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Abstract 

High blood pressure remains the major heritable and modifiable risk factor for cardiovascular disease 

(CVD). Persistent high blood pressure, or hypertension, is a complex trait with both genetic and 

environmental interactions. Despite swift advances in genomics, translating new discoveries to further 

our understanding of the underlying molecular mechanisms remains a challenge. More than 500 loci 

implicated in the regulation of blood pressure (BP) have been revealed by genome-wide association 

studies (GWAS) in 2018 alone, taking the total number of BP genetic loci to over 1,000.  Even with 

the large number of loci now associated to BP, the genetic variance explained by all loci together 

remains low (~5.7%). These genetic associations have elucidated mechanisms and pathways 

regulating BP, highlighting potential new therapeutic and drug repurposing targets. A large proportion 

of the BP loci were discovered and reported simultaneously by multiple research groups, creating a 

knowledge gap, where the reported loci to date have not been investigated in a harmonious way. Here, 

we review the BP-associated genetic variants reported across GWAS studies and investigate their 

potential impact on the biological systems using in silico enrichment analyses for pathways, tissues, 

gene ontology and genetic pleiotropy.  

 

Introduction 

Cardiovascular diseases, including stroke, renal and heart disease, represent the largest cause of global 

mortality. The Global Burden of Diseases, Injuries and Risk Factor study calculated ~10.4 million 

deaths that can be attributed to high systolic blood pressure (SBP) (1) and it is estimated that 25% of 

the adults have elevated blood pressure (2). To compound this, hypertension is mostly asymptomatic, 

resulting in the disease being potentially unnoticed until a life-threatening event such as a heart attack 

or stroke affects the individual.  

Individuals with family history of hypertension diagnosed before 55 years of age have been found to 

have an associated risk to hypertension (odds ratio 2.10 and 1.33 for affected parents and grandparents 

respectively). These findings reinforce the hypothesis of genetic predisposition to high blood pressure, 
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independent from the environmental factors (3). Blood pressure is a complex polygenic trait, even 

discussed as a probable omnigenic trait in previous studies (4). The heritability of the common genetic 

variation in blood pressure has been observed to be ethnicity-dependent. A study in ~8,900 European 

ancestry individuals estimated the heritability of SBP to be ~20% and approximately 50% for 

diastolic blood pressure (DBP), whilst heritability in African ancestry individuals (n=2,860) was 

estimated at ~27% and ~39% respectively (5).  While the expected heritability is between 20-50%, the 

recent analyses indicated that the BP variants identified thus far explains only 27% of the genetic 

contribution (4), suggesting many loci are yet to be identified.  

Here, we review the blood pressure genetic associations unravelled by GWAS, their implications at a 

pathway and systems level, and investigate the pleiotropy effects of reported blood pressure loci. 

Collectively these discoveries may bring new mechanistic insights to the treatment of hypertension.   

 

Blood pressure and genome-wide association studies 

Our understanding of genomic regions linked with BP was rapidly expanded with increasingly large 

and sophisticated GWAS. Up to 2015, there were 64 validated BP loci reported (6-22). Four years 

later, the number of known BP loci has increased to 1,477 (4, 23-30), including 1,214 lead signals and 

263 secondary signals (Supplementary Table 1; a) Lead BP loci; b) Secondary BP loci). The 

substantial rise in the reported loci is driven by the collaborative work of international consortia, 

combined with the availability of public datasets such as UK Biobank (UKB) (31). The UKB data has 

provided a resource of standardised genotypic and phenotypic data from an unprecedented population 

size (n=502,620). Other large key resources include the US Million Veteran Program (MVP) 

(n~318,891) (32), the Genetic Epidemiology Research on Adult Health and Aging cohort (GERA) 

(n~100,000) (33) and the International Consortium of Blood Pressure (ICBP) (29). To date, the ICBP 

consortium has accumulated 77 cohorts which include ~299,024 individuals. These studies have 

paved the way to the biggest analysis reported to date including 1 million people and unravelling 535 
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novel loci in a single study (4). Figure 1 shows the timeline of some of the key BP GWAS in the last 

decade and their validated loci.   

 

BP candidate genes 

The common genetic variants identified as associated with BP continue to improve our understanding 

of the polygenic nature of blood pressure regulation. Nevertheless, the increased number of loci – and 

therefore genes – makes the functional investigation of each locus impossible. At the present, there 

are but a handful of genes followed up by experimental studies (34). While a proportion of the 

candidate genes at blood pressure loci have been fairly well characterized, many others do not have 

known links to blood pressure regulation. It is the successes relating to the latter group that highlights 

the potential to expand our knowledge of the pathophysiology of hypertension. One such example is 

the transcription factor, Nuclear Receptor 2 Family 2 (NR2F2). A murine model with a mutated Nr2f2 

protein resulted in lower systolic and diastolic blood pressure, and was more resistant to the 

hypertensive effects of a high-salt diet. The deletion of a five amino acid hinge region required for the 

protein-protein interaction with another transcription factor, Fog2 appears to reveal the potential 

underlying molecular mechanism (35), in particular as the Nr2f2-Fog2 interaction potentially 

influences expression of the vasorelaxant atrial natriuretic factor (Anf) (36).  

Another candidate gene of interest is SH2B3 encoding the lymphocyte adaptor protein LNK. This 

regulator of cytokine signalling and cell proliferation is predominantly expressed in haematopoietic 

and endothelial cells. SH2B3-/- mice had exaggerated hypertensive responses to angiotensin II, and it 

is noteworthy that haematopoietic cells were the apparent primary driver of the observed vascular 

inflammation and predisposition to hypertension (37). However, extensive pleiotropy is observed in 

the SH2B3-ATXN2 locus, associations with myocardial infraction, multiple sclerosis, juvenile 

idiopathic arthritis have been reported (38-40). It should also be recognised that while most of the 

attention is paid to SH2B3 as the GWAS signal at rs3184504 results in a coding change within 
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SH2B3, this signal falls within a 1-megabase block of linkage disequilibrium on chromosome 12q24 

that encompases at least 15 annotated genes (8).  

Other examples include genes that are within pathways with known links to BP regulation, such as 

ARHGAP42 (Rho GTPase-activating protein 42 gene) in the RhoA pathway. The deletion of 

ARHGAP42 in a murine model enhanced the hypertensive effects of both L-NAME and 

deoxycorticosterone acetate (DOCA)–salt treatments (41). This was later supported by human studies 

of balanced chromosomal rearrangement carriers resulting in ARHGAP42 truncation, leading to age-

dependent hypertension (42). Finally, UMOD (uromodulin), recently reviewed in more detail (34), is 

another notable candidate gene identified by GWAS. UMOD deficient mice have shown to increase 

sequestration of the target of loop diuretics, the sodium-potassium-chloride co-transporter 2 

(KKCC2), resulting in reduced co-transporter activity. This mimics the effect of diuretic drugs, and 

with the subsequent lower blood pressure and reduced hypertensive response to increased salt intake. 

The pharmacological inhibition of uromodulin may have a diuretic effect that may perhaps be 

synergistic with existing pharmacological options (13, 43-45). This has led to a clinical trial on 

cardiovascular disease (www.clinicaltrials.gov: NCT03354897) (46), making significant progress 

towards a novel therapeutic target in hypertension. 

Altogether, these are examples of translating GWAS discovery to an improved understanding of 

biological impact, and providing promise of new therapeutic pathways. However, the identification of 

a true causal variant and the relevant gene product impacted is rarely straightforward. The lead single 

nucleotide polymorphism (SNP) typically indicates a chromosomal region usually with tens and 

sometimes thousands of SNPs in linkage disequilibrium (LD) (47), but it may also mark further-away 

regions with long-range chromatin interactions (48). For example, following the identification of a 

BP-associated SNP near the ANTXR2 (anthrax toxin receptor 2) gene, ANTXR2-/- knockout rats were 

generated. The knockout rats exhibited similar BP to wildtype rats, at both basal and stimulated states 

with either angiotensin II infusion of high-salt diet (49). This can highlight he difficulty in identifying 

the causal variant or gene within a locus, particularly since this region also encompasses other genes 

of interest such as FGF5 (fibroblast growth factor 5). It is often noted that follow-up mechanistic 
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studies are time- and resource-heavy endeavours. With this consideration, we expand on our previous 

in silico analyses, aiming to provide candidate genes for prioritisation in future mechanistic studies. 

 

In silico analyses: BP loci pathway and tissue enrichment  

Pathway and tissue enrichment analyses can give us a snapshot on the interactions and downstream 

consequences of blood pressure loci at a systems level. For the purposes of this review, we 

investigated all published validated blood pressure signals (lead + secondary) and their SNPs in high 

LD (r2≥0.8). SNPs were annotated to the nearest gene (within 5kb distance) using bedtools (v2.17) 

(50), and further characterized using ANNOVAR (51). We performed the following analyses on all 

the genes annotated to the BP-loci a) tissue enrichment using DEPICT (52); b) gene-set enrichment on 

pathways using GSEA (53); and c) a permutation based gene-set enrichment analysis on gene 

ontology (GO) terms using GOfuncR (54, 55). 

 

Tissue enhancement analyses - DEPICT 

In this tissue enhancement analysis, blood vessels, cardiac and adipose tissues remain in the top most 

enriched tissues (Table 1), being similar to those presented in Evangelou et al., (2018) (4). The 

addition of more recently published loci (25) to the analysis, led to an increase of enrichment in 

mostly all tissues described in previous studies, with the endocrine glands (adrenal cortex, adrenal 

glands and gonads) and the urogenital system presenting the largest differences between previous 

studies and the current analysis. The analysis highlighting adrenal tissue is unsurprising with 

hyperaldosteronism being a well-established secondary cause of hypertension (56), and primary 

hyperaldosteronism estimated to be responsible for up to 10% of hypertension cases (57, 58). The 

enrichment in the urogenital system appears driven by genes relating to the myometrium which 

predominantly consists of uterine smooth muscle cells, which share many similarities with vascular 

smooth muscle cells. Tissue enrichment analysis also showed for first time enrichment for the 

exocrine glands and tissues of the digestive system (Table 1). The underlying mechanism of the 
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enrichment observed in the digestive system may reflect the gastro-endocrine pathways which are 

discussed later on. 

 

Gene-set enrichment analyses - GSEA 

We revisited the pathway enrichment analysis performed using the Gene-set Enrichment Analysis 

(GSEA) software we conducted in 2015, where only 81 candidate genes in only eight enriched 

pathways were described (6). In the updated analysis the latest curated list of 1,630 candidate blood 

pressure genes annotated to gene-sets highlights more than 200 enriched pathways (Supplementary 

Table 2 GSEA). Whilst all eight pathways enriched in 2015 remain significant, the calcium signalling 

pathway and the Reactome gene set of genes involved in haemostasis present the strongest increase in 

overlapping genes, where both gene-sets are in the top 20 highest-ranked enriched gene-sets (Table 

2).  

The concept of pathways involving G-protein coupled receptors in blood pressure regulation is 

unsurprising. Among others, this includes receptors for adrenaline, endothelin, cholinergic 

transmission, serotonin, and histamine. However, there is also a notable contribution from gastro-

endocrine regulation, such as gastric inhibitory polypeptide (GIP) and its receptor (GIPR), the 

cholecystokinin B receptor (CCKBR) and peptide YY (PYY) highlighting the interplay between blood 

pressure and other metabolic processes. From this selection of potential gastro-endocrine therapeutic 

targets, perhaps GIP/GIPR is the closest to translation to patient care with the recent development of a 

subcutaneous dual GIP/GLP1 agonist (59), currently intended for use in the management of diabetes. 

The role of GIP in the vasculature has been reviewed in detail by Pujadas and Drucker (60). In 

summary, various in vitro studies have shown GIP as pro-proliferative for endothelial cells (61), with 

increased endothelin-1 secretion (62). In a study of the development of experimental atherosclerosis, 

GIP infusion reduced lesion formation. Interestingly, GIP infusion did not affect blood pressure in this 

murine model (63). This is balanced against limited evidence in healthy volunteer studies of GIP 
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influencing blood flow in some vascular beds during hyperglycaemic phases of a two-step 

euglycaemic-hyperglycaemic clamp study (64).  

There is also a collection of candidate genes involving G-protein coupled receptor pathways that 

emphasises the key role in neuroregulation of blood pressure, potentially involving gamma-

aminobutyric acid (GABBR1), opioids (OPRM1), neuropeptides (NPW) and metabotropic glutamate 

receptors (GRM4 and GRM7). While there is already some evidence that pharmacological modulation 

of GABA receptors may influence vascular tone (65), there is no literature thus far on the potential 

impact of Neuropeptide W and metabotropic glutamate receptors on blood pressure regulation. As G-

coupled protein receptors, they represent potentially fruitful avenues for future research. 

One other standout result from this pathway analysis is that 48 candidate genes for blood pressure are 

olfactory receptors. With the caveat that there is hitherto no evidence that genetic variants within 

olfactory receptors contribute to clinically relevant changes in taste/smell, it has been observed that 

patients with acquired hyposmia (smell loss) had significant increases in dietary salt intake (66). On a 

population level, care should be taken when interpreting these results as commonly prescribed 

antihypertensive and cholesterol-lowering drugs themselves may alter senses of taste and smell (67). 

Interestingly, there may be a role of olfactory receptors, when ectopically expressed (68), for example 

in the kidney, where in mouse models Olfr78 responds to short chain fatty acids with renin secretion, 

and in turn contributes to blood pressure regulation (69). The human ortholog of Olfr78 (OR51E2) is 

notably situated near its family member OR51E1, which is also blood pressure candidate gene (4). 

Another grouping of would-be therapeutic targets may be from the extracellular matrix pathway. This 

includes gene products within the extracellular matrix itself (e.g. fibronectin, collagen, fibrillin, and 

thrombospondin), hormones (e.g. transforming growth factor, vascular endothelial growth factor, 

fibroblast growth factor and platelet-derived growth factor) and enzymes that regulate the 

extracellular matrix (e.g. matrix metallopeptidases and ADAM metallopeptidase with thrombospondin 

enzymes). The potential for many of these candidate genes as therapeutic targets may stem from also 

being overlapping GWAS candidate genes for ischaemic heart disease (70, 71), allowing for 

therapeutic agents with the possibility of pleotropic effects.   
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Gene ontology analyses – GofuncR and REVIGO 

Gene ontology enrichment analyses were visualized using REVIGO. This tool calculates the semantic 

similarity between GO terms and aids their visualization (72). There are two main clusters observed in 

the GO plot for biological processes (Figure 2). While one cluster (A) is unsurprising, including broad 

intracellular functions such as regulation of intracellular signal transduction, cell cycle, organelle 

organization, cellular localization, cellular process and transcription, the second cluster (B) may be 

more revealing in terms of potential new understanding of the biology underlying blood pressure 

regulation. Within this cluster, the five major gene ontology terms refer to biosynthesis of nucleobase-

containing compounds, organic cyclic compounds, aromatic compounds, cellular nitrogen 

compounds and heterocyclic compounds. While there are commonly recognised enzymes within these 

groups contributing to the regulation of blood pressure (e.g. adenylate and guanylate cyclases, and 

adenosine kinases), there are three other enzymes here which we felt were worth highlighting.  

Carbamoyl-phosphate synthase 1 (CPS1) is the enzyme that catalyses the rate-limiting step in the urea 

cycle and L-citrulline production. This reaction allows vascular endothelial cells to recycle the by-

product of nitric oxide synthesis, L-citrulline, by using components of the urea cycle. The naturally 

occurring T1405N variation within CPS1 is already known to vascular dynamics in an experimental 

setting (73). MTAP (encoding S-methyl-5'-thioadenosine phosphorylase) is also an interesting 

potential target as an important in the salvage of adenine and methionine. It also resides in the 9p21 

region, with the strongest GWAS signal for coronary artery disease and myocardial (74, 75). Mice 

heterozygous for MTAP shows increased predisposition to atherosclerotic lesions (76), which may 

allow for the development of therapeutic options that has pleotropic effects. It should however be 

recognised that there are also multiple other genes of interest in the 9p21 region, including the tumour 

suppressor genes CDKN2A and CDKN2, and the long non-coding RNA ANRIL. DBH encodes 

dopamine β-hydroxylase which catalyses the conversion of dopamine to norepinephrine. It is 

predominantly expressed in neural and adrenal tissues, and is involved in noradrenergic transmission 

of central and peripheral nervous systems. More recently, its expression has been detected in 
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endothelial cells, where dopamine β-hydroxylase inhibition reduces in vitro angiogenesis (77). This 

enzyme also potentially plays a role in vascular wall remodelling, where DBH-/- mice has attenuated 

vessel injury-induced medial hypertrophy compared to wildtype littermates (78). 

 

Multi-trait BP associations  

BP-variants have been reported to have many other genetic associations (4, 6, 79). Here, we 

interrogated the GWAS Catalog for all traits associated with the BP-variants (n=45.9k) (80). After 

applying a stricter p-value association threshold (–log10 p-value < 10.5), these results were manually 

curated and summarized on the mapped genes. After excluding blood pressure traits (e.g. SBP, DBP, 

and PP), cardiovascular disease, red blood cell counts, body mass index and type 2 diabetes were the 

traits with increased numbers of BP-variant associations. The co-occurrence observed between BP 

variants and other traits could be highlighting pleiotropy effects, where the associated variant impacts 

overlapping causal pathways for each phenotype. However, this co-occurrence could also possibly be 

due to BP being affected by other traits. Figure 3 shows all BP loci with more than five associations 

with at least four traits.  Two clusters of interest can be observed, with several genes demonstrating 

potential such as cholesterol levels, diabetes, obesity, and cardiovascular disease itself. These genes 

include APOE, LDLR, FGF5, SLC39A8, FUT2, FTO and SH2B3-ATXN2. Our group has previously 

demonstrated the role of the blood-pressure associated non-synonymous polymorphism at SLC39A8 

influencing in vitro intracellular cadmium accumulation and subsequent toxicity (81).  

 

The landscape and future of BP genetics 

The genetic research community realised at early stages of GWAS that the sample sizes needed to be 

very large and also dependent on the number of SNPs been tested (82). As the sample sizes increased, 

substantial number of loci associated to traits and disease started to be uncovered. The ~1,477 

validated blood pressure associations reported to date have been achieved by analysing over 1 million 

individuals (4, 7-29). Yet, approximately 73% of the genetic variance remains unaccounted for (4). 
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The genetics of hypertension and blood pressure prove to be highly complex. The associated BP loci 

are localized across the whole genome, and their annotations revealed enrichment in some obvious 

blood pressure pathways, but they also revealed hundreds of other pathways and tissues with no direct 

known connections to BP. Here, we only observed two pathways previously enriched (the calcium 

signalling pathway and genes involved in haemostasis) maintaining their status as “top” enriched 

pathways. These discoveries are contrary to the initial idea that the unravelling of new loci would first 

fill in the gaps of the already known pathways, and instead we observe the enrichment of systems and 

tissues with no prior knowledge on BP regulation. However, BP loci have been found to have 

multiple associations across traits (e.g. Type II diabetes, obesity, and cholesterol among others) 

showing strong evidence of pleiotropy (83) and this is challenging for the characterization of loci 

specific to BP. 

The number of genes and variants uncovered by GWAS means there is a great challenge for 

traditional functional studies. There seems to be only a few successful follow up studies on candidate 

genes identified through GWAS relative to the numerous loci reported. However, this should be 

viewed in context of the lag-time between GWAS and publication of mechanistic studies that is often 

in the range of 3-5 years. With that, it may be reasonable to suggest more mechanistic studies are to 

follow with the massively expanded candidate gene list. In silico follow-up, the utilization of 

resources such as ENCODE (84) and GTEx (85), are becoming increasingly more important, where 

the next task is to prioritise the genes that may be most likely to bear fruitful clinical translation. For 

example, the application of deep neural networks to prioritise blood pressure genes, converging data 

from a range of genomic annotation resources on the blood pressure associated genes identified by 

GWAS; providing model training and testing datasets. Exploring the systems biology of these 

prioritised genes may offer new mechanistic insights and therapeutic targets. 

BP genetic associations have shed light into mechanisms and the architecture of blood pressure. 

However, there are two main drawbacks on most of these GWAS studies, 1) they are largely based on 

individuals with European descent and 2) due to most GWAS based on imputed SNP arrays, where 

imputation performs poorly in regions with low LD (86), they are generally restricted to the analysis 
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of common variants (minor allele frequency > 1%). Expanding research into rare variants proved to 

be extraordinarily fruitful for Wainshctein and colleagues, who succeeded to recover all the 

heritability from height using whole-genome sequencing, but there has been limited research to date 

on the impact of rare variants on blood pressure regulation (27, 28). The missing heritability in height 

was unearthed from rare variants in regions of low LD (87). The availability of whole genomes and 

initiatives such as Genomics England could pave the way to investigate all variants, including 

structural and non-coding variants, allowing us to expand our knowledge and discover the hidden 

genetic variance in blood pressure.  
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Figure 1. Timeline of validated blood pressure GWAS associations of the last 10 years. The total 

sample size (left vertical axis) used for the discovery analysis is represented by the blue long-dotted 

line, whilst the replication sample size represented by the green short-dotted line.  The total number of 

loci is represented by the bars (right vertical axis). The yellow bars represent the number of novel loci 

reported without independent replication and in pink the total number of novel loci with replication. 

The numbers in parenthesis after the study (horizontal axis) show the numbers for the novel without 

replication and the novel loci with replication respectively (yellow/pink).  
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Figure 2. Gene ontology enrichment analysis. The REVIGO graph displays the biological process 

GO enrichment. Each sphere represents a GO term coloured by the GOfuncR enrichment in the –

log10(p-value) scale. The semantic similarity of each GO term is represented by the position of each 

sphere on the graph.  Plot size (sphere size) indicates the frequency of each GO term in which is 

found in the gene ontology database (i.e. the larger the sphere is the more general the term is). Two 

clusters are highlighted: A) includes broad intracellular functions such as regulation of intracellular 

signal transduction, cell cycle, organelle organization, cellular localization, cellular process and 

transcription; B) the second cluster revealing terms of potential new understanding of the biology 

underlying blood pressure regulation. Within this cluster, the five major gene ontology terms refer to 

biosynthesis of nucleobase-containing compounds, organic cyclic compounds, aromatic compounds, 

cellular nitrogen compounds and heterocyclic compounds.  
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Figure 3.  Multi-trait associations of blood pressure loci.   BP loci were searched in the GWAS 

catalog to investigate the pleiotropy of the loci.  The heatmap displays a subset of the BP loci with 

five or more gene associations with at least four traits (excluding blood pressure traits). Ward 

hierarchical clustering was applied on rows and columns (genes and traits).  
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Tables 

Table 1 DEPICT tissue enrichment results across all validated blood pressure loci to date and compared to the reported enrichment 

in Evangelou et al (2018). Results are shown for tissue enrichments with an FDR < 0.05 ordered by nominal -log10 p-value 

Name MeSH second level term Nominal -log10(p-value) Evangelou et all -log10(p-value) 

Myometrium Genitalia 14.66 9.50 

Arteries Blood Vessels 13.72 10.84 

Cartilage Cartilage 10.53 9.03 

Adipose Tissue Connective Tissue 10.36 8.01 

Genitalia  Female Genitalia 10.04 4.89 

Subcutaneous Fat Connective Tissue 9.62 7.56 

Adipose Tissue  White Connective Tissue 9.62 7.56 

Genitalia Genitalia 9.59 4.48 

Uterus Genitalia 9.48 4.88 

Joint Capsule Skeleton 9.19 7.12 

Joints Skeleton 9.19 7.12 

Synovial Membrane Skeleton 9.19 7.12 

Subcutaneous Fat  Abdominal Connective Tissue 8.60 6.09 

Abdominal Fat Connective Tissue 8.60 6.09 

Endocrine Glands Endocrine Glands 8.38 3.67 

Fallopian Tubes Genitalia 7.86 3.83 

Ovary Genitalia 7.76 3.30 

Adnexa Uteri Genitalia 7.75 3.31 

Serous Membrane Membranes 7.26 4.76 

Gonads Endocrine Glands 7.07 2.92 

Aortic Valve Heart 6.97 4.91 

Heart Valves Heart 6.97 4.91 

Endometrium Genitalia 6.97 3.44 

Adipocytes Connective Tissue Cells 6.03 4.24 

Adrenal Glands Endocrine Glands 5.76 2.99 

Adrenal Cortex Endocrine Glands 5.70 3.44 

Blood Vessels Blood Vessels 5.19 4.85 

Stomach Gastrointestinal Tract 5.12 3.37 

Upper Gastrointestinal Tract Gastrointestinal Tract 5.09 3.23 

Heart Heart 4.89 4.57 

Stromal Cells Connective Tissue Cells 4.45 3.56 

Serum Blood 4.40 2.92 

Muscle  Smooth Muscles 4.38 3.45 

Heart Atria Heart 4.17 3.82 

Heart Ventricles Heart 4.10 4.03 

Veins Blood Vessels 4.09 3.67 

Lung Lung 3.89 2.40 

Atrial Appendage Heart 3.87 3.43 

Pancreas Pancreas 3.70 3.81 

Mesenchymal Stem Cells Stem Cells 3.59 2.97 

Chondrocytes Connective Tissue Cells 3.54 2.00 

Fibroblasts Connective Tissue Cells 3.52 2.45 

Umbilical Veins Blood Vessels 3.50 3.13 

Portal System Blood Vessels 3.50 3.13 
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Esophagus Gastrointestinal Tract 3.39 2.00 

Urinary Bladder Urinary Tract 3.26 2.84 

Chorion Membranes 3.16 2.68 

Extraembryonic Membranes Membranes 3.16 2.68 

Ileum Gastrointestinal Tract 3.09 3.15 

Endothelial Cells Epithelial Cells 3.09 2.80 

Urinary Tract Urinary Tract 3.02 3.21 

Osteoblasts Connective Tissue Cells 3.01 3.46 

Exocrine Glands Exocrine Glands 2.92  

Kidney Cortex Urinary Tract 2.89 2.07 

Prostate Exocrine Glands 2.80  

Kidney Urinary Tract 2.76 2.97 

Intestine  Small Gastrointestinal Tract 2.75 2.81 

Genitalia  Male Genitalia 2.61  

Cecum Gastrointestinal Tract 2.46  

Islets of Langerhans Pancreas 2.13†  

Cervical Vertebrae Skeleton 2.06†  

Spine Skeleton 2.01†  

Cervix Uteri Genitalia 1.70†  

Skin Skin 1.70†  

Lower Gastrointestinal Tract Gastrointestinal Tract 1.70†   

FDR: False discovery rate; Significant tissue enrichment threshold set at an FDR < 5%. † MeSH terms with an FDR ≥ 1% and 

below 5%, all others represent an FDR < 1%  MeSH term: Medical Subject Heading term.  

 

Table 2. GSEA: Gene set enrichment analysis. Results shown for the top 20 enriched gene sets. All sets observed with an at an FDR 

threshold below or equal to 0.05. 

Gene Set Name # 

Ge

ne

s 

in 

Ge

ne 

Se

t 

(K

) 

Description # 

Ge

nes 

in 

Ove

rla

p 

(k) 

k/

K 

p-

valu

e REACTOME_SIGNALING_BY_GPCR 92

0 

Genes involved in Signalling by GPCR 107 0.1

16

3 

4.87

E-

27 
REACTOME_GPCR_DOWNSTREAM_SIG

NALING 

80

5 

Genes involved in GPCR downstream signalling 98 0.1

21

7 

2.32

E-

26 
KEGG_PATHWAYS_IN_CANCER 32

8 

Pathways in cancer 51 0.1

55

5 

8.23

E-

19 
REACTOME_DEVELOPMENTAL_BIOLO

GY 

39

6 

Genes involved in Developmental Biology 54 0.1

36

4 

3.07

E-

17 
NABA_MATRISOME 10

28 

Ensemble of genes encoding extracellular matrix and 

extracellular matrix-associated proteins 

95 0.0

92

4 

3.06

E-

17 REACTOME_OLFACTORY_SIGNALING_

PATHWAY 

32

8 

Genes involved in Olfactory Signalling Pathway 45 0.1

37

2 

1.06

E-

14 
KEGG_PROSTATE_CANCER 89 Prostate cancer 23 0.2

58

4 

4.72

E-

14 
REACTOME_HEMOSTASIS 46

6 

Genes involved in Hemostasis 54 0.1

15

9 

3.28

E-

14 
KEGG_OLFACTORY_TRANSDUCTION 38

9 

Olfactory transduction 48 0.1

23

4 

8.33

E-

14 
KEGG_DILATED_CARDIOMYOPATHY 92 Dilated cardiomyopathy 23 0.2

5 

1.02

E-

13 
KEGG_HYPERTROPHIC_CARDIOMYOP

ATHY_HCM 

85 Hypertrophic cardiomyopathy (HCM) 22 0.2

58

8 

1.62

E-

13 KEGG_ARRHYTHMOGENIC_RIGHT_VE

NTRICULAR_CARDIOMYOPATHY_ARV

C 

76 Arrhythmogenic right ventricular cardiomyopathy 

(ARVC) 

20 0.2

63

2 

1.45

E-

12 
NABA_CORE_MATRISOME 27

5 

Ensemble of genes encoding core extracellular matrix 

including ECM glycoproteins, collagens and 

proteoglycans 

38 0.1

38

2 

9.75

E-

13 KEGG_WNT_SIGNALING_PATHWAY 15

1 

Wnt signalling pathway 27 0.1

78

8 

4.32

E-

12 
KEGG_CHRONIC_MYELOID_LEUKEMI

A 

73 Chronic myeloid leukemia 19 0.2

60

3 

6.48

E-

12 
KEGG_FOCAL_ADHESION 20

1 

Focal adhesion 31 0.1

54

2 

6.60

E-

12 
KEGG_MAPK_SIGNALING_PATHWAY 26

7 

MAPK signalling pathway 35 0.1

31

1 

3.43

E-

11 
KEGG_CALCIUM_SIGNALING_PATHW

AY 

17

8 

Calcium signalling pathway 28 0.1

57

3 

4.21

E-

11 
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KEGG_SMALL_CELL_LUNG_CANCER 84 Small cell lung cancer 19 0.2

26

2 

9.28

E-

11 
KEGG_ADHERENS_JUNCTION 75 Adherens junction 18 0.2

4 

1.01

E-

10 
 

 

Abbreviations   

Blood pressure (BP)  

Cardiovascular disease (CVD) 

Diastolic blood pressure (DBP) 

Gene ontology (GO) 

Gene-set Enrichment Analysis (GSEA) 

Genetic Epidemiology Research on Adult Health and Aging cohort (GERA) 

Genome-wide association studies (GWAS) 

International Consortium of Blood Pressure (ICBP)  

Linkage disequilibrium (LD)  

MAF minor allele frequency 

Million Veteran Program (MVP) 

Single nucleotide polymorphism (SNP) 

Systolic blood pressure (SBP)  

UK Biobank (UKB) 
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