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Abstract. We consider an adiabatic-type (approximate) in- The emergence of zonal jets has been and continues to be
variant that was earlier obtained for the quasi-geostrophidntensively studied in both geophysical and plasma contexts.
equation and the shallow water system; it is an extra invari-The main purpose of the present paper is to draw attention
ant, in addition to the standard ones (energy, enstrophy, mato the fact that the equations used to describe zonal jets have
mentum), and it is based on the Rossby waves. The presen@n unusual adiabatic-like (approximate) invariant (in addi-
of this invariant implies the energy transfer from small-scaletion to the usual energy—momentum); this makes the inverse
eddies to large-scale zonal jets. cascade anisotropic and leads to the energy transfer towards
We show that this extra invariant can be extended to thezonal jets (see Seet.2). As will be clear below (Secp), this
dynamics of a three-dimensional (3-D) fluid layer on the betaextra invariant is very rare: almost all other physical systems
plane. Combined with the investigation of other researchersdo not have anything analogous to such an invariant. The
this 3-D extension implies enhanced generation of zonal jetspresence of this conservation in various geophysical systems
For a general physical system, the presence of an extr@within the beta-plane approximation) is a strong indication
invariant (in addition to the energy—momentum and wave acthat the extra invariant indeed plays a role in the emergence
tion) is extremely rare. We summarize the unique conservaof zonal jets.
tion properties of geophysical fluid dynamics (with the beta The extra invariant is adiabatic-like, meaning that the in-
effect) that allow for the existence of the extra invariant, andvariant is conserved approximately over a long time. Usu-
argue that its presence in various geophysical systems is ally, in the theory of dynamical systems, the adiabatic invari-
strong indication that the formation of zonal jets is indeed ance is due to the slowness of some parameter variation (e.g.,
related to the extra invariant. Landau and Lifshitz1976. However, here the adiabatic-like
Also, we develop a new, more direct, way to establish ex-invariance is due to the smallness of wave amplitudes: it is
tra invariants (without using cubic corrections). For this, we assumed that the dynamics is weakly nonlinear and is dom-
introduce the small denominator lemma. inated by the triad interactions. It should be noted that the
equations describing zonal jets have anisotropy only in lin-
ear terms, so strongly nonlinear regimes cannot lead to the
1 Introduction zonal-meridional asymmetry. Of course, there are intermedi-
ate situations when linear and nonlinear terms have compara-
Alternating zonal jets are found in the large-scale dynamicsple magnitudes. Then real or numerical experiments should
of oceans and atmospheres under broad conditions. Clearlye used to see the role of the extra invariant in the formation
seen on Jupiter, zonal jets are also unambiguously observegk zonal jets; we hope that the present paper gives qualita-
in Earth's oceans\laximenko et al.2009. The significance  tively the right picture. It is also unknown whether the extra
of zonal jets also stems from the well-known mathematicalinvariant is related to the conservation of potential vorticity,
analogy between rotation and magnetic field. Similar equawhich is an essential feature of geophysical systems. Often,
tions and similar jets also appear in the dynamics of magnepesides weak nonlinearity, we also require the slowness of

tized plasmas; these jets serve as transport barriers in tok&ome parameter variation #pace(which usually holds with
maks, improving conditions for the controlled nuclear fusion high accuracy).

with magnetic confinement (e.gManz et al, 2012.
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50 A. M. Balk: Extra invariant and zonal jets

At this point, it is beneficial to recall two seemingly unre- 1.2 Zakharov—Schulman test of integrability:
lated problems (Sectd.1and1.2). Then in Sect2, we de- degenerative dispersion laws
scribe the extra invariant and summarize the corresponding
unique conservation properties of geophysical systems than a different developmenZakharov and Schulmaf198Q
allow for its existence. This summary includes the extension1988 posed the question “When a given nonlinear wave sys-
of the extra invariant to 3-D fluid layers, which is derived in tem is integrable?” They argued that, to be integrable, the
the present paper (Se8). We see how this invariant implies System should possess an additional conservation law, be-

the energy cascade towards zonal jets in Skct. sides the energy and the momentum (and, sometimes, the
wave action).
1.1 Boltzmann’s collision invariants Suppose our nonlinear wave system is given in the Fourier

representation as dynamics of wave amplituggs)
Introducing his kinetic equation, L. Boltzmann (1875) in-
vestigated the general form of the thermodynamic equilib-. 9 _ 1
rium (Maxwell distribution). Boltzmann studied rarefied gas ' 3; %t =% (kv a, + 5 | V ks, kz, k3)
when th_e_main interaction_ t_)etween the molecules are bi- Ay aiyd (k1 — ko — k3) dkpdkz + ... (6)
nary collisions. In each collision, momenta of two molecules

before p1, p2) and after ps, ps) the collision satisfy the g that the time derivative of a wave amplitude (with some

momentum-—energy conservation: wave vectork,) is determined by the contributions of all
5 5 s other waves. The dispersion law(k) determines the linear
p1+p2=p3+ps.  pi+pr=p3+ps (1) part of Eq. 6), and the coupling coefficient (kq, ko, k3)

. ) ) determines quadratic nonlinearity. The dots stand for other
These relations imply the conservation of the total momen-nonjinear terms; these are other quadratic terms (namely, the

tum and energy ones containinga™® anda*a*; * denotes complex conjuga-
tion), as well as higher order nonlinearity terms. The sys-

P= /pr dp. E = /p2dip, 2) tem is obviously translationally symmetric with respect to
shifts in time (since all coefficients are time-independent),

so it conserves the energy. The system is also translationally
symmetric with respect to shifts in space, due to the presence
of the delta function of the wave vectors (it just provides a

where N, is the particle distribution function (the num-
ber of molecules with momentum). The total number of

molecules way to write the convolution), so the system conserves mo-
B 4 3 mentum.
N= | Npdp (3) Zakharov and Schulman assumed that the wave ampli-

tudes are chosen to be canonical Hamiltonian variables, so
is also conserved, which corresponds to the obvious relatiofhat the dynamical Eq6j has the form

1+ 1=1+1 for each binary collision.

Boltzmann posed the following question: does there exist, 9 SH
another functionp(p) that is also conserved in binary colli- ;% = 5=
sions, so that the relations in EQ) fmply the relation k

@)

with some Hamiltoniart{ expanded in a series over powers
p(pD)+e(p2)=¢(p3)+¢(ps) ? 4) of wave amplitudes

In other words, does there existp), such that Eq.4) holds

for any four vectorg1, p», pa, pa, bound by Eq.1)? Then H= /w(k) agay dk

Boltzmann’s kinetic equation would additionally conserve

the integral + > / V (k1, ko, k3) a;l Ak, agy6 (k1 — ko — k3) dkodks

] =/<P(P) N, dp. (5) +{c.c.} + {...other nonlinear terms.} (8)

({c.c.} means the complex conjugated term). Then the mo-

It is supposed that the functian(p) is linearly independent mentum is

of the five functions: 1, three components mfand p2, so
that the quantityg) is independent of quantitie®)(and @). .

If there were such a functiop(p), then the thermody- ¥ = /k“k“k dk., ©)
namic equilibrium would be different. Howevdpltzmann
(1879 found that there is no such a functigip) (provided  and the energy is the Hamiltonian. Zakharov and Schulman
it is smooth enough; see alSercignanil990. investigated when the wave system has another conservation
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A. M. Balk: Extra invariant and zonal jets 51

law: 2 Unique conservation properties of large-scale
geophysical fluid dynamics
I = /(p(k)akazdk _ _ _
2.1 Quasi-geostrophic equation
1 *
T35 / F (ky, k2, k3) ay, ak, ak;d (ky — k2 + k) dkz2 dks The Rossby wave dispersion law turned out to be degenera-
tive (Balk et al, 1997, Balk, 1991).
When dispersion law has the form
(with undeterminedp, F, and so on)y is supposed to be B p ) 5 s
linearly independent ok and w, so that! is independent @ (k) = T [k= (p.q@), k“=p°+q ] (13)
of the momentum and energy. They found that in order for ) )
Eq. (10) to be conserved by the dynamics in EG~(8), the _(oz andg are pargmeters), the resonance _relatlons inEy. (
following alternativeshould hold. At least one of the two IMPly EQ. (11) with ¢ (k) equal to the function

conditions are to be satisfied:
Ot(q+px/§) a(t]—p\/ﬁ)
1. The functione (k) is conserved in the resonant triad 7 (k) = arctan——->—— —arctan———>—— (14)

k2 k2
interactions: the equation

+ {c.c.} + {...other nonlinear terms.} (20)

(Balk, 1991). The conservation of the function in E4.4) in
o (k1) = ¢ (k) + ¢ (k3) (11) triad resonances implies that the quasi-geostrophic equation
2
holds for all vectorsk1, k», andks bound by the reso- (A‘/’ —a W)[ + BYx + Yy AV — Y Ay =0 (15)

nance relations . . .
possesses an approximate invariant

ky=ko+ ks, (k1) =w (k) +w(k3).  (12) 111
1=ketks  wky=wlk)tolks 1:5/;n<k>|gk<t>|2dpdq, (16)

2. Or the resonant triad interaction is impossible. This with Oy (r) being the Fourier transform of
can happen in two ways: Ed.%) can have no solutions k 9
(like it happens for the gravity waves); or the nonlinear Q(x, y, 1) = Ay — a2 (a7)
coupling coefficienV (k1, k2, k3) can identically van-

ish on the resonance manifold defined by E48).( The function in Eq. 14) is conserved exactly imesonant

triad interactions, but the integral in EqlL®) is conserved
Introducing the classical scattering matriZakharov and  approximately inall interactions (including triads that are
Schulman(1988 obtained other necessary conditions for far from being resonant). (If typical length scaleand pa-
the conservation of Eq.10). These are equations on rameterg are normalized to 1, andis a characteristic non-
F (k1,k»,k3) and other kernels of higher order nonlinear dimensional wave amplitude, then the invariant in Ekf) (
terms in Eqg. 10). They demonstrated198Q 1988 their has a magnitude of (¢2), while its variationAl = I () —
arguments on several integrable systems, in particular, thé(0) has a smaller magnitude @/ = O () on long time

Kadomtsev—Petviashvili equation. intervals O (1/¢); seeBalk and van Heerder2006 for de-
They also called the dispersion lawk) — which admits  tails.)
the additional conservation in EdLY) — degenerative Feraponto(1992 realized that the problem of collision

The Zakharov—-Schulman Edl1) and (12) for nonlinear  invariants (for rarefied gas, Seétl) and the problem of de-
waves are similar to Boltzmann’s Egd) énd @) for rarefied  generative dispersion laws (for nonlinear waves, Se@).
gas, but waves provide a bigger variety: can be posed as a problemvaéb geometrywhich has been

o ) i developing since the 1920Blgschke 1932.
a. The main interactions can involve any number of |5 particular, using the web geometry results, it is possi-
waves, in particular, only three waves (like in E4& e 1o show Balk and Ferapontq 99§ that the function in
12). Eqg. (14) is unique any functionp(k), conserved in triad res-

b. There are many forms of the dispersion law, not just_onances in Eq.1Q) —with the Rossby dispersion law(k) —

the quadratic functiom (k) = k2 (like in Boltzmann's S & linear combination ok, w (k), andn (k).
case). The connection to the web geometry also shows how ex-

ceptional the systems with extra invariants are. As one can
c. The physically interesting media (in which the waves guess, it is rare that four Eqslk) and (2) (the first equa-
propagate) can have different dimensions db& tion in (12) consists of two scalar equations) in the six-
1,2,3. dimensional space of wave vectdrs, ko, k3 determine a
manifold of dimension 3. And it is indeed extremely rare (see
Balk and Ferapontq\l 998 for details).
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52 A. M. Balk: Extra invariant and zonal jets

Even though Eq.1(2) follows from the resonance relations  First, the shallow water dynamics in EqL9 — besides
in Eq. 12) (Eq. 11is only linearly independent of Eq.2), Rossby waves — contains the inertia—gravity (IG) waves. The
the integral (Eq16) is completely independent of the stan- former could (in general) leak energy to the latter, thereby de-
dard invariants (energy—momentum), because the integransitroying the conservation of the extra invariant in Eif) (-
containsQy (t). which is based only on Rossby waves. However, the coupling

The presence of the extra invariant in Efg)implies the  coefficient of triad interaction between the IG and the Rossby
energy transfer from small-scale eddies to large-scale zonalaves vanishes, provided the Coriolis parameter is constant.
jets Balk, 2005. If f(y) varies sufficiently slowly (i.e.8(y) = f’(y) is suf-

This is often butnot alwaysthe case: the extra invariant ficiently small), then the extra invariant slowly changes due
does not lead to zonal jets, when the energy source is on larg® 8 # 0, but within its non-conservation due to the quar-
scales (i.e., the forcing scalteis long-wavekr < «). Inthe  tet interactions (recall that the invariant is only adiabatically
latter situation, the energy accumulates in the sectors of polaconserved and can slowly change).
angles) = arctarig/p) such that 60 < |9 < 90°. However, Second, the beta plane in EQ.9f can be not only mid-
in the present paper we do not need to deal with this, sincéatitudinal but also close to the Equator. As we approach
we are concerned with the opposite situatiop « for all k. the Equator, the Coriolis parameter decreases, and the quasi-
As k — oo, the extra invariant function in Eql4) and the  geostrophic approximation becomes invalid. Correspond-
dispersion law in Eqg.13) turn out to be asymptotically pro- ingly, in the perturbation expansions, the Coriolis parame-
portional (the same proportionality in all directiokgk!); a ter f enters the denominators. However, the specific form of
certain linear combination of Eqsl4) and (L3), which can-  Eq. (19) makes it possible to refinBalk et al, 2017 the
cels the common asymptotics, gives an extra invariant Rossby mode, so that the numerators (in the perturbation ex-

pansion) are equally small in the limjt— 0.
5 [t o] pr(P°+5°) "
4t 230 B o k> (18) 53 3pfuid layers

This linear combination decreases much faster yiftthan ~ 2.3.1 Motivation

both functions in Eqg.14) and (3); the energy transfer to- o ] o

wards zonal jets turns out to be more pronounced in the short! "€ application of the extra invariant in EQ.§) to the real
wave case (seBalk, 2005 for details of long- and shortwave ©0c€ans and atmospheres of rotating planets encounters the
limits). following natural question. In a fluid layer of finite depth,

Nazarenko and Quin(2009 demonstrated the conserva- the shallow water motions (which are two-dimensional, 2-D)
tion of the extra invariant in Eq16) in the numerical simu-  €@n generate — due to nonlinearity — the 3-D inertia waves.

lations of the quasi-geostrophic equation. O_qe can argue that the length of a typical Rossby wave sig-
nificantly exceeds the deptH, so the energy exchange be-
2.2 Shallow water system tween Rossby waves and inertia waves can be disregarded
due to the disparity of scales. But the question remains for
The extra invariant in Eq.16) was extendedBRalk et al, shortRossby waves, whose wavelength can be comparable to
201)) to the shallow water system on the beta plane the depthH ; they could effectively interact with 3-D modes.
Even if the energy of short Rossby waves were small, they
urtuuy +vuy — f(y)v=—gH,x, could gradually leak significant amount of energy during
v +uvy +vvy + f(Y)u =—gH,y, (19) long time evolution.
H, + (Hu), + (Hv)y =0, At the same time, the extra conservation seems to be es-

sentially tied to the two-dimensionality or, more generally,
where (1, v) is the horizontal fluid velocity,H the fluid to low dimension. So far, extra invariants have been found
height (flat bottom is assumed),the gravity acceleration, in two situations: (1) triads in 2-D media (see B) and
and f(y) the Coriolis parameter. The shallow water system (2) quartets in 1-D mediaBalk and Ferapontql 993, e.g.,
in Eq. (19) adiabatically conserves the integral in Efi6),
with Q4 (r) being the Fourier transform of the perturbational P11 P2 = P3+ pa. @(p1) +w(p2) = w(p3) +w(pa) (21)

potential vorticity (e.g.Gill, 1982 (p is the wave number in the 1-D media). In both situations, a

Qx.y. 1) = vy —uy — f(Y)h, (20 wave with some fixe_d wave vgctor (s&y,or p1.) participates

in only one-dimensional family of resonant interactions. Let
where h = (H — Hp)/Hp is the fractional relative height, us elaborate. The triad resonance relations in E2).for 2-
which measures the deviation of the fluid surface heightD wave vectors define manifold of dimension 3. A wave with

H(x,y,t) from its unperturbed valu#p. a fixed wave vector (sa¥;) can be involved with only one-
The extension was possible due to the following two dimensional family of resonant triads. The quartet resonance
unique conservation properties of E49). manifold in Eq. 21) has a dimension of two; a fixed wave
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vector (sayp1) participates again in one-dimensional family 2.3.3 Result

of resonant interactions.
For 3-D media, the triad resonance relations in Bg) (
define manifold of dimension 5; a fixed wave vector (¢ay,

Let L be the length scald/ the velocity scale, angp =
f(0) the reference value of the Coriolis parameter. We use

is involved in two-dimensional family of resonance triads. two small parameters:

There is an example of extra invariants for triad interaction
in 3-D media Balk, 1997), but it seems somewhat artificial.

Nevertheless, the extra invariant in Eq.6) can be ex-
tended to the 3-D dynamics. This is due to the special prop-
erty of the fluid equations, which was found a long time ago
(Greenspail969.

2.3.2 Problem

Since the short Rossby waves are the prime candidates for
the energy exchange with 3-D modes, we consider the 3-D
dynamics in the well-known classical situation (elgandau

and Lifshitz 1987 of ideal incompressible (with constant
densitypp) rotating fluid

v+ @W-VY)v+ f xv=-—VII,
V.-v=0, (22)

wherev = (u, v, w) is the fluid velocity;IT is the fluid pres-
sure (centrifugal force included) divided py. Euler's equa-
tion (Eq.22) involves Coriolis force, withf being the double
angular velocity. The fluid is assumed to occupy a layer be-
tween two parallel horizontal planes, rotating about vertical
axis z. The boundary condition is vanishing of the vertical
fluid velocity at the solid plane boundaries

w(x,y,0,1) =w(x,y, Ho,t) =0. (23)

The Coriolis parameter slowly changes with the meridional
coordinatey:

=007, f=/fo+By. (24)

The system in Eq.22) describes the dynamics of inertia
waves and vortical mode (e.d.andau and Lifshitz1987,
§14); the latter — due to the dependencefabn y — repre-
sentsshortRossby waves with dispersion law

— First, the Coriolis parametef(y) is a slow function:

the variationAf = f — fo ~ BL is small compared to
fo
BL

— k1.
fo

This condition means that is much less than the
Earth radiuskg, since at midlatitudes ~ fo/Ro.

— Second, we consider weakly nonlinear dynamics,

when the nonlinear terms are small compared to the
linear terms. This means nonlinearity being small
compared to the beta effect, namely,

=317

We need this, even though the Euler equation (&Y.
contains a linear term witlf. Indeed, later (Sec8.2),

we consider Eq.33) for the vertical component of vor-
ticity. We integrate Eq.33) over the fluid depth, and
the f term disappears (due to the incompressibility
ux +v, +w; = 0 and boundary condition in ERJ)).
Then the only remaining linear term contaifisand
the typical ratio of nonlinear terms to linear ternkis

€ <1.

Let us estimate for large-scale dynamics in Earth’s
oceans: flow at latitudes 30° with Ug ~5cmst and

L ~ 100km has ~ 1/4. Is this sufficiently small to
have the extra invariant? Perhaps, the weakly nonlin-
ear dynamics is just a useful model that cannot be fully
justified but nevertheless leads to plausible results (see
also discussion of weak nonlinearity in the Introduc-
tion).

At this point, we assume that the fluid equations are written

Qk) = —,8% [k=(p.q)]. in dimensionless form v_vith timescalé¢ fb and length scalé
(in other words, the units are chosen such that L = 1).

Greenspar{1969 discovered that on th¢ plane (when Then the dimensionless Coriolis parameterfis= 1+ Sy

B = 0), the inertia modes do not produce triad-resonant rewith dimensionless « 1; the dimensionless typical fluid

sponse on the geostrophic mode. In other words, in the equaselocity isUg = €8.

tion for the geostrophic mode (which has zero frequency), We will derive in Sect3 that the dynamics in Eq2Q)—

the coupling coefficient between this mode and two iner-(24) possesses an invariant

tia modes (with frequencies,, and w,) vanishes when- 2/ 2 5

everwy, + w, = 0. It is reasonable to think that for nonzero j — E/ M 1Ck (1) |2dk (25)

— but sufficiently small -8, the triad resonant response 2 (p2+q2)5

is sufficiently small, so the second condition of Zakharov— . . .
wherek = (p, q) is the horizontal wave vector, argg(¢) is

Schulman’s alternative (Sedt.2) is realized approximately: the Fourier t ¢ o d vertical vorticit
V(k1, ko, k3) on the triad resonance manifold is not zero but € Fourier transform af-averaged vertical vorticity

“small”. Then, the rapidly rotating 3-D fluid dynamics ap- Ho
pears to have the invariants of the 2-D shallow water dynam (., y, 1) = 1 /(vx —uy) dz. (26)
ics. In Sect3 this is derived explicitly. Ho 4
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We will derive the following estimate for the variation of
the integral in Eq.Z5):
(Ez.sﬂz) 10 (62,32'5),

and over time = O (e~18~1). At the same time, the invari-
ant/ has the ordee??, so AI « I. The period of Rossby
waves isO (1), so! is conserved during time intervals of
many —namely (e ~1) — Rossby wave periods. (An estimate
stronger than Eq2() can be obtained with further assump-
tions.)

Al=10t)—1(0)=0 27)

3 Derivation
3.1 Normal mode expansion

To obtain the extra invariant in Eg2%), let us expand the
solution of Eq. 22) in normal modes of linearized system
with 8 =0:

- va = _H)Ca
v + fou = —TIly,
Wy :_HZ, (28)

Uy + Uy + w; = Oa
w(x,y,0,t) =w(x,y, Hy,t) =0.

(In our dimensionless unitgy = 1, but we keepfp just to

A. M. Balk: Extra invariant and zonal jets

horizontal 2-D vectork = (p,q). The general solution of
Eqg. 28) is a linear combination of all normal modes with
some coefficientd; andAg:

[ u(x,y,z,1)

v(x,y,z,t) | _ i(px+qy)

w(x,y,2,1) _/dpdqe 42
| M(x,y,z.1)
_—iq (—igfo— wp) cosmz

ip (ipfo—wq) cosmz —iot
Wy 0 +;AK (ia)kz/m) sinmz

L fo (f2 — w?) cosmz

Herew = fom/K; the summation in Eq.3Q) is overm =
Fon, n=F1 42, ;W =V, A_g = A%

“The solution of the full (nonlinear and Wlth non-zegy
system in Eq.Z2) can also be expanded in the forBg), but
the coefficientsly and A g would depend on time

3.2 Equation for the vertical vorticity in terms of
normal modes

From Eqg. @2) we have
(v -

”Y)z + (uvx +vvy + wvz)x

— (uux + vuy +wuz)y + f (ux+vy) +Bv=0. (33)

Now we substitute Eq.3Q) into Eq. 33) and integrate over
z (from 0 to Hp), taking into account that cosines eos in-
tegrate to zero. To shorten writing, any subscript wave vec-

see physical meaning.) There are normal modes of two typesor k; or K ; will be replaced by its label subindei (e.g.,
(1) the vortical mode, representing the Taylor—Proudman C0|-\y =W, A = Ag;). This is unambiguous: indexstands

umn

U=——

Jo

v= (29)

Yo

for K; |f the correspondmg quantity — likd — depends
on the three-dimensional wave vect®r j stands fork; if
the corresponding quantity — liké — depends on the two-
dimensional wave vectdr. In addition,—;j stands for— K

(which isr andz independent), and (2) the inertial waves or —k j; d23 = dk dk3 = dp2dg2 dp3dgs.

(standing in the direction)

i cosmz
v coSmnz
w Sinmz
I1 cosmz

el (quyfwt), (30)

a8 e =

wherem = nx/ Hp with non-zerointegern. Substitution of
Eq. 30) into Eq. £8) gives the dispersion relation

W?K?= fEm?  (K?=pP+q+m?), (31)

and the polarization vector

i —iqfo—wp
v ipfo—wq
) iok?/m
f foz—a)2

The capitalK denotes the full three-dimensional wave vec-

tor, K = (p,q,m), while the small cas& stands for the

Nonlin. Processes Geophys., 21, 499, 2014

Thus, Eq. 83) becomes
. ) 1
kW = Bip1 W1+ = / W_123WoW3dy3

/ Z V_123e @290 A5 A3 dps.

mp,m3

(34)

The integrals in Eq.34) have been symmetrized with respect
to transposition of indexes 2 and 3: this gives the fact@rith
front of the integrals and the symmetric coupling coefficients
(W_123=W_132andV_3123="V_132)

W1,2.3 =Wk kz.ks3

—A123 (kg—kg) 8 (ki +ko+k3), (35)

V1,23 = Vi, K».K5
= [(foAr23— iwsky - k3) (fok1 k2 —iw2A123)
— (foAr23+iw2ky - k2) (foki-k3+iw3A123)]
(sz_m3 + 8m2+m3) S(k1+ko+k3). (36)

www.nonlin-processes-geophys.net/21/49/2014/



A. M. Balk: Extra invariant and zonal jets 55

Heres (+) is the Dirac delta function, ant}, is the Kronecker  and leaves the invarian87) in the old form
symbol (which is 1 ifm = 0 and 0 ifm # 0): 1

I= Efm) ViV k.
A1,23 = p2q3 — p3q2,

Its time derivative is
which — because of the delta function — has the following

obvious symmetries: =R+ I (41)
A123=A231=A312=—A132=—A321=—A213. where

: . . s 1 1 .
That is, A1.2.3 is symmetric with respect to the three cyclic /R = 5 / di23 ?W123e B F Q) s o,
permutations of its indexes and anti-symmetric with respect 1

to the other three perm.utatlons. SoftwarexIMEMATICA ji— 1 / O3 Z X, iz Viggirpe— (Q1t@ztoa) g, 4.
has been used to obtainin the form of Eq. 86). 2 mgms K1
3.3 Adiabatic conservation IR and /' are respectively contributions tbresulting from
the interaction between three Rossby waves and from the in-
We intend to find invariant teraction between two inertia waves and one Rossby wave. In
1 both integrals in Eq.41), we have replaceéi; by —k; and
1= E/X(k) U Wy dk, [X(k)=X(—k)] (37)  used that the dispersion la is an odd function @_1 =

—Q1). Our goal is to estimate the contributionsAd result-
(with undetermined kerneX), which are approximately con- ing from /R and/', and thereby show that/ « I.
served over a long tim® (e ~18~1). This is the nonlinear
time of wave interactions (since the wave amplitudes are o8.4 Small denominator lemma
the order of fluid velocity, which i2 (¢ 8)). To show that ) ) _
1(1) stays almost constant, it would be enough to show that! he essence of the extra |nvar|al_1t conservation can be ex-
its time derivative/ is sufficiently small. However, the latter Pressed by the lemma below. Basically, we have

is not the casel (t) oscillates in time (similar to adiabatic 0

. . . . I .

invariants in the t_he“ory of"dynar‘n}crf}l §¥’stems). The changed_ _ / F(x,e1) ¢ X7 dy, (42)
Al =1(t) —1(0) is “small”, but I is “big”. The usual way dr

—00

to deal with such a situation has been the following. The
quadratic integral in Eq.3(7) is supplemented by cubic cor- and need to estimate the total variatiod = I(t) — 1(0)

rections, e.g., for the dynamics in EG4j: over a long time interval & t < e~ 1
For instance, in the case of Edll], the variabley re-
Jsuppl _ }/X(k) W, W_; dk sults from the exponent, and the functiéhis the result of
2 all integrations whiley is held fixed (later, when applying

+/Y123‘I'1‘112\113d123+/2123W1A2A3d123 (38) the lemma, we will deﬂne( andf (.axac.:tly').. The function
F slowly depends on time, which is signified by a small

. — _ parametee (this corresponds to the slow variation of wave
(X, Y, Z are undetermined kernelsj?"P"" is required to  amplitudes). The integral in Eq42) is well convergent at
be sufficiently small. At the end, the cubic corrections can, _, 1+ (corresponding to the vanishing of wave ampli-
be dropped, since they turn out to be within the variation ofyydes as, k», andks approach infinity). It is important that

ASUPPl = 7SUPPl (1) — [SUPPL(Q). the integration interval in Eq4@) includes pointy = 0, so
Here we develop a new, more direct, approach (withoutthat the resonance (at— 0) is present.

cubic corrections). In general,/ exhibits secular growth associated with the
Let us, first, apply the transformation resonance — 0, and the adiabatic conservationiofs out
_ i of the question. Indeed, assume for simplicity thais time

Wi =Y e ; (39) independentd = 0); then

it removes the linear term in Ec34), eixt —1

Al :/F(x) dx ; (43)

X

. 1 ‘
— i1(Q1—KQ2—Q23)1
V1= 202 f W-123¢€ V2913 A2 herei x is the “small denominator” (“small divisor”), corre-

1 _ sponding to the resonange— 0. According to Eq.43), for
+ @f Z V_oq23e @273 Ay A3 dp,  (40)  larger, the incrementh I grows proportional ta, unless the
1 ma.m3 small denominator is somehow cancelled.
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For LEMMA,
Suppose, there are constaMsand L such that

o0
F(x, T
/'lexsm (44)
X

—00

o0

/|F(X,T”)—F(X,T’)\dx§L|T”—T/| (45)
—00
for all positive7, 7/, 7". Then

IAI|< (@M +L)e Y% for 0<t<e L (46)

Comment 1The convergence of integral in E@l4) implies
cancellation (at least partial) of the small denominagor
Comment 2The constantd/ and L are7 -independent, but
can depend onr, which will be used in the lemma applica-
tions below.

Proof. We split the time interval & r <&~1 into many
subintervals

j=12..7J

[tj-1.7], (ro =0, ;= 8‘1) :

of lengthe=1/2; there are/ = ¢~%/2 of them. (To make this

A. M. Balk: Extra invariant and zonal jets

Rossby wave amplitudey; evolves on the nonlinear
timescaleo (e “1g~1) (recall the transformation in Eq39)).
Therefore, to apply the lemma of Se8t4, we assume

x=—(o1+o02+03), T=pt ec=¢€.

Now,

daiR 1. . _
_Z—RZ/F(X,ET)e’Xde, with (48)
dc 8

1 X1
F= ﬂfdlzga (614 02403+ X) ﬁlesl/flwzws-
1

We symmetrize the integral faF with respect to permuta-
tions of indexes 1, 2, and 3 (this, in particular, gives an addi-
tional factor %3 in front of the integral) and use E®S5) for

the kernelW, taking into account that\1 2 3 is symmetric
with respect to the cyclic permutations of its indexes

1
F=@/d1238(k1+k2+k3) A123Y1Y2v3

8(o1+02+03+ %)
X100 o\, X2/ 2\, X3 .5 o
[kf (ks—k2)+k§ <k1—k3>+k§ (k3—kD|.  (49)

number integer, we can consider an appropriate subsequence

of ¢, or we can use the integer paft=[¢~1/2]+ 1 with
slightly shorter subintervals.) On each subinterval

ds .
= /{F(X,grj) +[F (x.e1) — F (x,e7;) |} ' " dx;
Integrating this from;_; to ;, we have

F(x,et; . ‘
AI/ = I(T/) - I(Tj_l) :‘/‘dx% (el)(r/- _elej71>

Tj
+ / dr/d)( [F(X,sr)—F(X,srj)]eiXT.
Ti_1

-

In the latter integraljet —et;| < &¥/2. According to esti-
mates in Eq.44)—(45),

7j
|ALj| <2M + / LeY?dr=2M + L.

Tj-1

Now, |AI|< Z]J.:l|AIj| <2M +L)J, and we find
Eq. @6).

3.5 Interaction between three Rossby waves

Now we estimate\  resulting fromiR in Eq. @1).
The periods of Rossby waves a8 ~1), and we intro-
duce function

p

o (k) =—17 SO that Q (k) = o (k). (47)

Nonlin. Processes Geophys., 21, 499, 2014

Now we will determine special function$(k) so that the
integral @4) converges ag — 0. Due to the dispersion re-
lation, k? =—p;/oj (j =1,2,3), so the square bracket in
Eg. @9 equals

1 | mXa
[...]= 7
010203 | ky

(p302 — p203)

2X2 3X3
+ pk4 (p103— p3o1) + pk4 (p201— PlUZ):| . (50)
2 3

We have p1+ p2+ p3 =0 due to the delta function in
Eq. @9); when x =0, theno1 + 02 + 03 =0, and the three
pairs of parentheses in EgbQ) turn out equal. Now the
square bracket in Eg49) is

201 — p102 | p1X1 2X2 3X3

[.)=PA P02 PATL | PR PRTR L (5
010203 k7 k5 ks

it vanishes if the function
p X (k)

(ﬂ(k):T

is conserved in resonant triad interactions

ki+ky+k3=0

Q1+Q+Q23=0 (52)

} = ¢1+@2+93=0.

Then the integral in Eq.4d) is convergent. Sincel; =
O(ep), the constantd/ and L are % 0 (383 = 0(e382),

and, according to the lemmaJ = 0(e2°5?).

www.nonlin-processes-geophys.net/21/49/2014/
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Remark£2 (k) andg (k) are odd functions of the wave vec-
tor k, so (implication (52)) is equivalent to the implication of
Egs. (12 = (11).

There ardivepossible functions (k) that satisfy Eq.%2).
Three of them are obvious and common:

k) =q. (53)

The other two Balk, 1991 are specific for short Rossby
waves:

o (k) = £°h) =

pk) =Q(k), k) =p,

pPq .
F»
30,2 2
(p=+5g9°)
k) = k) = T,
Similar to Balk et al.(2011), we discard the third and the
fourth of them as unphysical: the third gives singuak) =
gk*/p (on the line p = 0), and the fourth is even, giving

(54)

(55)

odd X (k), which contradicts to the bracketed condition in

Eq. @7). The first function in Eq.%3) corresponds to the en-

57

Thusk; - k3 = k1 - k2, and in the square bracket of EGS],
the four pairs of parentheses are pairwise identical. There-
fore, V123=0.

The wave amplitude® and A are O (¢8), and, therefore,
the constant3/ and L are O (¢3%). Now, according to the
lemma,Al = 0(e38%°) on any time interval of lengts L.

We can split the time interval € + <e¢~18~1 into subin-
tervals of lengtho (8~1); there are0(e~1) of them. Thus,
Al =10(325) ontime interval O< 1 < e 7171,

Combining this estimate and the estimate found in the pre-
vious Sect3.5 we find Eq. 27).

RemarkThe estimate in Eq2({) holds for any solution of
the 3-D layer dynamics in Eq2@)—(24). If the wave turbu-
lence were considered, the estimate would hold for any real-
ization, even the least probable; on average (or for a typical
realization) the estimate is stronger.

4 Emergence of zonal jets

ergy of the quasi-geostrophic mode; the second corresponds

to the zonal momentum (which is the enstrophy).

The fifth function (Eq.55) gives the extra invariant (cf.
Eq.18).
3.6 Interaction between one Rossby wave
and two inertia waves

Now, we estimate the variation/ resulting from ' in
Eq. @1).

The inertia wave amplituddy () evolves faster than the
Rossby wave amplitudey (). The latter evolves on the
nonlinear timescal® (¢ ~18~1). The former have linear re-

1 2
sponse to the Rossby waves. Recall that we used normgl - 5/ ;‘p(k) |kl” dk.

modes forg =0, so A; and ¢ are independent in lin-
earized dynamics if8 =0 only. If g8 #0, the amplitude
Ax (1) evolves on timescal® (8~1). Therefore, we use the
lemma of Sect3.4with

x=—(w2+w3), T=t &=
Now,
drt ,
E:/F(X,ﬁt) ey, (56)
where
F—lfd 3 S(wp+ws+ ) XLy e AgA
—2 123 W2 T w3 T X k2 123%¥1A2A3.

mp,m3 1

To apply the lemma, we show that the integral in E44)(
converges ag — 0. Indeed, whery =0, thenwz + w3 =0,
which implies|w2| = |w3|. Because of Kronecker deltas in
Eq. 36), we havemy| = |m3|. Therefore, — by the dispersion
relation in Eq. 81) — K2 = K3, andky = k3. Now,

ky=—ki—ks = k3=k?+k3+42ky ks,
ks=—ki—ky = k§=ki+k5+2ky ks

www.nonlin-processes-geophys.net/21/49/2014/

4.1 Invariants

According to the expansion in Eq33), the vertical vorticity
in Eq. 26) is

C(x,y, 1) =— / K2Wp (1) €' P+ dk (57)

(since the cosines integrate to zero); in the Fourier represen-
tation, Eq. 67) means;; = —k?¥. So, we can express inte-
gral in Eq. @7) in terms of¢y:

(58)

Thus, we have three invariants:

1. The energy of the quasi-geostrophic mode (the energy
of inertia waves is separate)

1r1 2
E==( = dk . 59
5 [ (59
2. The enstrophy
1 2
Enstrophy= §/|§k| dk . (60)
3. The extra invariant
1171
1=: / 2 k) |2 dlk (61)
2) p

with #3"°"(k) given in Eq. 65). Though the function
in Eq. 65) has non-integrable singularity at= 0, the
energy spectrum usually vanisheg at- 0, and the in-
tegral in Eq. 61) converges. The expression in EGLY
is the same as EqRY).

Nonlin. Processes Geophys., 25949614
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4.2 Anisotropic inverse cascade 10

In rapidly rotating 3-D fluids, the energy from inertia waves

is transferred towards the quasi-geostrophic mé&aeith and 8
Waleffe 1999 Cambon et a).2004 Staplehurst et 812008
Duran-Matute et a]2013.

The conservation of the energy in EGY[ and the en-
strophy in Eg. 60) implies the inverse cascade of the two-
dimensional quasi-geostrophic ener@hines 1975 Ped-
losky, 1987 Vallis, 2006. This is because the energy spec-
trum spreads in the Fourier space (unless the initial condi
tions are very specially arranged); the spreading happens dt
to (Rhines 1975 the decay instability (when a wave decays 2
into the other two waves of a resonant triad), as well as due
to the resonant generation of higher harmonics.

We assume that the inverse energy cascade takes plac o
Then the presence of the third, extra, invariant in Ef) (
implies the energy transfer towards large-scadeal flow,
not just to large scales in general, but specifically into theFig. 1. The values of the ratigp = %h;; (in logarithmic scale)
region of thek plane around the axis. This is the only way as a function of the wave vectdr= (p,¢). The numbers of the
to keep the extra invariant approximately constant. color bar are the values of lgg(¢). The black curves are the level

Indeed, letEy = |£x|?/k? be the energy spectrum of the lines ¢ (k) =10" for six integersn =0, -1, -2, -3, —4, —5. All

quasi-geostrophic mode. According to Eg)(@nd 61), the  the contour lines pass through the origin tangent tojtiagis. The
dynamics preserves integrals figure shows that the inverse cascade transfers energy from small-

scale eddies to large-scale zonal jets. Indeed, let us pose a question:

dional wave number q

merli
w

Z\
"] T
2 3 4 5 6 7 8 9 10

zonal wave number p

1 1 is it possible that the energy from the area marked by the pink cir-
E= > / Exdk and = §f¢(k)Ek dk, (62)  cle (in the upper right corner) — via the inverse cascade — ends up
in the purple circle near the origin? This is clearly impossible when
where both integrals( E;dk and [ ¢ (k) Ei dk are preserved. If such trans-

fer were to occur, it would lead to a significant increase of the extra
invariant: the value of the ratig in the purple circle is more than
six orders of magnitude bigger than its value in the pink circle. The
only possibility for the inverse cascade is that the energy should end
is shown in Figl. The ratiog is small for largek, and large  up near the; axis where the ratig is also small, similar to its val-
near the origin, except for the vicinity of theaxis. There-  ues at large wave numbers (away from4teis), so that the energy
fore, the energy transferring from largetowards the ori- and extra invariant in Eq6@) can be both conserved. The energy
gin — via the inverse cascade — must accumulate neay the concentration near the a_xis means the fluid should have velocity
axis (which corresponds to zonal jets). Such an anisotropi¢"stly parallel to the: axis, which is zonal flow.

inverse cascade is similar to the one in geostrophic dynam-

ics (seeBalk, 2005 for precise estimates). The reasoning

for the generation of zonal flow tacitly assumes that there

is a source of small-scale energy. We see that the formation

of zonal jets in 3-D dynamics is enhanced: because of the The presence of these invariants — together withttve
two-dimensionalizatiorthe energy of 3-D inertia waves also dimensionalization- |mplles the transfer of energy towards

transfers into zonal jets. zonal jets (Sec#.2).
We have also summarized the unique conservation proper-

ties of the geophysical fluid dynamics (with the beta effect)
that allow for the presence of the Rossby wave extra invari-
ant in the various systems (Seg}. It seems possible to ex-

The system in Eq.22) is known to conserve the energy and tend the extra invariant to the stratified fluid dynamics that
helicity. We have shown that, in the presence of the beta efinvolves several Rossby modes with different Rossby radii
fect (8 = f'(y) # 0), there are three adiabatic-type invari- of deformation (e.g., to the systems with several shallow lay-
ants: the energy (Ec9), the enstrophy (Eg60), and the ers). This is plausible because the coupling coefficients of

extra invariant (Egp1), all being based on the Rossby waves. 'eésonant triad interactions between the barotropic mode and
the other Rossby modes vanish, provided the densities of the

layers are sufficiently clos&pomere2003.

n*"k)  p*(p?+54°)
-Qk)/B k8

¢ (k) = (63)

5 Conclusion
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