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Abstract. Evapotranspiration (ET) flux constitutes a major
component of both the water and energy balances at the land
surface. Among the many factors that control evapotranspi-
ration, phenology poses a major source of uncertainty in at-
tempts to predictET. Contemporary approaches toET mod-
eling and monitoring frequently summarize the complexity
of the seasonal development of vegetation cover into static
phenological trajectories (or climatologies) that lack sensitiv-
ity to changing environmental conditions. The Event Driven
Phenology Model (EDPM) offers an alternative, interactive
approach to representing phenology. This study presents the
results of an experiment designed to illustrate the differences
in ET arising from various techniques used to mimic phe-
nology in models of land surface processes. The experiment
compares and contrasts two realizations of static phenologies
derived from long-term satellite observations of the Normal-
ized Difference Vegetation Index (NDVI) against canopy tra-
jectories produced by the interactive EDPM trained on flux
tower observations. The assessment was carried out through
validation of predictedET against records collected by flux
tower instruments. The VegET model (Senay, 2008) was
used as a framework to estimate daily actual evapotranspira-
tion and supplied with seasonal canopy trajectories produced
by the EDPM and traditional techniques. The interactive ap-
proach presented the following advantages over phenology
modeled with static climatologies: (a) lower prediction bias
in crops; (b) smaller root mean square error in dailyET –
0.5 mm per day on average; (c) stable level of errors through-
out the season similar among different land cover types and
locations; and (d) better estimation of season duration and
total seasonalET.

1 Introduction

Water flux from the land surface to the atmosphere from
evaporation and transpiration is a key variable that describes
the surface climate and links it to the functioning of ecosys-
tems. ET is characterized by the volume of liquid water
transformed into water vapor and by the energy (latent heat,
LE) spent to effect this phase transition. On a global level,ET
accounts for approximately 62× 1012 m3 of water per year
(Peixoto and Oort, 1992), but this volume is distributed un-
evenly in space and time. Over vegetated surfaces the num-
ber of factors like the precipitation regime, fraction vegeta-
tion cover, and changing canopy structure interact to greatly
complicate theET estimation. The UN Food and Agricul-
ture Organization (FAO) recommended using the Penman-
Monteith model (Monteith, 1965) to estimate “reference”
evapotranspiration (ET0) on croplands (Allen et al., 1998).
The concept ofET0 has been used extensively in agriculture
since it can mimic theET dynamics over cereal crops with
fully developed canopies. Actual evapotranspiration (ETa),
however, poses a great challenge for monitoring and even
a greater one for prediction due to the high variability in
environmental conditions observed across the land surface
(Kalma et al., 2008).

Researchers have developed numerous approaches to re-
trieve ETa. For flux tower data, the eddy covariance
method relates rapid fluctuations in water vapor density to
ETa(Suyker and Verma, 2009). Yet, point-based estimates
do not capture the spatiotemporal variability of evapotran-
spiration, even in feasibly dense networks (Kalma et al.,
2008). Remote sensing provides means to achieve a better
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estimation of actualET in the spatially explicit manner.
Monitoring ofETa is based on retrievals of land surface tem-
perature, which closely follows the sensible heat flux at the
land surface. TheETa is then derived from the energy bal-
ance equations (Kustas and Anderson, 2009). Also, using
surface energy balance (Bastiaanssen et al., 1998; Allen et
al., 2005; Su et al., 2005; Senay et al., 2007; Mu et al., 2007;
Allen et al., 2007) or water balance (Verdin et al., 2002;
Senay and Verdin, 2003),ETa models have had varying de-
grees of success in addressing spatiotemporal variation. Sev-
eral attempts were made to use empirical machine learning
techniques for ET modeling (Yang et al., 2006; Kaheil et al.,
2008; Jung et al., 2010). However, these approaches were
designed for monitoring purposes, only to be used in retro-
spective data analysis and hence offer little for prediction.

The principal challenge in remote estimation ofETa is to
capture temporal canopy dynamics (Cleugh et al., 2007; Mu
et al., 2007; Godfrey et al., 2007; Senay, 2008, Weiß and
Menzel, 2008). Temporal changes in canopy are determined
by the phenological development in specific vegetation types
(Suyker and Verma, 2009) and therefore cannot be well rep-
resented by a model constant. Varying in space and in time,
dynamics of canopy properties often correlates with weather
variables, posing a challenge for modelers to separate their
influences on canopy resistance to transpiration. The vari-
ous trajectories of canopy dynamics composed possibly of
multiple species within a limited area constitute a complex
object of land surface phenology (LSP). Land surface phe-
nology studies the spatiotemporal development of the vege-
tated land surface using remote sensing (de Beurs and Hene-
bry, 2004), and sometimes called “remote sensing phenol-
ogy” (Morisette et al., 2009). Several pioneering studies in
land surface phenology (de Beurs and Henebry, 2004; Reed,
2006; Zhang et al., 2007; Stöckli et al., 2008; Xiao et al.,
2009) point to the need to move beyond the conventional rep-
resentation of LSPs as static trajectories of vegetation cover
properties with negligible response to changing weather con-
ditions.

Traditionally, hydrological models have used just one co-
efficient to represent canopy factor where the value of the co-
efficient stayed the same for the whole season (e.g., Manabe
1969; Weiß and Menzel, 2008). More recent land surface
models (LSM) with hydrology modules typically use static
climatologies (seasonal trajectories averaged over multiple
years) of canopy parameters (Mitchell et al., 2004; Montaldo
et al., 2005; Lawrence and Chase, 2007; Senay, 2008) for
the estimation ofETa and other land surface fluxes. This ap-
proach is employed in a number of models, including MO-
SAIC (Koster and Suarez, 1996), SAC (Koren et al., 2004),
Noah LSM (Ek et al., 2003), MIROC (Hasumi and Emori,
2004), and many other LSMs. In smaller scale studies the
progression sometimes simply runs as a curve fitted into prior
observations (Montaldo et al., 2005) to represent phenology
as a function of time. Despite their robustness, the static cli-
matologies and time functions also introduce errors by ignor-

ing interannual phenological variability and transients due
to abrupt weather events (Milly et al., 2008; Wegehenkel,
2009).

An interactive approach to phenology modeling was first
introduced in applied plant growth models (Pitman, 2003).
Lüdeke et al. (1994), Kaduk and Heiman (1996a), and
Kindemann et al. (1996) developed basic interactive phenol-
ogy modules and applied them in global terrestrial carbon cy-
cle modeling (Kaduk and Heiman 1996b). Relying on proxy
variables such as thermal time, duration of daylight, or accu-
mulated precipitation, interactive phenology modules deter-
mine the start, end, and duration of the growing season us-
ing empirical thresholds (Dickinson et al., 1998; Foley et al.,
2000; Reed et al., 2003). In some vegetation models, devel-
opers went beyond just dates and linked seasonal dynamics
of leaf area index (LAI) to thermal time based on plant ther-
mal response functions (Neitsch et al., 2002; Bondeau et al.,
2007; R̈otzer et al., 2010). In other works researchers started
using multiple factors simultaneously to derive phenological
trajectories (Jolly et al., 2005; Setiyono et al., 2007; Stöckli
et al., 2008). Finally, the interactive approach has been ex-
tended to include the concept of event drivers with the first
successful trials reported in the companion paper (Koval-
skyy and Henebry, 2011). This concept stands apart from
all traditional models that have either air temperature, in-
solation, precipitation, or other weather variables acting as
a single continues factor determining only the phenological
timing or only the shape of seasonal canopy trajectory. The
event driven concept uses continuous weather factors to es-
timate phenological timing while further transforming them
into discrete events – triggers of change in daily canopy dy-
namics. Hence, daily insolation, daily thermal time, precip-
itation, freezing temperatures, and heat stress can simulta-
neously contribute to timing and shape of phenological tra-
jectories. The EDPM can simulate daily canopy dynamics
from the actual weather data and, thus, it has the potential
to replace climatologies in LSMs that still rely on a static
approach to phenology.

In this paper we compare and contrast both static and inter-
active approaches to the modeling of land surface phenolo-
gies. The LSPs representing both approaches are evaluated
via parameterizing simplified model of actual evapotranspi-
ration – VegET – that is currently used operationally in the
Famine Early Warning System (FEWS NET). We use the
original implementation of the VegET model parameterized
with static NDVI climatologies as a starting point. We then
replace the static parameterization with (1) contemporane-
ous NDVI time series to server as a reference and, alterna-
tively, (2) vegetation index (VI) trajectories produced by the
interactive EDPM. Within this experiment, VegET with al-
ternative phenological parameterizations produced dailyETa
values during the growing season for maize, soybean, and
grassland canopies. We compare each modeledETa outcome
with the best available references – ET measured at flux tow-
ers – to characterize performance of the interactive EDPM
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in the coupled scheme relative to typical solutions coming
from climatologies. Specifically, the study aims to answer
the following questions: (1) How does the interactive phenol-
ogy differ from the static phenology? (2) If there are differ-
ences, then when and where are results from the interactive
phenology significantly different from the static phenology?
Analytical procedures used to answer these questions are de-
scribed in detail in Sect. 2.6 that provides the roadmap for
the analyses we used.

2 Methods and materials

2.1 Evapotranspiration model

VegET is a recent development inET modeling; it uses wa-
ter balance principles and remote sensing data to drive the
evapotranspiration process (Senay, 2008). The model is sim-
ple and flexible enough to provide framework for our anal-
ysis. VegET uses the standard Penman-Monteith equation
to address the influence of climatic factors within a single
time step in one location for one vegetation type. Transi-
tion to a different set of vegetation and soil conditions is ef-
fected through two coefficients capturing canopy dynamics
and ground water regime:

ET a = Ks ·Kcp ·ET0 (1)

whereKs is a soil moisture stress coefficient computed from
daily water balance (2) andKcp is a plant coefficient driven
by phenology and distinct fromKc, the traditional stage stan-
dardized crop coefficient recommended by the FAO (Allen et
al., 1998).

if (SWi < MAD) then(Ks = SWi/MAD), else(Ks = 1) (2)

where SWi is soil water content at the current step, MAD is
the Maximum Allowable Depletion level. The rationale for
usingKcp instead ofKc comes from multiple observations
of linear relationships betweenKc and VIs (e.g., Hunsaker et
al., 2003; Tasumi et al., 2005). In evaluating VegET perfor-
mance, Senay (2008) used very simple transformations from
NDVI to Kcp based on the thresholds and observed variabil-
ity of the NDVI derived from AVHRR data. Despite the
coarse resolution of the sensor (1 km pixels), results using
Kcp showed improvement in sensitivity to canopy dynamics
compared toKc and remarkable performance in capturing
the actualET (Senay, 2008): Pearson correlation coefficients
of 0.87 and 0.88 for flux towers in South Dakota and Arizona,
respectively.

2.2 Representation of phenologies

In his original paper, Senay (2008) derivedKcp from long
term averages of NDVI from AVHRR. Smoothed with the
temporal three-point moving average filter, the resulting
curve is an NDVI climatology that is presumed to produce

minimal errors over the long term. A set of empirically de-
rived thresholds was used to mark the beginning and end of
the growing seasons. We saw several limitations to this ap-
proach. First, the NDVI is not consistent across AVHRR,
MODIS, and other synoptic sensors due to differences in sen-
sor spectral bandwidth and band placement (van Leeuwen et
al., 2006; Kovalskyy et al., 2011b). These sensor differences
may cause discrepancies in derivedKcp, but the significance
of these has yet to be determined. Therefore, it was impor-
tant for this study to assess the sensitivity of the model to the
NDVI derived from AVHRR versus MODIS sensors. Sec-
ond, the VegET relies on expert knowledge about the sea-
sonal NDVI dynamics and on published maximum and min-
imum values ofKcp for a given vegetation type. This ap-
proach worked empirically, but for a potential improvement
it is possible to invert (1) and estimateKcp from flux towers.
Therefore, we examined closely the relationship between the
vegetation index and the phenologically forced coefficient.

To deliver a better solution forKcp derivation, we use our
newly-developed Event Driven Phenology Model (EDPM;
Kovalskyy and Henebry, 2011) as an interactive alternative to
the long-term averages used previously with VegET (Senay,
2008; Senay et al., 2009). The EDPM is data driven, but in-
stead of a historical record of satellite observations, it incor-
porates flux tower observations with sequence modeling to
simulate daily dynamics of a modeled variable (e.g., a veg-
etation index), depending on the phase of canopy develop-
ment. The EDPM treats daily forcings as transient “events”
that can potentially modify trajectories of canopy develop-
ment. From collections of such events the model builds the
phenological trajectories at daily steps. The EDPM has been
successfully tested on flux-tower derived normalized differ-
ence vegetation index (TNDVI; Wittich and Kraft, 2008). To
generate an LSP, the model represented the TNDVI value in
the next step as conditioned on the current value, with on-
going events potentially modifying the current TNDVI value
with change slope E as follows:

TNDVI t+1 = Et ·TNDVI t (3)

where TNDVI is the vegetation index value,E is the step-
change coefficient (or slope produced by events), andt is
the time step index. Detailed description of how the EDPM
works is given in the companion paper (Kovalskyy and Hene-
bry, 2011).

In this experiment, the EDPM used six kinds of forcings
that can manifest as events during the growing season: (1)
rain, (2) heat stress, (3) frost, (4) insufficient insolation,
(5) adequate insolation, and (6) growing degree days. The
impacts of these events depend on the vegetation type and
ongoing phenophase. The internal phenological phase con-
trol module is responsible for autonomous estimation of key
growing season dates.

www.biogeosciences.net/9/161/2012/ Biogeosciences, 9, 161–177, 2012



164 V. Kovalskyy and G. M. Henebry: The event driven phenology model

Table 1. Arrangement of vegetation types, locations, and years.

Vegetation Location Year of the
cover type (latitude, longitude) growing season

Maize Mead, NE (41.01, -96.29) 2002
Bondville, IL (40.01, -88.29) 2005
Mead, NE 2006
Bondville, IL 2007

Soybeans Bondville, IL 2004
Mead, NE 2005
Bondville, IL 2006
Mead, NE 2007

Grassland Brookings, SD (44.3453, -96.8362) 2005
Fermi, IL (41.84, -88.241) 2006
Fermi, IL 2007
Brookings, SD 2008

2.3 Study sites

The study sites included rain-fed maize and soybean fields
and grasslands located within the “corn belt” and “soy belt”
of the central United States. Climatic particularities and the
geographic settings of the belts produce strongET gradients.
The northern tier has only 600 mmET annually; whereas, at
the southern end, the annualET can reach 1000 mm. Maize
and soybean are the two most prevalent crops across the re-
gion. For that reason, we chose two sites from the AmeriFlux
network to represent croplands at the extremes of the region:
Bondville, Illinois, to the east and Mead, Nebraska, to the
west. A similar strategy was used for grasslands: the Fermi
site in Illinois represented humid grassland and the Brook-
ings site in South Dakota represented subhumid grassland.
(We did not include in this study a site representing the arid
end of the grassland spectrum.) We presumed that the re-
sponses of the grasses at each location were sufficiently sim-
ilar – all “spring-green” – so as not to require different types
of phenological patterns.

2.4 Data sources

The experiment devised for this study required microcli-
matological records from flux tower sites as well as satel-
lite observed canopy states for the locations. Level 2 flux
tower data were downloaded fromhttp://ameriflux.ornl.gov/;
specifically, the energy fluxes, microclimate records, and soil
moisture for rain-fed agricultural sites and grassland sites.
After checking the data quality (by examining the consis-
tency of records), we selected twelve growing seasons for
the experiment (Table 1).

Remotely sensed observations from NASA’s Moder-
ate Resolution Imaging Spectroradiometer (MODIS) and
from NOAA’s Advanced Very High Resolution Ra-
diometer (AVHRR) were obtained from the follow-

Table 2a. Presence of bias in VegET outcomes from different phe-
nological parameterization sources: distributions are presented by
vegetation types.

Test parameters ET-ED ET-CA ET-CM ET-OB

Maize
Mean of residuals 0.52 1.19 1.18 0.93
Standard deviation 1.34 1.19 1.26 1.11
t-score 5.73 14.70 13. 80 12. 50
p-value < 0.01 < 0.01 < 0.01 < 0.01

Soy
Mean of residuals 0.40 1.08 1.08 0.96
Standard deviation 1.21 0.97 1.01 0.94
t-score 4.97 16.60 16.00 15.10
p-value < 0.01 < 0.01 < 0.01 < 0.01

Grassland
Mean of residuals –0.26 0.31 0.55 0.49
Standard deviation 1.12 1.73 1.80 1.56
t-score 4.15 3.21 5.54 5.60
p-value < 0.01 < 0.01 < 0.01 < 0.01

ET-ED is theET obtained through VegET parameterized byKcp from EDPM;ET-CA
is theET derived via VegET driven byKcp from AVHRR based climatologies;ET-CM
is theET derived via VegET driven byKcp from MODIS based long term averages;
ET-OB is the ET derived via VegET driven byKcp transformed from retrospective
MODIS time series.

ing two sources: (1) MODIS NBAR 0.5 km resolution
product (2000–2009) atftp://e4ftl01u.ecs.nasa.gov/MOTA/
MCD43A4.005/; and (2) AVHRR 1.1 km resolution NDVI
composites by USGS (1989–2007) athttp://edcsns17.cr.
usgs.gov/EarthExplorer/.

2.5 Data preparation

Estimation of the daily actual evapotranspiration with VegET
model required us to calculate the reference evapotranspira-
tion and the soil water stress. However, before the calcula-
tions were made, we had to reprocess the hourly records of
each variable into daily time series of 2 m air temperature [K]
(daily average, daily maximum, and daily minimum); 2 m
specific humidity [kg kg−1] (daily average); surface pressure
[Pa] (daily average); U wind component [m s−1](daily av-
erage); V wind component [m s−1](daily average); down-
ward shortwave radiation [W m−2](daily sum); downward
longwave radiation [W m−2] (daily sum); total precipitation
[kg/m2] (daily sum). The reference evapotranspiration was
calculated using the Penman-Monteith equation (Monteith,
1965). We used the AmeriFlux site descriptions to obtain
values for soil permanent wilting point and water holding ca-
pacity at each site. Finally, we used descriptions of crops
(Nielsen, 2002; Setiyono et al., 2007) and grasses (Hene-
bry, 2003; Henebry, 2010) to obtain rooting depth profiles
and critical soil water depletion levels. Based on these data
we calculated the SW within the root layer. Daily dynamics
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Table 2b. Presence of bias in VegET outcomes from different phe-
nological parameterization sources: distributions are structured by
locations.

Test parameters ET-ED ET-CA ET-CM ET-OB

Bondville
Mean of residuals 0.69 1.15 1.03 0.98
Standard deviation 1.47 1.29 1.23 1.21
t-score 6.62 12.50 11.80 11.40
p-value < 0.01 < 0.01 < 0.01 < 0.01

Mead
Mean of residuals 0.27 1.12 1.22 0.91
Standard deviation 1.06 0.87 1.06 0.84
t-score 4.00 19.70 17.80 16.90
p-value < 0.01 < 0.01 < 0.01 < 0.01

Fermi
Mean of residuals –0.34 0.69 0.98 0.77
Standard deviation 1.14 1.91 1.96 1.81
t-score 3.90 4.65 6.44 5.52
p-value < 0.01 < 0.01 < 0.01 < 0.01

Brookings
Mean of residuals –0.17 –0.10 0.10 0.18
Standard deviation 1.09 1.41 1.48 1.18
t-score 1.92 0.84 0.87 1.95
p-value 0.06 0.40 0.38 0.05

ET-ED is theET obtained through VegET parameterized byKcp from EDPM;ET-CA
is theET derived via VegET driven byKcp from AVHRR based climatologies;ET-CM
is theET derived via VegET driven byKcp from MODIS based long term averages;ET-
OB is theET derived via VegET driven byKcp transformed from retrospective MODIS
time series.

of soil water stress coefficientKs were derived from SW
records via (2) and stored along with dailyET0 as common
inputs for calculations of multiple estimates of actual evapo-
transpiration.

Next step was the calculation ofKcp trajectories from
satellite data. Climatologies from MODIS NDVI and
AVHRR NDVI time series were transformed into theKcp

coefficient for VegET model as specified in Senay (2008) to
represent static LSP modeling approach. The same transfor-
mation method was used on the contemporaneous MODIS
NDVI time series representing observations of the canopy
condition during the modeled growing seasons. The 8 day
composite values of contemporaneous NDVI were linearly
connected to make up daily time series. These contempo-
raneous time series served as a benchmark for the VegET
model performance since withKcp derived from contem-
poraneous observations theETa estimation becomes retro-
spective. Such parameter coefficients should, in theory, pro-
duce better model outcomes despite gaps due to cloud cover.
Comparing other predictedETa against retrospective esti-
mates should give an idea of how closely the two approaches
to phenological predictions match with the best performance
of the VegET model.

Representing the interactive LSP modeling approach, the
EDPM produced the phenological forcings by simulating
seasonal trajectories of TNDVI (see Kovalskyy and Henebry,
2011). Transformation toKcp was affected through the linear
relationships between the observed TNDVI andKcp obtained
from invertingETa and soil moisture data from flux towers
(Fig. 1a, b), yielding slopes of 1.22 for maize-soy cropland
and 1.38 for mesic grassland. Both relationships retained
substantial noise (RMSE of 0.23 and 0.34, respectively).
However, the residuals at grassland sites were found to cor-
relate well with vapor pressure deficit. Therefore, we used
the polynomial fit (Fig. 1c) to model the residuals. When
included into the TNDVI -Kcp transformation process, the
modeled residuals helped to reduce dramatically the spread
of errors around the linear fit (RMSE = 0.26; Fig. 1d). There-
fore, modeled residuals were used to transform the EDPM
derived TNDVI into theKcp at the Fermi and Brookings sites
resulting in specific pattern ofKcp parameters for grassland
in Fig. 2.

Figure 2 shows all combinations of VegET parameteriza-
tion by vegetation factor Kcp.

The parameter sets shown in Fig. 2 were organized as in-
put feeds to the VegET to produce four alternative sets of
evapotranspiration estimates: (1)ET-ED where the ET was
obtained with the VegET parameterized byKcp from the
EDPM2)ET-CAwhere theET was derived with the VegET
driven byKcp based on AVHRR climatologies; (3)ET-CM
where theET was derived with the VegET driven byKcp

based on MODIS climatologies; and (4)ET-OBwhere theET
was derived with the VegET driven byKcp produced from
retrospective MODIS NDVI time series contemporary with
the modeled seasons. In addition, our analysis retained the
most commonly used alternative: the reference evapotranspi-
rationET0(ET-PM). We report these results in Appendix A.
In total we examined four ETa estimates that accounted for
phenology andET0 that simply used the Penman-Monteith
equation (Monteith, 1965) without accounting for seasonal
changes in canopy conditions.

Five distinct sets of ET estimates were compared
(1) against flux tower observations, and (2) among one an-
other to see the difference across considered LSP modeling
approaches. When making the comparisons, we were aware
of variable footprint dynamics in eddy covariance records,
footprint size differences between spaceborne sensors and
flux tower instrumentation, geo-location issues related to re-
motely sensed products, spectral differences of the AVHRR
and MODIS instruments, and many other sources of noise
and uncertainty. All these issues can create deviations in the
flux tower records as well as in the remotely sensed data;
consequently, these deviations can also appear in model out-
put because they were embedded into the data used for model
inputs. Yet here, we follow in the steps of many others (Na-
gler et al., 2005; Cleugh et al., 2007; Mu et al., 2007; Senay
2007, 2008; Zhang et al., 2009) who have used best available
remotely sensed data with high quality ground observations
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Fig. 1. Derivation of the phenological factor in evapotranspiration (Kcp) from TNDVI. (A) Kcp -TNDVI relationship in grassland.(B) Kcp

-TNDVI relationship in cropland.(C) Modeling Kcp residuals in grassland.(D) Relationship between observed and TNDVI in grassland
with modeled residuals added.

Fig. 2. Phenological parameterizations for the VegET.
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to calibrate, refine, and validate their models. Thereby, this
experiment gives a picture of the relative differences between
six realizations of phenological forcings on VegET predic-
tions.

2.6 Roadmap for analysis

We selected four procedures to evaluate the predic-
tive performance of the alternative parameterizations of
VegET: (1) residual analysis; (2) Kolmogorov-Smirnov test
(K-S test); (3) assessment of overall accuracy of different
ETa estimates; (4) a nonparametric evaluation of temporal
aspect in VegET’s performance; and (5) a graphical assess-
ment of modeled values that characterized the overall sea-
sonal performances of the VegET by parameterization types.
With each procedure we aimed to capture particular aspects
of model performance as follows: (1) presence of bias in esti-
mates of daily evapotranspiration; (2) any substantial differ-
ence in distribution of errors as a function of parameteriza-
tion type; (3) ability of the models to maintain similar levels
of accuracy across vegetation types and locations; (4) abil-
ity of the different phenological parameterizations to bring
VegET predictions closer to observations during three main
phases of growing season; and (5) consequences of assump-
tions and errors in phenological forcings projected on total
seasonalET.

To analyze the differences in performance between the
four alternative LSP parameterizations of the VegET as well
asET0, we first focus on analyzing the distributions of resid-
uals (DOR). Here, the shape and location of the distribution
relative to zero deviation describes the precision and accu-
racy of model output. Out of the six sets of results, the
parameterization that produces an average difference from
observations closest to zero is preferred. Also, analysis of
residuals allows using the mean root square error (RMSE)
as a metric of error spread. Lower RMSE means that the
parameters from a particular source produce outcomes with
higher accuracy. A better performing phenology represen-
tation yields a narrow symmetrical residual distribution cen-
tered on zero. We used Student’s t-test to evaluate whether
each residual distribution was significantly different from
zero. However, since the t-test here could not take into ac-
count differences in variance, we needed to complement this
analysis with the Kolmogorov-Smirnov two-sample test to
refine distinctions amongst phenological parameterizations
in the predictions made by the VegET. Given the number of
the alternativeETa estimates, we had ten pairs for compari-
son and so, to reduce the risk of a Type I error, we used the
Dunn-Śıdak procedure to adjust the critical p-value in multi-
ple comparisons (de Beurs and Henebry, 2005).

To assess differential performance across three broad
phenophases (green-up, reproduction, and senescence), we
used a simple nonparametric scoreF to show the chances
of one model to produce a better estimate than another.
The timing of growing season and three phenological phases

was extracted from observed TNDVI dynamics for each
crop/vegetation type following the approach of Viña et
al. (2004). The scoring procedure assigned scores toETa
estimates based on residuals: given a pair ofET estimates
and a specific observation, the estimate with smaller absolute
residual would earn the score of 1 and the one with larger dif-
ference with observation would receive the score of 0. The
total score, whether for a specific phenophase or the whole
season, was calculated as follows:

F =

n∑
1

f

n
(4)

wheren is the number of considered pairs of absolute devi-
ations andf is the score (1 or 0 depending on whether the
deviation is less than the reference deviation). A similar scor-
ing approach is used in internal workings of K-S test (Press
et al., 1986). This technique also aimed to highlight the tem-
poral consistency in accuracy of differentETa estimates.

Finally, we needed a measure of VegET performance that
could summarize pros and cons of the different parameteriza-
tions. We were specifically interested in the ability of the al-
ternative parameterizations to estimate (1) the total seasonal
evapotranspiration and (2) the duration of season in days.
The use ofKcp time series derived from either MODIS or
AVHRR climatologies implies fixed growing season trajecto-
ries and dates for all sites/locations, regardless of vegetation
type. Unlike climatologies, the EDPM can simulate seasonal
trajectories ofKcp for individual crops and grassland also
producing phenological transition dates such as start and end
of season. We analyzed the differences between estimated
and observed lengths of seasons as well as total seasonalET
to identify the better performer. However, the number of sea-
sons considered for each crop (3 crops) or location (4 lo-
cations) was too few to draw statistically reliable inferences
separately for each group out of the total 12 seasons. There-
fore, we have included figures for each crop type and each
parameterization source to illustrate how both the modeled
total seasonalET and the modeled growing season length
differed from observations.

All four aspects of model performance were independently
analyzed in the context of vegetation type and locations. Ge-
ographic differences in evapotranspiration regimes and the
magnitude of dailyETa values between locations gave us
another reason not to compare the distribution of estimates,
but to examine the residuals instead. Vegetation type is an-
other crucial factor potentially affecting parameterizations of
VegET since crops and grassland differ dramatically in terms
of phenology (Henebry, 2010). Therefore, we present dif-
ferences in model performance stratified by location and by
vegetation type.
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Fig. 3. Histograms of differences between modeled dailyETa estimates and flux tower observations structured by vegetation/crop type(A)
and by location(B). Dashed line marks 0 difference point where histograms are expected to be symmetrically centered.

3 Results

3.1 Detecting bias in the outcomes

We calculated the differences from the observations (esti-
matedETa – observedETa) for estimatedETa derived with
the four main LSP parameterizations. Figure 3 displays
the histograms of the DORs for each version of estimated
ETa structured by vegetation type (A) and by location (B).
Central tendencies of obtained DORs are shown as the dot-
ted lines in Fig. 3. The top row shows results from EDPM
forcing, which exhibits low bias in each realization having
dotted lines close to 0. In contrast, the DORs for crops pro-
duced by static forcings (rows 2 and 3) clearly show overes-
timation bias. Slightly better alignments can be observed in
row 4, which show DORs produced by retrospective MODIS

NDVI parameterization of VegET. The grassland DORs ex-
hibit low bias for both climatologies, but also low accuracy
resulting from high variability.

In support of this visual assessment of the DORs, the sta-
tistical analyses confirm significant biases in the estimates of
ET produced by the four realizations of VegET (Tables 2a
and b). However, both tables show that the t-scores were
consistently lower in residuals coming from the EDPM (Ta-
ble 2a) which is evident of less significant bias coming
from this interactive model. In Brookings, South Dakota,
the DOR from EDPM was not significantly different from
reference, most probably due to wide spread of residuals
and not because of good accuracy of the results. In Ta-
ble 2b the situation repeats for climatologies, with only the
South Dakota grassland site showing non-significant bias
in satellite-derived parameterizations. Yet, the biases from

Biogeosciences, 9, 161–177, 2012 www.biogeosciences.net/9/161/2012/



V. Kovalskyy and G. M. Henebry: The event driven phenology model 169

Fig. 4. Diagram of differences between DORs revealed by
Kolmogorov-Smirnov tests. In the top row DORs grouped by veg-
etation type; bottom row – by location. Dark grey color indicates
significant difference with p value<0.01 between compared distri-
butions; white is no significant difference between DORs; light grey
is no comparison made.ET-ED is theET obtained through VegET
parameterized byKcp from EDPM; ET-CA is theET derived via
VegET driven byKcp from AVHRR based climatologies;ET-CM is
theET derived via VegET driven byKcp from MODIS based long
term averages;ET-OB is theET derived via VegET driven byKcp

transformed from retrospective MODIS time series.

the EDPM forcings seen in this experiment were smaller
than those produced by climatologies of canopy parameters
(AVHRR and MODIS). Also in most cases, the EDPM out-
comes had smaller bias than the VegET parameterized with
contemporaneous observations of MODIS NDVI expected to
be a reference of a better VegET performance.

3.2 Contrasting the distributions of residuals from the
four sets of ETa estimates

The distinctions between biases were captured by the
Kolmogorov-Smirnov tests that looked at the divergences be-
tween the entire DORs, not just the means. With Dunn-Sidak
procedure, we adjusted the critical level of p-value to 0.0016,
thereby keeping the overall probability of Type I error be-
low 0.01. Detected differences were organized into diagrams
(Fig. 4) showing exhaustive pairwise comparisons of resid-
uals structured by vegetation type and locations. Across the
vegetation types (top row of Fig. 4) the EDPM parameter-
izations stood apart from every other phenological parame-
terization. Similar situation appeared where residuals were
stratified by location, except for the Brookings site. At that

location the use of EDPM yielded a DOR that could not
be distinguished from DORs coming from other parameter-
izations. The situation at Brookings was unique since the
VegET produced no substantial bias regardless of phenologi-
cal parameterization (Table 2b). Only the Penman-Monteith
model substantially overestimatedETa at Brookings tower
(Table A2, Appendix A).

The performance of VegET parameterized with the long
time averaged MODIS and AVHRR NDVI transformed
intoKcp turned out to be indistinguishable between the two
instruments in all seven comparisons. Only in maize (Fig. 4)
were the DORs of climatologies different from the DOR of
retrospective MODIS derivedKcp parameters. At the same
time, the Kolmogorov-Smirnov test failed to distinguish be-
tween the DORs from referenceET and the DORs from
ET estimates produced with AVHRR and MODIS clima-
tologies in the soybean crop and at Mead, Nebraska. In to-
tal the VegET with different parameterizations went through
28 comparisons with Penman-Monteith model and produced
different DORs in 23 cases (Table A2, Appendix A). These
results together with the smaller biases make the VegET
stand far apart fromET0 but closer to the observedETa val-
ues. Consequently, this distinction serves as an evidence of
the crucial role of canopy conditions and phenology in sea-
sonal variation of actual evapotranspiration.

3.3 Comparing overall accuracy of different
realizations of VegET

In this section the Fig. 5 shows the root mean squared er-
rors as measures of model accuracy structured by vegeta-
tion type and location. RMSEs of the EDPM parameterized
VegET were smaller than the RMSEs ofETa estimates com-
ing from climatologies (2 middle bars). The difference be-
tween these RMSEs reached the maximum of 1 mm per day
(at Fermi, IL, Fig. 5), but in other cases it dropped as low
as 0.1 mm per day (in soybean, Fig. 5a) and even no differ-
ence (in Bondville, Fig. 5b). Sometimes the RMSEs from
MODIS climatologies were comparable to those from clima-
tologies (in soybean and at Mead, NE, Fig. 5), but contempo-
raneous MODIS observations of NDVI in the VegET model
producedETa with smaller RMSEs than climatologies. De-
spite the uncertainty in estimation of phenological timing,
the EDPM managed to predict canopy conditions for VegET
almost as well as contemporaneous MODIS NDVI observa-
tions. The RMSE differences between the EDPM and retro-
spective MODIS NDVI forcings were negligible within the
two crops and grew only up to 0.4 mm per day for the grass-
land in Fermi, Illinois.

Another important issue depicted in Fig. 5 is the variability
of RMSE within one source of canopy parameterization. The
forcing from retrospective MODIS NDVI manages to hold
the RMSE within 1.2–1.6 level in all cases except for Fermi.
ET estimates from climatologies had their RMSEs varying
parallel to each other and inflating greatly in the grassland
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Fig. 5. Root Mean Squared Errors produced by different evapotranspiration estimates: arranged(A) by vegetation/crop type and(B) by
location.

(Fermi, IL). EDPM forcings producedETa with the most sta-
ble RMSE varying from 1.2 to 1.6 mm per day. Comparable
or greater error levels were reached by Nagler et al. (2005),
Cleugh et al. (2007), Mu et al. (2007), Kang et al. (2009),
Zhang et al. (2009). This stable agreement with observations
in the EDPM is achieved with through interactive capturing
of phenological developments. Stability of RSME in VegET
outcomes from the EDPM forcings (as seen in Fig. 5) is su-
perior to forcings from climatologies and matches the one
from Kcp trajectories derived from contemporaneous NDVI.

3.4 Temporal aspects of VegET performance

The temporal aspect of the VegET performance with differ-
ent parameterization remained hidden until this point. To
disclose this detail we calculatedF scores (4) showing the
probability that one set of modeledETa was closer to ob-
servation than another. Here the main intent was to iden-
tify segments of the season when one of the VegET arrange-
ments performed better (or worse). The comparison of the
ET0 against all VegET arrangement was placed in the Fig. 1
of the Appendix A, showing that the climatologies were bet-
ter only during the green-up and brown-down phases, while
EDPM managed to give better results even during the entire
season.

Figure 6 (Sections A and B) shows the chances of EDPM
forcings to be more effective than theKcp parameters from
other sources: AVHRR climatology, MODIS climatology
and MODIS contemporaneous NDVI. The graphs reveal that
EDPM produced parameters yielded higherF -scores than

climatologies coming from AVHRR for maize during green-
up and the reproductive phases. The chances that the EDPM
was performing better were also high during the reproduc-
tive phase in soybeans. For the senescence, both sets ofKcp

parameters coming from MODIS producedETa with some-
what betterF -scores than the EDPM forcings. For crops
(maize and soybeans) and for agricultural sites (Mead and
Bondville), theF -scores of the EDPM coupled to VegET
followed very close patterns during growing seasons: high
scores when tested against AVHRR climatologies and some-
what lower scores against phenological parameters from
MODIS. For grassland, however, the EDPM forcings pro-
duced a very stable (> 0.5) level of F -score when tested
against all other sources of VegET parameterization. The
only noticeable difference within grassland sites arose for the
scores of the EDPM over contemporaneous MODIS NDVI
derived forcings.

3.5 Assessment of impact from errors in daily estimates
on total seasonalETa

Figures 7 and 8 give a bigger picture, showing the conse-
quences of biases in the VegET forcings as well as choices
made for determining phenological parameters of growing
seasons. When considering only the observed timing of a
growing season, it became apparent that the overestimation
of daily ETa by VegET climatologies results in additional
100 mm ofET per season on average for crops and some-
what less for grassland (Fig. 7). With observed ranges of
seasonalET between 400 and 700 an error of this magnitude
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Fig. 6. Temporal details of VegET performance with different phenological forcings revealed byF -scores. Results arranged (A) by vegeta-
tion/crop type and (B) by location.

Fig. 7. Consequences of biases in VegET estimates and in total sea-
sonal evapotranspiration: (1)ET obtained through VegET param-
eterized byKcp from EDPM; (2)ET derived via VegET driven by
Kcp from AVHRR based climatologies; (3)ET derived via VegET
driven byKcp from MODIS based long term averages; and (4)ET
derived via VegET driven byKcp . Error bars show standard errors.

can be considered quite substantial. The EDPM provided pa-
rameters with considerably smaller biases resulting in only
an additional 50 mm ofET per season for crops (equivalent
to ∼10 %), but it came short by 50 mm (or∼10 %)in grass-
land.

Figure 8 shows that in addition to the overestimation of
daily ETa, climatologies added extra days to the duration of
a season. The extra time was more apparent in crops adding
more than 80 days to the growing period of the year. The
automatic phenological control module of the EDPM over-
estimated season durations in crops by less than 20 days on
average. For grassland the EDPM underestimated the length

Fig. 8. Implications from choices of methods of determining grow-
ing season parameters: (1) Differences between observed and es-
timated season duration from EDPM; (2) Differences between ob-
served and estimated season duration from retrospective MODIS
time series; (3) Differences between observed and estimated season
duration from AVHRR based climatologies; and (4) Differences be-
tween observed and estimated season duration from MODIS based
long term averages. Error bars show standard errors.

of growing cycle by around 30 days. This last issue, how-
ever, was better handled by climatologies where they overes-
timate the length of growing period for grassland by 20 days.
Finally, Figure 8 shows that the differences in observed and
estimated lengths of growing season in retrospective MODIS
NDVI were not as big as in climatologies but not as small as
those of the EDPM.
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4 Discussion

4.1 Phenology factor in evapotranspiration process

This modeling experiment highlighted not only the role of
phenology in the evapotranspiration, but also showed the
particular significance of phenological factor in time, space,
and vegetation type. Clearly, the overall impact from phe-
nology in ET over vegetation will always be relative to the
dynamic range of changes caused by other factors. The
best instance is presented by grassland sites where the dy-
namic range of physiological changes in the canopy is of-
ten overshadowed by the response of grasses to water stress.
ConsistentF -scores in Fig. A2 (Appendix A) for grassland
during all three phenophases tell that VegET gives advantage
over the P-M model mostly through its ability to incorporate
the water stress. For crops, however, the phenological fac-
tor becomes the dominant source of advantage pushing the
F -scores up during green-up and senescence. Therefore, in
the systems where other factors have minor influences, phe-
nology becomes the key driving force for evapotranspiration,
second only to the weather. The particularities of phenolog-
ical development and the interaction of phenology with the
climate are also important as plant communities shape their
growing cycles dynamically in response to current weather
conditions. Capturing those particularities by the EDPM pro-
vided an advantage and a better idea about evapotranspira-
tion not only on a daily basis but also when giving a seasonal
summary.

4.2 Performance of VegET in point based estimation of
actual evapotranspiration

The representation of phenology factor turned out to be the
key issue of the VegET performance in capturing the tempo-
ral dynamics ofETa. In fact, it is fair to say here that the
VegET output was at least as good as its phenological pa-
rameters. As a reference point, contemporaneous 8-day ob-
servations of NDVI from MODIS helped the model estimate
ETa with accuracy that surpassed Penman-Monteith equation
by at least 0.5 mm per day. This translates into five tons of
water per hectare per day, which can be crucial for farmers
trying to estimate plant water demand for irrigation. The data
product we used as a reference is based on multiple satellite
observations and is released only long after the observations
occur. Accordingly, for forecasting purposes it is necessary
to rely on long term averages of the phenological variable or
some prognostic phenology model. The results of this ex-
periment suggested that, in the case of climatologies, there
was a loss of accuracy. However, the use of the event driven
phenology model as a source ofKcp parameter helped the
VegET to give prognoses ofETa values that were at least as
accurate as those produced using 8-day MODIS NDVI ob-
servations. The EDPM achieved this level of performance
by capturing fine temporal details of canopy componentKcp.

Most of these details were averaged and smoothed out in cli-
matologies. The retrospective time series of MODIS NDVI
appear to do a better job than climatologies, but the tempo-
ral details were lost because of missing observations due to
clouds (Roy et al., 2006), 8-day release period and 16 day
rolling compositing algorithm (Schaaf et al., 2002) that may
have smoothed out larger temporal fluctuations in NDVI.

Looking at all the aspects of VegET performance in this
experiment, we ranked the parameterization sources in a
quantitative manner giving 1, 2, or 3 points to the source that
performed best, second best, and third for each of the sev-
eral evaluation criteria. Lower scores indicated better perfor-
mance.

(a) For the smallest average bias, the EDPM ranked first,
with retrospective MODIS NDVI second, and clima-
tologies third. Although the Student t-test identified
all biases as significant, the Kolmogorov-Smirnov tests
suggested that the smaller residuals from the EDPM
were significantly different from the residuals produced
with other phenological parameterizations. Also in the
analysis of DORs, the contemporaneous MODIS NDVI
parameters stood in between the EDPM forcings (low-
est biases) and the climatologies (highest biases).

(b) Accuracy assessment with RMSE andF -scores resulted
in the contemporaneous MODIS NDVI taking the first
position and the EDPM and climatologies placing sec-
ond and third, respectively. Even though the retrospec-
tive MODIS NDVI forcings were better inF -scores, the
EDPM was not too far behind and it had slightly smaller
and stable RMSE. Climatologies, however, were con-
siderably behind.

(c) Producing estimates of total seasonalET and growing
season duration, the EDPM outperformed contempo-
raneous MODIS NDVI and it was a clear winner for
crops. However, the advantage (smaller differences in
total seasonalETa) of the interactive model was not as
obvious for grassland. TheKcp parameters from clima-
tologies placed third with similar differences with ob-
served seasonalET and durations of growing period.

The analysis conducted for this study would benefit from a
year by year comparison of performance between the four ar-
rangements of VegET during different phenophases. It could
help reveal reasons for poor performance by climatologies
during anomalous years with shifts in the timing of spring or
late season droughts. Unfortunately a lack of complete tem-
poral overlap and large distances between flux tower site lo-
cations prevented us from including such an analysis in this
study. We also have to point out the smoothing applied to
the climatologies, as prescribed by Senay (2008), may have
disadvantaged produced phenologies relative to the locally
trained EDPM driven by contemporary weather. At the same
time, this study was meant to show that interactive capturing
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of fine temporal details in canopy development can bring the
expected advantage to the VegET.

Overall, this investigation demonstrated that, when param-
eterized by climatologies, the VegET lost sensitivity to ongo-
ing shifts in phenological timing and to finer temporal fluc-
tuations of canopy characteristics, especially in crops. Using
empirical thresholds for determining the start and end of the
growing season binds the original methodology to the set-
tings of the original experiment. Transfer of the same thresh-
old to different locations was often problematic for spectral
indices such as the NDVI (Verstraete et al., 1996). There-
fore, perhaps, even the retrospective MODIS NDVI could
not capture the growing season duration using the original
constraints proposed for the VegET (Senay, 2008). Relying
on a different mechanism and incorporating multiple factors
for capturing phenological parameters, the EDPM gave a
more realistic response to the changing weather conditions
and thereby yielded substantially smaller errors for crops as
well as for grassland. Therefore, the overall ranking makes
the EDPM-producedKcp the best choice for VegET parame-
terization out of the four evaluated in this investigation.

4.3 Addressing issues in the EDPM functioning
encountered during the experiments

Several caveats should be disclosed here for the future use
of the EDPM in the described coupling scheme. First of all,
the correction for drift in invertedKcp on grassland sites that
correlated with VPD appeared to bring no advantage to the
EDPM and should not be used in future research or applica-
tion. Further, EDPM predictions, compare to climatologies,
require additional input data and computational effort. The
forecast made by the EDPM will depend on the reliability
of weather scenarios supplied to the model, but so will the
reference evapotranspiration required by VegET. For other
coupling schemes that do not use weather data already, de-
ployment of the EDPM may be redundant unless the higher
level of accuracy is an absolute requirement. Long term av-
erages may deliver sufficient results for places with stable
species composition and little to no interannual variation in
the course of the growing season. Meanwhile, the EDPM can
provide a better phenological parameterization to models of
land surface processes, but one must consider that not every
factor influencing phenology has yet been brought into the
modeling framework. Furthermore, the EDPM was trained
to simulate phenologies for only three vegetation types. The
automatic estimation of growing season parameters (dates)
still constitutes a considerable source of error. The novelty
of the event driven approach to phenology may well present
an obstacle for wider applications of the model.

The EDPM has made its first steps in simulation ex-
periments, revealing some problems related to the unset-
tled methodological issues discussed in the companion paper
(Kovalskyy and Henebry, 2011) and to limitation in data re-
sources for training and testing. These problems can be and

will be resolved as more flux tower data flow to the archives
of AmeriFlux and other microclimatological data networks.
However, we do not propose here that all of the problems in
ET forecasting can be solved with good phenological forc-
ing, since it has only a relative impact onET. Training the
model on new data and refining the patterns of vegetation re-
sponses to different event types has the potential to improve
accuracy of outcomes produced by the EDPM. Though, the
consistency and quality of microclimate records – training
materials – can pose an obstacle for addressing model per-
formance issues. New types of events should be included in
the framework to drive the curves of canopy dynamics of cur-
rent and new vegetation types. The work should continue on
enhancing the precision of automatic estimation of the phe-
nological transition dates.

4.4 Assessing the application potential for the event
driven phenology model

Despite known issues, the EDPM and VegET coupling
scheme showed potential to be used in modeling of evapo-
transpiration over vegetated areas. The biases and error mea-
sures of the produced estimates were comparable to those en-
countered in other investigations (Nagler et al., 2005; Kang
et al., 2009; Zhang et al., 2009). Stability of error levels
across vegetation types and locations seen in this experiment
makes this scheme attractive for spatially explicit estimation
of actualET. Narrow focus of the EDPM on vegetation types
allows using maps of vegetation species and mix LSPs within
areal units (here pixels, but potentially as polygons). The
interactive approach of the EDPM is anticipated to produce
more precise trajectories of canopy characteristics, capturing
more finely resolvedET changes on daily and growing sea-
son bases. The inherent limitation for the VegET and EDPM
scheme in capturing spatial details would be the relatively
coarse spatial resolution of input weather data. However, us-
ing the built-in data assimilation scheme (see Kovalskyy and
Henebry, 2011), the EDPM is expected to bring in the moder-
ate spatial resolution MODIS NDVI observations to enhance
the resolution of VegET model outcomes. Although the cur-
rent small number of supported vegetation types limits the
domain of application to croplands and grasslands of the cen-
tral part of the United States, extension to other vegetation
types should be possible, given the availability of appropri-
ate quality flux tower data. The results of spatially explicit
trials of the EDPM plus VegET scheme are to be reported in
the forthcoming paper (Kovalskyy et al., 2011a).
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5 Conclusions

This investigation has shown how multiple aspects of phe-
nology affect evapotranspiration during the growing season.
It provided statistical and graphical evidence that account-
ing for phenology improves the accuracy ofETa estimation
by the VegET (Figs. A1 and A2 in Appendix A). The level of
improvement, however, varies across sources of phenological
parameters. We also found that when using climatologies the
VegET overestimated total seasonalET in two aspects. First,
climatologies forced the model into overestimation of daily
ETa during the actual growing season and therefore increase
total seasonalET. Second, climatologies overestimated dura-
tions of seasons, adding to the gap between estimates and ob-
servations of totalET flux during that period. With the stan-
dard deviation of more than 5 weeks within crops, it resulted
in an additional 100 to 200 mm ofET per season, which can
account for about 25 % of seasonal ET in drier western sites.
Therefore, we conclude that when used with climatologies,
the VegET showed only a modest sensitivity to variation in
growing season weather, yet it can offer a benefit if no better
alternative is available.

Parameterization of the VegET with the EDPM-simulated
Kcp proved to be more advantageous in capturing the impact
of phenology onET than the one provided by the climatolo-
gies. The EDPM produced dailyETa with smaller and more
consistent RMSE. It is possible, though, that some of the
differences between the climatologies and the event driven
model for grassland were due to the way of derivation of the
canopy coefficient. Yet, the residuals produced by the EDPM
were closer to zero for agricultural sites and differed sub-
stantially with distribution of residuals coming from VegET
with long term averaged AVHRR or MODIS forcings. The
EDPM reached the accuracy of VegET results comparable
to the level achieved by parameters from contemporaneous
MODIS NDVI. The overestimation of total seasonal evap-
otranspiration did not go beyond 15 %, even for the maize,
while the automatic PTP estimation system still has potential
for improvement. Hence, we conclude that the EDPM is a
better option for phenological parameterization of land sur-
face models than long-term averages of canopy properties.

Finally, this study has opened the door and established a
precedent of the EDPM deployment in a coupling scheme to
estimate a land surface flux that depends on vegetation dy-
namics. Even just forET estimation/monitoring over vege-
tated surfaces, there is an array of models listed by Allen et
al. (2007), Kalma et al. (2008), Kustas and Anderson (2009)
that might be able to adopt the EDPM for parameterization
of their regional applications. At this point, the encouraging
results of the EDPM indicate a promising new approach to
overcoming the challenge of addressing phenological factors
in models of land surface processes.

Appendix A

Table A1. Presence of bias in reference evapotranspiration
(Penman-Monteith) across crops and locations.

Test Mean of Standard t-score p-value
arrangements residuals deviation

Maize 1.73 1.35 18.80 < 0.01

Soy 1.21 0.94 19.2 < 0.01

Grassland 1.78 2.04 15.70 < 0.01

Bondville 1.77 1.33 18.90 < 0.01

Mead 1.22 1.02 18.60 < 0.01

Fermi 2.14 2.43 11.40 < 0.01

Brookings 1.40 1.42 12.40 < 0.01

Table A2. Difference between DORs of reference evapotranspira-
tion and various arrangements of VegET across crops and locations.

ET-ED ET-CA ET-CM ET-OB

Maize
z-score 5.69 2.61 2.40 4.10
P-value < 0.001 < 0.001 < 0.001 < 0.001

Soybeans
z-score 5.36 1.07 1.24 1.68
P-value < 0.001 0.200 0.092 0.007

Grass
z-score 9.50 6.39 5.14 5.75
P-value < 0.001 < 0.001 < 0.001 < 0.001

Bondville
z-score 5.25 2.94 3.05 3.76
P-value < 0.001 < 0.001 < 0.001 < 0.001

Mead
z-score 5.34 1.35 0.64 2.48
P-value < 0.001 0.052 0.802 < 0.001

Fermi
z-score 6.94 3.64 2.98 3.49
P-value < 0.001 < 0.001 < 0.001 < 0.001

Fermi
z-score 6.49 5.50 4.74 4.98
P-value < 0.001 < 0.001 < 0.001 < 0.001

ET-ED is theET obtained through VegET parameterized byKcp from EDPM;ET-CA
is theET derived via VegET driven byKcp from AVHRR based climatologies;ET-CM
is theET derived via VegET driven byKcp from MODIS based long term averages;
ET-OB is the ET derived via VegET driven byKcp transformed from retrospective
MODIS time series.
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Fig. A1. Root Mean Squared Errors produced by Penman-Monteith model: arranged(A) by vegetation/crop type and(B) by location.

Fig. A2. Temporal details of Penman-Monteith model performance relative to the VegET with different phenological forcings revealed by
F -scores. Results arranged(A) by vegetation/crop type and(B) by location.
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