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Abstract

In a simple infinite-horizon exchange economy with a single consumption
good and a financial asset, real indeterminacy and asset price bubble may arise.
We show how heterogeneity (in terms of preferences, endowments) and short-sale
constraints affect the emergence and the dynamics of asset price bubbles as well
as the equilibrium indeterminacy. We also bridge the literature on bubbles in
models with infinitely lived agents and that in OLG models.

Keywords: asset price bubble, real indeterminacy, borrowing constraint, in-
tertemporal equilibrium, infinite horizon.
JEL Classifications: D53, E44, G12.

1 Introduction

The existing literature of rational asset price bubbles has focused on two kinds of
frameworks: overlapping generations models and infinite-horizon general equilibrium
models with many agents. More attentions have been paid for the emergence and
implications of pure bubble asset (i.e., fiat money) in OLG models since the influential
paper of Tirole (1985).) However, as recognized by (Kocherlakota, 2008) and Martin
and Ventura (2018), our understanding of asset price bubbles in general equilibrium
models with infinitely lived agents is far from complete.?

"However, despite the widespread belief in the existence of bubbles in the
real world, it is difficult to construct model economies in which bubbles exist
in equilibrium.” (Kocherlakota, 2008)

This paper aims to address basic and open questions about rational asset price bubbles
in general equilibrium: Why do asset price bubbles arise in equilibrium? How to
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1See Brunnermeier and Oehmke (2012) and Martin and Ventura (2018) for excellent surveys.

2In such models, it is difficult to characterize or compute the equilibrium. It is also not easy to
provide non-trivial examples of equilibrium.



compute asset price bubble as a function of borrowing limits and other fundamentals?
What are their effects on the economic agents’ consumptions and trading?

To do so, we consider a simple infinite-horizon general equilibrium model with a
finite number of agents, where there are only one consumption good and one financial
asset as Lucas’ tree (Lucas, 1978). Our model has two key ingredients: (1) agents are
heterogeneous (in terms of endowments and preferences), and (2) the financial friction
which takes the form of short-sale constraint (i.e., the asset quantity that each agent
can buy does not exceed an exogenous limit). As usual, we say that there is a bubble
in equilibrium if the asset price exceeds the fundamental value of the asset (defined as
the present value of dividend streams).

The literature of bubbles in infinite-horizon general equilibrium models has shown
several conditions ruling out asset price bubbles. A famous no-bubble theorem in
Santos and Woodford (1997) states that, under mild conditions, bubbles are ruled out
if the present value of aggregate endowments is finite. This condition still holds in a
model with debt constraints (Werner, 2014) and in a model with land and collateral
constraints (Bosi et al., 2018b). In our model with short-sale constraints, we can also
obtain a similar result. Our paper is different from these papers because we do not
require the assumption of uniform impatience to prove this result.

Motivated by the fact that most of no-bubble conditions are based on endogenous
variables, we contribute to the literature by providing conditions (based on fundamen-
tals) under which bubbles are ruled out. The first one shows the role of the borrowing
limits: there is no equilibrium with bubble if borrowing limits are high enough. The
second one shows the role of impatience: under the assumption of uniform impatience,
there is no bubble if agents prefer strongly the present. The intuition is simple: if
agents prefer strongly the present, they do not buy asset in the long run and hence
bubbles are ruled out. This is similar to the situation in finite-horizon models in which
no one buys asset at the last period and so there is no bubble.

The famous finding in Santos and Woodford (1997) and our above results do not
show a clear way to construct models with bubbles because it says nothing about the
trading in equilibrium. Our next contribution is to establish that, in an equilibrium
with bubbles, there exist two agents whose assets holdings fluctuate over time (i.e., they
do not converge). Moreover, we prove that, if bubbles arise in equilibrium, there exist
two agents whose borrowing constraints bind (their asset holding equals the borrowing
limit) infinitely many dates. This finding is consistent with but stronger than that
of Kocherlakota (1992) who shows that, if there is a bubble, the limit infimum of the
differences between asset holding and borrowing limit equals zero.

These insightful properties concerning the asset trading imply that a model with
bubble must contain at least 2 heterogeneous agents. By consequence, to build a model
with bubble, we focus on a model having two agents, and characterize the equilibrium
in which borrowing constraints of both agents bind infinitely many dates. Notice that
such an equilibrium exists only if (i) the borrowing limits are low and (ii) the benchmark
economy-the economy without asset— has a so-called seesaw effect (i.e. the subjective
interest rate of one agent is higher than that of another agent at infinitely many dates
while being lower at infinitely many other dates).

Focusing on such equilibrium, we find that bubbles are ruled out if the value of
endowments (discounted by using the interest rates of the benchmark economy) of the
agent who buys asset vanishes in the infinity. By consequence, there does not exist



bubbles if the benchmark economy has high interest rates. The basic idea is that the
income of asset buyers must be high enough so that these agents are willing to buy the
asset, even the asset price exceeds the fundamental value. This result can be viewed as
an extension of the no-bubble condition of Tirole (1985) from OLG models (it states
that there is no bubble if the steady state interest rates of the economy without bubble
asset is higher than the population growth rate) to our general equilibrium model with
infinitely lived agents. Tirole (1985) needs the convergence of interest rates of the
economy without asset while we do not require such convergence. Our paper is the
first one making clear the connection between bubble a la Tirole (1985) and that in
infinite-horizon general equilibrium models.

Although the existing literature has given some examples of bubbles (see an overview
below), none of them show how the emergence and the dynamics of asset price bubbles
depend on economic fundamentals such as endowments, dividends, and borrowing lim-
its. In our model, we manage to do so. Precisely, we show via a number of examples
that; when the benchmark economy has low interest rates, bubbles are more likely to
arise if (1) asset supply is low, (2) borrowing limits of agents are low, (3) the level of
heterogeneity (proxied by the differences between agents’ fundamentals such as endow-
ments, initial asset holdings, rates of time preferences) is high, and (4) asset dividends
are low with respect to agents’ endowments. It should be noticed that the emergence
of bubbles in our model does not violate individual transversality conditions (TVC)
which ensures the optimality of individuals.

Let us explain the basic mechanism of asset price bubbles in our model. The
heterogeneity ensures that in any period there is at least one agent who needs to
save as much as possible by buying the asset. When the asset supply and borrowing
limits are low, the asset price would be high (even higher than its fundamental value)
because using this asset is the only way to smooth consumption.® In particular, our
model suggests that bubbles may appear if there are (i) an asymmetric growth in terms
of endowments of agents (for example, endowments of one agent grow at even dates
but those of other agents grow at odd dates) and (ii) a shortage of financial assets (i.e.,
low asset supply and low dividends).

We also point out that not only bubbles but also real indeterminacy may arise in
our simple model (a single consumption good and a single security). The idea behind is
that asset prices, in some cases, can be recursively computed, and hence the sequence
of prices will be computed as a function of the initial price. Therefore, any value can
be an equilibrium price at the initial date if it is low enough so that the price and the
bubble component of assets in the future will not be too high so that agents can buy
them. Since this real indeterminacy is associated with the emergence of bubbles, the
sources of the indeterminacy are agents’ heterogeneity and short-sale constraints.

Last but not least, our paper makes clear the relationship between financial asset,
bubble and welfare. We prove that the allocation of equilibrium in a model with finan-
cial asset strictly Pareto dominates the autarkic allocation. The basic intuition is that
the financial asset provides two ways (saving and borrowing) to smooth consumption.
Thanks to this, agents can transfer their wealth from dates with high endowment to
dates with low endowment. So, the financial asset is welfare improving. In the case
of pure bubble asset (without dividends), the economy without bubble coincides with

3We can prove that, if we introduce a new asset with which agents can borrow without limit, there
will be no bubble.



the one without asset. As a result, we may interpret that a pure bubble asset may
be welfare improving. However, we should not interpret that bubbles are always wel-
fare improving because when dividends are positive, the social welfare generated by
an equilibrium with bubble may be lower than that generated by another equilibrium
without bubble.

Related literature. We survey examples of asset price bubbles in general equi-
librium models with infinitely lived agents.* First, we focus on the asset having zero
dividend and positive supply (i.e., fiat money). Bewley (1980) (Section 13), Townsend
(1980), Kocherlakota (1992) (Example 1) and Scheinkman and Weiss (1986) show that,
when borrowing is not allowed, fiat money may have positive value in infinite-horizon
general equilibrium models. Santos and Woodford (1997) present several examples of
this kind of bubbles. Their examples 4.1, 4.2 study fiat money in deterministic models
while and their example 4.4 investigates fiat money in a stochastic model. Hirano and
Yanagawa (2017) give sufficient conditions for the existence of stochastic bubbles of
an asset without dividend and study how the existence of bubbles, economic growth,
welfares depend on the degree of pledgeability. Unlike these studies, in our examples
there may be a continuum of bubbly equilibria.

Second, we focus on the asset with positive dividends. Santos and Woodford
(1997)’s example 4.3 studies bubbles of an asset with positive dividends but zero net
supply in a deterministic model. Santos and Woodford (1997)’s example 4.5 investi-
gates bubbles of the Lucas’ tree as in our model but in a stochastic model and there
is a single representative household. In this example, they introduce a sequence of
non-stationary stochastic discount factors and show that bubbles may exist under a
state-price process but not under another state-price process. Bosi et al. (2018b) intro-
duce different concepts of land bubbles and provides an example where a land bubble
arises but individual land bubbles are ruled out. Le Van and Pham (2016) (Section
6.1) and Bosi et al. (2017a) provide examples of bubbles of the Lucas’ tree, where
the asset price may be multiple (due to the portfolio effect) but the consumption is
not affected by the existence of bubbles. Our added-value with respect to Le Van
and Pham (2016), Bosi et al. (2017a) is that the indeterminacy in our model is real
and the asset price affects agents’ consumptions. Bloise and Citanna (2019) provide a,
sufficient condition (based on trade and the punishment for default) for the existence
of bubble of an asset with vanishing dividends (i.e., dividends converge to zero) of an
equilibrium whose sequence of allocations converges. In our paper, we do not impose
any convergence, and agents’ consumptions and asset prices may fluctuate or converge
over time, depending on the economy’s fundamentals.®

The rest of the paper is organized as follows. Section 2 presents the framework
and provides fundamental properties of equilibrium. Sections 3 provides no-bubble
conditions in a general framework. Section 4 presents a number of specific models where
bubbles arise. Section 5 concludes. Technical proofs are gathered in the appendices.

4Brunnermeier and Oehmke (2012) and Martin and Ventura (2018) provide more complete surveys
on bubbles in other frameworks (e.g., models with asymmetric information and heterogeneous beliefs
or overlapping generations models).

°In these examples, the intertemporal utility function is time-separable. Araujo et al. (2011)
consider the utility functions >, Giru(ci) + € infy>0 ui(c; ) and show that the parameter €; plays
the key role on the existence of bubbles.



2 An exchange economy with short-sale constraints

Consider an infinite-horizon discrete-time model with short-sale as in Kocherlakota
(1992). There are a finite number m of agents, a single consumption good and an
asset. The asset structure is similar to Lucas’ tree (Lucas, 1978) with exogenous
dividend stream (d;);. Denote ¢;, b;; the consumption and asset holding of agent i at
date t while ¢, is the asset price at date t. Agent ¢ maximizes her intertemporal utility
Z;Og Bi+ui(c; ) subject to the following constraints:

1. Physical constraints: ¢;; > 0 V.

2. Budget constraint: c¢;; + q:bit < e;r + (¢ + di)b;i—1 Vt, where e;; > 0 is the

exogenous endowment of agent ¢ at date ¢ and b, _; is endogenously given.

3. Borrowing constraint (or short-sale constraint): b;; > —bf V¢t where b > 0 is an
exogenous borrowing limit.

An equilibrium is a list of prices and allocations (g, (¢it, bit)t)i>0 satisfying three
conditions: (1) given price, the allocation (c;q, b;1): is a solution of the optimization
problem of agent i (i.c., Y, B ui(ciy) > limsupy_, o 31, Bivui(c;,) for any sequence
(¢}, b) satisfying physical, budget and borrowing constraints), and (2) market clearing

conditions: » . by =L and ) ¢y =Y . €+ Ld, Vt >0, and (3) ¢; > 0 V.
Denote Wy = >, e;; + Ld, the aggregate resource at date t. We require standard
assumptions in the rest of the paper.

Assumption 1. Assume that u; is concave, strictly increasing, and continuously dif-
ferentiable for anyi. We also assume that B;y > 0, e;; >0, d, > 0, >, ;. u; (W) < o0,
> Bir < oo Vi, t, and L > 0.

Assumption 2. There ezists an increasing function v(c) such that u}(c)c < v(c) Ve

and Y, Biv(Wy) < o0.

Notice that when w;(c) = In(c) or u;(0) is finite, Assumption 2 is a direct conse-
quence of Assumption 1.

We start by the following result providing necessary and sufficient conditions under
which a list of prices and allocation constitutes an equilibrium.

Proposition 1. Let Assumption 1 be satisfied.
1. If (q,(ci, b;);) is an equilibrium, then we have
Bigui(cie) = Aig (1a)
AigGe = Nig1 (@ear + der) + 00, mig(bie +07) =0, mip =0. (1b)
In addition, if Assumption 2 holds, then lim;_,oo A;1q(biy + bF) = 0.
2. If the sequences (q, (¢, b;);) and (N\;,n;) satisfy

(a) Cigsbig, NigsMie, >0, qe >0, by > =bF, civ+aqibiy = €0+ (@ +di)big—1 Vi, t;

(b) First-order conditions (1a-1b), and market clearing conditions;

(¢) Transversality conditions: lim;_,co A; +qe(bir + bF) = 0 Vi;



(d) The series Y o Bigwi(ciy) converges
then (q, (¢;, b;);) 1s an equilibrium.
Proof. See Appendix A. ]

It is interesting to notice that when u;(0) > 0 Vi, the second statement of Proposi-
tion 1 still holds if we replace lim; o A; 1G(b;++0}) = 0 Vi by iminf, ;oo A 1q:(b; 1 +bF) =
0 3.

Kocherlakota (1992) considers the function ", Sfu,(c;+) and states a similar result
but he requires that u;(c) < 0 Ve or u;(c) > 0 Va (to ensure that the sum Y, Sfu;(cit)
always converges). Of course, this condition is not satisfied if w;(¢) = In(c). By
contrast, our result applies to unbounded utility functions, including w;(c) = In(c).
Our result is related to Proposition 1 in Bosi et al. (2018b). The difference is that
we impose exogenous borrowing limits while Bosi et al. (2018b) consider collateral
constraints and the borrowing limits depends on prices of assets in the future.

Following the standard literature (Kocherlakota, 1992; Santos and Woodford, 1997),
we introduce the notion of rational asset price bubbles.”

Definition 1. Consider an equilibrium. The sequence of discount factors (Ry); is de-
fined by Ry 1qs = quy1 + dir1. The fundamental value of the asset is F'Vy = 221 Q. d;
where Qy = ﬁ. We say that there is a bubble in equilibrium if qo > F'Vj.

According to the asset pricing equation ¢; = %, we have ¢y = 22:1 Qsds +
Q:q; Yt > 1. So, there is a bubble iff lim, , Q);q; > 0. In a particular case where d; = 0
Vt, the fundamental value equals zero; in this case, there is a bubble iff the asset price
is strictly positive (Tirole, 1985).

Our main goal is to understand conditions under which rational asset price bubbles

may arise (or be ruled out) in equilibrium as well as the implications of bubbles.

3 No-bubble conditions

Our goal in this section is to find out new conditions (based on fundamentals) under
which bubbles cannot appear.

3.1 The role of borrowing constraints

The relationship between the existence of bubble and borrowing constraints is ques-
tioned by Kocherlakota (1992). However, he did not investigate whether borrowing
constraints are binding or not in equilibrium with bubbles. The following result ex-
plores such a relationship and shows our contribution with respect to Kocherlakota
(1992) as well as the connection between the existence of bubble and the trading on
the asset market.

Proposition 2 (bubble existence and borrowing constraint). Let Assumption 1, 2 be
satisfied. If there is a bubble in equilibrium, then we have:

6See Remark 3 in Appendix A for a proof.
"We refer to Bosi et al. (2017a, 2018b) for alternatives concepts of bubbles.



1. (Kocherlakota, 1992) liminf; ,(b;+ + b)) = 0 Vi.

2. There exist 2 agents whose borrowing constraints bind infinitely often. Formally,
there exist 2 agents, say i,j, and 2 infinite sequences (in)n, (jn) such that b;;, +
b; =0 and bj;, +b; =0 for all n.

3. There exist 2 agents i and j such that the sequences (b;:): and (bj.); do not
converge.

Proof. See Appendix A. O

Points 2 and 3, which are new with respect to the existing literature, show that the
existence of bubbles implies the fluctuations of asset trading of at least 2 agents. They
lead to the following result showing the role of borrowing limits (b).

Corollary 1. Let Assumption 1, 2 be satisfied. If there is T such that bid, > e;;
Vi, Vt > T, then there is no equilibrium with bubble.®

3.2 Interest rates, impatience and bubble

A famous result in Santos and Woodford (1997) states that, under the assumption of
uniform impatience (see infra), bubbles are ruled out if the present value of total future
resources is finite (this condition was named ”high implied interest rates” by Alvarez
and Jermann (2000)).” In our model with short-sale constraints, we can also prove a
similar result.

Corollary 2 (the role of present value of endowments). Let Assumption 1, 2 be satis-
fied. There is no bubble if

Z Qt(z eit) < 00. (2)

Proof. See Appendix A. ]

Unlike Santos and Woodford (1997), we do not require the uniform impatience.
Instead, we use transversality conditions in Proposition 1 to prove (2).

A direct consequence of Corollary 2 is that there is no bubble if inf, dte ->0. To
the best of our knowledge, there is only this condition (based on exogenous i)érameters)
in the literature, which rules out bubbles. Notice that in the case of zero dividends
(d; = 0 Vt), this condition does not help us to understand asset price bubbles.

Our goal in this subsection is to find out other conditions (based on fundamentals)
under which bubbles cannot appear. To do so, we borrow the concept ”uniform im-
patience” in the existing literature (Magill and Quinzii, 1996; Levine and Zame, 1996;
Magill and Quinzii, 1994). Given a consumption plan ¢ = (¢;)i>0, a date t, a vector

8To prove this result, suppose that there is an equilibrium with bubble. According to point 2 of
Proposition 2, there is an agent ¢ and an infinite sequence (i), such that b, ; + b7 = 0 Vn. Let n be
such that in > T. We have Ciyipn+1 = €i4,+1 — din_;'_lb;-k - qin_;,_l(b;-k + szL) S €iin+1 — din,+1b? < 0, a
contradiction.

9Theorem 6.1 in Huang and Werner (2000) provides a version of Santos and Woodford (1997)’s
Theorem 3 in a model with debt constraints. Proposition 12 in Bosi et al. (2018b) shows a related
result concerning the bubbles of land.



(7,6) € (0,1) x Ry, we define another consumption plan, called z = z(c,t,,d), by
2e = Cs Vs < t, 2t = ¢ + 0, 25 = e, Vs > t. We also denote Ul (¢) = ZtT:o Birwi(cit)
and U;(c) = limsup,_, . Ul (c).

Assumption 3 (Uniform impatience). There exists v € (0,1) such that for all con-
sumption plan ¢ = (¢;) with 0 < ¢, < W, Vt, we have

Ui <Z(Cat77/7Wt)> > UZ(C) Vi,\v’t,VPyl c h/’ 1)

Proposition 1 in Pascoa et al. (2011) provides sufficient conditions for the uniform
impatience. Notice that they only consider the case where u;(c) > 0 Ve. Under well-
known utility functions, the following result helps us to understand when the uniform
impatience holds.

Lemma 1. 1. Ifu;(c) = In(c) and there exists vy € (0,1) such that 3;; > —ln 7) § 2 omt1 Bis
Vt, then the umform impatience holds.

2. Ifu;(c) = (0,1) such that 5”21 7 1W1 74
(177 —1) Zs ® r Bis e ~ > 0 Vi, then the uniform impatience holds.

Proof. See Appendix A. ]
Our contribution can be stated as follows.

Proposition 3. Assume that Assumptions 1, 2, 3 hold and e; , —d;b; > 0 Vi,Vt. There
1s no bubble if

. ﬁz t+1U Gz 1 dt+lb )
1 W- =0. 3
o THm? Biuh(S, eie + Ldy) (3)

This leads to two consequences.

1. When ul(c) = In(c), Biy = B Vi,Vt, and % > —ézgg with v € (0,1), there is
no bubble if

T-1
1

lim B* Wy .- Wi W, max —— = 0. 4

Tﬁooﬁ . P g i €ipp1 — iy bf @

2. When u;(c) = 0117; where o > 0, and there exists v € (0,1) such that %th_ajL

(Yo — 1) © 1 B tW ~ > 0 Vt, there is no bubble if

lim BT Wy H max Wi

T—o0 o Cipy1 — dpp1 D))

—0. (5)

Proof. See Appendix A. ]



Proposition 3 and Corollary 1 contribute to the literature by providing conditions
(based on fundamentals) under which bubbles are ruled out. When borrowing limits
are large, Corollary 1 shows that bubbles do not arise. If borrowing limits are low (in
the sense that e;; — d;bf > 0 Vi, Vt), Proposition 3 indicates that bubbles do not exist
if the agents prefer strongly the present (formally, 5;;4+1/8:+ is low). In a particular
case, where f3;; = (" with f is low enough, there is no bubble. Notice that, when
there is T" such that ;; = 0 Vi, Vt > T, we recover a T-horizon model where we have
qo = Zle Qsd, and g, = 0 Vs > T, and therefore, there is no bubble.

When d; = 0 V¢, conditions (3-5) do not depend on borrowing limits b}. So, bubbles
may be ruled out even borrowing limits are too low. This in turn suggests that financial
frictions are only necessary conditions for asset price bubbles.

4 Models with bubbles

We are now interested in constructing model economies in which bubbles arise. Propo-
sition 2 shows that such models must contain at least 2 heterogeneous agents. So, we
should focus on a model with two types of agents, say A and B. Suggesting by points
2 and 3 of Proposition 2, we look at equilibria in which borrowing constraints of agent
A (agent B) binds at any even (odd) date. Formally, we aim to characterize economies
where there is an equilibrium such that

baot = —b,, bpor =L +0b,, boout1i =L+b, byoyr1 = —b. (6)
With these asset holdings, we have that

Ca0 = €a,0 + (g0 + do)ba,—1 + b, cbo = €no + (qo + do)bo—1 — qo(L +b;) (7a)
Ca2t—1 = €a2t—1 — bydor—1 — qae—1H, cpo—1 = eppe—1 + dop—1 (L + ;) + g1 H (7b)
Caot = €aot + Aoy (L +by) + quH, oo = €por — duby — quH (7c)

where H = L + b} 4 b; and b, 1, by _1 are given. Observe that such equilibrium exists
only if the borrowing limits b}, b; are low.

4.1 The role of interest rates of the benchmark economy

We firstly find necessary conditions (based on fundamentals) of the existence of bubble.
Our intuition is to look at the benchmark economy; i.e., the economy without asset. In
such economy, we have c;; = e;; Vi,t. We now define the sequences (R} ,), (R} ,), (R;)
by

. %,t_lu;(eb,t)

. ’Ya,t—luil(ea,t> 1 = :
U (€p1-1)

1= R, R;,, and R, = min(R!
ug(ea,t—l) ,t b,t t <

a,t’

Ry,).  (8a)

where v, = %, Va1l = 6&11 Vvt > 0.

R, (vesp., Rj,) represents the subjective real interest rate of agent A (vesp., B)
while R; is the real interest rate between dates ¢ — 1 and ¢ in the benchmark economy.



According to FOCs in Proposition 1, we have that, for any ¢t > 1

1=~ uy, (ea,2t + do (L + b)) + Q2tH) Gor + doy
— Ja,2t—1
: ) (€at—1 — Uidar—1 — qu—1H) ot

uy, (€b72t+1 + dap1 (L + b)) + QZt+1H) Got+1 + dary
w, (eb,2t — byday — g ) qat

L =2

and

ul (eq2t + do (L + ;) + Q2tH) > wy(ep,or — doby — quH)
> Vo,2t—1
ul(eqot—1 — bidor—1 — qar—1 H) U/b(eb,2t—1 +dy—1 (L +0%) + g1 H)
wy(ep2e+1 + dory1 (L + b%) + qui H) > u, (eqot41 — Uidory1 — qou1 H)

b, * - /a, *
s uy(ep,00 — dogby — g ) a2t uly(€qr + doy(L + b)) + qoc H )

Ya,2t—1

Since the dividends and asset prices are non-negative, these FOCs imply that R}, =
R o < Rpopy Ry = Rpopy < Rj oy V6> 1. We can interpret that the benchmark
economy has a so-called seesaw eﬁect

We also see that R, = qt“;“# > R; ; Vt > 2 which means that the interest
rate of the benchmark economy is lower than that of our economy with asset. The
value of asset price bubble is by = gy — F'Vy = limy_, ﬁ. Since the function u] is
decreasing, we have

G a (o) up(eno)
Ry---Ry = Ri--- R} uy(cpo) upepn)

vVt > 2.

The positivity of the consumptions implies that Hq, < et, where we denote ey = ep o
and egy41 = €g241. D0, there is no bubble if lim; o %= R* R* = 0. Summing up, we
obtain the following result showing the role of interest rates of the economy without

asset.

Proposition 4 (the role of interest rates of economies without asset). Consider a
model with two agents. Assume that the sequence (q;), asset holdings are given by (6)
and agents’ consumptions given by (7a-7c) constitute an equilibrium. We have

R, > R; Yt >2 (9)
Ryoe 2 Rooy,  Rpgrpr 2 Rogyy V621 (seesaw property). (10)

Moreover, there is no bubble if

. € _
i o =0 (11)

The term =%+ R* R* represents the value (discounted by using the interest rates of the

benchmark economy) of endowment of the agent who buys asset in the economy with
asset. Proposition 4 implies that, if there is bubble, the sequence of these discounted
values either diverges or converges to a strictly positive value. In the case of conver-
gence, the existence of bubble requires that lim; ., =%+ R* - > (. The basic idea behind
is that the income of asset buyers must be high enough so that these agents are willing
to buy the asset even the asset price exceeds its fundamental value.

Although condition (11) is obtained in a two-agent model, it is new with respect to
the literature of rational bubbles in infinite-horizon general equilibrium models. Notice

10



that it is not implied by the well-known no-bubble condition >, Q;(>,e;:) < o0
(Santos and Woodford, 1997; Werner, 2014; Bosi et al., 2018b) because R; > R;. The
novelty of condition (11) is to show the importance of interest rates of the economy
without asset (these interest rates are exogenous) on the emergence of bubbles in the
economy with assets.

Condition (11) allows us to establish the connection between the literature of bub-
bles in OLG models and that in infinite-horizon models. Indeed, let us compare it with
the main result in the influential paper Tirole (1985) who studies a pure bubble asset
(i.e., asset pays no dividend) in an overlapping generations model. He proves that there
is no bubble if the steady state interest rates of the economy without bubble asset is
higher than the population growth rate. Condition (11) can be interpreted as a high
interest rates condition (in the stationary case, i.e., ¢, = e, Rf = R* Vt, it becomes
R* > 1). So, our result is consistent with that in Tirole (1985). The difference is that
we do not require the convergence of interest rates R} as in Tirole (1985).

Remark 1 (interest rates in the economy with adjusted endowments). Assume that
borrowing limits are low enough so that e, o, —daib}, €q.21—1—b}dar—1, €p 2041 —d2141b}, € 26—
byda are strictly positive. By using the same argument in Proposition 4, we can prove
that there is no bubble if

. €t
lim

i o =0 (12)

where RY is defined by

/
b2t (eb,2t+1 — d2t+1b§)

/
_ Ta2t-1Ug, (€a,2t - dzth) Rd 1
T / bid
Uy, (eb,Qt — 0Oy Qt)

1=
u (eq2t—1 — bidor—1)

Ry (13)

which can be interpreted as the interest rate of the economy with adjusted endowments.

4.2 Examples of bubbles with logarithmic utility functions

In this section, we will provide several examples of bubbles. We will work under
logarithmic utility functions. We start by giving a condition under which a sequence
is a system of prices.

Lemma 2. Assume that u;(c) = In(c) Vi = a,b.
1. If (qi)¢, asset holdings given by (6) and agents’ consumptions given by (7a-7c)
constitute an equilibrium, then

Yo0(ep0 + (g0 + do)by,—1 — qobro)

= +d 14a
G0 = (@1 +d) eo1 +dy(L+b:)+qH (142)
Ya 2t71(ea ot—1 — bhdor—1 — QthlH)
= +d ’ 2 a 14b
q2t—1 (C_Izt Qt) Catn + dgt(L T bz) auH ( )
epor — bidoy — qon H
o = (QQt+1 + d2t+1) ”Yb,zt( b,2t p G2t — G2t ) (140)

epot+1 + doy1 (L + %) + quir H

2. Conversely, (q):, asset holdings given by (6) and agents’ consumptions given by
(7a-7c) constitute an equilibrium if (14a-14c) hold, Yaot—1 > Vo2t—1, Vo2t > Va2t Vi,

11



and

€a2t—1 > €21+ (L + 20} )dy—1 +2Hqgy—q Vt > 1 (15a)
€p,2t Z €a,2t + (L + QbZ)th + QHQQt Vt Z 1 (15b)
€b70 Z €a’0 + d()(ba,—l — bb7,1) + qo(L + 262 + ba,—l — bb7,1> (15C)

Proof. See Appendix B. It should be noticed that conditions (14a-14c) are part of
FOCs which are necessary. Conditions (15a-15¢) imply the TVCs. O

The FOCs (14a-14c) can be rewritten as

(e — bpdy €0 + dobp,—1

=Yoo — Woll+b; —byp—1) — H
Q1+C£i1 " ( o b () )
€a,2t — A2t Ya,2t—1\€a,2t—1 — 2t—1
) a _ g ) a — H(Yaot1 + 1 16
Got + d2& ; qm;)_él (o ) (16)
e — : epot — by
b,2t+1 20+10% 'Vb,2t( b,2t b 2t) _ H(%gt + 1)‘
o Qorr1 + dor ot
From the system (16), we observe that ¢, is strictly increasing in ¢,_; but ﬁ is
strictly decreasing in ¢;_;. By consequence, ¢, is strictly increasing in ¢y and R% = qq;:;lt

is strictly decreasing in go. Thus, the fundamental value FVy = > .o, Qd; is strictly
decreasing in qo. This implies that the asset price bubble By = gy — F'V; is strictly
increasing in qq.

Notation. For z > 0, the sequence (g;);>o defined by go =  and the system (16),
is unique. So, we denote this sequence by (g;(z))q.

Notice that (¢;(x)) may violate conditions (15a), (15b). According to Lemma 2,
the sequence (q;(z)); is a price sequence of an equilibrium if

q(x) >0Vt (17a)
Cat—1 = €pot—1 + (L + 20} )do—1 + 2H o1 () (17b)
ep2t > €aat + (L + 2by)dor + 2H qo () (17¢)
€60 > Cao + do(bat — by_1) + (L + 2% + ba_1 — by_1) (17d)

We see that: x is an asset price with bubble iff By(z) = v — FVy(xz) > 0. The
following result states useful properties of equilibrium with bubbles

Denote By of all the values > 0 such that the sequence (¢:(z)):>o satisfies the
system (17a-17d). The following result presents some useful properties of the set 5.

Lemma 3. The set By is bounded and connected (in the sense that, if x,y € By and
x <y, then (x,y) C By). So, if the set By is non-empty, either it contains a unique
element or it 1s an interval. By consequence, we have that:

1. There 1s at most one bubble-less equilibrium.
2. If By contains at least 2 elements, there are a continuum of bubbly equilibria.

To prove these properties, let z,y € By with < y, and let z € (z,y). Since ¢(+) is
an increasing function, we have ¢(y) > ¢(z) > ¢(z) > 0. By verifying all conditions
in the definition of By, we get that z € By. The two last points of Lemma 3 are from
the property that By(x) =z — FVy(z) is strictly increasing in z.

In the next subsections, we will present several examples where bubbles arise.

12



4.2.1 Asset without dividends

We focus on the case of fiat money or pure bubble asset (i.e., d; = 0 Vt). To simplify
our exposition, we introduce some notations.

_ _ Do _ _ Baa
Yor = Vo2t = v Vel = Ya2u-1= 5 (18a)
Bb2¢ Ba2t-1
€ot = €pot, €21 = €211, W = €21, W21 = €p2p—1 (18b)
We can verify that =14t —
Wi ;
Vt—1€t—1 Y0€o 1
I, = e = 19a
! Wy wq Ry Ry (19a)
L+b7 —bp,—1
1+ v 1 14+ v 1 L+ L1b* b
Dj=—"- 4+ ——— = 1L... 4 AL 19b
! Wy Ry wyq Ry - R; w1 (19b)

We now provide necessary and sufficient conditions under which bubbles arise in
equilibrium.

Proposition 5 (continuum equilibria with bubble). Assume that d, = 0 ¥Vt and u;(c) =
In(c) Vi = a,b.

1. If (qt)¢>0, asset holdings given by (6) and agents’ consumptions given by (7a-7c)
constitute an equilibrium with bubble, then we have

1 1
—=—1Iy—D; Vt 20
Hq  Hqo ' ' (20)
By consequence, we have qy < Hrlt)t Vt and therefore
HD, R---R
sgp(rt><ooandze—t<oo (21)

t=1

2. Assume, in addition, that Yaor+1 > Vp2t+1, Voot = Yaot, € — Wy > 0 (ie., epor >
€a2t, €a2t+1 > €patt1) V.

If
H(D; + =2
sup (D et_wt) < oo (22)
t Ft
then any sequence (q;)i>0 determined by
€(0,q)), —— =1, D1 (23a)
i _ a
q0 ,q), HQt qu t t =
_ (. I’y €60 — €a,0
here G = { f( ) 0~ Ca, } >0 (23b
=T S H (D + )/ T 2b + bt — by (230)

is a system of prices of an equilibrium at which asset holdings are given by (6)
and agents’ consumptions are given by (7a-7c). Moreover, all such equilibria are

bubbly.
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Proof. See Appendix B.1. ]

Condition (21) indicates that interest rates of the economy without asset must be
low. Notice that condition (21) also implies that lim;_, .. 5rtsr R* R* = 00, i.e., the present
value of endowment of the autarkic economy is infinite. It means that the no-bubble
condition (11) in Proposition 4 is violated.

Condition (22) is a key in Proposition 5. We can compute that

H(Dt+et wt) :le"'wt—l 147 +Hw1"'wt—2 14+ 72

+ (24)
I, € "C-1 Yo Vt-1 € "€t—2 Yo Vt-2
H 1 L—f—b:—bb_l 2Hw1---wt 1
+ot —=(—+ ——)+ :
€ o L+ b; + b eo- - er—1(er —wy) Yo Y-t

So, (22) can be satisfied for a large class of parameters (for example, v, = v € (0,1)
and w; = e;x where x € (0,7).

Proposition 5 suggests that when the economy without asset has low interest rates,
an equilibrium with binding borrowing constraints has bubbles if the initial price qq is
low enough in the sense that ¢y < ¢. It is useful to understand how the upper bound
g depends on fundamentals. According to (24), we observe that ¢ is decreasing in
the asset supply L, borrowing limits b}, 0;, the endowment ratio o the initial asset
holding b, _; of agent A, and ¢ is increasing in the rate of time preference ;, the initial
asset holding b, _; of agent B.

In a specific case as in the following example, we can fully understand why bubbles
may arise in a seesaw economy.

Example 1. Assume that ;; = $* where § € (0,1) and d, = 0 Vt. Assume also that
bo,—1 =L+ by, bp_1 = —0b}, and endowments are

€a2t—1 — €, €Eq2t =W, Ep2t41 =W, Cpot—2¢C
where e,w >0 (so e, =e > 0,w; =w > 0 Vt).
1. ]f% <1 (i.e., R* > 1), there is no bubble.

2. 1If % > 1 (i.e., R* < 1: low interest rate condition), then the initial price of any

equilibrium with bubble must satisfy condition gy < %516;;”.

Conversely, we have:

(a) There is a unique equilibrium with initial price gy = Moreover, this

H 1+5

equilibrium is stationary in the sense that ¢, = Bf;g’ > 0 Vt.

(b) For any value x m the interval (0, Ilfﬁfww), the sequence (q;) determined
— Be_1_

Hqt - = S L lzﬂ Vt > 0, is a system of price of an
equilibrium with bubble. Moreover, (1) q; is decreasing in t and converges

to zero, (2) the interest rate Ry = q;/qi—1 is decreasing in t and converges
to R* = 4= < 1.

by g9 = = and

Proof. See Appendix B.1. ]
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This example can be viewed as a version of the main result in Tirole (1985) (Propo-
sition 1) for an exchange general equilibrium model with infinitely lived agents and
short-sale constraints. Moreover, we can explicitly compute the maximum level of
initial price bubble (which equals %B 15 ) while it is explicit in Tirole (1985).

To sum up, the existence of bubble requires low interest rates of the economy
without asset. Moreover, when such interest rates are low, bubbles are more likely to

arise if

1. Asset supply L is low. (Asset shortage)
2. Borrowing limits b} and b; are low. (Financial frictions matter.)

3. The initial asset by is high and/or the initial asset b, —; is low. (Heterogeneity
matters. )

4. The endowment ratios =2 and *2 are high. (Heterogeneity matters.)
a,2t €y, 2t+1

Bb,2¢41

Bo,2t

5. The rates of time preference and ﬁﬁ “;ﬁl are high.

Equilibrium indeterminacy and bubbles

Under above conditions, not only asset price bubbles but also real indeterminacy arise.
It is interesting to notice that our model contains only 1 consumption good and 1 asset.
Our framework indicates that financial frictions and heterogeneity may generate real
indeterminacy.

We now investigate the properties of consumptions in the bubbly equilibria. In
equilibrium, the agent B buys asset at date 2t (b2 = L + b)) and the agent A buys
asset at date 2t + 1 (by 241 = L + b;). Consumptions are given by

* *
Ca0 = €a,0 + qo(ba—1 + 1), cbo = €0 + qo(bp,—1 — L — b))
Cat = €qot + Qo H, Chot = €por — QorH
Ca2t+1 = €a2t+1 — Qae11H, Cb2t+1 = €b2t+1 + Qo1 H

Recall that ¢, is increasing in ¢;_; and hence in ¢q. So, for any ¢ > 1, we observe
that (1) the consumptions ¢, o is increasing in gy but ¢, 9.1 decreasing in gy and (2)
cpot 18 decreasing in gy but ¢, 9,1 is increasing in gy.

(Inequality). We have ZZ—;Z is increasing in g¢o; and so is in ¢q.

Ca,2t+1

is decreasing
Cp,2t+1

in go;11 and so is in qq.

Notice that the bubbleless equilibrium has the consumption allocation (e;)"; which
coincides with that of the autarkic equilibrium. Since the utility function is strictly
concave, we can easily prove that U;(¢;) > U;(e;). So, its allocation is strictly Pareto
dominated by that of bubbly equilibrium. This point is consistent with Proposition 4
in Townsend (1980).
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The number of agents matters

Assume that there are n, agents of type A and n; agents of type B. For the sake of
simplicity, we assume that n, = n, = n. In this case, the asset holding of agents is

Lnbi L L

baot = —0, +b,, baoty1 = I +b;, byots1 = —0b;

byt = ==
a’ ) n

L,=—, H,=L,+b +b

3|~

With these asset holdings, we have that

Ca0 = €a0 + (g0 + do)ba,—1 + @b, cbo = €po+ (g0 + do)bo—1 — qo(Ln, + b))
Ca2i—1 = €a2i—1 — Updor—1 — qu-1Hyp, coo—1 = €p21—1 + doy—1(Ly, + b)) + qu_1H,
Caot = €qot + dot(Ly +bp) + quHy,  Coor = ey — dopby — g H,,

By applying our above results, bubbles are more likely to arise when L, is low (the
number of agents n is high).

4.2.2 Assets with positive dividends

In this subsection, we will study the emergence and dynamics of bubbles of assets

having positive dividends. According to the asset pricing equation ¢; = %,
we have ¢;Q; = q+1Q1(1 + dt“). By iterating, we get that ¢o = ¢rQr HtT:1(1 +

qt+1
;l—:). Bubbles exist if and only if lim,_, Q;q; > 0, i.e., the discounted value of 1 unit

of the asset does not vanish in the infinity. Therefore, this happens if and only if
limy o0 [ 11—, (1 + %) < 00, or equivalently

Z% < 00 (27)

;i

This means that there is a bubble if the price ¢; goes faster than the dividend d;. With
equilibrium allocations given by (6) and (7a-7c), since consumptions are positive, we
have ey — bydoy > Hqoy and e 9i-1 — bidoi—1 > qor—1 H for any t. By consequence, we
obtain the following result.

Lemma 4. The existence of bubble implies that

Z d—Zt* < o0 and dat-1 < 00. (28a)
¢ — bydo

— €2 - €a2t—1 — bidos—1

This means that the existence of bubbles in equilibrium requires a low level of
dividends with respect to the agents’ endowment in the future. The intuition behind
is that, the emergence of bubble requires that the asset price goes faster than the
dividend. Since there is always trading, the income of asset buyers, and therefore their
endowments must go faster than the dividend. Bloise and Citanna (2019) wrote that
"1t might seem paradoxical that a Lucas tree is priced at its fundamental value as long
as it provides dividends”. According to (27) and (28a), there would exist no paradox.
Indeed, the existence of bubble depends on the relationship between assets dividends
and prices. In a simple case where d; = d > 0 Vt, there is a bubble iff >~ (1/¢;) < oo
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which we can interpret that asset prices goes to infinity fast enough. As we will prove
in Example 4 below, this can happen.

In order to provide conditions under which there are a continuum of bubbly equi-
libria, we need to introduce some notations.

= Yb,0(€p,0+dobp, —1) H, = Vp,0(L+b%—by _1)+H ~ _ epo—€a,0—do(ba,—1—bb,—1)
1 ep1—brd 1 ep1—bpd 90 = T LH2bitba _1—by 1
a = ’Ya,2t—1(@a,2t—1*b2d2t—1) H = H(1+'Ya,2t—1) — — ea72t71—eb,zt_l—(L-i-QbZ)dgtfl
2t €q,2t—b}dat 2t eq,2t—bkdat Q2t—1 = 2H
— Yo,2t(ep,2¢—bjdat) H. —  H(+4,2t) _ __ ep2t—ea,2t— (L4207 )dat
(2t+1 = ep,2t+1—bidat 1 2t+1 = ep,2t+1—bp dat+1 qot = 2H .

Define (R?) by 1 = a;R{. Then, we can interpret (RY) as the interest rates of the
economy with adjusted endowments. It should be noticed that, if there is no dividend
(d; = 0 Vt) or agents are prevented from borrowing (b = b; = 0), then R = R}.
Observe that the inequalities (15a-15¢) can be rewritten as ¢ < ¢ Vt. The FOCs
(14a-14c¢) can be rewritten as
1 a; qi—1

=—— — H,Vt > 1, or equivalently ¢; =
G +di g1 ' " ay— Higia

—d; Vt>1 (29)
If (¢:) is a sequence of price, we must have

atdt Q¢
—— <1 < —Vt>1 30
T+ dH, S (30)
So, the equilibrium price at each date must be bounded.
We now state the main result in this section, which shows that bubbles may arise
under strong heterogeneity and low dividends.

Proposition 6 (multiple equilibria with bubbles). Let u;(c) = In(c) Vi = a,b. Assume
that Hy > 0, ay1/Hip1 < @ YVt and there are sequences («y), (0y) such that

O<ay<l<oy (31a)
H,
Strong heterogeneity or low interest rates: a;yq > ol i (31b)
H; at+1(1 - CYt)
.. d; Ot+1
Low dividends: —— > a1 (31c)
t+1 oy — 1
1— (O't - 1)dth >0 (Bld)
01a1d1 a1aq
< 31
1 +dH, ~ H (31e)

Then, any sequence (¢ )+>o determined by the system (14a-14c) and qy € (%, aﬁ‘il),

is a system of prices of an equilibrium in which asset holdings are given by (6) and
agents’ consumptions are given by (7a-7c); and for such equilibrium, we have

orady Qg

— < Q1 <
1+ d,H, qt—1 H,

vt > 1. (32)

Moreover, Lemma 3 implies that there are a continuum bubbly equilibria.

Proof. See Appendix B.2. ]
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Remark 2 (strong heterogeneity and low interest rate condition). We interpret con-
dition (31b) as strong heterogeneity because we observe that

o1 Ho _ Vo2t (1 + Ya2t—1) €2t — bidoy

Hy iy I+ 2 a2t — Didot
aoeHop—q _ Va2t—1(1 + Yo 21—2) €q20—1 — bidor—q
Hy, I+ Ya2t-1 epot—1 — Didar—1
Since the interest rates of the economy with adjusted endowments are RS = 1/ay,

condition (31b) can also be interpreted as a “low interest rate condition”.

To the best of our knowledge, Proposition 6 is the first result showing the existence
of multiple equilibria with bubbles of assets with positive dividends in deterministic
general equilibrium models. It is important to notice that there are exogenous param-
eters satisfying all conditions in Proposition 6. Indeed, we can choose parameters as
follows.

1. Choose oy = «, 0y = o VL.

2. Choose 7, = € (0,1). In this case, we have

ar Bepo + doby,—1) G2t _ Bleaot—1 — bidy_1) a1 _ B(ep2r — byday)
Hy  B(LA4b; — by 1)+ H Hy (1+pB)H " Hoiq (1+8)H
So, condition ;Itt—fl < @ is equivalent to
B(epo + dobp 1) b0 — €a,0 — do(ba—1 — bp.—1) (33a)
B(L+0b:—by—1)+H L +2b% 4+ by —1 — bp—1
Bleqot—1 — bidau_1)  eqor—1 — €por—1 — (L + 2b%)d2y_q
) a ) ) a b
I+HH - o (33D)
B(epor — byday) < et — €at — (L + QbZ)dzt‘ (33¢)
(1+B8)H 2H

3. Choose ey 2141, €q,2¢ such that H, = h > 0 Vt. Hence, HI;—T =1.

4. Given that (d;) is low, we can choose ey, €42¢41 sufficiently high so that (1 —
a)arr1 > 1 and (33a-33c) hold. (This is a low interest rates condition.)

5. Choose (d;) and dz;trl low enough such that (31b), (31d) are satisfied and li‘zllj}l <

7. (This is a low dividends condition.)
1

Although Proposition 6 provides a sufficient condition under which there are a
continuum of equilibria with bubbles, it would be useful to give examples with explicit
parameters. We firstly focus on parameters satisfying the following assumption.

Assumption 4. Assume that v;, = 8 € (0,1) (i.e., iy = ') and endowments are
Capt—1 = bydos—1 + €, gt = bpdo + W, €1 = bydoy—1 +w, epo = bydy + e

where e, w > 0.
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Under this specification, we have a; = a = % and H, = h = w Vt and the
system of price satisfies

1 _
- 2w > 1, or equivalently ¢; = B N d; Vt > 1 (35)

@G +d G a— hqg_

In this case, we have the following result which is useful when finding examples of
bubbles.

Proposition 7. Let u;(c) = In(c) Vi = a,b and Assumption 4 be satisfied. Assume
that (q:) is the price of an equilibrium in which asset holdings are given by (6) and
agents’ consumptions are given by (7a-7c).

1. If a < 1, there is no bubble.
2. If a > 1, then there are only three cases

(a) There is no bubble.
(b) The equilibrium is bubbly and q; converges to zero.
(c) The equilibrium is bubbly, q; > “T’l Vt, and q; converges to “T’l

a—

Moreover, when a > 1, there is almost one equilibrium satisfying q > Tl Vt,
conditions (6) and (7a-7c).

Proof. See Appendix B.2. ]

According to Proposition 7, in equilibrium with bubbles, the asset price ¢, converges
either to zero or to (a — 1)/h.' We start with an example where ¢; converges to zero.

Example 2 (multiple equilibria with bubble and ¢; — 0). Let u;(c) = In(c) Vi = a,b
and Assumption 4 be satisfied. Assume that there exists o such that 1 < ¢ and

e
Low interest rate condition: pe > 1 (36a)
w
(o—1 _di - Be
o di+1 w
dt < %
Low dividends condition: (1;616)_('?,,+1)H (36b)

1+8
dy < 2

oadq < Be—w
[ 1+ay ZEHD ™ H(B+1)

Bepo + dobp,—1) _ €60~ €a0 — do(bg,—1 — by 1)
B(L+b:—by 1)+ H L+2bf +b,—1— by 1

(36¢)

and

Then, any sequence (¢;):>o determined by the system (14a-14c) and

6( oady a—l]
©E\Txan Tk

10This result is related to Propositions 2 and 3 in Bosi et al. (2018a). The difference is that Bosi
et al. (2018a) consider an OLG model with descending altruism while we study a general equilibrium
model with infinitely lived agents.
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is a system of prices of an equilibrium at which asset holdings are given by (6) and
agents’ consumptions are given by (7a-7c). Moreover, Lemma 3 implies that there are
a continuum bubbly equilibria.

For any equilibrium with ¢y < “—;1 (including bubbly equilibrium), the asset priceg,
decreasingly converges to zero.

Proof. See Appendix B.2. O

Under conditions in Proposition 7 and a > 1, there is almost one bubbly equilibrium
such that ¢; converges to a strictly positive value. We provide an example of this case.

Example 3 (an equilibrium with bubble and ¢, — ¢ > 0). Let u;(c) = In(c) Vi = a,b
and Assumption 4 be satisfied. Assume also that @ > 1. Let x > 0 such that ITH >
a > 1 and define the sequence (d;) by

L rz+1\t/1 hx(xz +1) hx(x + 1)
d_t_<xa><d0 1—(@—1)x>+1—(a—1)x (37)
1-8
l1—(a— 1z g€ W
0< d() < hl‘(l’—l—l) , d() q (37b)

Observe that 0 < had, < 1 Vt and xd; + d; = 13%‘;‘ Moreover, . d; < co.

Define the sequence (¢;) by ¢; = aT’l + xd; Vt. Then (g;) is a system of prices of

an equilibrium at which asset holdings are given by (6) and agents’ consumptions are

given by (7a-7c). Moreover, ¢, decreasingly converges to %

R
In this equilibrium, we have _,(d;/q:) = 3, (=) < >, di-5 < oo. So, this

t
—1
aT+Idt

equilibrium experiences a bubble.
Proof. See Appendix B.2. ]

In Examples 2 and 3, the economy is uniformly bounded and the dividend goes
to zero. The following result shows in an economy with unbounded and asymmetric
growth, bubbles may arise and the asset price goes to infinity.

Example 4 (growth economy and multiple equilibria with ¢, — 00). Let w;(c) = In(c)
Vi=a,b, v;: =0 € (0,1) (i.e., Biz = ). Assume that d; = d > 0 V¢t and endowments
are

* *
Caot—1 = bodos—1 + €21, €q2t = bydoy + Wy

epot—1 = bpdos—1 + Wwar—1, ey = bpdo + €2
Let o and o be such that 0 < o < 1 < ¢. Assume that, for any ¢,

b0 — €a0 — do(ba—1 — bp.—1) N Bevo + dobp,—1)

L +2b; 4+ by —1 — by —1 BL+b:—by_1)+H
1—
e, —wy > Hd
1+/8 t t
o 1
Wiyl > o 1ﬁ€t, e > m’wt,

wy > (0 — 1)H (B + 1)d.
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Notice that the two first conditions ensure that ;}::1 < q Vt.

According to Proposition 6, any sequence (¢;);>o0 determined by the system (14a-
14c) and ¢qp € (11‘31‘11}[1, ‘%), is a system of prices of an equilibrium in which asset
holdings are given by (6) and agents’ consumptions are given by (7a-7c). By conse-
quence, Lemma 3 implies that there are a continuum bubbly equilibria.

In this example, endowments of both agents go to infinity. However, there is an

i - et : €a,2t—1—bzdot—1
asymmetric growth: o°> > 1 (or equivalently e By ) and

1 1
B(l—a) B(l—«

ep,2t—by dat 1 )
€q,2t—b}dat B(l—a)/"

Example 5 (an equilibrium with bubbles and ¢; may fluctuate over time). Consider a
particular case where f;; = ' Vi, Vt where 5 € (0,1), b: = b; = 0 (no short-sales) and
€p2t+1 = €q2t = 0. In this case, V21 = Yo, 2e-1 = 8 < 1, H = L and there is a unique
equilibrium satisfying condition (6)

(40)

€b2t and gy =

_ B B,
a2t = (l+ﬁ)L (1+5)L a,2t—1-

In other words, the set By contains a unique element. This equilibrium experiences a

. : doy—
bubble iff ), d;/q: < oo which now becomes ), % + >4 . < 00. So, we recover

(28a) and this corresponds to the key condition in examples of bubbles in Section 5.1.1
in Bosi et al. (2018b).

We now look at the consumption

Ca0 = €a,0 + (g0 + do)ba—1, b0 = €vo + (qo + do)bb—1 — qo L (41a)

Ca2t—1 = €q2t—1 — qor—1 L, Cb2t—1 = €p2t—1 + dos—1 L + g1 L (41b)

Capt = €q2t T dot L+ qor L, Cpor = €p2t — GorL (41c)

Since Lgyy = %ebgt and Lgoy_ 1 = %eam_l, we see that c,9,—1 and ¢,9; do not

depend on (d;); but ¢, ot (resp., cpo—1) is strictly increasing in dy (resp., doi—1). So,
when dividends decrease, bubbles will be more likely to arise but the individual welfares
will be lower.

5 Conclusion

In general equilibrium models with infinitely lived agents, we have provided new con-
ditions (based on fundamentals) under which assets (with or without dividend) do not
generate price bubbles. In general, the formation of bubble is associated to the fluctu-
ations of asset trading. However, the emergence of bubble is not a matter of a single
factor but the result of an interaction between heterogeneous agents in an imperfect
market. Since bubbles and equilibrium outcomes are determined simultaneously in
equilibrium, we should not say that bubbles affect equilibrium outcomes or vice-versa.
Instead, they are caused by economic fundamentals.

We have provided several examples where bubbles and real indeterminacy arise in
a model economy with two kinds of agents. Our basic idea is that when the economy
without asset has low interest rates and cannot allow agents to efficiently smooth their
consumption, agents may buy an asset even its price is higher than its fundamental
value. Our analyses suggest that bubbles are more likely to arise if (1) heterogeneity of
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agents takes at any period, (2) borrowing limits are tight, (3) the interest rates of the
benchmark economy are low so that agents are willing to buy assets at a high price,
(4) there is an asset shortage (the asset supply is low or asset dividends are low with
respect to agents’ endowment).

A Appendix: Proofs for Section 2

Proof of Proposition 1. Part 1. It is easy to see that ¢; > 0 Vt. Indeed, if ¢ = 0 for some
t, we can increase b; ; and obtain a higher income in £+ 1 and increase ¢; ;1: a contradiction.

To prove the FOCs, it suffices to prove that ¢.5; u}(cit) > Bi+1ul(Cit1)(qe+1 + diy1)
and we have equality if blt + 07 > 0. Fix t > 0 and consider another allocation (0278, b;s) s
given by (¢} ., b, ) = (¢is, bis) ‘v’s ¢ {t,t+ 1} and (¢ ;, b} \)s=tt+1 determined by

’LS’ 1,8

€
it — €+qi(biy + (;) = et + (@ +di)bi—1
t

/

Cit

€ €
Citr1 + (qey1 + dt+1)(7 Fqei1bir1 = i1 + (@1 + i) (biyy + E)'
t ¢

C;,t+1
where € > 0 is low enough so that ¢;; — e > 0.
By the optimality (c;, bi¢)¢, we have

Biui(cie) + Bigrrui(cizr1) > Bigui(ciy) + Bigr1ui(cisiq), and hence

ui(cit) — uilcir — €) >3 1ui <Cz‘,t+1 + (g1 + dt+1)q%) — ui(Cit+1) G111 + diy1
Z Pit+ .

€ 6Qt+1+dt+1 q
qt

Bi

Let € tend to zero, we get that ¢:f; su;(¢cit) > Bity1ui(Cit1) (@41 + di1)-

If by + b > 0, we can do as above but with ¢ < 0 and get that ¢/ ul(cit) <
Bit+1u;(Cit+1) (g1 + dey1). Therefore, we have the equality.

We finally define A\;; = B uj(cit) and mip = Nitqr — Nigr1(qee1 + dey1).

We now prove the TVCs. The FOCs imply that the sequence (A;:q;); is decreasing.
Moreover, we have

Aitqibiy = <>\i,t+1(Qt+1 +diy1) + Ui,t)bz‘,t = Nit41(Qeg1 + dig1)bi — nieb;
We rewrite the budget constraint of agent ¢ at date t as follows
Nit(Cip —€ir) = Nit(qr + de)bi—1 — Nigqebiy

By taking the sum of budget constraints from ¢ = 0 until 7" and using (1b), we get that

T T
Z Nit(Cit —eit) Z ( gt +di)bit—1 — )\i,tthi,t) (A1)
t=0 t=0
T
= Xi0(qo + do)bi,—1 — AirqrbiT + Z ni,tb; (A2)
=1

and hence \; o(qo + do)bi—1 + 1o Mis€it + Doy Mty = Nirarbi + S 1o NitCit-
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We will prove that limyp_,oo A 7gr(b;r + b*) exists in RT. Recall that the sequence
(Xitqi)e is positive and decreasing. So, limy_, 4o Aj1qe exists and is in RT. We have —b} <
bit =L — Z#i bj+ < L+, b:Vt, and hence

—oo < liminf \; 7qrb; 7 < limsup A; 7qrb; 7 < 00.
T—+o0 T—+00

Under our assumptions, we have >, X; ¢¢;+ < 0o. Indeed, we have Y, Nj1cir = Y, Bisul(cit)cir <
> Bigv(cie) <D0, Bigv(D; eir + Ldp) < oo.

Summing up, we obtain that ), \; ¢¢; ¢+ < 0o. Since Y, Aj¢¢;¢ < 00, both series Y, A; e ¢
and ), n; :bf converge. By consequence, limy_, o A; 7qrb; 7 exists in R. Therefore \; 7qr(b; 7+
b*) converges and

lim )\i,TQT(bi,T+b*) = lim Ai,TQsz’,T + lim )\i,Tqu;k eR
T—+00 T—4o00 T—4o0

There are two cases:

e Case (a): If liminf; 4 oo(biy + &) = 0, then limy o0 i ¢qi(biy + b*) = 0 because
Aitqe < Aioqo Vi

e Case (b): If liminf; , 4 (bi¢s + b7) > 0, then there exist « > 0 and T such that
bit + b > o,Vt > T. In this case 7,y = 0,Vt > T. For simplicity of the proof, assume
T=0.

We know that lims 4o Ai¢qs exists. Let ¢ = limy_ o0 Ajrge. We claim that ¢ = 0.
Assume the contrary: ¢ > 0. In this case ( = lim; 400 N 74741974741 < Nigr VT

/ / .
Construct a sequence (c;,, b; ;) as follows:

a a
C;O = Ci’o + gi, ngt = Cl‘7t,vt 2 1, b;,t = bi,t — qC)\,Vt Z 0
i0 t it
Since b;; > —bf + o — qf/\o:,t = —-b + ol - ﬁ) > —b},Vt, the sequence (c};, b} )

satisfies physical, budget and borrowing constraints. However Zz;og B¢7tui(c;7t) >
:;og Bi+ui(cit) which is a contradiction. Hence ¢ = 0, ie. limyoo{q@Xit} = 0.
Since b;; + b = L — Z#i bje+ b7 < L+, b7V, we get

Xirqr (L + Z b)) > Nitqe(big + b;) > Nirqrov.

K
This implies limy_oo i 1qe(bir + b)) = 0.

Considering the two cases (a) and (b), we get limy o0 Ajrqe(bir + bf) = 0. The proof is
complete.
Part 2 (sufficient condition). It suffices to prove the optimality of the allocation (c;, b;).

Consider another sequence (¢}, b)) satisfying physical, budget and borrowing constraint. We
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have, for any T,

T
E )\l,t Cit — C 2
t=0

M~

it (ei,t + (gt + de)big—1 — qibiy — ei — (e + di)bipq + th;t>

=0
-1 T-1

=D Aig+1(Gr1 + diga) (s =D Nigaelbiy — bi4) — ardir(bir — b 1)
t=0 t=0

S
L

= —qrXir(bir — b 1) + (Ai,t+1(Qt+1 +di1) — /\z‘,tQt) (bije — b y)

T
Lo

= —qrXir(bir — b} 1) + Nt (D — bist)

= —qrhip(bir + b — (B0 + b)) + D mie(b, + b — (big + 7))

T-1

—qr i (bir + b)) + Z it (b4 4 07) > —qr iz (bsr + 7).
1=0

Y

Therefore, we have

T T
Z (ﬁz tu Czt th ) Z)\z,t czt > QTAz T(sz + bT)
t=0

t=0

Denote Ur = Ztho Bitu(cit) and U = Z;—F:o Bmu(cg’t). Observe that limy_,o Ur exists.
If limp_yoo gr i 7 (b7 + b%) = 0, then limsupy_, . U < limp_, Up; we have finished
our proof.

Remark 3. If u;(0) > 0, then the series Y - \izu;i(ciy) always converges. By consequence,
conditions Up > Ul — qr i (b + b)) YT and iminfr_, o gr i 7(b; 0+ b5.) = 0 implies that
lim7 o0 Ur > limp_yoo Uf = limsupyp_, o, U7

O]

Proof of Corollary 2. Suppose that ), Qe;; < oo Vi. Budget constraint of agent 7 implies
that Qicit + Qiqibic = Qreir + Qg + di)bir—1. By summing over t and noticing that
Qtar = Qu1(qr41 + diy1), we have S Qeciv + Qrarbir = 31— Qeeir + (qo + do)b; —1 V.
Since ), Qie;r < 00 and (Qrgrb;r) is bounded (because b; 7 and Qrqr are bounded), the
series Zt Q¢c;+ converges, and so does the sequence (QTqui,T)T. If there is a bubble, we have
¢t > 0Vt and limy_,o, Q¢q: > 0. By consequence, (b;;) converges for any i. Market clearing
conditions imply that there is an agent ¢ such that b; = limy_,o, b;y > 0. So, borrowing

. . . Ai
constraints of agent i do not bind from some date on, say 7. Hence, j\’ftl = qujf = R}H
i,

Vit > T. This implies that Q; = Qr ?Z; Vt > T. By combining with the TVC, we get
that limy o0 Qiqe(biy + bF) = 0 Vi. This is impossible because lim; oo (b;¢ + b) > 0 and
lim; QtQt > 0. O

Proof of Lemma 1. We have, for T' > ¢,

UiT(Z(Ciatz’)/aWt> Z/stuz Czs)+/81tuz(czt+Wt + Z stuz 'Yczs)

s=t+1

24



1. If u;(c) = In(c), we have

Ul (Z(Ci,t77/, Wt)) — Ul (ci) = Bis (Uz (cig + W) — Ui(ci,t)) + ET: Bi,s (uz‘(’/ci,s) — ui<ci,s)>

s=t+1

T
—un(10 ) L) 3 B> Bun(@) ) 3 B W 2

Cit s=t+1 s=t+1

So, we have the uniform impatience if 3;; > —In(y) Z?C;H_l Bi,s V.

In(2)
2. If ui(c) = ‘il_;;, we have

W) T () - is)
UF (el W) = U = ({2 80y ror oy 3, ()

l1—0 1—0 st
21—0’ -1 1 1 T Wl—a
> ﬂi,tﬁWt T+ (71 Z Bi,s 1 = 5
s=t+1

where the last inequality is come from c¢;; < W; Vi,Vt, the function ui(c + Wt) — u;(c) is
decreasing in ¢, and v < 1. So, the uniform impatience holds if ,6’” - 1I/V + (4177 -

1) Zs:tJrl 62’,51‘770 > 0 Vt. 0

Proof of Proposition 2. We mainly use Proposition 1.
1. Suppose that there exists 7 such that liminf; o (b;¢+b}) > 0. In this case, there exists

A, o o 1 . .
T such that b;; +b; > 0Vt > T. So, AZ:I = thCﬁdtH = &o Vt > T. This implies that

Qr = Qr :\\Z; Vt > T. By combining with the TVC, we get that lim; o Qrqi(bis +07) =0
Vi. This is ,impossible because liminf; ;o (b;+ + b7) > 0 and lim; Qg > 0.

2. We firstly prove that: there exist an agent, say agent ¢, and an increasing sequence
(in)n such that b;;, + bf =0 for all n = 0,1,.... Indeed, assume, by contradiction, that for
any agent ¢, there exists 1" such that b;; > b7 Vt > T'. As discussed above, we obtain that
limy 00 Qe (biy + bF) = 0 Vi. Taking the sum over 7 and using market clearing conditions,
we get that lims ., Q:q: = 0, i.e., there is no bubble, a contradiction.

We now consider other agents j € {2,--- ,m}. Suppose that for any j > 2, there is T}

Aj, _ _ 1 . _
such that b;; +b; > 0Vt > Tj. So, “Jt’l = qt+1(—1+tdt+1 = "o Vj > 2,Vt > T = max;>2 Tj,

which implies that Q; = Qr )\7 L'Vj > 2,t > T. By combining with the TVC, we get
that im0 Qrqe(bj s + b*) = O Since bubbles exist, we have lim; .. Qg+ > 0. We then
get that limy_oo(bj¢ + b} ) = 0. Market clearing conditions imply that lim; . b1 + b} =
L —lmy o0 ) isobje + bf =L+ ", b5 >0. So, there exists 77 such that b + bf > 0
Vvt > 11, a contradiction. By consequence, there exist an agent, say agent 2, and an increasing
sequence (jn)p such that bj;, +0b7 =0 for alln =0,1,....

3. Suppose that there are m — 1 agents such that their asset holding converges. By
market clearing conditions, the asset holding of all agents converges. So, there is an agent ¢
such that lim;_,o b;; > 0. According to point 1, this is impossible. ]

Proof of Proposition 3. We need the following intermediate results (Lemmas 5, 6, 7).

Lemma 5. At each date t, there exists i such that b;y > b; 41 and borrowing constraint is
not binding (b;+ + b} > 0).

Proof. Define iy such that b;, ¢ — by 1+1 = max{b;; — b; 1+1}. Then, we have b;, ; — bj, 1+1 > 0.
(2

We consider two cases.
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Case 1: If byt — big,t+1 > 0, then b, ¢ + b > by 141 + b > 0.
Case 2: If bj, 1 — biy 141 = 0, then by — b; ;41 < 0 Vi. Since Y (bis — bit+1) = 0, we get

(]
that bj; — b; 141 = 0 for every ¢. Since ), b;; > 0, we can choose i; such that b;, + > 0, we
have bil,t = bil’tJrl and bil,t + b;k > 0. OJ

Lemma 6. In equilibrium, we have

Bitr1t;(Cig+1)
/Bi,tu;(ci,t)

In addition, if we assume that e;; — dib; > 0 Vi,Vt, then we have

1 = Ry41 max vt > 0. (A.3)

, N x
1 < max ﬁz,tJrlU/l(ez,t+1 di1107) V> 0, (A4)
Ry i Bigui (D, eie + Ldy)

Proof. According to FOCs, we have ¢ > (qi+1 + di4+1) max; Birriug(eirin) Gy oo > i bie >0,

Bi,uf(cit)
there is an agent i; such that b;,; > 0. Hence, 1,y = 0. By consequence, ¢; = (q+1 +
Biy tr1u) (Ciyt41)
dt+1)W. Therefore, we get that

Biwui(cit)

/Bi,t+1ué(ci,t+1)

Biwui(cit)

qt = (Qt+1 + dt+1) m?x =R m?x

Let t > 0, Lemma 5 implies that there exists an agent ¢ = i(¢) (depending on t) such that
bit),t = i), i1 and by ¢ + b;.*(t) > 0. Then, we have 7, ; = 0 and hence

Bi u; G
L= By (#),t+1%; (4 (Cie),141)

Bi(t),tu;(t) (Ci(t),t)

We observe that c;i) 111 = €i() 441 + (@1 +dir1)bi) e — Qer10ig) 241 > €ige) 041 — di1105 4y
and ¢;p < Wi = > et + Ld;. By consequence, we get that

- /Bi(t),tJrlu;'(t) (Cit) t+1) < /Bi(t),t+1ug(t)(ei(t),t+l - dt+1bf(t)) < max Bit+1u;(€it+1 — der1b})
Ryt /Bi(t),tug(t) (ciwye) Bi(t),tu;(t)(zi et + Ldy) T Bigui (Yo eir + Ldy)
O

Lemma 7. Consider an equilibrium. Take y in Assumption 3, we have that (1—~)qib; s < Wy
Vi, Vt.

Proof. Suppose, by contradiction, that there exist ¢ and t such that (1 —~)g:b;; > W;. Let
us consider a new allocation of agent i: z; := z(ci,t,'y, (1-— ’y)qtbi,t). We check that this
allocation is in the budget set of agent ¢ because

(cig + (L =)abiy) + a:(vbig) < €ix + (q¢ + de)big—1
Yeis + s (Vbi,s) = veis + (g + di) (Vhis—1) < €55+ (g + di) (Vhio—1) Vs >t + 1

By Assumption 3, we have
Ui(c;) < U; (Z(Ci,t,% Wt) <U; (Z(Ci,t7% (1- ’Y)thi,t)>- (A.5)

This is in contradiction to the optimality of (¢;, b;). O
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We now prove Proposition 3. Since points 1 and 2 are direct consequences of (3) and
Lemma 1, let us prove (3). According to Lemma 7, we have (1 —v)g:b; s < W Vi, Vt. Taking
the sum over i, we get (1 — v)q.L < mW, Vt. Since L(1 — ) > 0, we get that

th
g <

< Tioa (A.6)

According to Lemma 6, we have

Bit+1u;(€i 41 — dep1b])
< max — LANL L2\t > 0. A7
Ry = i Biru,(>; eir + Ldy) N (A7)

Recall that there is no bubble iff lim;_, Q;g; = 0. By combining these above arguments, there
is no bubble if condition (3) is satisfied.

O
B Appendix: Proofs for Section 4.2
Proof of Lemma 2. With our asset allocations, the FOCs become
1> Va, 26U (Ca2t41) q2t+1 + d2t+1’ 1— Va,2t—1Up (Ca2t) qot + dot (A 8a)
ul (Ca,2t) 2t ul(Capt—1)  Qae-1
1 ’Yb,2t1lﬁf)(cb,2t+1) Got+1 + d2t+17 1> ’Yb,Qf—luﬁ,(Cb,Qt) qot + d2t. (A.8b)
uy (cpat) q2t ul(cpot—1) Qa1
We know that u/(c) = 1/c. Denote H = L + b}, + b;. FOCs now become
1= Va,2t—1Up (Ca2t) g2t + dat _ Ya,2t—1(€a2e—1 — bidor—1 — qae—1H ) qor + doy (A.9)
uy(Ca2t—1)  Qat—1 a2t + dot(L + b}) + qoe H q2t—1
1= Vo,26Up (Ch,2t4+1) G241 + d2tt1 _ Woot(€pot — daby — gl ) qory1 + dorta (A.9b)
uy (cp,2t) qot ep2t+1 + dopr1 (L +0%) + g1 H qot
Va,2t—1Up (Ca2t)  Vo2t—1Up(Ch2t) (A.9¢)
ul(capt—1) — up(cp2e—1)
Vo, 26U (Cb,2041)  Va,26Up (Ca2641) (A.94)
wy(cp2t)  — ul(Ca2t)
The two last inequalities become
1 —=0bidoy_1 —qoy_1H _ dot—1(L + b* 1 H
’ya,zt—1ea’2t 1 ad2t 1* q2t—1 > 7b72t716b,2t 1+ dar—1( i o) T q2-1 (A.10a)
a2t + dot(L + b}) + qoe H ep2t — dotby — qor H
— doiby — gt H + dot (L + bF) + qor H
Yoot €b,2t 2ty *CI2t > Yoot €a,2t 2t£ b) q2t ( A.lOb)
ey 2141 + dogr1 (L + 0%) + qoe1 H €a2i+1 — bidorp1 — g1 H
At the first period, FOCs are
! li
0th(e) o Je0telar) s oo (A11a)
uy(ch,0) Uy (Ca0) Cb,1 Ca,1
ep,0 + (g0 + do)bp,—1 — qobe,o €q,0 + (qo + do)ba,—1 — qobay
V6,0 ( ) - > Ya,0— ( * L “= (A.11b)
ey +di(L+05) +qaH €q1 — bidy — i H
! d do)by —1 — qob d
and 1 — Yooy (Co1) g1 +d1 ev,0 + (g0 + do)by,—1 — qobeo 1 + di (A.11c)

= Y0
uy (¢p,0) qo T ep1 +di(L+0;) +qH qo
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So, we get necessary conditions (14a-14c).
According to Proposition 1, it remains to prove the transversality conditions

im g2t (bat +b5)Aa2t = 0, lim gat1(ba2t+1 + bg) Aa 2641 = 0 (A.12a)
t—o0 t—o0
lim qgt(bb’gt -+ bz))\b’Qt =0, lim q2t+1(bb72t+1 -+ b?;))\b,2t+1 =0. (A.l?b)
t—o00 t—o00
Since by 2t = —b;, and by 21 = —by,, they becomes
lim q2t+1 (ba,2t+1 + bZ))\a,2t+1 =0 and lim q2t(bb72t + bZ))\b,Qt =0 (A.13)
t—o00 t—o00
1
or equivalently, lim goty1H Bg2t41—— =0 and lim gy HBpot—— =0 (A.14)
t—o00 Ca2t+1 t—o0 " Cpot
These conditions are satisfied thank to (15a-15c).
O

B.1 Proofs for Section 4.2.1
Proof of Proposition 5. Part 1. Bubble exists iff ¢; > 0 Vt. FOCs (14a-14c) now become

by, 1 —dqo (L+b3
{1 = o 2ot (H0) a1 - {6,;1+H = T,0gs" — W0(L + b5 — by, —1)

v( . )eb,1+q1H q0 1
_ viles—Haq) qig1 Wet1 = = —
1 = eleeHa) gien gy > q o TH =we,; —nHVE>1

wep1+Hgi41 g

or equivalently

1 Yo,0€0,0 1 1 L+0b; —by 1
S L1 Ly
Hq ev1 Hqo en L+ b} + by
1 e 1 _ 1+ Yt

Vi>1

Hgp1 o wipn Hye o wign

From this, we can compute that, for any t > 1,

1 _ Ot-1€t-1 (%7261572 1 +%72) L4y

Haq wy wi—1 Hqro Wi—1 wy
_ Me—re—1ye2ei2 1 yaep i l4 e T
o wy w1 Hqio wy wi—1 wy
__y—ieer mer 1
o wy wy Haq
B (1 + V-1 e | L+ 72 I e LS W15 (1+ 71))
Wy wy W—1 Wy w3 w2
_ Je-1e-1 Yoo 1
o wy wy Hqo
LAb%—by 1
B (1 + V-1 e | L+ 72 4. Jemte e L+, L+b5+b7 )
Wy wy W—1 wy w2 w1
1
= Hiqol—‘t — Dy.

By consequence, we obtain (21).
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Condition ¢; > 0 is equivalent to D; /Ty < 1/(Hgqp). We see that

14 L+bk—by, _q
TR £ T S TSPt 7 209
D, o w W Wi—1 W w2 w1
F Jt—1€t—1 . 70€o
¢ w w1
Ri---R{_, 1 1,1 L+0b;—by
= (1 + ) oot —(—+ =2 ——=
€t—1 V-1 Yo L+ b} +b;

where recall that 49 = Y0, w1 = €, and ==L = R%. By combining this with Dy /Ty <

we
1/(Hgqo), we get that > 2, BB .
Part 2. We have to check That (1) prices and consumptions are strictly positive, and (2)
all conditions in Lemma 2 are satisfied.
Since e; — wy > 0, condition ¢y <

I'I(Dtiiifwt) is equivalent to H#qoljt — Dy > et_2wt
which implies that I'y > HqoD; and e; — w; > 2Hq;. We have ¢; > 0 because I'y > HqoD:;.
Condition e; —wy > 2Hq, Vt ensures that consumptions given by (7b-7c) are strictly positive.

Our construction ﬁ = qu 'y — Dy Vt > 1 ensures FOCs (14a-14c) because (14a-14c)

become

+qobs,—1—qo(L+b2
U gt e (G g o8 (b )
1 = vi(et—Has) qes1 Vi > 1 Wbl g = ’Ytetql*t —wHVYt>1

- qt+1

wi+1+Hqer1 g

By using condition e; — w; > 2Hq;, we obtain (15a) and (15b). Moreover, condition

€b,0 " €a,0 . o
9 < T30 1ba 1t mplies condition (15c).

Let us look at q. We can compute that

HDt+ 2H _H<R’{~- 2‘,1( 1 1)+ . 1. 1 +L+bz—bb,fl))
Iy (er — wy)Ty €t—1 V-1 €0 70 L +b; + by
2H
+ Yt—1€t—1 Yo€o
(e — wy) T=L0=1 2000
:H’wl"‘wt—l I+ 91 +Hw1"'wt—2 T+mo2 N
€0 "€t—1 Yo Vt—-1 €0 " €t—2 Y0 Vt—2
H 1 L—i—b;—bb,,l 2Hwy - - - wy 1

+o b —(—+

Recall that H = L + b} + b;. As a result, %(Dt + et_th) is increasing in L, b}, by, wy and
decreasing in e, ¢, by, —1. By consequence, g is decreasing in L, b}, by, wy, by, —1 and increasing

’rar
in eq, v, bp,—1.

O

Proof of Example 1. Assume that there is a bubble, then we have ¢, > 0 V¢, and according

to FOCs (14a-14c) we obtain that Hq el i}e qut lzﬁ Vvt > 0. We have

1 —LF _p,— 1 (ﬁe) 1+B<1+@+ (ie)t—l)

i A.19
Hq Hg ' Hqo " w w ( )

1. If % <1 (i.e,, R* > 1), then the right hand side of (A.19) is negative if ¢ is high
enough while the left hand side is strictly positive, a contradiction. Therefore, there is
no bubble in this case.

2. If % > 1 (i.e., R* <1). In this case, we have

1 (B 1B -1 (B -y .
Hq  Hg  w Be_1 — Hg (1—quﬁe—_w(1—(@)t)) (A.20)
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(a) If go > LBe=w then 1 — Hqy-2- < 0. By consequence, the right hand side is

H 148> Be—w
strictly negative when ¢ is high enough, a contradiction. In this case, there is no
bubble.
(b) If qo = %ﬁﬂ;ﬂw, then 1 — Hqq ﬁletﬁw = 0. By consequence, we have ¢ = ¢ > 0

Vt > 1. To verify that this is an equilibrium price, we must check conditions (15a-

15¢) which now become e — w > QH%’BIG:E’. This is satisfied because 3 € (0,1).

(¢) O < qo < %ﬁﬁ;ﬁw, then 1— Hqq 71;:6; > 0. In this case, we see that ¢; determined

by (A.20) is positive and it is decreasing in ¢ and lim;_,~ ¢ = 0. Conditions
(15a-15¢) which now become e — w > 2Hq Vt. Since gy < %Bf_:ﬁw, we have
2Hq < 2Hqp < e — w Vt. So, conditions (15a-15¢) are satisfied. Therefore, the
sequence (q¢); determined by qo < %B 1:;,” and (A.19) constitutes a system of

equilibrium price with bubble.

O
B.2 Proofs for Section 4.2.2
Proof of Proposition 6. We will prove, by induction, that
OsQsds Qg
— < gs—1 < vt > 1. A21
1+ dH, Bt = (A.21)

This is satisfied for ¢ = 1 because we choose gy € (1‘2311?{11, ). Assume that it holds for
ot

s =t. Let us prove it for s = ¢ + 1. According to (29) and g1 < %*, we have

(1 + dth)qt,1 — atdt (1 + dth)% - (Itdt ?Ti - (1 - Oét)dt

& ar — Hyqi—1 ar — Hy it I—oy (A.22)
< o < Q410141 (A.23)

(1 —ay)Hy Hiq

where the last inequality is from (31Db).

The system (29) and condition lﬁgf?jt

< q¢—1 imply that

(1 + dth)Qtfl — atdt > (1 + dth) ﬁ?ﬁ}t - atdt i (O't — 1)dt

q = = . A.24
According to (31d), we have 1 — fff;t%t > 0 which in turn implies that
qr > (Ut — l)dt > Ut+1at+1dt+1 (A.25)

Ot4+10t41dt41

T Had Therefore, we

where the last inequality is from (31c). Finally, we get that ¢, >
have just proved (32).

To prove that (g;) is a price sequence of an equilibrium, we verify that all conditions in
Lemma 2 are satisfied. First, since 0 < oy < 1 < oy, condition (32) ensures that ¢ > 0
vt > 0.

Second, observe that (32) implies that ¢ < gftfl < . This shows that conditions
(15a-15¢) are satisfied. It also ensures that consumptions are strictly positive.

Last, FOCs (14a-14c) are ensured by the system (29).
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Proof of Proposition 7. Part 1. According to Remark 1, there is no bubble if a < 1.
Now, consider the case a > 1. Suppose that there is a bubble. We must have ), d; < oo.
There are only two cases.

Case 1. If there is tp such that g, < “Tfl, then we have

s Bl — (a=1))
ot 0 a—tho

—d; <0 (A26)

By induction, we have that ¢ < ¢—1 < (a — 1)/h Vt > tog. By consequence, the sequence ¢;
decreasingly converges to a value ¢ > 0. Observe that

(gt +di)(a — hqi—1) = qi—1, and hence q(a — hq) = q, (A.27)

So, either ¢ = 0 or ¢ = (a — 1)/h. Since ¢; < ¢t—1 < (a — 1)/h ¥t > ty, the value ¢ must be
strictly lower than (a — 1)/h. As a result, ¢; converges to zero.
Case 2. ¢ > %1 Vt > 0. Observe that

qi—1(hgi—1 — (a — 1))

> 0.
a—hg1

(g +do+--+di) = (@1 +do+ -+ di1) =@ +dt — qe—1 =

So the sequence (g + do + - - - + dy) is strictly increasing. Since ), d; < oo and ¢; < ¢, this
sequence is bounded, and hence converges. As a result, the sequence (g;) converges. So, it
must converge to agl.

Part 2. We now prove that there is almost one equilibrium satisfying ¢; > %1 Vi, in
which asset holdings are given by (6) and agents’ consumptions are given by (7a-7c). Let
(q¢:) and (q;) be two systems of equilibrium prices. We must have ¢ < a/h and ¢, < a/h.

Define z; = q; — %,xé =q; — an1, then we have 0 < x4, 2} < 1/h and

d (U SN n a—1 td T—1 + ‘%1 oz +d axy—1
= — X —_— = X = —
e G =0 hqi_1 t h P e h(zi—1 + “T_l) P T hay
Similarly, we have x} 4+ d; = 1?2;21_1 Therefore, we get that
/
a(xy—1 —x
Ty — xh = (@1 — 2) Vi > 1. (A.28)

(1 —hxi—1)(1 —hx,_q)

We will prove that zp = z{, (which implies that ¢ = ¢, Vt). Without loss of generality,
suppose that xp > xj. According to (A.28), we have z; — a2} > a(x;—1 — x}_;) Vt > 1.
Therefore, we have

xy — 2} > a'(zo — xp) V> 1. (A.29)

Since a > 1, a'(zg — x)) converges to infinity. So, z; — x} also converges to infinity. However,
this cannot happen because both x; and zj belong the interval (0,1/h).
O

Proof of Example 2. First, we have

e H(pB+1
Qg = Q2¢+1 = 577 Hy = Hop1 = h = L
w w

2HGoy 1 =e—w— Hdoy—1, 2HGy =e¢—w— Hdoy
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at+1

So, condition < q; Vt becomes

Bev,0 + doby,—1) eb,0 — €a,0 — do(ba,—1 — by, —1)

A.30
ﬁ(L+bZ—bb7_1)—|—H L—I—sz—kba,fl—bb_l ( )
20e 20e
—w — Hdo— — Hd A.31
1_|_5<e w 2t—1, 1+,6’<6 w — 9. (A.31)
1= ﬁe w
113

These and condition ¢; > 0 are satisfied because we assume that d; <
Second, observe that condition ”‘}f(lﬁ oy < Be—w - apsures that 2241 < “T_l So, the
1+d; e

H(B+1) 1+d1h

interval (ffjllh, 211 is well defined.

We next prove that g5 € (1Tcishv “%1] Vs > 0. This holds for s = 0 because ¢y €
(1Tilh, Lﬁl] Assume that it holds for ¢t — 1, we will prove this for . Indeed, condition
dy < m is equivalent to 1 — 1‘j:l§fh > 0. By combining with 001 df; > ﬁe’ we ge that

1+dih)gi—1 — ad 14 dih)2% — qd —1)d
o= i —ad, QOO0 _0oJd
@ N hi¥an L= 17an
Uat+1dt+1
> (0 =Ddi > oarprdey > T A.33
( ) T Y Hydia ( )
We also have
h —(a—1
g — gy = dothae — @) (A.34)

a—hgi—1

because hqi—1 < a — 1. So, we have ¢ < ¢—1 < (a — 1)/h Vt. This in turn implies that
gt < (a—1)/h Vt. By consequence, the sequence ¢; decreasingly converges, and hence it
cannot converge to (a — 1)/h. As a result, it converges to zero.

It remains to prove that (¢;) is a price sequence of an equilibrium. To do so, we verify that
all conditions in Lemma 2 are satisfied. First, it is easy to see that ¢; > 0 V¢ > 0. Second,
according to % < qt, we have ¢ < “’1 < @. This shows that conditions (15a-15c) are
satisfied. It also ensures that consumptlons are strictly positive. Last, FOCs (14a-14c) are
ensured by the system (29).

O]

Proof of Example 3. We see that 1 — (a — 1)z > 0 and hxzdy < 1. So, we can check that

0 < hxd; < 1 and xd; +d; = %' According to the proof of Proposition 7, the sequence

(q¢) defined by ¢ = a—;l + xd; Vt satisfies: ¢; € (“T_l, 2) and q; +d; = a:’;ﬁ V¢. In order to
prove that (q;) is a system of prices of an equilibrium at which asset holdings are given by

(6) and agents’ consumptions are given by (7a-7c), we verify all conditions in Lemma 2.
1-8,

As in the proof of Example 2, condition dy < ”6 —% ensures that a/h < g Vt. Thus,
gt < a/h < @ Vt. This shows that conditions (15&—15c) are satisfied. It also ensures that

consumptions are strictly positive. Last, FOCs (14a-14c) are ensured by the system ¢; +d; =

qt—1
" — Vt.

0
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