hypothesis and findings in plant communities worldwide (Comita et al. 2014). 367 

 We found that canopy density strongly and negatively affected juvenile recruitment and 368 

growth, and positively affected mortality rates for all species. This negative effect was on average 369 

smaller for Mediterranean species. Competition for light may be less intense in Mediterranean 370 

ecosystems due to lower leaf densities (Coomes and Grubb 2000) and facilitative effects from 371 

neighbouring trees and shrubs are known to aid seedling survival and growth, preventing desiccation 372 

by reducing water stress and protecting leaves from high levels of irradiance. Recruitment facilitation 373 

benefits reported for deciduous and Mediterranean evergreen species are stronger than those for 374 

temperate and montane Pinus species (Gómez-Aparicio et al. 2004, Mendoza et al. 2009).  375 

 This approach reveals recruitment patterns on scales large enough to understand and predict 376 

impacts of climate change. Although long recognised as critical for understanding forest diversity 377 

and dynamics (Kobe et al. 1995, Kobe 1996, Metz et al. 2010), studies of rates rather than patterns 378 

of recruitment have often been limited to small scales by data requirements, making predictions of 379 

change difficult. Here, we predict declines in recruitment for all species under longer drought 380 

conditions, and most under hotter temperatures, which is of particular concern given existing 381 

observed recruitment limitations (Mendoza et al. 2009) although under these conditions we predict 382 

some species may experience increases in recruitment in the cooler parts of their ranges. Warming-383 

induced changes in recruitment rates have been observed in Spain (Peñuelas et al. 2007, Camarero 384 

and Gutiérrez 2007), and species-specific responses may be important in predicting range shifts 385 

under climate change. For example, higher rainfall has been found to increase regeneration rates of 386 
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the deciduous Q. pyrenaica but decrease rates of the evergreen Q. ilex (Plieninger et al. 2010), 387 

whilst temperature is an important determinant of differential regeneration rates between species 388 

(Gómez-Aparicio et al. 2009), and seasonal drought and waterlogging may negatively affect 389 

establishment of Mediterranean oaks (Urbieta et al. 2008).  390 

 Under an scenario of increasing aridity and the frequency of climatic extremes, recruitment 391 

dynamics might be key for properly describing ecosystem responses under climate change (Matías 392 

et al. 2011, 2012). Our results show strong interspecific differences in recruitment that are likely to 393 

be critically important to robust predictions of ecosystem responses to climate change. In Spain, 394 

growth of some species may increase in a hotter future climate (Benito‐ Garzón et al. 2013), but our 395 

results indicate that recruitment may decrease with increasing aridity. These mismatches in 396 

demographic responses could result in ecosystem time-delayed responses and legacy effects 397 

resulting in a delayed ecosystem collapse.  398 

 399 

The potential of the ABC approach to exploit existing ecological data 400 

There are many exciting applications of ABC in ecology, for example to infer unobserved historical 401 

processes that have led to an observed state of a system (this study), or for stochastic models for 402 

which likelihoods cannot be constructed such as the neutral model of biodiversity (Jabot and Chave 403 

2009), and these methods have been widely adopted in many areas of biological research (see 404 

Bertorelle et al. 2010). A major advantage of ABC when applied to ecological situations is that it 405 

allow the inclusion of partial knowledge of a system, whether as functional forms within a simulation 406 

model structure or as prior distributions for parameters, as demonstrated here. Whilst direct 407 

measurements of some processes may be lacking, it is unlikely that nothing is known about the 408 

direction or magnitude of any process within an ecological system, and the inclusion of good prior 409 

information will improve the speed of convergence of estimated parameters, and ensure ecologically 410 

reasonable output.  411 

 Despite its potential, ABC requires care in application. The multiple elements involved in 412 

calibration of the method can make it challenging to ensure that the true posterior distribution of 413 

parameters is estimated. Our choice of forest simulator (based on the PPA) was pragmatic given the 414 

structure of data available to us, but the underlying simulation model will influence ABC output and 415 



16 
 

is therefore an additional source of uncertainty to consider. Model performance and validity may be 416 

influenced by the choice of summary statistics (Marin et al. 2014), but sufficiency of chosen summary 417 

statistics is difficult to establish (Marjoram et al. 2003) and optimal statistics are dataset specific 418 

(Nunes and Balding 2010). Moreover, credible intervals on posterior parameter estimates arising 419 

from ABC simulation models are likely to be inflated due to an information loss from summarised 420 

data (Csilléry et al. 2010), and ABC posterior values may not represent true probabilities (Templeton 421 

2010). We found that, although mean trends in data were well captured by the model, predicted 422 

variability in juvenile counts was often smaller than observations (Figs 2 and supporting information 423 

S4). This is likely in part due to both the stochastic nature of recruitment, and to the fact that juvenile 424 

data was collected in a small plot size in the inventory (circular, 5 m radius), meaning microsite 425 

conditions, which may be important drivers of spatial patterns of juvenile dynamics (Vilà-Cabrera et 426 

al. 2013), are not captured within the modelling approach. 427 

 Compared to likelihood-based methods, there is less agreement on methods for ABC model 428 

comparison and goodness-of-fit (Lemaire et al. 2016), leading us to employ a pragmatic graphical 429 

approach to evaluate model performance. ABC parameterisation may be slow: the most 430 

computationally expensive element in this application was model simulation, and particle rejection 431 

rate varied strongly with species and iteration number though individual particle acceptance is 432 

independent so model simulations could be parallelised. Adoption of the ABC-SMC-AW approach 433 

(eqn 2) reduced simulations required before acceptance by an average of 27%: a figure similar to 434 

that found in Bonassi and West (2015). 435 

 436 

Conclusions 437 

Our results highlight the role of juvenile stage as a driver of forest species distributions along 438 

environmental gradients. We observed strong interspecific differences, within and between 439 

functional groupings, and quantified life-history strategies and competitive effects driving species 440 

segregation. Mediterranean species had on average higher recruitment rates and maximum 441 

recruitment in warmer and drier locations, but also higher mortality of juveniles and lower growth 442 

rates than cool temperate species. The juvenile life stage is likely to be the first indicator of changes 443 

to species distributions and structural and successional dynamics in a changing climate, making best 444 
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use of data on early life history crucial for defensible predictive modelling as well as designing forest 445 

restoration and adaptation strategies. Importantly, our results predict a widespread recruitment 446 

decline for most studied species, along with a few ‘winners’ in the ecosystem; all Mediterranean 447 

species. However, whether this pattern will be reflected in adult diversity may depend critically on 448 

feedbacks between species demography and interspecific interactions (e.g. Matías and Jump 2012), 449 

so models that do not capture these feedbacks may give misleading results when projecting species 450 

distributions under climate change. 451 

 The ABC method used here incorporates partial knowledge of the systems to infer critical 452 

unmeasured processes, and thus fully parameterise complex models that previously could not be 453 

fully specified. Without such an approach expensive and time-consuming repeat measurements 454 

would have been needed to understand juvenile dynamics in this system. This study demonstrates 455 

the power of the ABC approach for understanding ecological processes and highlights its potential 456 

for revealing critical unrecorded processes from existing information. 457 

 458 

Data Accessibility 459 

The second and third Spanish Forest Inventory data is available in the MAPAMA 460 

https://www.mapama.gob.es/). The climate data used is available in Gonzalo Jiménez (2010).  461 
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Tables and figures 589 

 590 

Table 1 Fitted mean and 95% credible interval of recruitment parameters, from eqn 4:  # new stems 591 

growing through a 1 cm DBH threshold per year= 𝑝0𝐶𝐴𝐼𝑠𝑝exp (−𝑝1(𝐶𝐴𝐼𝑎𝑙𝑙 − 𝐶𝐴𝐼𝑠𝑝) − 𝑝2𝐶𝐴𝐼𝑠𝑝). 592 

Species 𝑝0 𝑝1 𝑝2 

P. sylvestris 75.65 (48.78, 108.79) 3.84 (2.68, 5.04) 26.34 (14.40, 39.21) 

P. uncinata 48.02 (25.68, 73.14) 2.56 (0.45, 4.36) 2.77 (-3.07, 8.99) 

P. pinea 57.69 (23.52, 97.88) 2.06 (-1.26, 5.23) -0.06 (-2.75, 2.96) 

P. halepensis 23.53 (3.45, 65.58) -0.21 (-2.94, 3.11) 7.00 (-2.50, 16.36) 

P. nigra 116.76 (55.77, 187.17) 1.11 (0.03, 1.77) 14.46 (6.45, 23.09) 

P. pinaster 62.48 (23.54, 108.18) 0.73 (-1.51, 2.26) 2.74 (-3.66, 11.82) 

J. thurifera 59.21 (34.03, 91.01) 2.20 (-2.00, 6.00) 5.65 (-6.74, 18.73) 

Q. petraea 32.77 (11.01, 60.46) 2.38 (0.29, 4.37) -0.05 (-1.94, 2.44) 

Q. pyrenaica 59.93 (28.95, 91.15) 1.23 (0.12, 2.17) 1.86 (-1.33, 6.29) 

Q. faginea 78.48 (24.72, 135.83) 2.66 (-1.32, 4.79) 10.68 (3.02, 17.02) 

Q. ilex 37.19 (8.22, 88.39) 0.05 (-1.13, 0.95) 13.15 (2.70, 23.33) 

Q. suber 44.91 (20.14, 77.41) 2.25 (-0.90, 4.76) 0.55 (-3.38, 4.94) 

F. sylvatica 51.76 (21.02, 90.42) 1.17 (-1.01, 2.68) 5.25 (1.45, 9.03) 

 593 

  594 
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Table 2 Predicted probability of occurrence (eqn 3) in the average environment encountered by a 595 

species, and under a scenario of 2°C increase in AVT, 20% decrease in MAP, 20% increase in DL. 596 

Expected rates of recruitment (RR, eqn 3 and eqn 4: 1 cm DBH stems/ha/year), growth (GR, eqn 597 

5: cm/year for 1 cm DBH stem) and mortality (MR, eqn 6: annual probability of mortality of 1 cm 598 

DBH stem). Rates are calculated at the centre of each species’ climatic ranges in the average 599 

competitive environment (𝐶𝐴𝐼𝑎𝑙𝑙 and 𝐶𝐴𝐼𝑠𝑝) and monospecific stands; a low density (𝐶𝐴𝐼𝑎𝑙𝑙 =600 

𝐶𝐴𝐼𝑠𝑝 = 0.2 ha/ha) and a higher density stand (𝐶𝐴𝐼𝑎𝑙𝑙 = 𝐶𝐴𝐼𝑠𝑝 = 1 ha/ha).  601 

Species 

Probability 

of 

occurrence 

Probability of 

occurrence under 

climate change 

Average competitive 

environment 

𝐶𝐴𝐼𝑎𝑙𝑙 = 𝐶𝐴𝐼𝑠𝑝 = 0.2 𝐶𝐴𝐼𝑎𝑙𝑙 = 𝐶𝐴𝐼𝑠𝑝 = 1 

RR GR MR RR GR MR RR GR MR 

P. sylvestris 1.12E-01 4.95E-02 0.43 0.314 0.016 8.13 0.413 0.012 0.00 0.184 0.030 

P. uncinata 1.56E-01 8.11E-03 66.33 0.225 0.049 22.66 0.275 0.066 59.72 0.109 0.205 

P. pinea 2.99E-03 5.51E-03 1.54 0.250 0.042 0.63 0.232 0.048 23.31 0.097 0.079 

P. halepensis 8.45E-02 1.21E-01 13.64 0.232 0.022 7.92 0.251 0.030 0.23 0.121 0.097 

P. nigra 1.35E-01 6.17E-02 28.99 0.214 0.085 37.64 0.250 0.103 0.00 0.101 0.208 

P. pinaster 2.97E-02 9.73E-03 19.10 0.373 0.032 7.54 0.409 0.044 15.23 0.141 0.142 

J. thurifera 2.48E-02 3.66E-03 6.24 0.104 0.028 4.20 0.083 0.045 0.66 0.034 0.253 

Q. petraea 4.08E-03 2.49E-03 1.71 0.189 0.003 0.47 0.216 0.004 17.90 0.098 0.019 

Q. pyrenaica 9.34E-03 3.72E-03 7.48 0.153 0.006 2.17 0.178 0.007 11.12 0.096 0.015 

Q. faginea 1.88E-02 7.41E-03 4.54 0.174 0.008 3.21 0.179 0.009 0.00 0.114 0.016 

Q. ilex 3.81E-02 3.93E-02 4.20 0.153 0.011 4.23 0.156 0.013 0.00 0.117 0.023 

Q. suber 4.49E-02 3.74E-02 22.23 0.163 0.032 7.01 0.169 0.042 148.21 0.074 0.122 

F. sylvatica 3.50E-02 8.24E-03 9.34 0.194 0.022 6.20 0.308 0.026 1.21 0.148 0.047 

  602 



26 
 

Figure 1 Histograms of juvenile stem counts in inventory plots used for the analysis, for the 13 603 

study species. Juveniles are here defined as trees with DBH in the range 2.5 – 7.5 cm. Plots with 604 

more than 25 observed juveniles are not shown for visual clarity, but account for no more than 1% 605 

of plots for any species. 606 

 607 

  608 
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Figure 2 Model observed (black) versus predicted (blue, offset 0.01 to the left for visual clarity) 609 

juvenile stem counts, shown along gradients of conspecific and heterospecific crown area index 610 

(CAIsp and CAIall - CAIsp, eqn 4), for P. halepensis and Q. ilex. Model output and data plotted in 611 

bins representing 10% of plots, except where bins overlapped (for species with high numbers of 612 

monospecific plots), where bins are combined. Error bars represent 95% range (all species are 613 

shown in supporting information Fig. S4).  614 

 615 

  616 
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Figure 3 Fitted probability of occurrence of juveniles across whole-data gradients of predictor 617 

variables for species of (a) temperate conifer, (b) temperate angiosperm, (c) Mediterranean conifer 618 

and (d) Mediterranean angiosperm (note differences in y-axis ranges for different species 619 

groupings). For each variable, species’ probabilities of recruitment are plotted using constant 620 

values for the other two variables, which are set at the species’ average values (supporting 621 

information Table S12).  622 

 623 
 624 

 625 
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Figure 4 Predicted rate of recruitment, growth and mortality for stems of 1 cm DBH across the 627 

observed range of total plot crown area for the species, for (column 1) conifer, and (column 2) 628 

angiosperm species. For each species, rates are calculated in the centre of the observed climatic 629 

range (calculated from the central 90% of the data see supporting information Table S12), with 630 

fixed conspecific canopy area set at the mean observed conditions. 631 

 632 

 633 
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Supplementary materials 635 

 636 

MCMC algorithm for fitting crown allometry and small adult growth and mortality rates 637 

 638 

We estimated parameters and credible intervals (CIs) of models of crown diameter, individual tree 639 

growth and annual mortality (described below) using an adaptive MCMC Metropolis algorithm (Lee 640 

1997; Gelman, Roberts & Gilks 1999). We fitted several different functional forms for each model 641 

and compared them using the Akaike information criterion (Akaike, 1974). The MCMC algorithm 642 

compares parameter values using the log-likelihood of the data given the model. At each iteration 643 

the algorithm selects a parameter to alter and recalculates the likelihood. If the new parameter 644 

improves the likelihood then it is accepted by the algorithm. If not, it is accepted with probability of 645 

the ratio of the new and old likelihoods. In this way it returns not only a best-fit value for each 646 

parameter given the data but also estimates its distribution. The algorithm has two periods: burn-in 647 

and sampling. During the burn-in period the algorithm alters the search range ("jumping distance") 648 

of each parameter value to achieve an optimal acceptance ratio of 25% (Gelman, Roberts & Gilks 649 

1999). After the burn-in period, the jumping distance is fixed (separately for each parameter). During 650 

sampling parameter values are recorded every 100 iterations and the resulting parameter samples 651 

are taken as samples from the posterior distribution of each parameter. The resulting samples are 652 

then used to calculate mean and 95% confidence intervals for each parameter. We used uniform 653 

priors on all parameters, setting bounds much wider than expected parameter values, so that the 654 

MCMC algorithm needed to refer to the log-likelihood only (at U[-250, 250]). We used normalised 655 

mean annual temperature and mean annual precipitation values (taken from Gonzalo Jiménez, 656 

2008). All models were fitted using an adaptive Metropolis algorithm written in C. Convergence was 657 

checked using the Geweke diagnostic statistic (Geweke 1992), using a sampling period of 500,000 658 

iterations of the algorithm and testing means of the initial 10% and final 50% of the chain. 659 

 660 

Competitive environment: crown diameter allometry and calculation of crown metric CAI 661 

 662 

We expected recruitment to be positively correlated with conspecific adult density (potential parent 663 

trees) and negatively with aboveground competition for light, so we generated metrics to describe 664 

these factors, choosing crown area to represent both. For each plot we defined two values to 665 

represent conspecifics adult density and aboveground competition for light; the crown cover of adults 666 

of all species of interest (CAIsp, m2/ha) and of all adults on the plot (CAIall), using species-specific 667 

crown width allometric equations derived from data collected from the second inventory. We 668 

calculated CAIall and CAIsp for all plots in both inventories, to quantify change in canopy area over 669 

time. 670 

 We parameterised models of crown diameter (CD) as a function of stem size (DBH) and 671 

climate for each species in order to calculate the crown area of adults in each plot, both in total and 672 

of each species individually, and checked convergence using the Geweke diagnostic statistic 673 

(Geweke 1992). We used a subset of the IFN2 database in which two measurements of crown 674 

diameter were recorded for around four trees of particular silvicultural interest in each plot. The 675 

number of measurements for each species is shown in Table S1. We parameterised DBH-CD 676 

equations using adaptive MCMC for the 30 species with more than 50 trees measurements in the 677 

data (in total >200,000 measurements), which accounted for >90% of the data. We tested a set of 678 

models (see Table S2 for functional forms tested) for crown diameter as a function of stem size and 679 

climate and selected the best model as the best for the most species and data (model 10, see Table 680 

S2).  681 

 For each tree we used these functions to use to calculate the total crown area of all taller 682 

trees in each plot, CAIh, and the crown area of all conspecifics, CAIsp in the plot. We also calculated 683 
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the crown area of all trees in each plot, CAIall. Observed and predicted crown diameters are shown 684 

for each of the 30 fitted species in Fig. S1. For species lacking allometric data we estimated the 685 

crown diameter-stem diameter relationship by either using the allometric equation of the single most 686 

closely related species or by averaging the allometric parameters of all the most closely related 687 

species if there was more than one at the closest distance (determined according to a phylogenetic 688 

tree created using the software Phylomatic, Webb & Donoghue 2005, see Table S3).  689 

 690 

Construction of priors for growth and mortality functions 691 

 692 

To construct priors for the growth and mortality functions within the ABC algorithm we fitted models 693 

to data of small trees from the Spanish Forest Inventory. We selected plots that had been measured 694 

in both the second (IFN2) and third (IFN3) inventories and fitted models to trees that had stem 695 

diameter (DBH) < 10 cm in the IFN2, excluding individuals whose mortality was human induced. We 696 

fitted models to 16 species with >100 individual stems for both growth and mortality. All models were 697 

species specific, with parameters fitted separately for each species. 698 

 Growth and mortality rates of trees are strongly size dependent, with growth increasing and 699 

mortality decreasing with size (e.g. Kunstler et al., 2009; Lines et al., 2010; Coomes et al., 2012). 700 

We compared three candidate models for growth and three candidate models for mortality using 701 

initial stem size (DBH1) and competition measured as crown area of all taller trees, CAIh, in the plot 702 

(see Tables S4 and S5 for the model functional forms). For both growth and mortality, we tested a 703 

constant rate model, a size dependent model and a size and competition dependent model. We 704 

tested whether the effect of competition was important for growth using a functional form from 705 

Coomes et al. (2012) and a simple linear model for mortality. We modelled annual growth by fitting 706 

a model for the stem diameter measured in the IFN3 (DBH2) as a function of the initial stem diameter 707 

measured in the IFN2 (DBH1) and the growth rate using: 708 

𝐷𝐵𝐻2~𝑁(𝐷𝐵𝐻1 + 𝑡𝐺𝑅, 𝜔0
2)    (eqn S1) 709 

where GR is the predicted annual growth rate, t is the time interval (average 9 years) and ω0 is the 710 

standard deviation, estimated by the model. 711 

We modelled the annual probability of mortality using a logistic function: 712 

𝑃(mortality) = 1 (1 + exp (−𝑘))⁄    (eqn S2) 713 

with corresponding likelihood: 714 

likelihood of data given model = {
[1 − 𝑃(mortality)]𝑡   if tree survived

1 − [1 − 𝑃(mortality)]𝑡  if tree died
 715 

We compared a set of models with different functional for k and selected the best fit model according 716 

to AIC (see Tables S4 and S5, for model functional forms and AIC scores for growth and mortality 717 

respectively). 718 

 719 

Model fit results of growth and mortality model MCMC parameterisation 720 

 721 

We compared three models for both annual growth and annual mortality rates (Tables S4 and S5), 722 

and checked convergence using the Geweke diagnostic statistic (Geweke 1992). We calculated AIC 723 

values to compare models for each species individually. For both growth and mortality the best fit 724 

models for all species included the effects of both stem size and competition (model 2 in Tables S4 725 

and S5), so we used these functional forms in the recruitment model. Individual species' parameter 726 

values and their corresponding 95% CIs for these two models are shown in Table S6 and S7. 727 

Predicted and observed values for DBH2, fitted using model 2 in Table S4, are shown in Fig. S2. 728 

Predicted and observed values for annual mortality rate, fitted using model 2 in Table S5, are shown 729 

in Fig. S3. Predicted growth and mortality rates for each species plotted against DBH and against 730 

the range of values of CAIall in which it is found are shown in Fig. 3. 731 
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Table S1 Amount of field data for each species used to estimate DBH-crown diameter allometric 733 

equations. 734 

Species Name Count 

Abies alba 631 

Abies pinsapo 63 

Castanea sativa 4659 

Chamaecyparis 

lawsoniana 

177 

Eucalyptus camaldulensis 1972 

Eucalyptus globules 7127 

Eucalyptus nitens 143 

Fagus sylvatica 10292 

Larix spp. 409 

Picea abies 59 

Pinus halepensis 30046 

Pinus nigra 18455 

Pinus pinaster 38086 

Pinus pinea 8970 

Pinus radiata 6609 

Pinus sylvestris 28093 

Pinus uncinata 2720 

Platanus spp. 115 

Populus alba 97 

Populus nigra 1817 

Pseudotsuga menziesii 172 

Quercus canariensis 417 

Quercus faginea 7845 

Quercus ilex 36945 

Quercus petraea 3660 

Quercus pyrenaica 11832 

Quercus robur 7958 

Quercus rubra 304 

Quercus suber 8693 

Robinia pseudoacacia 214 

 735 

  736 
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Table S2 Tested models of crown diameter (CD) as a function of stem size (DBH), drought length 737 

(DL), average annual temperature (AvT) and annual precipitation (PA), and the number of 738 

parameters in each model. Parameters fitted are denoted p0-p6. Average temperature and annual 739 

precipitation were normalised to aid convergence (using annual precipitation mean = 862, standard 740 

deviation = 378, average temperature mean = 12, standard deviation = 3). The number of parameters 741 

of each model, its AIC score, rank, and the number of species and percentage of the data for which 742 

it was the best model are shown. The model selected for use is shown in bold. 743 

Model Description # parameters AIC 
AIC 

rank 

# species' 

best 

model 

% data 

best 

model 

0 CD ~ N(p1+p2DBH, p0) 3 5593348 11 1 0.07 

1 CD ~ N(p2+p3DBH, p0+p1DBH) 4 5481178 7 5 16.92 

2 CD ~ N(p1+p2DBH+p3DL, p0) 4 5584746 8 0 0.00 

3 CD~N(p2+p3DBH+p4DL,p0+p1DBH) 5 5472071 3 0 0.00 

4 CD~N(p1+p2DBH+p3AvT,p0) 4 5588356 9 0 0.00 

5 CD~N(p2+p3DBH+p4AvT,p0+p1DBH) 5 5474664 5 2 1.98 

6 CD~N(p1+p2DBH +p3PA,p0) 4 5590359 10 0 0.00 

7 CD~N(p2+p3DBH+p4PA, p0+p1DBH) 5 5478742 6 4 3.34 

8 CD~N(p2+p3DBH+p4DL+p5AvT, 

p0+p1DBH) 

6 5466517 2 2 2.90 

9 CD~N(p2+p3DBH+p4PA+p5AvT, 

p0+p1DBH) 

6 5472122 4 5 19.92 

10 CD~N(p2+p3DBH+p4PA+p5AvT+p6DL, 

p0+p1DBH) 

7 5464760 1 12 54.87 

 744 

  745 
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Table S3 IFN species code, species genus and family, the number of plots the species was found 746 

in, and the code of the species’ crown diameter allometric equations used to calculate crown area 747 

for the species (in bold if the species had its own equation), assigned using nearest phylogenetic 748 

neighbour or neighbours, if there was more than one at the closest distance. If more than one 749 

species’ code is listed then the average of those species’ parameters was used. For 93% of the data 750 

we were able to use crown diameter equations fitted to the individual species’ crown measurements.  751 

IFN 

code 
Species Family #Plots 

IFN code(s) of species’ allometric equation used 

to fit crown area. 

31 Abies alba Pinaceae 293 31 

32 Abies pinsapo Pinaceae 42 32 

7 Acacia spp. Mimosaceae 37 92 

76 Acer campestre Aceraceae 902 
41,42,43,44,45,46,47,48,51,58,61,62,64,71,72, 

79,92 

54 Alnus glutinosa Betulaceae 618 41,42,43,44,45,46,47,48,71,72 

88 
Apollonias 

barbujana 
Lauraceae 4 

41,42,43,44,45,46,47,48,51,58,61,62,64,71,72,79,

92 

68 Arbutus unedo  Ericaceae 743 41,42,43,44,45,46,47,48,51,58,61,62,64,71,72,92 

73 Betula spp. Betulaceae 1424 41,42,43,44,45,46,47,48,71,72 

91 
Buxus 

sempervirens 
Buxaceae 29 41,42,43,44,45,46,47,48,51,58,61,62,64,71,72,92 

98 Carpinus betulus Coryloideae 5 41,42,43,44,45,46,47,48,71,72 

72 Castanea sativa Fagaceae 2396 72 

17 Cedrus atlantica Pinaceae 17 21,22,23,24,25,26,28,31,32,33,34,35 

13 Celtis australis Ulmaceae 18 41,42,43,44,45,46,47,48,71,72 

67 Ceratonia siliqua Fabaceae 218 92 

18 
Chamaecyparis 

lawsoniana 
Cupressaceae 76 18 

9 Cornus sanguinea Cornaceae 1 41,42,43,44,45,46,47,48,51,58,61,62,64,71,72,92 

74 Corylus avellana Betulaceae 433 41,42,43,44,45,46,47,48,71,72 

15 Crataegus spp. Rosaceae 328 41,42,43,44,45,46,47,48,71,72 

36 
Cupressus 

sempervirens 
Cupressaceae 71 18 

83 Erica arborea Ericaceae 183 41,42,43,44,45,46,47,48,51,58,61,62,64,71,72,92 

62 
Eucalyptus 

camaldulensis 
Myrtaceae 691 62 

61 Eucalyptus globulus Myrtaceae 3006 61 

64 Eucalyptus nitens Myrtaceae 69 64 

5 
Euonymus 

europaeus 
Celastraceae 1 51,58 

71 Fagus sylvatica Fagaceae 3549 71 

3 Frangula alnus Rhamnaceae 7 41,42,43,44,45,46,47,48,71,72 

55 
Fraxinus 

angustifolia 
Oleaceae 761 41,42,43,44,45,46,47,48,51,58,61,62,64,71,72,92 

1 
Heberdenia 

bahamensis 
Myrsinaceae 2 

41,42,43,44,45,46,47,48,51,58,61,62,64,71,72,79,

92 
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65 Ilex aquifolium Aquifoliaceae 446 41,42,43,44,45,46,47,48,51,58,61,62,64,71,72,92 

82 Ilex canariensis Aquifoliaceae 114 41,42,43,44,45,46,47,48,51,58,61,62,64,71,72,92 

75 Juglans regia Juglandaceae 98 41,42,43,44,45,46,47,48,71,72 

37 
Juniperus 

communis 
Cupressaceae 832 18 

39 
Juniperus 

phoenicea 
Cupressaceae 203 18 

38 Juniperus thurifera Cupressaceae 1588 18 

35 Larix spp. Pinaceae 173 35 

94 Laurus nobilis Lauraceae 139 
41,42,43,44,45,46,47,48,51,58,61,62,64,71,72,79,

92 

12 Malus sylvestris Rosaceae 32 41,42,43,44,45,46,47,48,71,72 

81 Myrica faya Myricaceae 202 41,42,43,44,45,46,47,48,71,72 

87 Ocotea phoetens Lauraceae 2 
41,42,43,44,45,46,47,48,51,58,61,62,64,71,72,79,

92 

66 Olea europaea Oleaceae 743 41,42,43,44,45,46,47,48,51,58,61,62,64,71,72,92 

63 
Other/unknown 

eucalyptus species 
Myrtaceae 1 61,62,64 

89 
Other/unknown 

laurel species 
Lauraceae 6 

41,42,43,44,45,46,47,48,51,58,61,62,64,71,72,79,

92 

29 
Other/unknown 

pine species 
Pinaceae 7 21,22,23,24,25,26,28 

59 
Other/unknown 

riparian species 

Unknown (Angiosperm 

Average) 
6 

41,42,43,44,45,46,47,48,51,58,61,62,64,71,72, 

79,92 

90 
Other/unknown 

small trees 

Unknown (Angiosperm 

Average) 
1 

41,42,43,44,45,46,47,48,51,58,61,62,64,71,72,79,

92 

99 
Other/unknown 

species 

Unknown (Angiosperm 

Average) 
252 

41,42,43,44,45,46,47,48,51,58,61,62,64,71,72,79,

92 

84 Persea indica Lauraceae 43 
41,42,43,44,45,46,47,48,51,58,61,62,64,71,72, 

79,92 

8 Phillyrea latifolia Oleaceae 96 41,42,43,44,45,46,47,48,51,58,61,62,64,71,72,92 

69 Phoenix spp. Arecaceae 12 
41,42,43,44,45,46,47,48,51,58,61,62,64,71,72, 

79,92 

86 Picconia excelsa Oleaceae 16 41,42,43,44,45,46,47,48,51,58,61,62,64,71,72,92 

33 Picea abies Pinaceae 34 33 

27 Pinus canariensis Pinaceae 1448 23,24,26 

24 Pinus halepensis Pinaceae 10893 24 

25 Pinus nigra Pinaceae 6988 25 

26 Pinus pinaster Pinaceae 12372 26 

23 Pinus pinea Pinaceae 3288 23 

28 Pinus radiata Pinaceae 2368 28 

21 Pinus sylvestris Pinaceae 9221 21 

22 Pinus uncinata Pinaceae 929 22 

93 Pistacia terebinthus Anacardiaceae  39 61,62,64 
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79 Platanus hispanica Platanaceae 72 79 

51 Populus alba Salicaceae 51 51 

58 Populus nigra Salicaceae 658 58 

52 Populus tremula Salicaceae 158 51,58 

95 Prunus spp. Rosaceae 324 41,42,43,44,45,46,47,48,71,72 

34 
Pseudotsuga 

menziesii 
Pinaceae 80 34 

16 Pyrus spp. Rosaceae 30 41,42,43,44,45,46,47,48,71,72 

47 
Quercus 

canariensis 
Fagaceae 220 47 

44 Quercus faginea Fagaceae 4373 44 

45 Quercus ilex  Fagaceae 15714 45 

42 Quercus petraea Fagaceae 1695 42 

43 Quercus pyrenaica Fagaceae 4596 43 

41 Quercus robur Fagaceae 3821 41 

48 Quercus rubra Fagaceae 154 48 

46 Quercus suber Fagaceae 3537 46 

4 Rhamnus alaternus Rhamnaceae 11 41,42,43,44,45,46,47,48,71,72 

96 Rhus coriaria Anacardiaceae 4 61,62,64 

92 
Robinia 

pseudoacacia 
Fabaceae 145 92 

57 Salix spp. Salicaceae 702 51,58 

97 Sambucus nigra Adoxaceae 47 41,42,43,44,45,46,47,48,51,58,61,62,64,71,72, 92 

78 Sorbus spp. Rosaceae 492 41,42,43,44,45,46,47,48,71,72 

53 Tamarix spp. Tamaricaceae 7 41,42,43,44,45,46,47,48,51,58,61,62,64,71,72,92 

14 Taxus baccata Taxaceae 49 18 

77 Tilia spp. Malvaceae 123 61,62,64 

56 Ulmus minor Ulmaceae 246 41,42,43,44,45,46,47,48,71,72 

 752 

 753 

  754 
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Table S4 Set of species-specific growth models tested with corresponding maximum log-likelihoods 755 

and AICs, and the number of species for which each model was the best fit (according to the AIC) 756 

out of the thirteen in the analysis. Model 2 (shown in bold) provided the best fit for the largest number 757 

of species, and was therefore chosen. 758 

Model 

number 

Annual growth  

(GR in equation S1) 

Max log 

likelihood 

# parameters  AIC # of 

species' 

best model 

0 GR=ω1 -54844.0 

 

2 109740

.0 

0 
1 GR= ω1DBH -54880.9 

 

2 109813

.9 

0 

2 GR=ω1DBH /(1+ ω2CAIh) -52217.5 

 

3 104513

.0 

13 

 759 

Table S5 Set of species-specific mortality models tested, with corresponding maximum log-760 

likelihoods and AICs, and the number of species for which each model was the best fit (according to 761 

the AIC) out of the thirteen in the analysis. Model 2 (shown in bold) provided the best fit for the largest 762 

number of species, and was therefore chosen. 763 

Model 

number 

Annual probability of mortality 

P(mortality)=1/(1+exp(-k)) 

(equation S2) 

Max log 

likelihoo

d 

# of 

parameter

s  

AIC # of 

species' 

best model 

0 k=τ0 -13147.1 1 26346.3 0 
1 k=τ0 +τ1DBH -13127.5 2 26306.9 0 
2 k=τ0 +τ1DBH +τ2 CAIh -12467.3 

 

3 25012.6

4 

 

13 

 764 

 765 

  766 
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Table S6 Parameter values and 95% confidence intervals for the chosen models for growth 767 

(equation S1) for each of the thirteen species in the analysis (model 2 in table S4). Parameters ω1 768 

and ω2 formed prior mean values for parameters p3 and p4 in eqn 7 (main manuscript). 769 

Species ω0 ω1 ω2 

Fagus sylvatica 
1.44  

(1.39, 1.50) 

0.0470  

(0.0428, 0.0515) 

0.000188  

(0.000157, 0.000223) 

Juniperus 

thurifera 

1.32  

(1.25, 1.40) 

0.0215  

(0.0191, 0.0241) 

0.000311  

(0.000176, 0.000475) 

Pinus halepensis 
2.10  

(2.05, 2.15) 

0.0387  

(0.0369, 0.0405) 

0.000180  

(0.000154, 0.000207) 

Pinus nigra 
1.92  

(1.88, 1.97) 

0.0561  

(0.0539, 0.0584) 

0.000307  

(0.000279, 0.000336) 

Pinus pinaster 
2.43  

(2.43, 2.43) 

0.0934  

(0.0934, 0.0934) 

0.000427  

(0.000427, 0.000427) 

Pinus pinea 
2.52  

(2.36, 2.69) 

0.0670  

(0.0600, 0.0747) 

0.000279  

(0.000205, 0.000366) 

Pinus sylvestris 
2.28  

(2.24, 2.33) 

0.0642  

(0.0618, 0.0667) 

0.000225  

(0.000206, 0.000246) 

Pinus uncinata 
1.86  

(1.75, 1.98) 

0.0554  

(0.0485, 0.0627) 

0.000348  

(0.000261, 0.000448) 

Quercus faginea 
1.10  

(1.07, 1.13) 

0.0203  

(0.0195, 0.0212) 

0.000084  

(0.000069, 0.000101) 

Quercus ilex 
1.50  

(1.48, 1.52) 

0.0186  

(0.0181, 0.0191) 

0.000046  

(0.000038, 0.000055) 

Quercus petraea 
1.98  

(1.98, 1.98) 

0.0364  

(0.0364, 0.0364) 

0.000201  

(0.000201, 0.000201) 

Quercus 

pyrenaica 

1.42  

(1.38, 1.45) 

0.0268  

(0.0257, 0.0280) 

0.000133  

(0.000115, 0.000151) 

Quercus suber 
1.58  

(1.49, 1.69) 

0.0347  

(0.0287, 0.0414) 

0.000228  

(0.000136, 0.000339) 

 770 

  771 
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Table S7 Parameter values and 95% confidence intervals for the chosen models for mortality 772 

(equation S2) for each of the thirteen species in the analysis (model 2 in table S5). Parameters 773 

formed prior mean values for p5, p6 and p7 in eqn 8 (main manuscript). 774 

Species τ0 τ1 τ2 

Fagus sylvatica 
-3.645  

(-5.460,-1.573) 

-0.2528  

(-0.4939,-0.0478) 

0.000083 

(0.000058,0.000106) 

Juniperus 

thurifera 

-2.973  

(-5.782,-0.282) 

-0.3757  

(-0.6969,-0.0454) 

0.000245 

(0.000099,0.000371) 

Pinus halepensis 
-3.645  

(-4.555,-2.653) 

-0.1316  

(-0.2457,-0.0273) 

0.000158 

(0.000131,0.000185) 

Pinus nigra 
-2.409  

(-2.409,-2.409) 

-0.3210  

(-0.3210,-0.3210) 

0.000076 

(0.000076,0.000076) 

Pinus pinaster 
-3.028  

(-3.817,-2.152) 

-0.1128  

(-0.2138,-0.0244) 

0.000170 

(0.000150,0.000189) 

Pinus pinea 
-2.243  

(-3.786,-0.583) 

-0.2087  

(-0.3996,-0.0320) 

0.000069 

(0.000019,0.000120) 

Pinus sylvestris 
-4.743  

(-5.352,-3.945) 

-0.0726  

(-0.1628,-0.0071) 

0.000155 

(0.000140,0.000170) 

Pinus uncinata 
-2.803  

(-2.803,-2.803) 

-0.1333  

(-0.1333,-0.1333) 

0.000175 

(0.000175,0.000175) 

Quercus faginea 
-4.557  

(-5.342,-3.337) 

-0.0896  

(-0.2312,-0.0053) 

0.000086 

(0.000053,0.000116) 

Quercus ilex 
-4.896  

(-5.240,-4.357) 

-0.0400  

(-0.1027,-0.0021) 

0.000079 

(0.000062,0.000095) 

Quercus petraea 
-4.812  

(-6.669,-1.669) 

-0.2020  

(-0.5699,-0.0126) 

0.000198 

(0.000140,0.000255) 

Quercus 

pyrenaica 

-3.933  

(-4.577,-3.078) 

-0.0820  

(-0.1819,-0.0096) 

0.000105 

(0.000090,0.000120) 

Quercus suber 
-3.124  

(-5.033,-0.849) 

-0.2281  

(-0.4831,-0.0199) 

0.000141 

(0.000071,0.000205) 

 775 

 776 

Table S8 Functional forms tested for the juvenile existence model, where P(existence)=logistic(k). 777 

Here AVT = average annual temperature (°C), AP = annual precipitation (mm/year) and DL = drought 778 

length(months). (See main manuscript eqn 4). 779 

 780 

Model 
Number of 

parameters 
Functional form 

0 7 𝑘 = 𝑎0 + 𝑎1𝑎2𝐴𝑉𝑇 − 𝑎2𝐴𝑉𝑇2 +  𝑎3𝑎4𝐴𝑃 − 𝑎4𝐴𝑃2 + 𝑎5𝑎6𝐷𝐿 − 𝑎6𝐷𝐿2 

1 3 𝑘 = 𝑎0 + 𝑎1𝑎2𝐴𝑉𝑇 − 𝑎2𝐴𝑉𝑇2 

2 3 𝑘 = 𝑎0 + 𝑎1𝑎2𝐴𝑃 − 𝑎2𝐴𝑃2 

3 3 𝑘 = 𝑎0 + 𝑎1𝑎2𝐷𝐿 − 𝑎2𝐷𝐿2 

4 5 𝑘 = 𝑎0 + 𝑎1𝑎2𝐴𝑉𝑇 − 𝑎2𝐴𝑉𝑇2 + 𝑎3𝑎4𝐴𝑃 − 𝑎4𝐴𝑃2 

5 5 𝑘 = 𝑎0 + 𝑎1𝑎2𝐴𝑉𝑇 − 𝑎2𝐴𝑉𝑇2 +  𝑎3𝑎4𝐷𝐿 − 𝑎4𝐷𝐿2 

6 5 𝑘 = 𝑎0 + 𝑎1𝑎2𝐴𝑃 − 𝑎2𝐴𝑃2 + 𝑎3𝑎4𝐷𝐿 − 𝑎4𝐷𝐿2 
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Table S9 Number of parameters and AIC for all juvenile existence model forms (table S8). Lowest 782 

values (best fit model) for each species are shown in bold. Model 0 (main manuscript eqn 4) was 783 

chosen as it was judged the best for all but one species. 784 

 785 

Model 0 1 2 3 4 5 6 

Number of parameters 

 

Species 

7 

 

 

3 

 

 

3 

 

 

3 

 

 

5 

 

 

5 

 

 

5 

 

 

P. sylvestris 10202.5 11689.9 12091.7 11398.9 10949.8 10813.4 10606.4 

P. uncinata 1794.8 1869.7 3339.1 3182.2 1835.5 1833.6 3025.3 

P. pinea 1156.3 1172.0 1251.6 1273.3 1158.9 1181.3 1251.6 

P. halepensis 9656.1 10291.3 10787.4 11651.1 9817.0 10343.6 10708.5 

P. nigra 9861.9 11080.1 11099.2 11112.7 10054.0 10664.0 10314.5 

P. pinaster 5029.3 5259.2 5387.2 5205.2 5216.6 5136.8 5099.3 

J.  thurifera 2524.1 2967.5 3090.1 2849.6 2658.9 2635.3 2748.9 

Q. petraea 762.6 836.0 809.4 772.6 801.5 776.1 758.8 

Q. pyrenaica 1866.4 1940.8 1903.6 1927.0 1878.7 1923.0 1867.4 

Q. faginea 3075.7 3244.0 3290.3 3324.3 3084.4 3224.3 3177.9 

Q. ilex 7924.6 8376.4 8224.8 8560.4 7997.8 8298.8 8206.2 

Q. suber 1209.9 1653.0 1677.9 1822.4 1447.7 1315.9 1643.8 

F. sylvatica 2391.2 2682.2 2673.0 2550.6 2481.3 2439.9 2509.1 
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Table S10. Fitted parameter values (top) and standard deviations (bottom) for model 0 (see table 788 

S8), the chosen juvenile existence model. 789 

 790 

 Posterior mean parameter value 

Species 𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 

P. sylvestris -11.006 14.941 0.066 1.809 7.201 0.196 0.742 

P. uncinata -8.774 8.293 0.251 2.070 3.923 0.100 33.458 

P. pinea -36.531 32.838 0.113 1.077 4.156 1.347 0.186 

P. halepensis -30.870 30.143 0.133 0.241 4.350 0.052 0.120 

P. nigra -34.680 22.591 0.170 1.613 16.366 2.173 0.474 

P. pinaster -31.254 23.524 0.121 1.944 9.578 5.264 0.373 

J.  thurifera -14.663 7.377 0.059 1.259 22.042 4.102 1.033 

Q. petraea -15.001 23.703 0.014 2.039 7.571 0.289 1.116 

Q. pyrenaica -16.825 18.828 0.024 2.155 8.116 3.254 0.313 

Q. faginea -33.643 22.715 0.180 1.628 9.944 0.691 0.151 

Q. ilex -20.592 30.710 0.054 1.565 8.600 0.102 0.095 

Q. suber -61.827 38.086 0.111 1.631 32.422 1.045 0.471 

F. sylvatica -21.784 17.370 0.141 2.792 4.062 0.361 1.829 

 Posterior parameter standard deviation 

Species 𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5 𝑎6 

P. sylvestris 

0.392 0.382 0.004 0.024 0.439 0.082 0.049 

P. uncinata 1.956 0.555 0.022 0.409 0.981 0.042 30.239 

P. pinea 3.301 0.565 0.010 0.196 2.914 0.813 0.039 

P. halepensis 1.180 0.314 0.006 0.043 0.258 0.044 0.008 

P. nigra 1.101 0.143 0.009 0.013 0.583 0.097 0.039 

P. pinaster 0.877 0.332 0.003 0.364 0.176 0.178 0.037 

J.  thurifera 0.922 2.341 0.011 0.040 3.623 0.167 0.129 

Q. petraea 1.847 6.846 0.010 0.368 1.517 0.174 0.313 

Q. pyrenaica 1.219 4.541 0.007 0.057 0.875 0.403 0.080 

Q. faginea 0.950 0.224 0.007 0.044 0.885 0.394 0.037 

Q. ilex 0.756 0.495 0.003 0.021 0.506 0.109 0.010 

Q. suber 1.071 0.550 0.003 0.027 1.658 0.370 0.062 

F. sylvatica 0.988 0.340 0.011 0.080 0.536 0.187 0.444 
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Table S11 Mean and 95% credible interval of juvenile growth and mortality parameters (eqn 6 and 793 

7) fitted by the ABC-SMC-AW method. Values for the recruitment parameters (eqn 5) are given in 794 

the main text. 795 

Species 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7 

P. sylvestris 
0.598 

(0.343, 0.838) 
2.247E-04 

(1.329E-04, 3.098E-04) 
-4.518 

(-5.423, -3.537) 
-0.077 

(-0.112, -0.043) 
1.126E-04 

(4.189E-05, 1.841E-04) 

P. uncinata 
0.447 

(0.282, 0.603) 
3.122E-04 

(1.845E-04, 4.370E-04) 
-2.837 

(-3.536, -2.237) 
-0.192 

(-0.192, -0.070) 
1.615E-04 

(9.611E-05, 2.259E-04) 

P. pinea 
0.356 

(0.162, 0.576) 
2.666E-04 

(1.531E-04, 3.797E-04) 
-2.901 

(-3.599, -2.199) 
-0.286 

(-0.286, -0.162) 
6.678E-05 

(3.364E-05, 9.778E-05) 

P. halepensis 
0.343 

(0.309, 0.379) 
1.837E-04 (1.637E-04, 

2.033E-04) 
-3.668 

(-4.049, -3.256) 
-0.149 

(-0.149, -0.118) 
1.566E-04 

(1.381E-04, 1.752E-04) 

P. nigra 
0.398 

(0.248, 0.565) 
2.942E-04 

(1.628E-04, 4.358E-04) 
-2.060 

(-2.544, -1.587) 
-0.447 

(-0.447, -0.190) 
1.040E-04 

(7.225E-05, 1.364E-04) 

P. pinaster 
0.781 

(0.446, 1.103) 
4.551E-04 

(2.810E-04, 6.326E-04) 
-3.280 

(-4.208, -2.474) 
-0.158 

(-0.158, -0.064) 
1.595E-04 

(9.098E-05, 2.344E-04) 

J. thurifera 
0.132 

(0.073, 0.213) 
2.913E-04 

(1.827E-04, 4.001E-04) 
-3.170 

(-3.816, -2.541) 
-0.529 

(-0.529, -0.238) 
2.466E-04 

(1.300E-04, 3.624E-04) 

Q. petraea 
0.309 

(0.182, 0.431) 
2.162E-04 

(1.347E-04, 2.967E-04) 
-5.763 

(-6.978, -4.407) 
-0.289 

(-0.289, -0.119) 
2.019E-04 

(1.130E-04, 2.852E-04) 

Q. pyrenaica 
0.226 

(0.141, 0.312) 
1.360E-04 

(8.809E-05, 1.857E-04) 
-5.115 

(-6.052, -4.142) 
-0.108 

(-0.108, -0.054) 
9.944E-05 

(5.926E-05, 1.393E-04) 

Q. faginea 
0.208 

(0.149, 0.265) 
8.268E-05 

(5.124E-05, 1.147E-04) 
-4.720 

(-6.917, -2.829) 
-0.125 

(-0.125, -0.032) 
7.001E-05 

(2.837E-05, 1.114E-04) 

Q. ilex 
0.170 

(0.120, 0.215) 
4.524E-05 

(3.080E-05, 6.070E-05) 
-4.452 

(-6.055, -3.360) 
-0.052 

(-0.052, -0.030) 
7.485E-05 

(4.729E-05, 1.032E-04) 

Q. suber 
0.248 

(0.141, 0.366) 
2.334E-04 

(1.285E-04, 3.310E-04) 
-3.165 

(-3.980, -2.490) 
-0.331 

(-0.331, -0.146) 
1.428E-04 

(8.702E-05, 1.967E-04) 

F. sylvatica 
0.422 

(0.269, 0.572) 
1.845E-04 

(1.015E-04, 2.689E-04) 
-3.504 

(-4.747, -2.330) 
-0.392 

(-0.392, -0.157) 
7.740E-05 

(4.025E-05, 1.168E-04) 
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Table S12 Species average climatic conditions, calculated at the centre of the central 90% of their 798 

climatic ranges, and the average competitive conditions in the second forest inventory (average 799 

CAIsp and CAIall in IFN2) from all plots used in the juvenile analysis. 800 

Species 
Average annual 
temperature (°C) 

Average annual 
precipitation (mm/year) 

Average drought 
length (months) 

Average CAIsp Average CAIall 

P. sylvestris 9.35 1022.33 0.76 0.21 0.40 

P. uncinata 6.40 1233.13 0.00 0.16 0.32 

P. pinea 13.80 678.53 1.91 0.08 0.16 

P. halepensis 13.80 621.20 2.06 0.14 0.26 

P. nigra 10.85 812.00 1.30 0.15 0.29 

P. pinaster 12.20 860.30 1.60 0.12 0.24 

J. thurifera 10.56 699.60 1.96 0.05 0.09 

Q. petraea 10.80 1018.40 0.67 0.14 0.29 

Q. pyrenaica 11.70 976.60 1.36 0.18 0.35 

Q. faginea 11.40 870.60 1.33 0.12 0.24 

Q. ilex 12.75 803.00 1.93 0.13 0.25 

Q. suber 14.65 784.20 1.92 0.12 0.23 

F. sylvatica 9.25 1271.50 0.38 0.34 0.64 
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Figure S1  Observed (black dots) and predicted (red line) crown diameters for each of the 30 species 802 

for which we had >50 measurements in the dataset. 803 

 804 
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Figure S2 Predicted and observed diameters fitted using the chosen growth model (model 2 in table 807 

S4). Growth was predicted separately for each species using initial stem size (DBH1) and CAIall, and 808 

final observed diameter (DBH2) is shown against predicted final diameter (pDBH2). The one to one 809 

relationship is shown by the red line. 810 

 811 
 812 
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Figure S3 Predicted and observed annual mortality fitted using the chosen mortality model (model 814 

2 in table S5). Mortality was predicted separately for each species using CAIall, and average rates 815 

for each species are shown with their 95% credible intervals. The one to one relationship is shown 816 

by the red line. 817 

 818 
 819 
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Figure S4 Model predicted (blue) versus observed (black) juvenile stem counts, with data and 822 

predictions shown along conspecific and heterospecific crown area index (CAIsp and CAIall - CAIsp in 823 

eqn 5 in the main manuscript). Both model and data are binned into even sized groups representing 824 

10% of the plots, except where bins overlapped (for species with high numbers of monospecific 825 

plots), where bins are combined, with model predictions (blue) offset by 0.01 to the left for visual 826 

clarity. Error bars represent 95% range of observations and predictions.  827 

 828 

 829 

 830 

 831 



50 
 

 832 

 833 

 834 

 835 



51 
 

 836 

 837 



52 
 

838 

839 

 840 

 841 
 842 

 843 


