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 A B S T R A C T 

The present theoretical analysis is to investigate the effect of non-

Newtonian Pseudoplastic & Dilatant lubricants (lubricant blended with 

viscosity index improver)–Rabinowitsch fluid model on the dynamic 

stiffness and damping characteristics of pivoted curved slider bearings. 

The modified Reynolds equation has been obtained for steady and 

damping states of the bearing.  To analyze the steady state characteristics 

and dynamic characteristics, small perturbation theory has been adopted. 

The results for the steady state bearing performance characteristics 

(steady state film pressure, load carrying capacity and centre of pressure) 

as well as dynamic stiffness and damping characteristics have been 

calculated numerically for various values of viscosity index improver using 

Mathematical 7.0 and it is concluded that these characteristics vary 

significantly with the non-Newtonian behavior of the fluid consistent with 

the real nature of the problem. 
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1. INTRODUCTION  

 

In recent years, tribologists have done a great deal 

of work to increase the efficiency of stabilizing 

properties of non-Newtonian lubricants by 

addition of small amounts of long chain polymer 

solutions such as Polyisobutylene, Ethylene 

propylene etc. The use of additives minimizes the 

sensitivity of the lubricant to the change in the 

shearing strain rate. Further, the viscosity of these 

lubricants exhibits a non-linear relationship between 

the shearing stress and shearing strain rate.  

 

 

In last few decades, the rheological effects of 

non-Newtonian lubricants based on different 

fluid models like Power Law and Couple Stress 

fluid model have been studied for the 

performance characteristics of Journal, Squeeze 

film, Annular disks and Externally Pressurized 

bearings. To study the performance properties 

of bearings lubricated with non-Newtonian 

lubricants, Rabinowitsch fluid model is one of 

the fluid models to establish the non-linear 

relationship between the shearing stress and 

shearing strain rate. 
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In the Rabinowitsch Fluid Model, the following 

empirical stress-strain relation holds for one 

dimensional fluid flow:  

3 u
xy xy

y
τ κτ µ

∂
+ =

∂
                (1) 

where μ is the zero shear rate viscosity, k is the 

non-linear factor responsible for the non-

Newtonian effects of the fluid which will be 

referred to as coefficient of Pseudoplasticity in 

this paper. This model can be applied to 

Newtonian lubricants for k = 0, Dilatant 

lubricants for k < 0, and Pseudoplastic 

lubricants for k > 0. The experimental analysis 

of this model for the lubricants for Journal 

bearing has been justified by Wada and Hayashi 

[1] indicating the film pressure and load 

capacity for these lubricants is smaller than 

those of the Newtonian fluids. Afterwards, the 

theoretical study of bearing performance with 

non-Newtonian lubricants using this and other 

models were done by Bourging and Gay [2] on 

Journal bearing, Hsu and Saibel [3], 

Hashmimoto and Wada [4] on circular plates 

bearing, Usha and Vimla [5] on Squeeze film 

between two plane annuli and Hung [6] on 

infinitely wide parallel rectangular plates. The 

dynamic analysis of the slider and other 

bearings has also been the centre of attention of 

various researchers in recent decades. Sharma 

and Pandey [7] presented the dynamic analysis 

of bearings. Some other appreciable 

contributions to bearings lubrication is by 

Shimpi et al. [8], Srikanth et al. [9] and Shenoy 

et al. [10] on slider, hydrostatic thrust and 

journal bearings. However, none of the 

investigators have put up their attention to 

study theoretically, the problem of isothermal, 

incompressible laminar flow lubricant for 

pivoted curved slider bearings taking into 

account the Rabinowitsch fluid model. 

 

In the present paper, the effect of non-

Newtonian lubricants on the steady and 

dynamic characteristics of pivoted curved slider 

bearing has been investigated using 

Rabinowitsch Fluid Model. Since, the problem is 

of non-linear nature in its theoretical 

investigation, the numerical results for steady 

state pressure, load capacity, centre of pressure, 

dynamic stiffness and damping coefficients have 

been obtained using Mathematica 7.0. 

 

Fig. 1.  Schematic diagram of pivoted curved slider 

bearing. 

 

 

2. CONSTITUTIVE EQUATIONS AND 

BOUNDARY CONDITIONS 

 

The physical configuration of a curved slider 

bearing is shown in Fig. 1. The bearing is 

consisting of two surfaces, a plane and a curved 

slider, separated by a lubricant film. The plane is 

moving with a uniform velocity U, as shown in 

the Fig. 1, while the curved surface is at rest. The 

lubricant in the system is taken as non-

Newtonian Rabinowitsch fluid. The body forces 

and body couples are assumed to be absent.  

 

Under the assumptions of hydrodynamic 

lubrication applicable to thin film as considered 

by Dowson [11], the field equations governing 

the one dimensional motion of an 

incompressible non-Newtonian fluid- 

Rabinowitsch fluid model used by Wada and 

Hayashi [1] in cylindrical polar co-ordinate 

system are: 

                0
u v

x y

∂ ∂
+ =

∂ ∂
               (2) 

                
xyp

x y

τ∂∂
=

∂ ∂
                (3) 

                0
p

y

∂
=

∂
                (4) 

which are solved under the following boundary 

conditions : 

u U= ,  0v =       at  0y =              (5) 

0u =      at  y h=              (6) 
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h
v V

t

∂
= = −

∂
     at   y h=                          (7) 

0p =                    at   0,x B=               (8) 

where u and v are the velocity components in x 

and y directions and h is the film thickness 

between the bearings plates respectively. 

 

 

3. ANALYSIS 

 

Integration of equation (3) with respect to y gives: 

              1
p

y cxy
x

τ
∂

= +
∂

               (9) 

From equation [9] and [1] we get: 

3
1

1 1
u p p

y c y c
y x x

κ
µ

∂ ∂ ∂
= + + +

∂ ∂ ∂

    
    
     

           (10) 

Integrating equation (10) under the boundary 

conditions (5,6), we get: 

{

}
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∂
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

 
    
        

             

(11) 

Integrating the equation of continuity (2) under 

the relevant boundary conditions (5,7) for v 

using (11), the modified Reynolds equation is 

obtained as: 

333 5 6 12
20

h hp p
h h U

x xx x t
κ µ µ

 ∂ ∂ ∂∂ ∂  + = − + ∂ ∂  ∂ ∂ ∂ 
    (12) 

The expression for the film thickness in dynamic 

condition is given as: 

( , ) ( ) ( )
s m

h h x t h x h t≡ = +             (13) 

where hs(x) is the steady state film thickness: 

( )
21

( ) 4 1 1 1 112
x x

h x H h rbs c B B

       = − − + + − −    
      

  (14) 

given by Abramovitz [12] and used by Kapur 

[13], and hm(t) is the variation of minimum film 

thickness with the time in dynamic condition 

which becomes zero in steady state, where         

rb = h2/h1 and Hc is the height of crown segment 

(i.e. the maximum height of the curved segment) 

for film shape. 

 
Introducing the dimensionless parameters: 

                     
1

cH
h

∆ =   and   
_

x
x

B
= ,  

the dimensionless Reynolds equation becomes: 

3
3 53 6 12

20
sh hm

x x
p p

h h
x x τ

α ϑ
 ∂ ∂ ∂   ∂ ∂ ∂   

∂ ∂+ = +
∂ ∂

   (15) 

where 

( )( )
2

1
2

4 1 1 1 1s bh x r x
 
          

= ∆ − − + + − −            (16) 

And υ=Bω/U is the damping parameter, 

α=kμ2U2/h1
2 is the parameter of Pseudoplasticity 

responsible for the non-Newtonian behaviour of 

the lubricant. For α = 0 equation (15) becomes the 

classical Reynolds equation for slider bearing with 

Newtonian lubricant. 

 

For the present problem, mh and the pressure 

under damping condition is of the form:  

        
i

mh e τε=              (17) 

                   1
i

op p p e τε= +               (18) 

where ε is dimensionless amplitude of 

oscillation[14] (i.e. maximum variation of film 

thickness due to small oscillation) and po is the 

steady state pressure. 

 

The Reynolds equations under steady state 

become: 

3
3

53
6

20
so o

s s
d p d pd d h

h h
dx dxd x d x

α+ =
 

     
   

       (19) 

and the Reynolds equation under damping 

condition becomes: 

2
93 2 11 12
20

3
52 2

3
20

d d p d poh h is s
d x d xd x

d d p d po oh hs s
d x d xd x

α ϑ

α

     + =    
     

     − +     
     

          (20) 
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4. STEADY STATE PRESSURE 

 

Integrating equation (20) under the condition: 

              0
o

p =  at 0,1x =  

using small perturbation technique, the 

dimensionless steady state film pressure 

becomes 

( )

6
( ) 0 3

3
61 3

0 01 73 20

C hx oo sp x dxo
hs

C hoo sx xC dx dxo
hh ss

α

+
= ∫

+
+ −∫ ∫

 
 
  

     (21) 

where 

1 11 16 0 02 3C dx dxoo
h hs s

= − ∫ ∫             (22) 

and 

( )3
63 11 1

0 01 7 320

C hoo s
C dx dxo

h hs s

+
= ∫ ∫            (23) 

 

 

5. STEADY STATE LOAD CAPACITY 

 

The dimensionless load carrying capacity of the 

bearing can be calculated as: 

                
1

0
oW p dx= ∫            (24) 

In order to avoid very lengthy procedure of 

integration, numerical integration method 

(Gaussian Quadrature formula) has been 

adopted to obtain the numerical values of the 

load capacity using Mathematica 7.0. The 

Gaussian Quadrature formula has been adopted 

due to its higher rate of convergence in 

comparison with the other numerical methods 

like Trapezium Rule, Midpoint Rule and 

Simpson’s one third and three eighth formulae. 

 

 

6. DYNAMIC STIFFNESS AND DAMPING 

CHARACTERISTICS  
 

In order to obtain the analytical solution of the 

dynamic Stiffness Coefficient DS and dynamic 

Damping Coefficient DC , the perturbed film 

pressure gradient  1 /dp dx  is obtained from 

equations (20) and (21) which is given as follows: 

2 5 2 312 3 ( ) ( )1 201
293 2

1 ( )
20

C ix h f x h f xs sdp

dx
h h f xss

ϑ α

α

 + − +  =

+
 
  

 (25) 

Further, the perturbed pressure: 

             ( ) ( ) ( )1 11 12p x p x i p xϑ= +            (26) 

is obtained on integrating the equation (26) 

under the boundary conditions: 

                         01p =    at   0,1x =  

where 

( ) odp
f x

dx
= , 

1
( )11 11 9 20 3 21 ( )

20

5 2 2( ) 1 ( )
203

9 20 21 ( )
20

xp x C dx
h h f xss

f x h f xsx dx
h h f xss

α

α

α

 
 

= ∫  
 { + }
 

 { + } 
− ∫  

 { + }
 

         (27) 

12
( )12 12 9 20 3 21 ( )

20

12
9 20 3 21 ( )
20

xp x C dx
h h f xss

xx dx
h h f xss

α

α

 
 

= ∫  
 { + }
 

 
 

+ ∫  
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 

         (28) 

with 

   

5 2 2( ) 1 ( )
1 203

9 2 20 1 ( )
20

11 9 23 21 1 1 ( )
200

f x h f xs
dx

h h f xss
C

h h f x dxss

α

α

α

 { + } 
∫  
 { + }
 =
 { + }∫   

 

and 

293 21 12 1 ( )
0 20

12 293 21 1 1 ( )
0 20

x h h f x dxss

C

h h f x dxss

α

α

{ + }∫

= −

{ + }∫

 
  
 
  

 

The film force FD, under the damping condition is 

given by: 

0 1
( )D

B
F L p x dx= ∫              (29) 
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In the dimensionless form: 

                      
1

0 1
( )DF p x dx= ∫             (30) 

The resulting dynamic force can be expressed in 

the terms of linearized damping and stiffness 

coefficient14) as follows: 

( )11D D D
i i id

F e S h e C h e
dt

τ τ τε ε ε= − −            (31) 

In the dimensionless form: 

D D DF S i Cϑ= − −              (32) 

From the equations (29) and (31), the 

dimensionless Damping Coefficient CD  and 

Stiffness Coefficient DS  can be found which is 

( ) 1

110
Re DDS F p dx= − ≈ −∫             (33) 

( ) 1

120
Im DDC F p dx= − ≈ −∫             (34) 

 

 

7. CENTRE OF PRESSURE  
 

The centre of pressure of bearing in 

dimensionless form can be given as: 
1 1

0 0
x xpdx pdx= ∫ ∫             (35) 

 

 

8. RESULTS AND DISCUSSIONS  

 

To study the Non-Newtonian effects on the 

steady and dynamic characteristics of pivoted 

curved slider bearing, the numerical results for 

steady state pressure, load carrying capacity, 

centre of pressure and coefficients of dynamic 

Stiffness & Damping have been obtained for the 

different values of parameter of Pseudoplasticity 

α and parameter of slider curvature ∆ within the 

valid range of convergence [1,13].  

 

The nature of lubricant is Newtonian for the 

parameter of Pseudoplasticity α = 0, Dilatant for 

α < 0 and Pseudoplastic for α > 0. The bearing 

become plane pivoted slider for the curvature 

parameter ∆ = 0. For the numerical calculation 

and the analysis of the various results, the 

values for the film thickness ratio 1.2 < rb < 3.7, 

the slider curvature parameter 0 < ∆ < 0.83 [13] 

and the parameter of Pseudoplasticity -0.1 < α < 

0.1 [1,6] have been taken in the present 

analysis. 

 

 

Fig. 2.  Variation of dimensionless steady state   film 

pressure ( op ) with dimensionless coordinate x  for 

rb  = 2. 

 

Figure 2 shows the variation of dimensionless 

steady state film pressure with respect to the 

dimensionless coordinate x  for the curvature 

parameter ∆ = 0, 0.25, 0.5 and α = –0.1, 0.0, 0.1. 

It is observed that for each value of ∆ and x , the 

dimensionless pressure decreases as α 

increases from –0.1 to 0.1 i.e. on comparison 

with the Newtonian case, the dimensionless 

pressure decreases with the Pseudoplasticity 

and increases with the Dilatant nature of the 

lubricant for both the plane and curved slider 

bearings which agrees with the results of Wada 

and Hayashi [1] and Hung [6]. Further, the 

dimensionless pressure is lowest for the plane 

slider (∆ = 0) and for each value of x , the 

pressure increases as the curvature increases 

upto 0.7x ≈ and decreases thereafter. Due to 

this, a shift in the peak value of pressure is 

observed. This establishes the validity of 

present analysis for Newtonian lubricants 

[12,13]. 

 
Figure 3 shows the variation of dimensionless 

steady state load carrying capacity of bearing 

with respect to the curvature parameter ∆ with a 

particular value of step ratio rb = 2 and different 

values of Pseudoplasticity parameter α. 
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Fig. 3.  Variation of dimensionless steady state load 

carrying capacity (W ) of bearing with ∆ for rb = 2. 

 

It is observed that the dimensionless load 

capacity increases with the increase of 

curvature ∆ which agrees with the results of 

Kapur13) and establishes the present results for 

Newtonian lubricants (α = 0). It is further 

observed that  for each value of ∆, the load 

carrying capacity with Dilatant lubricants (α < 

0) is higher than that in the Newtonian case and 

it is less than Newtonian case for Pseudoplastic 

lubricants (α > 0) which is in agreement with 

real nature of the problem1,6). 

 

 

Fig. 4. Variation of dimensionless steady state load 

carrying capacity (W ) of bearing with br . 

Figure 4 shows the variation of dimensionless 

steady state load carrying capacity of bearing 

with respect to the step ratio rb with different 

values of curvature parameter ∆ and 

Pseudoplasticity parameter α. It is observed 

that the dimensionless load capacity increases 

with the increase in the step ratio rb upto rb ≈ 

2 and decrease thereafter. It is further 

observed that for each value of ∆ and rb, the 

load carrying capacity for α = - 0.1 (Dilatant 

lubricants) is higher than that in the 

Newtonian case (α = 0) and for α = 0.1 

(Pseudoplastic lubricants), it is less than 

Newtonian case. Also, on comparison with the 

Newtonian case, the deviation of load capacity 

due to Pseudoplasticity and Dilatant effect is 

significant with rb > 1.5.  

 

 

Fig. 5. Variation of dimensionless damping coefficient 

DC  with thickness ratio rb. 

 

Figure 5 shows the variation of dimensionless 

dynamic Damping Coefficient DC  with respect 

to the film thickness ratio rb for different 

values of curvature parameter ∆ and 

Pseudoplasticity parameter α. The coefficient 

of Damping is observed to decrease with the 

increase in the thickness ratio br .  Also, for 

each value of rb, the coefficient of Damping for 

α = –0.1 is higher than that for α = 0 and for α 

= 0.1, it is less than that in the case of α = 0. 

Therefore, on comparison with the Newtonian 

case, the effect of Dilatant fluid increases the 
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value of Damping coefficient and hence 

enhances the load capacity, whereas, 

Pseudoplasticity decreases the value of 

Damping coefficient. Also, the effect of non-

Newtonian (Pseudoplastic and Dilatant) 

lubricant on damping coefficient is significant 

with rb > 1.5: showing an agreement with the 

result of load capacity discussed in Fig. 4. 

 

 

Fig. 6. Variation of dimensionless stiffness coefficient 

DS  with thickness ratio br . 

 

Figure 6 shows the variation of dynamic 

Stiffness Coefficient DS  of bearing with respect 

to the step ratio rb with different values of 

curvature parameter ∆ and Pseudoplasticity 

parameter α.  The dynamic Stiffness Coefficient 

DS is observed to increase with the increase in 

the step ratio rb up to rb ≈ 2 and decrease 

thereafter for each ∆. It is clearly observed that 

for each value of ∆ and rb, the Stiffness 

Coefficient DS  for 0.1α = − (Dilatant lubricants) 

is higher than Newtonian case ( 0)α = and for 

0.1α = (Pseudoplastic lubricants), it is less than 

Newtonian case. Further, the difference in 

Stiffness coefficient due to non-Newtonian 

(Pseudoplastic and Dilatant) effects is clearly 

observed for rb > 1.5. However, for rb > 1.5, the 

value of the Stiffness coefficient for 

Pseudoplastic as well as Dilatant lubricants is of 

almost same order as for the Newtonian 

lubricants. Thus, the Dilatant lubricants 

significantly increase the life of bearing for rb > 

1.5 and for the Pseudoplastic lubricants, the 

case is reversed. 

 

 

Fig. 7.  Variation of dimensionless coefficients of 

stiffness and damping ( , )D D
S C  with ∆ thickness for 

ratio rb = 2. 

 

Figure 7 shows the variation of dimensionless 

dynamic Damping Coefficient DC and dynamic 

Stiffness Coefficient DS with respect to the 

slider curvature parameter ∆ for different 

values of Pseudoplasticity parameter α with 

step ratio rb = 2. Both the coefficients of 

Damping and Stiffness show an increase with 

the increase in ∆. Further, for each value of ∆, 

both the coefficients of Damping and Stiffness 

for α = - 0.1 (Dilatant lubricants) is higher 

than the Newtonian case (α = 0) and for α = 

0.1 (Pseudoplastic lubricant), it is smaller 

than the Newtonian case. 

 

Thus the effect of increasing the curvature as 

well as Dilatant lubricant is observed to 

increase the Pressure and load capacity. 

Further, increase in dynamic Damping 

enhances the bearing stability and hence its 

performance and increase in the Dynamic 

Stiffness of the bearing increases the bearing 

life due to its property. The results of 

Pseudoplasticity indicate towards the 

instability and shorter bearing life. 
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Fig. 8.  Variation of dimensionless centre of pressure 

of bearing ( )x with rb. 

 

Figure 8 shows the variation of dimensionless 

centre of pressure x  with respect to 

b
r (1.3 3.8)

b
r< < for curvature parameter ∆ = 0, 

0.25, 0.5 with different values of parameter of 

Pseudoplasticity α. It is observed that the centre 

of pressure moves towards the outlet of the 

bearing with increase of br . Also, it is clear from 

the figure that the relative movement of Centre 

of Pressure is enhanced with the increase of ∆. 

Further, for each ∆, the plot of Centre of 

Pressure with 0.1α = − (Dilatant lubricant) is 

above the Newtonian plot ( 0)α = and for 

0.1α = (Pseudoplastic lubricant), it is below 

Newtonian plot i.e. on comparison with the 

Newtonian case, a shift of the Centre of Pressure 

towards the inlet of the bearing is observed 

with the Pseudoplastic lubricants and a shift of 

the Centre of Pressure towards the outlet of the 

bearing is observed with the Dilatant lubricants. 

However, the effect of Non-Newtonian 

(Pseudoplastic & Dilatant) lubricant on centre 

of pressure is observed significant in the case of 

plane slider and it decreases with the increase 

of curvature parameter ∆. Thus, the effect of 

curvature is analyzed to stabilize the centre of 

pressure over the lubricant effects. 

 

 

Fig. 9. Percentage variation of dimensionless centre 

of pressure of bearing with ∆. 

 

Figure 9 shows the variation of dimensionless 

centre of pressure x  with respect to the 

curvature parameter ∆ for different values of α 

and br . It is observed that on increasing the 

slider curvature ∆, the centre of pressure shifts 

towards the inlet of the bearing for each value 

of br  and each value of α. The change of centre 

of pressure due Non-Newtonian (Pseudoplastic 

& Dilatant) effect is observed to be significant 

for ∆≤0.2 and br ≥3 and for this range of 

parameters, the centre of pressure moves 

towards the inlet with the Pseudoplastic fluids 

and towards the outlet with the Dilatant fluids. 

It is clearly observed from the figure that for rb < 

3, the centre of pressure is not much affected due 

to the Non-Newtonian (Pseudoplastic & Dilatant) 

lubricants regardless of the curvature. Again, for ∆ 

> 0.3, the stability of centre of pressure is not 

affected due to lubricants regardless of the value 

of step ratio rb. 

 

Therefore, it is concluded that with a suitable 

choice of design parameters ∆ > 0.2 and 2 < rb  < 

3, the effect of non-Newtonian (Pseudoplastic 

and Dilatant) lubricants on the shift of centre of 

pressure can be avoided, and stability of the 

centre of pressure and hence the stability of the 

bearing can be improved. 
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9. CONCLUSIONS  
 

The effects of isothermal incompressible non-

Newtonian Pseudoplastic and Dilatant lubricants 

on the steady and dynamic characteristics of 

one-dimensional pivoted curved slider bearings, 

neglecting the effects of fluid inertia and 

cavitation, are presented. 

 

For the Rabinowitsch fluid model, the modified 

Reynolds equation considering transient motion 

of the slider is derived. Further, the modified 

Reynolds equations for the steady state and 

damping conditions have been obtained.  

 

To obtain the steady and dynamic 

characteristics of the bearing, the two modified 

Reynolds equations have been solved using 

small perturbation technique. The results are in 

well agreement with the Newtonian results for 

the coefficient of pseudoplasticity α = 0.  

 

The steady pressure and steady load, dynamic 

damping and dynamic Stiffness as well as the 

centre of pressure and hence the bearing 

stability, performance and life depend upon the 

Coefficient of Pseudoplasticity α, step ratio rb 

and curvature ∆.  

 

Based on the results, so obtained, the following 

conclusions have been drawn: 

 

1. Steady state pressure and load capacity 

increases significantly with the Dilatant 

lubricants and curvature, and decreases 

with the Pseudoplastic lubricants. 

2. Dynamic damping and dynamic Stiffness of 

bearing significantly increase with the 

Dilatant lubricant as well as the curvature 

and hence enhances the stability and life of 

the bearing but the case is reversed for the 

Pseudoplastic lubricants. 

3. The steady state load capacity and dynamic 

Stiffness increases with rb upto rb ≈ 2 and 

decreases thereafter while the dynamic 

Damping decreases with the increase of rb. 

4. An indication of small and less significant non-

Newtonian effects on steady and dynamic 

characteristics is observed for rb < 1.7. 

5. The centre of pressure moves towards the 

bearing inlet with the increase of curvature 

∆, and it moves towards the outlet with 

increase of step ratio rb. 

6. The Pseudoplastic lubricants shift the 

centre of pressure towards bearing inlet 

while the Dilatants shift it towards outlet. 

However, with the suitable choice of design 

parameters ∆ > 0.2 and 2 < rb < 3, shift of 

centre of pressure becomes almost 

negligible of the non-Newtonian effects. 
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NOMENCLATURE 

 
B  : Length of bearing, 

D
C : Dynamic damping coefficient, 

D
C : 

3 3
1 D

h C LBµ , 

,h h : Film thickness, 1h h h=  

( )
m

h t : Time dependent film thickness, 

m
h  : 1mh h , 

, ss
h h : Steady state film thickness,

1s s
h h h=  

21
,h h : Outlet and Inlet film thickness, 

,
D D

F F : Film force, 
2 2

1D D
F h F ULBµ=  

cH : Height of crown segment of slider, 

L  : Width of bearing, 

,p p : Film pressure, 2
1p h p UBµ=  

b
r   : Step ratio 2 1h h ,  

SD : Dynamic stiffness coefficient, 

SD  : 
3 2

1h S ULBD µ     

t  : Time, 

,u v : Velocity in x and y directions,  

,W W : Load capacity, 
2 2

1
W W h ULBµ=  

x   : x B , 

α  : 
2 2 2

1U hκµ , 

∆  : 1cH h ,  

ε  : Small amplitude of oscillation, 

κ   : Coefficient of Pseudoplasticity, 

µ   : Zero shear rate viscosity, 

ω   : Frequency of oscillation, 

τ  : tω , 

xy
τ : Shearing stress, 

ϑ  : Bω U . 


