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We examine the response to entry in a large market with differentiated products using a novel longitu-

dinal dataset of over 550,000 New York City restaurant menus from 68 consecutive weeks. We compare

“treated” restaurants facing a nearby entrant to “control” restaurants with no new competition, matching

restaurants using location characteristics and a pairwise distance measure based on menu text. Restaurants

frequently adjust prices and product offerings but we find no evidence that they respond differentially to

new competition. However, restaurants in the top entry decile are 5% more likely to exit after a year than

restaurants in the lowest entry decile.

JEL codes: D22, D43, L13

1 Introduction

Firms in many industries compete in markets with a large number of competitors and substantial product

differentiation. To study these markets, a vast literature in trade, industrial organization, and many other

fields uses models of monopolistic competition, especially the Dixit-Stiglitz constant elasticity of substi-

tution (CES) model (1977). While recent models allow for more flexible preferences, a key feature of all

models of monopolistic competition is that firms do not respond strategically to local competitors. This is

in stark contrast to spatial competition models (e.g. Salop (1979)), in which firms mostly compete with

only a small subset of close competitors. These two approaches, aspatial and spatial, are both commonly

used and yet they imply very different answers to a fundamental question: how does a firm respond to new

competition in markets with many differentiated competitors?

When firms have differentiated products they may compete for customers in multiple dimensions; a

close competitor could be a firm located a few blocks away, a firm with a fairly similar product, or both.

Unless researchers have very detailed product information, it can be difficult to infer which firms are likely

competitors and to measure competitive responses that may be spread across many products. In this paper

we use a novel panel of restaurant menus in New York City to study the responses of incumbent restaurants

to competition from new entrants in both physical space and product space. We collected menus from a large

online food delivery service every week for 68 consecutive weeks, giving us a panel of about 550,000 menus

from 11,700 unique restaurants. This dataset allows us to precisely define the distance between competitors
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in arguably the most salient aspects of restaurant product differentiation, location and menu, and to measure

competitive responses over a firm’s full set of products. We are also able to assess competition along several

other margins, such as quality ratings and hours of operation, and examine the effect of new firm entry on

the likelihood of incumbent firm exit.

While our analysis is limited to a single industry, the restaurant industry—with many firms, substantial

product differentiation, and low barriers to entry–is perhaps the canonical example of monopolistic compe-

tition1. This industry also provides a simple and intutive context for comparing the implications of aspatial

and spatial models. If a new restaurant opens on the same block as an existing restaurant, or opens nearby

with a similar menu, how does the existing restaurant respond? Do they lower prices or change their menu

items, or is the market so large and competition so diffuse that they can ignore this new local competitor?

Further, the restaurant industry is also one of the largest employers of minimum wage labor and therefore the

competitiveness of this industry has direct implications for the effects of recent increases in the minimum

wage2.

A challenge in studying the response to entry is that firm location choice is endogenous. In our context,

an entering restaurant may choose a specific site because of attractive location characteristics, or because

none of the incumbent restaurants offer a similar menu. If the unobserved determinants of location choice

are correlated with factors affecting the measured outcomes of the incumbents, then this introduces selection

bias. For example, if new entrants tend to move into areas with rapidly increasing incomes and commercial

rents, then incumbent restaurants may be raising prices independent of entry, thus biasing upwards estimates

of the response to competition. A related issue is that different types of restaurants may change their menus

with different frequencies, or respond differently to changes in city wide input prices; a labor shortage

of sushi-chefs should not have the same effect on Japanese and Italian restaurants. If entry frequency is

correlated with restaurant characteristics—and we present evidence suggesting that it is—then this may

also lead to bias. Lastly, the incumbent response to entry may be a function of characteristics of both the

incumbent and the entrant: the same Italian restaurant could respond differently to the entry of a new sushi

restaurant versus a new Italian restaurant.

To address these issues we use a matching technique that exploits the unusual degree of product informa-

tion in our dataset. We match “treated” incumbent restaurants facing competition from a new entrant with a

“control” group of incumbent restaurants that have very similar menus and location characteristics, but face

no changes to the competitive environment. A central challenge in implementing this matching technique is

how to determine the product similarity of two restaurants from the text of their menus. We employ a text

processing technique from computer science to calculate a scalar measure of the similarity of two restaurant

menus, “cosine similarity,” and use this as a metric for distance in product space. We compare this measure

with a set of observable restaurant characteristics and find that it is a strong predictor of pairwise similarity

in restaurants’ product features. Using this measure and additional location characteristics, we compile a

set of treatment and control observations and examine incumbent responses to entry in a number of chan-

nels and settings. We also use this measure to define treatment in terms of menu similarity, and thus an

important contribution of our paper is to provide systematic evidence on spatial competition in two different

dimensions.

Our results suggest that restaurants facing competition from a new entrant do not change their prices,

products, or service differently from restaurants without new competition. The restaurant industry is notori-

1The Wikipedia article on monopolistic competition declares “Textbook examples of industries with market structures similar

to monopolistic competition include restaurants, cereal, clothing, shoes, and service industries in large cities” (Wikipedia 2018).
2If firms are monopolistically competitive then the full amount of the increase in labor costs should be passed on to the

consumer, output will fall, and employment will decline. However, if firms are competing as oligopolists and making positive

profit in equilibrium, then an increase in the minimum wage may lower profitability while having only small effects on prices,

output, and employment. See discussion in Aaronson and French (2007) and Draca, Machin and Van Reenen (2011).
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ously competitive, prices may be sticky (literally, “menu costs”), and so it’s natural to wonder if restaurants

have the capacity to adjust menus in response to entry3. In our sample restaurants change their menus with

high frequency; the median duration between price changes is two weeks. Therefore it’s worth emphasizing

that our results show frequent menu changes but no differential change in response to entry. This finding is

consistent across a battery of specifications, including cases where we expect new competition to elicit the

largest incumbent response. However, we find a relationship between high intensity of nearby entry and a

higher rate of exit, which suggests that competition does affect firm profit. Our results thus broadly support

the weak strategic interaction assumptions of aspatial monopolistic competition models, and are relevant for

a variety of related subjects, including retail competition, firm clustering, and location choice.

The remainder of the paper is organized as follows. First, we discuss differences between spatial and

aspatial competition in a conceptual framework to illustrate our empirical strategy, and then briefly review the

empirical literature on imperfect competition in differentiated markets. Next we describe our data, provide a

definition of new competition, and present descriptive statistics. After, we discuss the potential endogeneity

in our estimation and our implementation of a matching strategy to account for this. The strategy includes

the construction of a measure of product distance from our menu data. We then present our main results on

the causal response to competition in physical space and evaluate the robustness of these findings. As an

extension, we repeat our main analysis but define competition in characteristics (menu) space. In a further

extension, we conduct a Monte Carlo exercise to examine how the menus of incumbent restaurants affect the

location choices of entrants. Lastly, we estimate the effect of entry intensity on the likelihood of incumbent

restaurant exit. We conclude with a summary and interpretation of our results.

1.1 Conceptual framework: local versus global competition

What does economic theory suggest should be the response of an incumbent restaurant to competition from

a new entrant? In their textbook, Mas-Colell, Whinston, Green et al. (1995, p. 400) write, “In markets char-

acterized by monopolistic competition, market power is accompanied by a low level of strategic interaction,

in that the strategies of any particular firm do not affect the payoff of any other firm.” They then follow this

with a footnote: “In contrast, in spatial models, even in the limit of a continuum of firms, strategic interaction

remains. In that case, firms interact locally, and neighbors count, no matter how large the economy is.” An-

derson and de Palma (2000) refer to this distinction as “local” versus “global” competition: are restaurants

competing directly with their neighbors in physical or product space, or do they simply compete indirectly

for a share of a consumer’s expenditure with all other restaurants in the market?

We use the demand structure from Anderson and de Palma (2000) to provide a conceptual framework for

our empirical analysis of the response to entry. Their model combines discrete choice logit demand with an

explicit distance between a consumer and each firm, thus allowing for both spatial and aspatial competition.

We focus on how parameters of the consumer’s utility function determine the degree to which a new entrant

captures demand from a nearby incumbent.

There are n restaurants in the market and each consumer must choose a single restaurant at which to eat.

The indirect utility to consumer i from eating at restaurant j is:

Vi j = ν(p j)+ εi j (1)

3There is some evidence of price competition in the literature, with both Thomadsen (2007) and Kalnins (2003) studying

local competition among hamburger restaurants. There are also many reports of restaurant competition in the media. For a

recent example in the The Wall Street Journal, see “McDonald’s Focus on Low Prices Brings in Customers” (March 21, 2019,

(Gasparro 2019)). For an amusing account of New York City restaurant competition, see “In Manhattan Pizza War, Price of Slice

Keeps Dropping,” The New York Times, March 30, 2012 (Kleinfield 2012).
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The term ν(p j) represents the net consumer surplus to any consumer eating at j when the restaurant

charges price p j. The term εi j is a match value between the consumer and the restaurant. Adapting this

slightly to our context, we assume it takes the form:

εi j =−tgd
g
i j − tmdm

i j +µei j (2)

Equation 2 allows the match value to depend on the geographic distance, d
g
i j, between consumer i and

restaurant j (e.g., measured in km), and a distance in characteristics space, dm
i j , representing how close the

menu of the restaurant is to the consumer’s ideal menu. The importance of these two distances is determined

by the transportation cost parameters, tg and tm, which we assume are positive but for which we make no

other assumptions. The ei j is the idiosyncratic match between the consumer and the restaurant, which could

be interpreted as the consumer’s preference for characteristics of that restaurant not already captured in the

two distance terms, such as service quality or decor. This term is distributed extreme value type 1 and i.i.d.

across restaurants so that the probability consumer i chooses j takes the logit form. The µ term represents

the importance of this idiosyncratic match. Given the assumption on the distribution of ei j, the probability

consumer i chooses j is:

Pi j =
exp[(ν(p j)− tgd

g
i j − tmdm

i j)/µ]
n

∑
k=1

exp[(ν(pk)− tgd
g
ik − tmdm

ik)/µ]

(3)

When µ is quite small relative to the transportation cost parameters, then competition is entirely local

and firms only compete with their closest neighbors. The definition of close depends on the relative sizes of

tg and tm. If tg is much larger than tm, then firms mostly compete with their closest geographic neighbors;

if tm is much larger than tg, then competition is with restaurants that have the most similar cuisine. As µ
increases some consumers will choose restaurants beyond the minimum distance to their geographic location

or ideal menu, and thus restaurants will compete with more distant firms. When µ is large relative to

transportation costs, then the geographic distance or menu similarity between firms becomes irrelevant and

all firms compete with each other in global competition. When there are many firms this is monopolistic

competition: an individual firm becomes negligible and each firm ignores the actions of other firms (Hart

1985, Wolinsky 1986). In fact, as Anderson and de Palma show, with specific assumptions about the form of

ν(p), the model collapses to the canonical CES form of Dixit-Stiglitz (Dixit and Stiglitz 1977) where firms

choose a constant mark-up over marginal cost4.

If firms compete locally by setting prices, then equation 3 implies that the price of firm i should be a

function of the prices of other nearby firms. This observation informs the empirical strategy of Pinkse, Slade

and Brett (2002), who use a sophisticated econometric model and cross-sectional data to estimate the best

response function of gasoline wholesalers to competitors at different distances, concluding that competition

in the wholesale gasoline market is highly localized. By contrast, in this paper we seek to take advantage of

rich longitudinal data on restaurants to use simple estimation methods without structural assumptions, and

to allow responses to competition along both price and non-price margins.

To illustrate the basic strategy of our empirical work, consider a market that has two restaurants, A and

B, separated by a significant geographical distance from the perspective of consumers (d
g
AB is large). For

simplicity, we start by assuming tm = 0, so that spatial competition is confined to geography. Now a third

restaurant, C, enters the market close to A and far from B (d
g
AC < d

g
AB and d

g
AC < d

g
BC). If transportation costs

are important, meaning tg/µ is large, then restaurant A now faces significant competition for consumers

located between A and the new entrant C, and therefore has an incentive to respond. However, restaurant B

should not change behavior since it is unaffected by this new entrant, having never received business from

4Setting tg = tm = 0 and assuming that ν(p) = ln(p) yields CES demand, see p440 of (Anderson and de Palma 2000).
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the distant consumers near A. On the other hand, if competition is global (t/µ is small), then the distance

doesn’t matter and both A and B will be affected equally by C. Therefore we can test for the presence of

local competition by comparing the response of restaurants facing a new nearby competitor to the post-entry

behavior of restaurants without new competition.

If we now allow tm > 0, then the above scenario becomes somewhat more complicated. First, the def-

inition of a nearby entrant becomes unclear since the relevant distance could be measured in geographic

space, menu space, or some combination of the two. For this reason, and as discussed in depth in section

3.1, we test different specifications of distance. Second, incumbent restaurants may now respond to entrants

by updating their menu, which changes the distances dm between consumers and the restaurant. Depending

on the distribution of consumer preferences, the incumbent restaurant could change their menu to increase

differentiation with the entrant or actually make their menu more similar to that of the entrant5. Therefore

we take a flexible approach and examine a range of price and product responses. While these considerations

add some complexity to our empirical analysis, the basic design remains the same: if competition is local

then restaurants which experience a local competitive shock will change their behavior more than restaurants

without new local competition.

1.2 Evidence on competition in differentiated markets

Much of the empirical work on competition in differentiated markets focuses on how market size affects

average firm outcomes (mark-ups, capacity, output), rather than examining specific responses to new com-

petition. Syverson (2004) uses a spatial competition model to argue that larger markets will have more

efficient firms and then finds evidence of this pattern in the market for ready-mixed concrete. Campbell and

Hopenhayn (2005) use an aspatial monopolistic competition model to show that the effect of market size

on firm output and price mark-ups depends on whether the entry of additional firms increases the average

substitutability of each firm’s product, thus increasing competition, or if new entry is always symmetrically

differentiated from existing firms. They test this prediction using cross-sectional data from the 1992 Census

of Retail Trade on a number of industries, including restaurants, and find that restaurants in larger markets

have greater average size (sales, employment) and a greater dispersion of sizes. In a follow-up paper, Camp-

bell (2011) finds that restaurants in larger cities have lower prices, greater seating capacity, and lower exit

rates. The author concludes that these results are evidence of the importance of strategic interaction in the

restaurant industry, namely that markups decrease with market size, requiring firms to have greater volume

to break even. This conclusion is in contrast to our findings showing no local strategic interaction in New

York restaurants. However, the two sets of results are not inconsistent: more recent monopolistic competition

models allow for market size effects on markups without any local strategic interaction6. Lastly, Hottman

(2016) examines markups in the retail industry across US counties using a nested CES model where retailers

differ in quality and therefore size. Higher quality firms face less elastic demand and make decisions taking

into account their effect on the overall price index. This feature of the model allows firms to act strategically

(the author analyzes both Cournot and Bertrand cases), but there is still no local interaction in the sense of

5In many spatial competition models firms seek to differentiate their products in order to mitigate direct price competition

(see Tirole(Tirole 1988), Chapter 7 for an overview of relevant models). For tractability these models often assume uniformly

distributed demand, but it’s quite possible that New York City restaurant demand is “lumpy” with concentrations of demand for

different cuisines.
6Quite a few papers have modified the original CES framework and shown that these changes could lead to market size effects

on mark-ups, see discussion in Parenti, Ushchev and Thisse (2017) and the survey of monopolistic competition models in Thisse

and Ushchev (2018). Further, several authors have developed more general variable elasticity of substitution (VES) models that

encompass the CES framework as a special case, including Behrens and Murata (2007), Zhelobodko, Kokovin, Parenti and Thisse

(2012), Dhingra and Morrow (forthcoming),Bertoletti and Etro (2016), and Parenti et al. (2017).
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competition with a specific rival. Using retail scanner data the author finds that markups are significantly

lower in larger US counties, and that interestingly for our study, markups in New York City are “close to the

undistorted monopolistically competitive limit.”

There is less empirical work on local competitive responses in differentiated industries. Netz and Tay-

lor (2002) examine patterns of location for gasoline stations in Los Angeles and conclude that increased

competition leads to increase spatial differentiation, defined as the geographic distance between stations.

They also look at the relationship between spatial differentiation and characteristics differentiation, which

they measure using attributes of the stations, such as gasoline brand or repair services available. They find

a positive relationship between these two types of differentiation. Kalnins (2003) reports that hamburger

prices at proximate restaurants of different chains are uncorrelated while hamburger prices at proximate

restaurants of the same chain are correlated, suggesting price competition exists among similar restaurants.

However, chain restaurants may have very different incentives in their price decisions than non-chain restau-

rants (Lafontaine 1995). There are also a number of papers examining entry of large retailers or grocers on

incumbent firms7. Our empirical approach has some similarity in that we also use panel data to estimate the

effect of entry on incumbent firms, but our context is quite different and lacks the large asymmetries in firm

size central to these other papers.

Pinkse and Slade (2004) estimate cross-price elasticities of competing British beers and then use the

estimates in a structural model to simulate the effects of mergers among brewers. They find that brands of

the same beer type (lager, ale, or stout) have the strongest cross-price effects, with significant but weaker

cross-price effects for brands with similar alcohol content (one of their measures of distance in product

space). In our context, we might expect to find that incumbent menu responses are larger to entrants of the

same cuisine. Chisholm, McMillan and Norman (2010) investigate competition between thirteen first-run

movie theaters in Boston. They find that theaters closer in geographic space are more distant in product

space, as measured by film-programming choices over a one year period. Sweeting (2010) studies mergers

between radio stations in the same listening format and geographic market to study the effect of common

ownership on product differentiation. He finds that after two stations come under common ownership, the

new owner increases differences between the music playlists of the two stations and repositions at least one

of the stations closer to other competing stations. He also looks at whether the merger increases implicit

listener prices, measured as commercials per hour, but finds no statistically significant result. Busso and

Galiani (2019) undertake a randomized control trial of changing the competitive environment for grocery

stores in the Dominican Republic. They find that incumbent stores lower their prices but do not change the

quality of their products or services.

The markets we study and the data we use share some features with earlier studies, but differ in several

important ways. First, most studies of differentiated markets with large numbers of firms quantify com-

petitive effects through market level outcomes, such as average mark-ups or dispersion, but do not analyze

how individual firms respond to competition. The studies that focus on individual firms tend to do so in

markets with relatively few firms. Second, the majority of papers examine equilibrium outcomes with cross-

sectional data or product changes in markets with little entry or exit. In contrast, our work is focused on

dynamic responses to new competition in markets with substantial entry and exit, which helps us to more

easily control for firm heterogeneity8. Third, while some previous work has quantified the similarity of two

firms’ product offerings in a differentiated market (radio, movies), our dataset of restaurant menus not only

7This is a well developed literature. Two notable examples include Basker (2005) on Walmart and Atkin, Faber and Gonzalez-

Navarro (2018) on the entry of international retailers into Mexico.
8Sweeting (2010) also uses a panel to look at dynamics. However, both his focus on mergers, rather than entry, and the

substantial differences between the radio industry and the restaurant industry (geography, number of firms, business model) make

it difficult to extrapolate his results to our context.
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provide extensive detail on product differentiation, but also give itemized prices, allowing for a richer study

of price competition across firm attributes.

2 Overview of data

We collected data on New York City restaurants from the Grubhub website, which lists restaurant menus in a

standardized text format. Grubhub is the largest food delivery platform in the United States with 16.4 million

active users and 95,000 restaurants as of late 2018 (Grubhub 2018). Restaurants are highly dependent on the

service; in reference to Grubhub one New York restaurateur told a local media outlet “If I stop using them,

tomorrow I close the door” (Torkells 2016). An important feature for our study is that customers order and

pay for food from a restaurant directly through the website, which implies that the prices and items listed on

the menu are current. As Cavallo (2016) notes, these high-frequency directly-measured prices avoid some

of the potential limitations associated with scanner data sets and the observations used in CPI calculations.

We collected data on every available restaurant weekly from the week of November 27, 2016 through the

week of March 11, 2018 for a total of 68 periods. We observe restaurants joining the website and leaving the

website, giving us an unbalanced panel of menus from roughly 11,700 unique restaurants (550,000 restaurant

periods). The top panel of Figure 1 shows the count of restaurants in every week, along with the stock of

restaurants observed in the first period that are present in each subsequent period. The bottom panel shows

the count of new restaurants appearing on the website (site entrants) and the count of restaurants that have

left the website (site exits) each period. As of Februrary 2017, the New York City Department of Health

listed approximately 24,000 active restaurants, which implies that over one-third of the city’s restaurants

appear in our data each period. Our data likely features some selection on restaurant characteristics; for

example, extremely expensive restaurants may not offer delivery. Nonetheless, we believe the size of this

dataset is sufficient to allow us to make general statements about restaurant competition.

2.1 Sources of noise

While our dataset contains a high level of detail on restaurant prices and products, it also has a fair amount

of noise. This measurement error is found in our outcome variables and therefore is unlikely to bias coeffi-

cient estimates. However, a legitimate concern is that the noise could obscure measurement of competitive

responses. In this section we describe the issues and sources of the noise; later in our empirical analysis we

show that our results are robust to various specifications addressing the noise.

There are three sources of noise in our data which we refer to as 1) “outliers” 2) “missing data” and 3)

“time-of-day effects.” We use outliers to describe menus that show very unusual values, such as extremely

high or extremely low prices or item counts. Many of these reflect idiosyncratic situations, such as when

a restaurant lists a catering package for 100 people, priced at $2000, as an item on the menu. We classify

these cases as outliers using a set of conservative rules and drop them from all of the analysis, decreasing

our sample by 2.4% (roughly 13,500 restaurant periods)9.

The second source of noise comes from data collection difficulties caused by website changes, which

resulted in some missing data. For four consecutive periods starting the week of April 23 we are missing the

prices for all menu items, and thus we do not use these periods in most of our analysis. Additionally, we are

missing item names for five consecutive periods starting the week of September 24th. Item names in every

period are not necessary for our estimation work, but we do need them in order to accurately drop duplicate

9Specifically, we drop restaurant periods where the item count is less than 10 or greater than 500, where the median item price

is less than $2.5 or greater than $25, and where the mean item price is greater than $50.
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Figure 1: Stock and flow of restaurants on website.

items, affecting our measurement of item counts and prices10. Therefore we also drop these periods from

most of our analysis. For a couple periods we did not collect review data (count of reviews, stars, measures

of quality), but we do not use these variables much in our analysis.

Our third source of noise comes from a unique feature of the website, in which the menus shown to the

user can change depending upon the time of day the page is viewed. Some restaurants offer different menus

for different meals, such as a breakfast, lunch, dinner, or late night menu. Additionally, when a restaurant

is closed users have the option to pre-order, but the items shown may be only those core items that the

restaurant always serves (many restaurants still show a full menu). When the restaurant is open the menu

may be longer and include daily specials and other items not part of the core set. Since we collect data at

different times of day throughout our panel, we sometimes observe just a core menu or short lunch menu,

while at other times we see the full menu for that day. This can generate what looks like large period to

period changes in the menu, but instead simply reflects the time of day viewed. In these cases the number

of items observed in a period may oscillate between two fixed item counts—such as a closed menu and an

open menu—providing us a way to identify this situation. We address this source of noise in three ways.

First, we define “oscillating periods” as a set of three consecutive periods in which the first to second period

absolute change in the log item count is larger than 0.15 log points, and the second to third period change

is also larger than 0.15 log points, but the change is in the opposite direction11. An absolute change of 0.15

log points is a large change–about the 90th percentile of all period to period changes in log item count–and

10Restaurants may list the exact same item, with the same price, multiple times in different sections of the menu, often in

a promotional or “popular items” section. For these five periods our item count would be inflated and quantiles of the price

distribution would be inaccurate since some items are multiply counted.
11In notation, we define oscillating periods as three consecutive periods, {t − 1, t, t + 1}, where abs(ln(itemctt) −

ln(itemctt−1)) ≥ 0.15 and abs(ln(itemctt+1) − ln(itemctt)) ≥ 0.15 and (ln(itemctt) − ln(itemctt−1)) × (ln(itemctt+1) −
ln(itemctt))< 0.
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thus two consecutive large swings in menu length of opposite directions is quite unlikely to be a permanent

change to the menu. There are about 50,000 oscillating periods in our data (not already tagged as outliers),

about 9% of our sample, and we drop these periods from much of our analysis. Second, for most weeks in

our sample we know the exact time the menu was downloaded, as well as the listed hours of the restaurant.

Therefore in our main specification we include fixed effects for the hour of day and whether the restaurant

was open when the menu was collected. Lastly, we also run our analysis at the restaurant-item level by

examining price changes over time for a constant set of restaurant menu items, which ensures that missing

items do not affect our estimates.

It is worth emphasizing that all three sources of noise are completely unrelated to entry and thus our

definition of treatment. Further, this noise does not lead to problems of precision in our estimates. Even after

dropping observations that could increase measurement error, we still have a large sample and can estimate

coefficients with small standard errors.

2.2 Descriptive statistics

In Table 1 we show characteristics of the restaurants, averaged across restaurant-periods. On average, each

menu has 124 items, and therefore we calculate price statistics for each menu and then examine these menu-

level statistics across all restaurant periods. For example, the variable “median item price” represents the

median price across all items on a restaurant’s menu in a single period; the median item price averaged

across all restaurant-periods is $8.62 and the median is $8. The average price of the most expensive item

on the menu, “max item price,” is about $32.5 and for the average restaurant the mean item price ($9.40)

is above the median. In addition to menus, the website also lists restaurant level characteristics, such as the

number of cuisines, count of user reviews, and measures of user ratings.

Table 2 examines changes in menus for item counts and price variables. For each variable, we define a

unique menu as consecutive periods of a menu with no change in the variable. For example, if a restaurant

keeps the same number of items on its menu for four consecutive periods before changing in the fifth period,

then we define the first four periods as one menu and the menu in the fifth period as another. With this

method we can calculate statistics on menu durations, as well as the size of changes, for different variables.

The first row of Table 2 shows that the mean duration (column 3) for a menu with the same item count is 3.9
periods (weeks) while the median duration (column 4) is just one period. These statistics are calculated from

141,666 unique constant item count menus (column 5). When the item count changes the average change is

8.91 items (column 1) while the median change is 3 items. All change statistics are calculated as absolute

changes, |xt − xt−1|, so that positive and negative changes don’t nullify each other. Note that columns 1 and

2 are calculated from changes whereas column 5 shows the count of unique menus. The average duration for

a menu with the same median item price is 7.67 periods and the average change to this price is $0.84. On the

other hand, the average duration for a constant mean item price is only 3.69 weeks but with a smaller change

of $0.28. Interestingly, different quantiles of the item price distribution change with different frequencies,

with the ends of the distribution (min, max) changing the least frequently.

Lastly, in Table 3 we look at changes over time within a restaurant by running regressions of the form:

Yrt = β ∗weeksrt +ηr + εrt (4)

The ηr term is a restaurant fixed effect and the “weeks” variable measures the number of weeks (periods)

since we first observed the restaurant. We cluster standard errors by restaurant. From columns 1-4 we can

see that restaurants slowly increase their median item prices at roughly $0.007 per week, with much larger

changes for the most expensive menu item. Menus increase in length by about 0.09 items per week and the

average restaurant receives about 5.3 new reviews each week. The decrease in the user rating of food quality
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Table 1: Descriptive statistics on restaurant characteristics.

mean median sd min p1 p99 max N

item count 124.44 100.00 88.66 10.00 15.0 399.0 500 419782

median item price 8.62 8.00 3.35 2.50 3.0 18.5 25 419782

mean item price 9.40 8.82 3.88 2.28 3.9 22.9 49 419782

min item price 1.59 1.25 1.42 0.00 0.0 8.0 25 419782

max item price 32.52 22.50 49.29 2.99 7.5 190.0 2199 419782

cuisines 4.05 4.00 3.11 0.00 0.0 14.0 35 423214

reviews 380.63 206.00 509.99 1.00 4.0 2326.0 10064 370764

stars 3.72 4.00 1.19 1.00 1.0 5.0 5 395984

food rating 85.30 88.00 9.62 0.00 50.0 100.0 100 406096

order rating 89.61 92.00 9.01 0.00 56.0 100.0 100 406093

delivery rating 86.09 89.00 11.09 0.00 46.0 100.0 100 406079

Statistics averaged across all restaurant-periods.

Sample excludes outliers, oscillators, missing item name periods, and missing price periods.

Review information not collected for all periods.

Table 2: Descriptive statistics on menu changes and durations.

mean median mean dur med dur N

item count 8.91 3.00 3.90 1 141666

median price 0.84 0.50 7.67 2 72001

mean price 0.28 0.09 3.69 1 149781

min price 0.96 0.50 30.16 23 18307

p25 price 0.54 0.26 7.54 2 73193

p75 price 0.98 0.50 7.85 2 70363

max price 14.07 3.05 20.86 10 26471

Stats calculated for unique changes specific to each var.

Mean and median use absolute changes.

Duration is number continuous periods with no var change.

N indicates count of unique menus across all restaurants.

Exclude outliers, oscillators, missing item/price periods.

is statistically significant, but with an average food rating of 85.5, this change is not meaningful. Overall,

Tables 2 and 3 show that while restaurant menus are generally quite stable, there is still a fair amount of

change, both across restaurants and within restaurants, with which we might measure competitive responses.

2.3 Measuring entry

Unfortunately, the appearance of a new restaurant menu on the delivery website does not imply that the

restaurant has just entered the market. In order to determine entry we combine data from two additional

sources: restaurant inspections from the City of New York and restaurant reviews from Yelp.com. Accord-

ing to the New York City government website, all restaurants in the city must have a “Food Establishment

Permit” and a pre-permit inspection is required before the restaurant can open (NYC Department of Con-

sumer Affairs 2019). This suggests that pre-permit inspection dates should capture market entry. However,

although the inspection data begins in August 2011, there are many restaurants whose first inspection date is

in 2014 or later without a recorded pre-permit inspection. This implies that the sample may include entrants
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Table 3: Regression results for within-restaurant menu changes.

(1) (2) (3) (4) (5) (6) (7)

item ct p50 item prc mean item prc min item prc max item prc reviews ct food rtng

weeks observed 0.0886*** 0.0068*** 0.0088*** 0.0001 0.1142*** 5.2740*** -0.0113***

(0.0048) (0.0002) (0.0004) (0.0001) (0.0139) (0.0835) (0.0009)

Observations 456153 456153 456153 456153 456153 404211 441055

Clusters 11302 11302 11302 11302 11302 10403 10576

All specifications include restaurant fixed effects.

Sample excludes outliers, oscillators, missing item/price periods.

Standard errors clustered by restaurant, * p < 0.1 ** p < 0.05 *** p < 0.01.

without pre-permit inspections12. Further, for some restaurants whose initial inspection occurs during our

sample period, the first reviews on Yelp far precede this initial inspection date. To ensure we have accurate

dates for entry we use the following procedure. For each restaurant which first appears in the inspection data

during our sample period, we find the date of the first Yelp review for the restaurant. If the first Yelp review

is less than 90 days days before the first inspection or less than 35 days after the first inspection, we assume

that this is a newly opened restaurant13. We define the entry date as the earlier of the first inspection date

and the first Yelp review date. In Figure 2 we show two and half years of entry, from November 1st, 2015 to

March 17, 2018. The area to the right of the vertical line shows entry over our main analysis period, or the

period for which we have menu data, November 27, 2016 to March 17, 2018. The area to the left we refer

to as the “pre-period” and only use in an extension to our main analysis in Section 5.

3 Empirical approach

Our identification strategy compares the behaviour of restaurants which have experienced a change in their

competitive environment with restaurants which have not. We use a two-stage matching process to control

for heterogeneity. Specifically, we seek restaurants which have both similar location characteristics and

menu characteristics. As described in further detail below, the empirical approach proceeds as follows:

1. Assign “treated” status to restaurant-periods which have a new entrant open within a specified distance

and “control” status to restaurant-periods with no entrants within this distance.

2. Pair each treated restaurant with a control restaurant, over the exact same periods, in a two-stage

process that matches first on locational attributes and then on menu text.

3. Run regressions on the matched sample of treated and control pairs to measure the causal response to

the new entrant.

Given the complexity of the data set, we provide explicit notation in Table 4. Throughout, we index

restaurants in our sample by r ∈ R, entrants by e ∈ E, and periods by t ∈ T .

12A call to the New York City Department of Health and Mental Hygiene, which oversees inspections, confirmed that while all

restaurants should request an inspection before opening, this does not always happen.
13To choose this duration we randomly selected 300 restaurants whose first inspection was within 100 days of their first Yelp

review. Next we read all the reviews for these restaurants in order to determine which were likely to be new, looking for phrases

such as “newly opened,” “a welcome addition to the neighborhood,” “this could become my new favorite [cuisine] spot,” “I’ve

been waiting for this place to open,” and “went on the grand opening date.” We labeled restaurants as new only if it was quite

obvious from the reviews. Finally we looked at a histogram of the difference in days between the review and inspection dates for

these new restaurants and defined our threshold using the 5% and 95% percentiles, a symmetric range that covered 90% of new

restaurants.
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Figure 2: Entrants identified from inspection and Yelp data.
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NYC Restaurant Entry

Table 4: Notation used to describe menu data. Refer to the text for further description.

Lr Location of restaurant r

τo
r First date in sample for restaurant r

Mr Menu text for restaurant r

Yr Other attributes for restaurant r (e.g. hours)

Drt Indicator for treated status of restaurant r in period t

ert Entrant near treated restaurant r in period t

crt Control matched to treated restaurant r in period t

kr First treatment period for restaurant r

X (L) Locational attributes of location L

P(L) Observed entrant intensity at location L

P̂(X (L)) Predicted entrant intensity at location L

ρ (L,L′) Spatial distance from L to L′

ω (M,M′) Cosine distance from M to M′

ρT Inner radius for treatment assignment

ρC Outer radius for treatment assignment

d Duration of treatment window
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Figure 3: Schematic of the timing for treatment and control assignment.

3.1 Treatment and control

We define treatment as the opening of a new entrant nearby. We do not know a priori the spatial range over

which restaurants compete, nor the timescale with which they may change their menus in response to the

entrant. Further, for incumbent restaurants facing multiple entrants, it could be difficult to identify which

entrant the incumbent is responding to. Therefore we choose to focus on cases where an entrant is most

likely to represent a change in competition and where the response to a specific entrant can be isolated.

To implement this, we specify a tuple (d,ρT ,ρC) where d is a duration (measured in weeks), ρT is an

inner radius, and ρC is an outer radius (i.e. ρC > ρT ). In our main analysis we measure ρC and ρT in meters

(physical space) but in Section 4.3 we use a measure of the distance between menus (characteristics space).

A restaurant is deemed treated at time period t if and only if exactly one entrant within radius ρT first operates

in period t and no other restaurants open from period t−2d through period t+2d anywhere within the larger

radius ρC. A restaurant is deemed to be a control if and only if no restaurants open anywhere within radius

ρC from period t −2d through period t +2d14. Note that many restaurant-periods will be neither treated nor

control. Figure 3 provides a schematic of the timing of treatment and control definitions. Figure 4 provides

a visual representation of the spatial aspects of treatment and control definitions.

These definitions yield conservative samples of treatment and control restaurants. The separate radii

ρT and ρC enforce a “buffer” between situations where the change in competitive environment from the

nearby entrant is salient and situations where any new entry is too far away to have a substantial effect.

Only including restaurants with exactly one entrant over 2d periods ensures that we are including restaurants

which have experienced a comparable change in local competitive intensity. In our regression analysis we

use a subset of this window, analyzing changes in a restaurant’s menu from period t − d to period t + d.

Therefore the long t ± 2d window serves a similar function to the distance buffer by helping us to exclude

lagged effects and thus isolate effects only due to the observed new entrant. An important aspect of this

definition is that treatment is determined by geography and timing. Over our entire sample period two

incumbent restaurants r and r′ may receive the same number of entrants within distance ρT , but for a given

14Formally, we define the sets of treated and control restaurants RT
t (d,ρT ,ρC) and RC

t (d,ρT ,ρC) at period t as follows:

RT
t (d,ρT ,ρC) ={r ∈ R : |{e ∈ E : τo

e = t ∧ρ (Lr,Le)< ρT}|= 1∧

|{e ∈ E : τo
e ∈ [t −2d, t +2d]∧ρ (Lr,Le)< ρT}|= 1}

RC
t (d,ρT ,ρC) ={r ∈ R : |{e ∈ E : τo

e ∈ [t −2d, t +2d]∧ρ (Lr,Le)< ρC}|= 0}
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Figure 4: Examples of treatment and control assignment

(a) Treatment (b) Control (c) Neither (d) Neither

The caption for each example indicates the assignment for the restaurant at the centre of the diagram (indicated by a star). Blue

circles represent incumbent restaurants and green squares represent entrants. The two concentric circles represent the radii ρT and

ρC.

period t it may be that r is treated, r ∈ RT
t (d,ρT ,ρC), while r′ is a control, r′ ∈ RC

t (d,ρT ,ρC). In this way our

approach is somewhat similar to identification strategies that compare treated agents with agents that will be

treated in the future.

In our analysis we use an inner radius of ρT = 500m and an outer radius of ρC = 600m. These radii

capture the spatial scale regarded as a reasonable walking distance in the urban planning literature. In the

1995 Nationwide Personal Transportation Survey the median length of a daily walking trip is a quarter mile

(Boer, Zheng, Overton, Ridgeway and Cohen 2007). Krizek (2003) describe this as “a scale sensitive to

walking behavior”. Our scale corresponds to approximately two long “avenue” blocks or six short “street”

blocks in Manhattan (Pollak 2006). Figure 5 shows an example of treatment and control for February 6,

2017, using these radii and a duration of four weeks. The blank regions in lower Manhattan—an area

with many restaurants—shows that the parsimonious specification of treatment and control excludes many

restaurants for being near to several simultaneous openings.

We examine three durations in our regression specifications: four, six, and eight weeks (d ∈ 4,6,8). In

choosing these durations we face a tradeoff between the response window and the sample size. If incumbent

restaurants are slow to adapt to new competition, then a longer duration may better capture any potential

responses. On the other hand, a longer duration d requires that a treated restaurant has only one new com-

petitor within 4∗d weeks, and a control restaurant has no competitors over this time period. New York City

has frequent entry and therefore the number of restaurants satisfying this requirement drops quickly as the

duration increases. At long durations, the remaining restaurants may be less representative of the market.

Further, with fewer control restaurants it becomes more difficult to find a good match for the treated restau-

rant. Given these issues, and the high frequency of menu changes shown in Table 2, we chose three durations

that we thought could capture important competitive responses while still yielding a sufficient sample size.

In Section 4.2 we examine the robustness of our results to extended durations.

3.2 Endogeneity and identification

In this section we discuss potential endogeneity concerns and our identification strategy; in Appendix A.1

we formalize these ideas with notation from the potential outcomes framework. Let Yrt be a restaurant level

outcome (e.g. median price or item count) for incumbent restaurant r at location Lr at time t. Denote the

period when a new competitor enters near restaurant r as kr, which is the first treatment period; kr = /0 if

r is never treated. Let Drt indicate whether at time t a new competitor (entrant) has entered within radius

14



Figure 5: Treatment and control assignment for the week of February 26, 2017 under the d = 4 specification.

ρt of restaurant r, so that Drt = I{t ≥ kr}. Our reduced form model for restaurant outcome Yrt for t ∈
[kr −d,kr +d] is:

Yrt = β ∗Drt +ur +uLr
+ξrt +ξLrt + εrt (5)

Our objective is to estimate β , but there may be a variety of restaurant and neighborhood level effects, both

time-varying and invariant, that affect restaurant r’s outcomes. The time-invariant restaurant effect ur could

represent a restaurant’s tendency to generally have high prices or a long menu in every period while the

location effect uLr
could capture the average income level or house price for a neighborhood over time.

The ξrt variable represents restaurant-specific time-varying shocks, such as the hiring of a new chef or a

price increase in some ingredient important for that restaurant. There could also be location specific shocks,

represented by ξLrt , such as gentrification in a neighborhood or new road construction that deters customers.

Lastly, εrt represents i.i.d. shocks affecting restaurant r at time t.

As discussed in Appendix A.1, the entry process may also be a function of characteristics of incumbent

restaurant r and location Lr, both time-varying and invariant. If any of the factors affecting entry are also

correlated with the restaurant outcome variables in equation 5, then the coefficient β estimated from a simple

regression of Yrt on the treatment indicator Drt would be biased due to selection. In fact, in Appendix Table

A2 we show that treated restaurants are in higher income locations, have higher menu prices, and differ in

a number of other ways. Many realistic processes could generate selection and lead to such differences.

For example, certain types of restaurants (e.g., coffee shops) may always have low prices and attract addi-

tional entry, a correlation between fixed factors. Alternately, unobserved changes to a neighborhood (such as

gentrification or a neighborhood becoming “trendy”) could affect both existing restaurants and entry prob-

abilities. Relatedly, unobservable restaurant-level shocks could also change outcomes and spur entry. If
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incumbent restaurant r is struggling because their cuisine has suddenly become less popular then the restau-

rant may try to lower prices to attract consumers while, at the same time, a new entrant may locate nearby

because they expect little competition from an unpopular cuisine type.

We address these concerns with a difference-in-difference matching strategy (see Heckman, Ichimura,

Smith and Todd (1998) and Smith and Todd (2005)). Essentially, we first difference the outcomes to remove

the time-invariant effects and then use matching to try and control for the time-varying components that

may cause selection bias. We match treated restaurants with control restaurants using both characteristics of

the incumbent restaurant’s location X (Lr) and the restaurant’s menu text Mr. We use a two-stage matching

process as follows:

1. We calculate the predicted intensity of entry for each location Lr using locational variables X (Lr). For

each treated restaurant, this yields a subset of control restaurants with a similar likelihood of facing a

new entrant.

2. We then choose the control restaurant within this subset that has a menu closest to the treated restau-

rant’s menu.

We use the predicted entrants in essentially the same way as a propensity score. However, as discussed in de-

tail below, this count variable is better suited to our context than a propensity score based on a simple binary

entry variable. Let P̂(X (Lr)) denote the predicted intensity of entrants at location Lr — i.e., the predicted

count of new entrants near location Lr during our sample period. Further, denote the symmetric difference in

a variable X from t −d to t +d as ∆Xrt = Xr,t+d −Xr,t−d . Lastly, let ∆Y 0
rk represent the differenced outcome

around the treatment period kr when there is no treatment (no entry). Then, our key identifying assumption

is conditional mean independence (see Smith and Todd (2005)):

E[∆Y 0
rk|P̂(X (L)) ,Mr,∆Drk = 1] = E[∆Y 0

rk|P̂(X (L)) ,Mr,∆Drk = 0] (6)

In our context, Equation 6 implies that conditional on the predicted entrants and menu text, competition

within this time period is essentially randomly assigned. This allows us to use the observed outcomes of

restaurants that do not have new competition over a specific duration as a replacement for the counterfactual

outcomes of the treated restaurants, had they not received new competition.

Qualitatively, this approach relies on the fact that matched treated and control restaurants will be located

in similar neighborhoods and sell similar food. Therefore, they will be subject to similar location and

restaurant-level shocks. For example, city-wide trends in tastes (e.g. a fad for cupcakes or kale) may have a

similar effect on the demand for restaurants selling these foods; this is captured in their menu text. On the

supply side, increases in the cost of an input specific to certain types of restaurants (e.g., sushi grade tuna or

the wage of sushi chefs) will impact restaurants with that cuisine on the menu. We can make an analogous

argument for location. If neighborhood trends are correlated with underlying demographic and economic

characteristics then by matching on these characteristics we choose control observations that experience the

same trends. For example, neighborhoods with relatively low rent but well educated residents might become

hip neighborhoods with many new restaurants and changes in incumbent restaurants.

Lastly, when we select a control restaurant using menu-text we are essentially using an outcome variable

in the pre-treatment period to improve the match. Chabe-Ferret (2014) argues that matching with pre-

treatment outcomes when selection is due to both a fixed effect and transitory shocks can lead to improperly

matched observations or misalignment. The author suggests instead matching on covariates that do not vary

over time. For this reason we use the earliest period menu for each restaurant, which we believe will capture

the general cuisine of the restaurant but is far enough (often months) from the new competitor entry date that

the menu is unlikely to include pre-treatment trends.
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3.3 Two-stage matching process implementation

We base our approach on Rubin and Thomas (2000), who (in a different context) use a large set of covariates

to get an initial propensity score and then match on a few highly-important covariates within narrow propen-

sity score callipers. In our case, we match each treated restaurant with a group of control restaurants that

have a predicted entrant count within a narrow band of the predicted entrant count of the treated restaurant,

and then select the control restaurant with the closest menu to the treated restaurant.

3.3.1 Entrant intensity

As noted earlier, treatment assignment depends on timing and thus a given restaurant may be treated, control,

or neither, for different time periods. For this reason time-invariant characteristics of a location cannot

accurately predict treatment assignment and thus we do not use a propensity score for matching. However,

as we show in this section, some locations have much more entry than others over our sample period and the

total number of entrants is correlated with time-invariant location characteristics. Therefore, although exact

treatment timing cannot be predicted by fixed location characteristics, we can use the likelihood of entry to

ensure that we are comparing treated restaurants to control restaurants in similar areas. We model the total

number of entrants over our entire sample period in each location using a Poisson model and then use the

predicted number of entrants to balance the location covariates. Since every location has the same number

of observed periods, the predicted number of entrants corresponds to the predicted intensity of nearby entry.

For each incumbent restaurant ever observed in our sample, we count the number of total entrants P(Lr)
observed over the sample period within ρT = 500 meters of r’s location. Note that this count of entrants is

a characteristic of the location and does not depend on how many periods we observed restaurant r or when

it entered our sample. We then model the count of entrants as a Poisson process where the expected count

depends on the characteristics of the area Lr around restaurant r, X (Lr):

ln(E[P(Lr) |X (Lr)]) = X (Lr)
′θ (7)

As candidates for X (Lr), we assembled a large number of census tract variables from the 2009-2014 Amer-

ican Community Survey, “fair market rent” at the zipcode level from the department of Housing and Urban

Development (HUD), and the distance to the nearest subway station. We also included the count of competi-

tor restaurants within several different radii, calculated with the first period of data to ensure this measure

wasn’t correlated with our dependent variables. We then use a penalized poisson model (LASSO) to select

the variables and estimate the coefficients. We describe the details of this process and show the coefficients

estimates in Appendix A.7.

For each restaurant r we can now calculate the number of predicted entrants P̂(Lr) using our model.

To form a control group for each treated restaurant, we will choose a subset of all control restaurants that

have a predicted entrant count within a narrow bandwidth (“callipers”) of the treated restaurant. Choosing

the callipers necessarily entails a tradeoff. A narrow bandwidth will ensure close matches in the predicted

entrant count, but few restaurants will have a close cosine match within their callipers. As discussed in

Appendix A.3, we choose a bandwidth of 0.25 standard deviations of the logarithm of predicted entrant

count. We do not estimate any treatment effects during this process and our choice of bandwidth is based

on balancing covariates and uninfluenced by outcome variables. Lastly, we trim the distribution of predicted

entrant counts to exclude observations with very high or very low predicted counts. Appendix A.4 describes

this trimming process in further detail.
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3.3.2 Cosine distance

The second stage of our matching process requires matching restaurants with similar menus. Our menu

data is literally the text of a restaurant menu, with no additional structure, classification, or standardization.

Each restaurant usually divides their menu into item sections (e.g., “Vegetables” or “Noodles”) and then lists

each item in the section with a price. Restaurants may also include an item description (e.g., “Thin noodles.

Spicy.”). For the purposes of economic research, it would be ideal if restaurants classified every one of their

dishes into standardized item codes so that menus could be easily compared. Any attempts to create our

own item standardization would require a myriad of arbitrary decisions, such as whether a meatball hero

sandwich is the same as a meatball submarine sandwich. Instead, we follow the text processing literature in

computer science to calculate a measure of the similarity between the overall text of two restaurant menus.

Specifically, we use the “cosine similarity” method in Damashek (1995), which breaks the text of a document

into a set of strings of consecutive characters, called “ngrams,” and then compares two documents based on

the counts of their component ngrams. We describe this method in detail in Appendix A.2, but also give a

brief overview below.

An ngram of size n is a text string of n consecutive characters. The phrase “with fries” has seven 4-grams

including the space between words: “with”, “ith ”, “th f”, “h fr”, “ fri”, “frie”, and “ries”. We decompose

the text of any restaurant menu into ngrams of size 3 and then count the number of occurrences of every

specific ngram. For example, if we looked at the 3-gram decomposition of a barbecue restaurant menu there

might be a large number of “bar” or “bbq” 3-grams. Dividing the count of any specific ngram by the total

count of ngrams in the menu gives us the proportion of the menu represented by that particular ngram. For

a given ngram i on menu M we denote this proportion, or weight, as xMi. Then a menu with J unique

ngrams can be represented as a J-dimensional vector of the ngrams’ weights xM j∀ j ∈ J, with each weight

representing the relative frequency of the ngram. Once two restaurant menus have been converted into

vectors in ngram space, we can then measure the difference between their menus as the angle between their

ngram vectors. Damashek notes that for some applications this method can be improved if the vectors are first

centered by subtracting a common vector, µ j∀ j ∈ J, with the ngram distribution over all documents (menus).

This yields what is essentially a correlation coefficient ranging from 1, when two menus are identical, to −1,

when the ngram shares of two menus are perfectly negatively correlated. Damashek describes this measure

as “centered cosine similarity,” which we denote as Sc(M,M′) for menus M and M′. Finally, in order to make

our product space metric consistent with geographic distance we subtract Sc from 1 and call the resulting

measure “cosine distance,” ω (M,M′), which ranges from 0, when there is no distance between products, to

2, indicating the maximum distance between products:

ω
(

M,M′
)

= 1−

J

∑
j=1

(xM j −µ j)(xM′ j −µ j)

(

J

∑
j=1

(xM j −µ j)
2

J

∑
j=1

(xM′ j −µ j)
2

)1/2
= 1−Sc

(

M,M′
)

(8)

Several previous papers have used similar measures for pairwise comparisons of differentiated products.

Jaffe (1986) defines the technological position of a firm as a vector of the distribution of its patents over 49

classes and then uses the angle between two of these vectors to measure changes in technological position.

Similarly, Sweeting (2010) measures differentiation between radio stations as the angle between vectors of

airplay for music artists and Chisholm et al. (2010) measure differentation between first-run theaters as the

angle between vectors of movie screenings. Most similar to our application is a recent paper by Hoberg

and Phillips (2016) that measures product differentiation for large firms using the angle between vectors of
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Figure 6: Cumulative distribution function of cosine distance between pairs of restaurants that share all

cuisines, some (but not all) cuisines, and no cuisines.

certain key nouns in 10-K forms filed with the SEC. While this previous work demonstrates the effectiveness

of cosine similarity in other contexts, it is not clear that ngrams are a good representation of products, nor

that the angle between two restaurants’ centered vectors of potentially thousands of ngrams provides any

information about the similarity of their menus. Therefore we now present some results validating this

measure and then at the end of this section describe how we use cosine distance in matching treated and

control restaurants.

In our data the site assigns one or more cuisine categories to each restaurant in the sample; if cosine

distance is a salient measure of cuisine then two restaurants with similar cuisines should have a closer

cosine distance. As shown in Figure 6, the distribution of pairwise cosine distances between restaurants with

identical cuisine sets first-order stochastic dominates the distribution of restaurants that share at least one,

but not all, cuisines. Moreover, the distribution of pairwise cosine distance between restaurants that share

at least one cuisine first-order stochastic dominates the distribution of pairwise cosine distances between

restaurants that share no cuisines. Pairs of restaurants with a small cosine distance are particularly likely to

share all cuisine categories. For example, the plot shows that roughly 75% of all restaurant pairs with the

same cuisines have a cosine distance less than 0.8, compared to 20% of pairs sharing some cuisines, and

only about 5% of pairs with no cuisines in common.

The cosine metric can also provide additional information beyond the cuisine categories of the online

delivery service. Many of the cuisine categories are very broad and two restaurants with the same sole listed

cuisine may not have particularly similar menus. For example, Bella Pizza (which serves items including

“10 Piece Chicken Buffalo Chicken Wings”), Genuine (which serves items including “Fries with Turkey

Chili and Queso Fresco”), and WINE 34 (which serves items including “Acorn Squash Ravioli”) are all

listed with “American” as their sole cuisine category. Figure 7a shows the distribution of cosine distances

between pairs of restaurants with “American” as their sole listed cuisine. As shown, many of these pairs of

restaurants have large cosine distances between their menus.

Conversely, Figure 7b shows the distribution of cosine distances between pairs of restaurants with succes-

sively more narrowly defined cuisine combinations: “Japanese”, “Japanese” and “Sushi”, and “Japanese”,
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(a) Cumulative distribution function of cosine dis-

tance between restaurants with the cuisine “Ameri-

can”.

(b) Cumulative distribution function of cosine dis-

tance between pairs of restaurants of three cuisine

combinations: “Japanese”, “Japanese” and “Sushi”,

and “Japanese”, “Sushi”, and “Lunch Specials”.

Figure 7: Cumulative distribution functions for restaurantsin selected cuisines.

“Sushi”, and “Lunch Specials”15. As the set of cuisines becomes more specific and the restaurants with the

set of cuisines become more similar, the cosine distance between pairs of restaurants within the cuisine set

decreases.

Lastly, to obtain our matched regression sample, we match each restaurant r treated at period t with

the control restaurant crt with the minimal nonzero cosine distance. We consider only potential control

restaurants within the predicted entrant intensity callipers described above. We trim the sample to include

only treated restaurants with reasonably close control matches; specifically, we only include matched pairs

of treated and control restaurants in our regression sample if the cosine distance ω (Mr,Mcrt
) is within the

lowest 5% of pairwise cosine distances between all restaurants in the sample.

3.4 Testing match quality

In our results section we will present spatial competition results for three durations (d = 4,6,8) using two

different dimensions to define space (physical and characteristics), as well as results on exit likelihood.

Rather than showing separate balance tables for all of these analyses (7 tables), we instead present more

general results showing the sample balance for matched restaurants across the distribution of the count of

nearby entrants during the sample period16. These results demonstrate that treated and control restaurants

(which by construction have different entrant counts over the defined duration) are balanced on observables

for different durations. To do so, we group restaurants into quintiles of observed entrant count. Then, we

compare the covariates for observations in a specific quintile to observations in all other quintiles before

and after matching. Since we use a two-stage matching process, we first show the balance improvement

from matching on entrant intensity and then show the additional effect of using cosine distance relative to

matching on entrant intensity alone.

15All of these restaurants are also in the “Asian” cuisine category; this is suppressed in Figure 7b for legibility.
16All of our tests on balance and our matched sample regression results use an inner radius of ρT = 500 meters to define entry

near a given restaurant as discussed in Section 3.1. Separate post-match balance tables for any particular analysis and duration are

available upon request.
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3.4.1 Testing entrant intensity balance

We follow the general procedure of Hirano and Imbens (2004) by grouping restaurants into quintiles of

observed entrant counts; for example, the first quintile consists of locations that have two or fewer nearby

entrants. We wish to compare the average value of each location covariate for locations with up to two

entrants (quintile 1) to locations with more than two entrants (quintiles 2-5). As recommended in Imbens

(2015), we compare covariates using normalized differences. Our approach proceeds as follows:

1. Divide restaurants into quintiles according to the number of nearby entrants over the sample period.

Let Rq be the set of restaurants in quintile q and let R−q be the set of restaurants not in Rq.

2. For each quintile q for each restaurant r ∈ Rq define a candidate set C(r). This is the intersection of

R−q and the set of observations lying within the propensity calliper of r — i.e., the observations with

a log predicted entrant count within 0.25 standard deviations of the log predicted entry count for r.

3. For each quintile q for each observation r ∈ Rq randomly sample (with replacement) one thousand

observations from C(r). Index these bootstrap draws by b. For each r denote the corresponding

bootstrap observation by sb (r).

4. For each bootstrap iteration b for each locational variable X j(L) ∈ X(L) calculate the following abso-

lute normalized difference across all restaurants r and their randomly-selected matches sb(r):

νb
q j =

∣

∣

∣
meanr∈Rq

(

X j(Lr)
)

−meanr∈Rq

(

X j(Lsb(r))
)∣

∣

∣

1
2

√

varr∈Rq

(

X j(Lr)
)

+varr∈Rq

(

X j(Lsb(r))
)

(9)

5. Take the average over values of νb
q j across all bootstrap iterations b.

Table A7 compares the resulting normalized differences to the normalized differences obtained without

callipers — that is, by randomly sampling from R−q rather than C(r) in step 3. Imbens (2015) suggests 0.2

as a reasonable threshold for the normalized difference. With the callipers nearly all covariates fall below

this level. Although the normalized distances are generally lower than in the pre-callipers sample, some age

brackets and housing characteristics still differ across quintiles.

3.4.2 Testing cosine distance balance

In the second stage of the matching process, we match each treated restaurant to the within-calliper control

restaurant with a menu at the smallest cosine distance. As discussed in Section 3.2, this is intended to produce

matched pairs of treated and control observations which would have a similar response to competition.

In order to measure the similarity of the matched pairs, we compare the normalized differences between

menu attributes of the treated and control matched pairs with the normalized differences between menu

attributes of a counterfactual set of treated and control pairs. We generate this counterfactual set by randomly

selecting a control restaurant within the propensity callipers for each treated restaurant. The comparison

isolates the improvement in menu similarity using the nearest-neighbor cosine match from that already

achieved by matching on predicted entrants. Table 5 compares the menu similarity of the set of matched pairs

with the menu similarity of the counterfactual set for each quintile of the nearby entrant count. We report

the normalized differences for several menu attributes, as well as three measures of similarity in cuisine
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Table 5: Balance of menu and restaurant characteristics

Variable Q1 Q2 Q3 Q4 Q5

Median price
Before matching 0.24 0.17 0.13 0.17 0.14

After matching 0.02 0.32 0.17 0.04 0.09

95th perc price
Before matching 0.24 0.16 0.17 0.19 0.17

After matching 0.11 0.18 0.01 0.13 0.05

Item count
Before matching 0.17 0.16 0.18 0.24 0.19

After matching 0.15 0.18 0.27 0.37 0.30

Quality
Before matching 0.22 0.14 0.19 0.14 0.18

After matching 0.03 0.12 0.17 0.11 0.18

Timeliness
Before matching 0.20 0.16 0.20 0.17 0.18

After matching 0.13 0.11 0.07 0.01 0.04

Accuracy
Before matching 0.18 0.13 0.21 0.16 0.16

After matching 0.00 0.09 0.17 0.17 0.13

Cuisines Jaccard
Before matching 0.91 0.92 0.92 0.93 0.93

After matching 0.62 0.58 0.63 0.66 0.72

Cuisines equal
Before matching 0.01 0.00 0.01 0.01 0.01

After matching 0.05 0.14 0.10 0.07 0.07

Cuisines subset
Before matching 0.10 0.07 0.06 0.05 0.06

After matching 0.49 0.52 0.41 0.32 0.28

Normalized differences for randomly-selected within-calliper control

matches compared to matched treated and control pairs. Unmatched val-

ues are the average over one hundred repetitions of random selections.

categories: the Jaccard distance17, an indicator for whether cuisine sets are identical, and an indicator for

whether one cuisine set is a subset of the other.

As shown, cosine matching yields improved pairs compared to randomly selected restaurants within

the propensity callipers of the treated restaurants. For most menu and restaurant attributes (“median price”

through “accuracy”), the normalized differences are significantly smaller for the matched set. An exception

is item count; for this variable our matching does not decrease differences across quintiles and in some

quintiles the differences are slightly larger after matching. However, general menu lengths tend to be a

fixed characteristic of a restaurant—for example, delis tend to have very large item counts—and therefore

we expect that much of this difference will be absorbed by restaurant fixed effects in our analyses (see the

item count event study in Figure 8 for an example). The last three rows of Table 5 show that the cuisines of

matched restaurants are much closer; the Jaccard distance is smaller and a greater proportion have identical

cuisines or some overlapping cuisines.

4 Results

We present a series of results on the response to competition by incumbent restaurants. We focus on four

dependent variables to understand the price and variety response to competition: the median item price, the

95th percentile item price, the number of menu items, and mean price change at the item level (described in

detail below). We start with our main results showing the response to competition from an entrant locating

within 500 meters of an existing restaurant. We then run a number of robustness checks examining different

outcomes, durations, and heterogeneity. Next, in an extension we show results for the response to compe-

tition in characteristics space by defining treatment as an entrant whose menu is within a maximum cosine

distance to the menu of an incumbent restaurant. In a further extension we examine the location choices of

17The Jaccard distance between two sets A and B is defined as 1− |A∩B|
|A∪B| .
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entrants using a Monte-Carlo simulation. Finally, in Section 5 we investigate the effect of competition on

the likelihood an incumbent restaurant exits the market.

4.1 Main Results: Spatial Competition in Physical Space

We use primarily two fixed effect specifications to examine the response to competition: a restaurant-level

specification and an item-level specification. In the restaurant level specification we compare matched treated

and control restaurants over the exact same periods, before and after treatment:

Yr,t = β1 ∗ postrt +β2 ∗ (postrt ×Drt)+β3 ∗openrt +ηh +ηr + εr,t (10)

In the above specification, Yrt is an outcome for restaurant r in period t, postrt is a post-treatment period

indicator, and the postrt ×Drt captures the post-treatment effect for treated restaurants, our main variable

of interest. The treated-control pairs are matched exactly across pre and post-treatment periods so that for

any pre-post window (−w,w) there are four observations: the treated restaurant w periods before and after

treatment, and the matched control restaurant w periods before and after treatment. For this reason, we do

not include time period fixed effects. However, in order to deal with the potential noise created by time

of day effects (see earlier discussion in section 2.1), we also include an indicator for open status, openrt ,

and hour fixed effects for the hour of the day we observed the menu, ηh. The ηr term is a restaurant fixed

effect18. Following the framework of Abadie, Athey, Imbens and Wooldridge (2017), we note that treatment

status is assigned to a cluster of restaurants based on a common entrant, and therefore calculate standard

errors clustered at the level of the entrant generating the treated status, throughout our results section.

While we believe the fixed effects in the above specification capture much of the time-of-day noise, we

also run an item-level specification that, for each restaurant, compares the prices of the same set of menu

items, before and after treatment. For each item, the comparison is again symmetric: we only include the

item w periods before treatment if we also observe it w periods after treatment. The specification is similar

to the restaurant-level equation above but without the time-of-day fixed effects:

ItemPricei,r,t = δ1 ∗ postrt +δ2 ∗ (postrt ×Drt)+ηr + εr,t (11)

Importantly, while restaurants are still matched as in the restaurant-level specification, restaurant items are

not matched across treated and control restaurants. Since restaurants vary widely in item counts, we weight

specification 11 by the inverse of the item count so that δ2 can be interpreted as the change in the average item

price, for the average restaurant. The advantage of this specification over the restaurant-level specification

is that price changes are computed from a constant set of items, and thus unaffected by item availability that

differs by time of day. However, this makes δ2 an estimate of the intensive margin change only, while the

restaurant-level estimate, β2, reflects changes in both the intensive and extensive margins (items added or

deleted).

We first present “event study” plots of the two specifications for the 6 week duration, which provides

a balance between sample size and time range19. Figure 8 shows the estimated coefficients for our three

18We refer to matched treated and control restaurants over the comparison period, [−d,d], as a ”comparison pair.” Each one

of these restaurants could be treated or control over a different period, and the control restaurant could serve as a control for

a different treated restaurant in the same time period. To ensure that our fixed effects are unique to each restaurant in each

comparison pair, the restaurant fixed effect is actually an indicator for a restaurant X comparison pair. If the restaurant is only

used in one comparison pair then this fixed effect reduces to a simple restaurant fixed effect, and so we use the term “restaurant

fixed effect” for simplicity.

19Letting kr indicate the treatment period for restaurant r, the restaurant-level event study specification is: Yr,t =
−1

∑
j=−d

β j ∗1( j =
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Figure 8: Event study plots for six week duration sample
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main restaurant-level variables and the item-level price specification, in the lower right-hand corner. These

plots show little evidence of pre-trends or a post-treatment response, with the possible exception of a small

decrease in the 95 percentile price. As we will emphasize throughout the paper, the point estimates and

confidence intervals are quite small. The t + 6 point estimate for the 95th percentile price variable (β6 =
−0.1) is a 0.5% change for the average restaurant and the corresponding item count estimate (β6 = 1) is a

0.7% change.

In Table 6 we present the regression results from our two specifications for the three durations. Across

the twelve regressions, the post-treatment effect for the treated is small and statistically insignificant, with

the exception of item count for the four period sample, which is significant at the 10% level. Further, the

magnitude of the treatment effects are small even compared to the “post” coefficients, which capture the

average change in the outcome for all restaurants over d periods. For example, the 95% confidence interval

for the treatment effect on median item price in the d=6 sample is [−0.022,0.071]. Given that the average

increase in median price is 0.046, the bounds of the treatment effect are only about 1.5 times the magnitude

of normal price inflation. In the fourth column of each subtable we present the results from the item-level

t − kr)+
d

∑
j=1

β j ∗ 1( j = t − kr)+ηt +ηr + εr,t . We normalize β−1 to zero. We include period fixed effects since the periods are

unbalanced across specific treatment lags and forwards. The item-level specification is the same, except we again weight by

inverse item count.
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specification, and find very small treatment effects with tight 95% confidence intervals, while the average

changes (“post” coefficients) are quite similar to the median price estimates in column 1. In column two we

show the treatment effects for the 95th percentile item price and also find no evidence that restaurants are

changing prices at the upper end of their menus. The treatment effects for item count, column three of each

table, are all positive but also quite small, with no point estimate larger than 0.5% of the average item count.

The open status coefficients are positive and significant, illustrating that menus are about 1.7 items longer

when restaurants are open. Lastly, comparing the dependent variable means across the different subtables

provides evidence of heterogeneity across the samples. This heterogeneity is not surprising. As discussed

earlier, restaurant characteristics differ across areas with higher or lower entry frequencies. Since a restaurant

in the d=8 sample must have no entry nearby over 32 weeks, the entry frequency rates are different for this

sample in comparison with the shorter duration samples. Of course, within each sample, treated and control

restaurants are matched and have similar characteristics.

4.2 Robustness

In this section we explore other ways in which restaurants could be responding to competition that might

not be apparent in the specifications tested in the previous section. We first examine a set of other outcomes,

next explore different response durations, and then examine response heterogeneity.

In Appendix table A3 we run our main restaurant-level specification on the following set of non-menu

variables that Grubhub provides to consumers describing each restaurant: quality ratings, hours of operation,

listed cuisines, and count of reviews20. We find a statistically significant decrease in the quality of order

fulfillment (column 3) for the four period duration, but the magnitude is tiny—0.09 from a mean of 90.8—

and unlikely to be economically meaningful. We also find no change in the weekly hours of operation

nor in the number of cuisines the restaurants lists. Lastly, in column 6 we look at the count of reviews,

which increases each week and might be interpreted as a very noisy proxy for sales. Interestingly, we

find a statistically significant decrease of 3.6 in the growth of reviews for treated restaurants for the four

period duration. If we just compare the change in review counts from four periods before treatment to

four periods after treatment (a “long difference”), then control restaurants have 53.5 additional reviews and

treated restaurants have 46 additional reviews, about a 14% decline. However, we find no evidence of a

change in review count growth in the other two durations and therefore it’s rather unclear whether this single

coefficient indicates a decrease in sales volume resulting from new competition.

An obvious concern with our analysis thus far is that incumbent restaurants may only respond to new

competition after longer periods than we have tested. To assess this concern we first run a long difference

version of our specification comparing the change in outcomes from t − d to t + d only (just two periods).

This range removes the effect of early post-treatment periods and is also more robust to any anticipatory

reactions to new competition, although the pre-treatment coefficients shown in Figure 8 provide no evidence

of this. The results from this analysis are similar to those presented in Table 6 and so we omit them for

brevity (available upon request). Next, we try re-running our analysis shifting the definition of pre-treatment

and post-treatment periods forward by d periods, so that the pre period is [0,d − 1] and the post period is

[d + 1,2d] (actual entry still occurs between periods −1 and 0). The idea behind this analysis is that if we

are not finding any effects in Table 6 because restaurants do not respond in the first d post-entry periods—

for example, incumbent restaurants may conduct business as usual while waiting to see how successful is

20Other studies find that retail firms in other industries respond to competitive intensity by improving service quality. Auto

dealerships carry more inventory (Olivares and Cachon 2009) and supermarkets reduce their inventory shortfalls (Matsa 2011)

when competition increases. Longer hours also constitute a form of improved service quality for retail businesses including gas

stations (Kügler and Weiss 2016) and outlets of fast-food restaurant chains (Xie 2018) where other forms of differentiation may

be infeasible.
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Table 6: Fixed effect results for physical distance treatment. The fourth column shows results from an item-

level regression. All specifications include restaurant fixed effects, standard errors clustered by entrant are

shown in parentheses. Significance levels: *** 1 percent, ** 5 percent, * 10 percent.

(1) (2) (3) (4)

Med Prc p95 Prc Itm Ct Itm Prc

treated X post 0.006 -0.025 0.448* -0.007

(0.016) (0.060) (0.264) (0.005)

post 0.027** 0.074 -0.004 0.030***

(0.011) (0.056) (0.135) (0.004)

open -0.030*** -0.012 1.660***

(0.010) (0.019) (0.199)

Observations 19016 19016 19016 3383522

Clusters 285 285 285 311

Treated 1668 1668 1668 1811

DepVarMean 8.40 17.95 148.57 8.69

(a) Four period duration

(1) (2) (3) (4)

Med Prc p95 Prc Itm Ct Itm Prc

treated X post 0.025 -0.065 0.703 -0.009

(0.024) (0.081) (0.491) (0.007)

post 0.046*** 0.140* 0.196 0.048***

(0.016) (0.073) (0.261) (0.006)

open -0.031** -0.014 1.824***

(0.015) (0.028) (0.317)

Observations 12815 12815 12815 2328974

Clusters 222 222 222 224

Treated 922 922 922 933

DepVarMean 8.19 17.80 154.06 8.58

(b) Six period duration

(1) (2) (3) (4)

Med Prc p95 Prc Itm Ct Itm Prc

treated X post 0.018 -0.038 0.560 0.000

(0.023) (0.098) (0.578) (0.010)

post 0.047*** 0.095 0.057 0.048***

(0.016) (0.075) (0.287) (0.008)

open -0.017 0.044 1.780***

(0.015) (0.048) (0.424)

Observations 8116 8116 8116 1462892

Clusters 148 148 148 150

Treated 498 498 498 502

DepVarMean 8.11 17.19 158.69 8.53

(c) Eight period duration
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the new entrant—then those first d post-entry periods are actually valid control periods. Further, since our

definition of treated and control requires no entry in the [0,2d] periods, we can use the [d + 1,2d] range as

post-treatment periods without worrying about the effect of additional entrants.

We present the results of this shifted analysis in Table 7. Overall the results are fairly close to those using

the original duration in Table 6 and the similarity of the coefficients on “post” suggest that we are capturing

consistent changes restaurants make to their menus in the absence of any competitive effects. However, we

again find a statistically significant change at the 10 percent level for item count in the four period duration,

with a similar magnitude to before. We also now find a statistically significant post-treatment coefficient

for the item-level specification in the eight period sample. The coefficient is quite small: a three cent

increase on an average item price of $8.6, and only a little larger than the general increase in item prices

of $0.025. A positive treatment effect is counter to expectations from a spatial competition model, which

would suggest that restaurants charging prices above marginal cost would have to cut prices in response to

new competition. However, since we only find this effect when looking at more than eight periods after

treatment, it’s unclear whether this finding results from using a sufficiently long duration or whether it’s due

to something idiosyncratic in the eight period sample, which has the fewest number of unique restaurants.

To explore this question we compare the six period sample and the eight period sample using overlapping

durations. Specifically, we define the pre-treatment period as [4,7] and the post-treatment period as [9,12],
which is the maximum symmetric overlap between the two duration samples. In columns 1 and 2 of Ap-

pendix Table A4 we show the results for this range for the six period and eight period samples, respectively.

The post treatment coefficient for the six period sample is small and statistically insignificant while the eight

period sample is similar to the results shown in Table 7. These results suggest that the earlier significant

eight period treatment coefficient was not due to the extended periods tested, but rather might be something

specific to that particular sample.

As noted earlier, there is significant heterogeneity across the duration samples due to the different re-

quired lengths in which there can be no entry. Perhaps one of the most important ways in which these

samples differ is the number of other incumbent competitors around each restaurant: within 500 meters

there are on average 27.4 other competitors around each restaurant in the four period sample, 20.5 in the

six periods sample, and 13.6 in the eight period sample. It’s possible that the response to competition de-

pends on the number of existing competitors and that this heterogeneity could partly explain some of the

inconsistencies across different samples, such as the item count effect for the four period sample. As a last

robustness check, we add an interaction between the number of incumbent competitors within 500 meters

(observed in the earliest period in our data for each restaurant) and the treated X post indicator. We run

this new specification on the four period sample, which includes all the treated restaurants from the longer

durations, and has the most heterogeneity in the number of nearby competitors. We show the results in the

final four columns of Appendix Table A4. The new interaction term is small and statistically insignificant

across all dependent variables, thus providing no evidence of heterogeneity by competitive environment21.

4.3 Extension: Spatial Competition in Characteristics Space

The previous section suggests that restaurants do not react when confronted with a nearby entrant. While

this provides evidence against the spatial competition model, a natural concern is that restaurants may only

compete with competitors selling similar products, and thus the relevant dimension for spatial competition

is not physical distance but rather distance in characteristics space. In this extension we re-run our main

analysis using menu distance to define treatment. For a given incumbent restaurant, we define treatment

21The coefficient on the treated X post variable is statistically significant in column 6 but has no interpretation given the

insignificance of the interaction term.
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Table 7: Fixed effect results using extended durations. The fourth column shows results from an item-level

regression. All specifications include restaurant fixed effects, standard errors clustered by entrant are shown

in parentheses. Significance levels: *** 1 percent, ** 5 percent, * 10 percent.

(1) (2) (3) (4)

Med Prc p95 Prc Itm Ct Itm Prc

treated X post -0.002 -0.108 0.523* 0.008

(0.013) (0.100) (0.302) (0.007)

post 0.022*** 0.171* 0.141 0.021***

(0.008) (0.091) (0.180) (0.003)

open -0.004 0.012 2.000***

(0.011) (0.029) (0.264)

Observations 14931 14931 14931 2596554

Clusters 263 263 263 278

Treated 1472 1472 1472 1600

DepVarMean 8.38 17.87 148.87 8.68

(a) Four period duration: pre [0,3], post [5,8]

(1) (2) (3) (4)

Med Prc p95 Prc Itm Ct Itm Prc

treated X post -0.016 0.057 0.285 0.012

(0.019) (0.068) (0.349) (0.019)

post 0.048*** 0.079*** 0.150 0.033***

(0.012) (0.020) (0.234) (0.006)

open -0.045*** -0.049 1.543***

(0.013) (0.053) (0.331)

Observations 9208 9208 9208 1648274

Clusters 193 193 193 211

Treated 739 739 739 861

DepVarMean 8.23 17.49 156.90 8.58

(b) Six period duration: pre [0,5], post [7,12]

(1) (2) (3) (4)

Med Prc p95 Prc Itm Ct Itm Prc

treated X post 0.018 0.169 0.426 0.031**

(0.030) (0.183) (0.441) (0.012)

post 0.028*** 0.023 0.653** 0.025***

(0.009) (0.025) (0.259) (0.004)

open -0.026** -0.044 1.607***

(0.012) (0.040) (0.363)

Observations 7743 7743 7743 1341446

Clusters 140 140 140 142

Treated 470 470 470 488

DepVarMean 8.16 17.30 159.98 8.59

(c) Eight period duration: pre [0,7], post [9,16]
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as a new entrant on Grubhub within 1.5km, where the menu distance between the incumbent and entrant

is less than the 2nd percentile of all pairwise menu distances observed in our data. These are restaurants

with very similar menus and often all of the same cuisines. We use entry on Grubhub, rather than actual

entry into the New York City market as before, for both conceptual and practical reasons. If competition is

in characteristics space, then consumers are choosing among restaurants with similar cuisines over physical

distances that are likely significantly larger than the 500m tested earlier. When a restaurant joins Grubhub,

it will then be competing with similar restaurants that deliver to the same locations, which we approximate

as within 1.5km22. Thus, even if a restaurant has already been in the market for a while, when that restau-

rant joins Grubhub it represents new competition to restaurants already on the platform. From a practical

standpoint, we are only able to match about 40% of our main entrant sample (that shown in Figure 2) to

Grubhub menus. Therefore if we only used this data source to define treatment by menu distance, we might

misclassify treated and control restaurants since we cannot calculate entrant-incumbent menu distances for

60% of entrants.

We define treated and control restaurants for a given duration using our existing scheme (see Figure 3).

Analogous to the distance buffer of 600m, in this analysis we use a menu distance buffer equal to the 5th

percentile of all pairwise menu distances. Thus, a treated restaurant has exactly one entrant within the 2nd

menu distance percentile and no other entrants within the 5th menu distance percentile over 2 ∗ d weeks; a

control restaurant has no entrants within the 5th menu distance percentile over the same 2∗d weeks. Lastly,

we ignore Grubhub entrants whose menu distance to incumbents is less than the 0.1th percentile, as these

are usually different branches of the same local franchise.

Since this analysis examines the importance of menu distance, we reverse the two steps of the matching

procedure by first defining calipers in menu distance and then choosing the control with the most similar

count of predicted entrants. We use the 2nd percentile of menu distances as the caliper size and then require

that matched treated control pairs have a predicted entrant count within the same bandwidth as before (0.25

standard deviations of the logarithm of predicted entrant count). Thus treated and control pairs have very

close menus and similar demographic characteristics.

We present the results of this analysis in Table 8, using the same format as earlier. In comparison with

the physical space treatment in Table 6, there are more entrants (shown in “Clusters” row) but fewer treated

restaurants per entrant. The precision of the estimates is roughly comparable in both tables (standard error

size), as are the coefficients on the “post” terms, again showing a consistent estimate of the general changes

all restaurants make to their menus. Across all twelve specifications we only find a significant post-treatment

effect, at the 10% level, for median price in the eight period duration. Our estimate implies that treated

restaurants raise their median item price by 11.4 cents while control restaurants raises prices by 4.6 cents

over the same period; the mean value for this variable is $8.6. However, this effect does not show up in the

item-level specification for the same sample. Further, with the large number of specifications we have tested

it’s quite possible to find a statistically significant coefficient due to noise alone. Therefore, while we cannot

rule out that this small and weakly significant coefficient represents a real, if counter-intuitive, competitive

response, we think it is more likely to be the result of noise.

22The website actually allows each restaurant to choose different delivery zones, and even charge different delivery fees

based on the customer’s location, see discussion from Grubhub programmers on Quora (https://www.quora.com/How-does-

Grubhub-limit-the-delivery-area-of-a-restaurant-By-zipcode-radius-or-polygon-system) and on the Grubhub site page for restau-

rants( https://learn.grubhub.com/archives/basics/updating-delivery-boundary). We noticed that most restaurants were willing to

deliver to locations within one mile, and thus chose 1.5 kilometers as a conservative distance within which all delivery restaurants

should compete.
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Table 8: Fixed effect results for cosine distance treatment. The fourth column shows results from an item-

level regression. All specifications include restaurant fixed effects, standard errors clustered by entrant are

shown in parentheses. Significance levels: *** 1 percent, ** 5 percent, * 10 percent.

(1) (2) (3) (4)

Med Prc p95 Prc Itm Ct Itm Prc

treated X post 0.003 -0.174 -0.003 0.017

(0.019) (0.167) (0.413) (0.012)

post 0.036*** 0.010 0.031 0.024***

(0.013) (0.046) (0.320) (0.005)

open 0.039** -0.318* 2.692***

(0.017) (0.189) (0.479)

Observations 8446 8446 8446 1663222

Clusters 343 343 343 444

Treated 700 700 700 910

DepVarMean 8.76 19.22 162.16 9.10

(a) Four period duration (menu distance treatment)

(1) (2) (3) (4)

Med Prc p95 Prc Itm Ct Itm Prc

treated X post 0.033 0.078 -0.098 0.024

(0.024) (0.157) (0.433) (0.016)

post 0.044*** 0.168 0.386 0.030***

(0.016) (0.126) (0.283) (0.005)

open 0.009 -0.055 2.965***

(0.017) (0.052) (0.576)

Observations 8485 8485 8485 1759042

Clusters 347 347 347 348

Treated 679 679 679 682

DepVarMean 8.52 18.83 166.95 9.01

(b) Six period duration (menu distance treatment)

(1) (2) (3) (4)

Med Prc p95 Prc Itm Ct Itm Prc

treated X post 0.068* -0.083 0.463 0.018

(0.039) (0.263) (0.627) (0.013)

post 0.046** 0.344 0.300 0.043***

(0.023) (0.234) (0.507) (0.006)

open 0.007 0.006 2.657***

(0.025) (0.096) (0.495)

Observations 7405 7405 7405 1639322

Clusters 237 237 237 237

Treated 419 419 419 419

DepVarMean 8.59 18.81 180.54 9.03

(c) Eight period duration (menu distance treatment)
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4.4 Extension: Location choice analysis

One possible explanation for our finding of no competitive response is that new entrants strategically choose

locations to limit potential competition. As documented by Mazzeo (2002), Freedman and Kosová (2012),

and others, firms in many industries enter the market with a product differentiated from their spatially proxi-

mate competitors in order to lessen competitive intensity. However, in the context of restaurants in New York

City it may be difficult for new entrants to choose locations so precisely. Location options are limited; 2017

retail vacancy rates for the five boroughs range from 2.9% to 4.1% (Marcus & Millichap 2017). Moreover,

the high density of restaurants would pose difficulties to an entrant trying to avoid nearby competition; the

median entrant has 28 incumbent competitors within 500 meters. It’s also possible that entrants may actu-

ally prefer to locate near similar incumbents to facilitate shoppers’ desire to shop among similar businesses

(Fischer and Harrington Jr 1996, Konishi 2005), because the presence of similar incumbents indicates exist-

ing demand (Toivanen and Waterson 2005), or because consumers prefer access to several nearby firms with

similar product offerings when making consumption decisions (Cosman 2017).

To better understand the entrant location decision, we use a Monte Carlo exercise to compare the similar-

ity between entrants’ menus and those of nearby restaurants with the similarity from a set of counterfactual

location choices. Specifically, we compare the observed distribution of menu cosine distance between en-

trant restaurants and incumbent neighbors (within 500 meters) to a counterfactual distribution generated by

repeatedly reshuffling entrants in the d = 8 regression sample between observed entrant locations. That is,

on each iteration, we randomly reassign entrants among the set of observed entry locations according to a

uniform distribution and without replacement. If entrants were strategically locating to soften local com-

petitive intensity, the observed distribution would feature fewer incumbent neighbors at small menu cosine

distance than the counterfactual distribution. Restaurant location choices are constrained by many factors

(zoning laws, vacancies, availability of suitable space) and therefore limiting the random reassignment to the

set of observed entrant locations helps to generate plausible counterfactuals.

Figure 9 shows results generated by randomly reshuffling entrants between the observed entrant loca-

tions ten thousand times. As shown, the observed distribution of menu cosine distance between entrants

and incumbent neighbors is actually concentrated at closer cosine distances. The tenth percentile of co-

sine distances in the observed distribution is 0.794 whereas the 99% confidence interval across the bootstrap

repetitions is [0.823,0.858]. A Kolmogorov-Smirnov test strongly rejects the null hypothesis of identical dis-

tribution. This suggests that contrary to the hypothesis of choosing locations to soften competitive intensity,

similar restaurants are more likely to co-locate.

5 Effect of Entry on Incumbent Exit

Although restaurants may not change their menus in response to competition, this does not imply that there

is no effect of competition. We now examine whether a nearby entrant affects the likelihood of an incumbent

restaurant exiting the market. We cannot infer a market exit date using New York City inspections and Yelp

reviews because inspections are infrequent (often annual) once a restaurant has opened. However, we do

observe if a restaurant leaves the online delivery site, which is likely correlated with market exit. We define

the exit date of a restaurant as the first week in which a restaurant is absent from our data and never reappears.

In the previous sections we defined treated and control using specific durations. A feature of this defi-

nition is that the same restaurant could be both treated and control over different time periods, allowing us

to identify the short-run response to specific entrants using this timing. This definition of treatment is no

longer appropriate for examining market exit because a restaurant can only exit the market once and thus,

unlike changing a menu, is unlikely to exit within a short post-treatment duration. Relatedly, it seems more
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Figure 9: Location Choice Analysis

Plots shows cumulative distribution function of menu distance between entrants and incumbent neighbours compared with coun-

terfactual cumulative distribution under random reshuffling. The left panel shows the full distribution. The right panel shows the

bottom quintile to emphasize the higher incidence of similar menus in the observed distribution.

likely that the decision to exit is the result of cumulative effects of competition, which cannot be identified

with a timing-based treatment definition. For example, if restaurant r receives a single nearby entrant, fol-

lowed by a long duration without entry, and then exits the market, does that suggest the single new entrant

increased or decreased the likelihood of exit? However, identifying the effect of cumulative entry is also

quite difficult because the cumulative number of entrants received likely increases with time in the market.

If the likelihood of exit tends to increase over time, independent of the number of new competitors, then this

would lead to a spurious correlation between cumulative entrants and exit. On the other hand, if the ability

to withstand competition from new entrants is sufficiently heterogeneous across incumbent restaurants, then

it could lead to a survivor bias where the longest surviving restaurants are also those who have received the

largest number of cumulative entrants.

Given these issues, we instead ask a simpler question: do restaurants in areas with high entrant intensity

exit the market at higher rates? Restaurant exit could itself lead to entry–there may be persistent demand in

the location or a new restaurant may simply want to use the existing food preparation facilities of a failed

restaurant–and so to avoid this reverse causality issue we measure entrant intensity using only entrants from

before the start of our menu data. Specifically, we define entrant intensity as the total count of entrants from

November 7, 2015 to November 20, 2016, within 500m of every restaurant’s (eventual) location, where entry

is again inferred from inspections and Yelp (see section 2.3). We then estimate the effect of this entrant count

on the hazard of exit for restaurants in our dataset from November 27, 2016 onwards.

5.1 Exit analysis methodology

While using fixed pre-period entrant intensity avoids some of the timing issues discussed above, this measure

of entrant intensity is likely still strongly correlated with other location specific characteristics which could
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affect exit. Again, the direction of this bias is not clear. It could be that locations with many entrants also have

fickle consumers or more volatile commercial rents, and thus restaurants exit at higher rates independent of

entrant competition. It could also be that locations with very few entrants also have little restaurant demand,

and thus the few restaurants that open in such locations often fail. In order to address these concerns we use

a strategy that balances location characteristics by comparing restaurants with the same number of predicted

pre-period entrants. In this analysis our treatment variable (the count of pre-period entrants) is a count

variable and therefore we control for a generalized propensity score (GPS) to estimate the effect of different

entrant counts on exit. This effect of different treatment levels is referred to as the “dose-response function”

in Hirano and Imbens (2004) and we follow their estimating procedure23. The general idea is to first estimate

the effect of the treatment on an outcome, conditioning on the probability of observing that treatment level

using the GPS. One then calculates the effect of a specific treatment level on the outcome by predicting

the outcome for each observation at the chosen treatment level (which includes the GPS evaluated at that

treatment level) and then averaging the predicted outcome over all observations in the sample.

We first re-estimate our Poisson entry model, equation 7, using only entrants from the 54 weeks of the

pre-period. We then derive the GPS directly from the predicted number of pre-period entrants using this

model. Let λr be the predicted number of pre-period entrants within 500 m of restaurant r. This λr is an

arrival rate (per 54 weeks) for new entrants in the area around restaurant r. We then define the GPS at entrant

count n as the Poisson likelihood of n events with rate parameter λr:

GPSr(n) = Pr(n|λr) =
λ n

r e−λr

n!
(12)

In Equation 12, GPSr(n) is a function specific to every restaurant r. It measures the probability that a location

with entry rate λr receives n entrants over 54 weeks.

We model the hazard of exiting in any one week using a Cox proportional hazard model with a common

baseline hazard, φ0(t). For restaurant r in a location that received nr entrants over the 54 periods, the hazard

of exiting after t weeks is:

φr(t|nr) = φ0(t)∗ exp(γ ∗nr) (13)

We then estimate the conditional expectation of the outcome given the treatment and the GPS. Note that

in the conditional expectation equation below we evaluate the GPS for restaurant r at the actual number of

entrants observed in that location in the per-period, nr.

φr(t|nr) = φ0(t)∗ exp(γ1 ∗nr + γ2 ∗GPSr(nr)) (14)

Our interest is in the relative hazard (the exponentiated term) which shows how the hazard of exit increases

or decreases with entry. Therefore we calculate the dose response function as the relative hazard of exit at

a “dose” of n entrants. To do so we take the coefficients from Equation 14, predict the relative hazard at n

entrants with the GPS evaluated at n, and then average this predicted relative hazard over all R restaurants:

E[φr(t|n)/φ0(t)] =
1

R
∑
r

(exp(γ̂1 ∗n+ γ̂2 ∗GPSr(n))) (15)

We use bootstrapping to calculate confidence intervals for Equation 15 using 1000 bootsamples for each

dose level24. This estimated dose-response function shows the effect of being in a location with a given

23Our estimation is also informed by the discussion of the GPS in Flores, Flores-Lagunes, Gonzalez and Neumann (2012) and

in Austin (2018), who discusses using the GPS for survival modeling.
24We draw with replacement from our estimation sample, re-estimate equation 14, and then calculate equation 15 with the

estimates. We repeat this 1000 times and then report the 25th and 975th largest estimates for each dose level as the 95% confidence

interval.
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(pre-period) entry rate on the likelihood of later exit, and thus allows us to test whether greater competition

(more entry) increases exit.

5.2 Exit analysis results

We start our analysis with 11,024 unique restaurants for which we have matching demographic character-

istics and can predict pre-period entrant counts, and then apply two filters. First, we drop all restaurants

that we observe for fewer than ten weeks. This primarily affects restaurants observed in the first week of

our data which exit shortly after, and restaurants that enter our data (join the site) towards the end of our

sample period. This requirement also drops restaurants which enter and exit our sample in fewer than ten

weeks, behavior that is more likely to reflect exit from the delivery site than exit from the market. This filter

drops 1,679 restaurants. Secondly, we drop restaurants whose GPS values are outside of a common support,

removing an additional 35 observations25.

To provide some intuition for our general methodology, we group restaurants into deciles by predicted

pre-period entrants, so that within each decile the location characteristics should be fairly similar. We then

plot survival time in weeks against the observed pre-period entrant count. In Figure 10 each point represents

the mean survival time across restaurants that have the same count of observed pre-period entrants. The fit

lines are based on a quadratic specification; while the number of restaurants in each entrant count bin can vary

substantially, the fit line is weighted by restaurant count. The higher deciles have higher predicted entrants

and therefore the range of observed entrants (horizontal axes) generally shifts rightward with each decile.

Across most of the deciles, the survival time decreases noticeably as entrant count increases. However, for

a given entrant count the mean survival time can be quite different across deciles: restaurants that had ten

pre-period entrants in low deciles have much shorter survival times than restaurants with the same number

of entrants in the upper deciles. We also show the heterogeneity of entrant count by location with two simple

OLS regressions. In Appendix Table A5 we regress survival time on entrant count (column 1) and then run

the same specification adding predicted entrants as a control (column 2). In the first specification we find that

pre-period entrants have a small and insignificant negative effect on survival time but when controlling for

predicted entrants the magnitude of this negative effect becomes ten times larger and statistically significant.

These patterns again illustrate the heterogeneity of location characteristics by entrant intensity and motivates

our use of the GPS for balancing.

Next we run a series of Cox proportional hazard models, as specified by Equation 13, and report the

results in Appendix Table A5. When we include observed pre-period entrants (entrant intensity) without

any controls (column 3) we find a coefficient of 0.0029, indicating that each additional entrant increases

the hazard of exiting relative to the baseline by 0.29 percentage points. This implies that a restaurant in a

location with an entrant rate of ten entrants in 54 weeks is about 2.9% more likely to exit in a given week than

a restaurant in a location with no entrants; however, this coefficient is statistically insignificant. In column 4

we add the GPS and find a much larger positive coefficient on entrant intensity. This coefficient is also now

statistically significant but, as emphasized by Hirano and Imbens, has no causal interpretation. Hirano and

Imbens suggest using a flexible form for estimating the conditional expectation, and so in columns five and

six we add an interaction term and quadratic terms. However, in the most flexible specification (column 6) all

of the coefficients are imprecisely estimated and in column 5 the interaction term is insignificant with similar

25We apply the common support trimming method used in Flores et al. (2012), which drops restaurants with extreme GPS

values. Specifically, we group the restaurants into entrant count quintiles and calculate five GPS values for each restaurant, one

for each quintile using the median entrant count of that quintile (GPSq). We then drop restaurants in quintile q if their GPSq is out

of the range of GPSq values for restaurants not in the quintile. Due to the wide range of GPSq both in and out of quintile q, this

trimming only drops 35 restaurants.
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Figure 10: Survival time against pre-period entrant count, by predicted entrant count decile.
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Survival time in weeks graphed against pre-period entrant count, by predicted entrant decile.
Each point represents mean survival time for restaurants with the same entrant count.
Lines show quadratic fit with entrant count bins weighted by number of restaurants.
Sample restricted to restaurants surviving at least 10 weeks and in common support.

coefficients for entrant intensity and the GPS to those in column 4. Further, a likelihood ratio test comparing

the goodness of fit for the simplest specification in column 4 to the more flexible forms in columns 5 and

6 cannot reject that the fit is equal. Therefore we choose the coefficients from the specification in column

four to calculate the dose response function26.We calculate this dose response at the median value for each

entrant count decile and plot the results with bootstrapped 95% confidence intervals in Figure 11.

Figure 11 shows the relative hazard (exponentiated coefficients), with estimates at every decile signifi-

cantly different from one (the value indicating no change in the hazard) at the 5% level. However, the relative

hazard is the increase in the likelihood of exit compared to a location with both zero observed entrants and

zero predicted entrants, and thus the more important implication of Figure 11 is that the magnitude of the

relative hazards increases steeply and nearly monotonically over each decile. The hazard in the top decile

(23 median entrants) is 31 percentage points larger than the hazard in the first decile (zero median entrants).

We can calculate the predicted survival fraction after t weeks for a given decile using the baseline survival

function and the relative hazard for that decile27. After 365 days, 80.5% of restaurants in the first decile are

predicted to survive but only 75.6% in the highest entry decile, implying the probability of survival after a

year is five percentage points lower in the high entry locations. These results suggest that competition from

new entrants substantially increases the likelihood of exit, but only in areas with lots of entry. Of course, it

is important to emphasize that these results are based on our measure of exit—leaving the website—and we

do not know how well this measure approximates actual exit from the New York City restaurant market.

26In Austin (2018) the author also uses just the treatment variable and GPS.
27Denote the baseline survival function as S0(t) and the relative hazard for quantile q as rhq. Then the predicted survival fraction

at time t is S0(t)
rhq .
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Figure 11: Effect of entrant intensity on exit hazard.
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6 Conclusion

In this paper we estimated the response to entry in the restaurant industry in New York City using a panel

of menus. We documented that the demographics of areas with high entry intensity, and the menu charac-

teristics of restaurants in those areas, differ from those of areas with fewer entrants. This pattern can lead to

bias in studies of the response to entry. We addressed this potential endogeneity problem using a matching

strategy that balanced location characteristics using an entry model and restaurant characteristics using a

pairwise measure of menu similarity. This two-stage matching technique has potential for applications in

other environments, especially in markets where the attributes of differentiated products are conveyed via

text (e.g., real estate listings, investment prospectuses, political candidates).

Our findings suggest that incumbent restaurants do not change their menus in response to competition

from new entrants. We observe restaurants updating their menus on a regular basis and we find that, across

all restaurants, there are statistically significant changes to prices over the durations we study. However,

we do not find that restaurants are making these adjustments differentially in response to changes in the

competitive environment. The size of our panel and the high entry rates in the industry allow us to estimate

fairly precise confidence intervals, and we do not believe our results stem from insufficient statistical power.

Further, we do not find any evidence that entrants strategically select locations to mitigate competition, and

in fact, we observe entrants locating somewhat closer to incumbent restaurants with similar products than

would be found from random location choice. However, we do find that restaurants in areas with many

entrants are likely to exit the market sooner.

These results are broadly consistent with canonical monopolistic competition models. In the context of

large markets, assuming away local competition may be an empirically plausible simplification. Nonethe-

less, our finding of higher exit rates does raise the question why restaurants don’t respond if entry is affecting

profits. One possibility is that restaurants are quite constrained in their ability to change their product after

opening, as suggested by the “putty-clay” model of Aaronson, French, Sorkin and To (2017). It is also
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possible that firms may be constrained in their ability to adjust prices and product offerings by incentives

internal to the firm (Kaplan and Henderson 2005, Gibbons and Henderson 2012) or by firm “identity” that

precludes certain changes in product offerings even if those changes would improve profitability (Bénabou

and Tirole 2011, Henderson and Van den Steen 2015). Empirical studies on endogenous product differenti-

ation in monopolistically competitive markets may help us better understand these constraints.
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A Appendix: For Online Publication

A.1 Selection model and identification strategy

We start with the following reduced form model of restaurant outcomes, analogous to Section 3.2:

Yrt = βr ∗Drt +ur +uLr
+ξrt +ξLrt + εrt (A1)

Following the potential outcomes framework, let Y 1
rt be the outcome of a restaurant at time t when there is

entry (treatment) and Y 0
rt represent the outcome when there is not entry (control). From Equation A1, these

terms and the switching equation may be expressed as follows:

Y 0
rt = ur +uLr

+ξrt +ξLrt + εrt

Y 1
rt = βrI{t ≥ kr}+Y 0

rt (A2)

Yrt = Drt ∗Y 1
rt +(1−Drt)∗Y 0

rt

We want to estimate the effect of new competition on incumbent restaurants, the average treatment effect on

the treated (ATT), β :

AT T = E[Y 1
rt −Y 0

rt |Drt = 1] = E[βr|Drt = 1] = β (A3)

We do not observe what restaurants that faced new competition would have counterfactually done in the

absence of this competition (Y 0
rt |Drt = 1). Further, it is highly likely that factors determining restaurant

outcomes also affect entry. To model entry we assume that a new competitor enters near restaurant r at time

t if expected profit (modeled as a latent variable) is positive28.

Drt = I{θr +θLr
+ψrt +ψLrt ≥ 0} (A4)

Equation A4 shows that the entry process may also be a function of characteristics of incumbent restaurant r

and location Lr, both time-varying (ψrt ,ψLrt) and invariant (θr,θLr
). As discussed in Section 3.2, we address

the endogeneity of entry with a difference-in-difference matching strategy. Given potential entry in period

k, define the difference in an outcome d periods before entry and d periods after as ∆Yrk = Yr,k+d −Yr,k−d .

Then we can estimate β from this difference:

AT T = E[∆Y 1
rk −∆Y 0

rk|∆Drk = 1] = E[βr|∆Drk = 1] = β (A5)

This differencing removes any correlation between the time-invariant terms in the outcome equation and

the selection equation29. Entry and outcomes could still both be influenced by the time-varying terms ξ
and ψ and therefore we use matching to mitigate this form of selection bias. Our identifying assumption is

conditional mean independence:

E[∆Y 0
rk|P̂(X (L)) ,Mr,∆Drk = 1] = E[∆Y 0

rk|P̂(X (L)) ,Mr,∆Drk = 0]
28In equation A4 we are treating entry as a process independent of the characteristics of the entrant. We address entrant

characteristics with the analysis in Table 8 and the entry location analysis in Section 4.4.
29In Equation A5 note that ∆Y 1

rk = Y 1
r,k+d −Y 1

r,k−d = βr +Y 0
r,k+d −Y 0

r,k−d = βr +∆Y 0
kt
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A.2 Cosine distance: details and implementation

We can compare menu M to menu M′ by comparing their ngram weights on the set of J ngrams, where J is

the superset of ngrams from both menus for some pre-chosen ngram size (we use a size of 3). If a menu has

count mi occurrences of ngram i then the weight xi of this ngram is:

xi =
mi

J

∑
j=1

m j

(A6)

Damashek defines the “cosine similarity” SM,M′ of two documents (menus) M and M′ as the cosine of the

angle between their ngram vectors (with elements denoted by xM j and xM′ j):

S
(

M,M′
)

=

J

∑
j=1

xM jxM′ j

(

J

∑
j=1

x2
M j

J

∑
j=1

x2
M′ j

)1/2
(A7)

In Damashek (1995) the author uses his method to assign documents to languages (e.g. “French”) and topic

areas for news articles in a given language (e.g. “mining”). He finds that Equation A7 performs well for

language assignment but has worse performance for topic assignment. He suggests that this is because the

ngram vectors of two articles written in the same language will have a great deal of similarity simply due to

common and uninformative ngrams in the language or general group to which the documents belong. For

example, in English the 3-gram “the” is common but uninformative about topic. To deal with this issue he

suggests centering all ngram vectors by subtracting a common vector that captures the ngram distribution of

some specific language or subject group. Letting µ represent this common vector of weights the “centered

cosine similarity” is:

Sc
(

M,M′
)

=

J

∑
j=1

(xM j −µ j)(xM′ j −µ j)

(

J

∑
j=1

(xM j −µ j)
2

J

∑
j=1

(xM′ j −µ j)
2

)1/2
(A8)

In our context, we wish to subtract out the common distribution of restaurant menu ngrams and so we define

the vector µ as simply the vector of ngram centroids across all restaurants r ∈ R. As described in Section

3.2, we want to capture a pre-treatment measure of the menu distance between two restaurants. Therefore

we use the first observed menu for every restaurant. For the majority of restaurants this is the first period of

our data but varies for later entrants30. If we weight each menu equally then the centroid for ngram j is:

µ j =
1

|R| ∑
r∈R

xMr j (A9)

Note that when a menu M has no occurrences of ngram i that ngram receives zero weight, xMi = 0, but this

weight of zero still enters the calculation of Sc. Finally, as mentioned earlier, we convert this measure to a

30As discussed below, this is a very large set of n-grams. Therefore, choosing different periods or combining periods is unlikely

to have any qualitative effect on our measure. There are a few ngrams that show up in later menus which are missing from our µ
vector. We assign these ngrams a µ value of zero.
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Table A1: Most common n-grams in sample with frequency of occurrence.

sa ch chi ed and

206624 197278 183113 176519 160072

ick cke en hic ken

153950 148003 147005 145687 143927

wi th ith wit sal

123583 113200 111242 111117 105591

ala nd an san lad

96385 88437 83429 79267 78750

ich ro che co ice

76252 75512 73962 73711 73369

distance by subtracting it from 1, yielding our formula for cosine distance:

ω
(

M,M′
)

= 1−

J

∑
j=1

(xM j −µ j)(xM′ j −µ j)

(

J

∑
j=1

(xM j −µ j)
2

J

∑
j=1

(xM′ j −µ j)
2

)1/2
= 1−Sc

(

M,M′
)

(8)

In calculating this measure we use only the names of menu items and exclude the item descriptions (which

are often missing) and the menu categories. We calculate the cosine distance between the initial menu of

every restaurant in our sample, yielding a symmetric matrix of pairwise distances between all restaurants.

Our sample includes 23620 n-grams. Of these, 10454 appear in the sample at least ten times. Table A1

shows the most common n-grams; as shown, these include the n-grams comprising the words “chicken”,

“salad”, and “sandwich”.

A.3 Choice of predicted entrant bandwidth

The two-stage calliper matching process described in the text requires us to choose a bandwidth for the

callipers. This bandwidth determines the range of predicted entrant counts in which we search for the closest

control observation match by cosine distance. Bandwidth selection involves a tradeoff: a small bandwidth

ensures a closer match on predicted entrant count in the first stage whereas a wider bandwidth improves the

prospects of finding a close menu match in the second stage. Crucially, a wider bandwidth also increases the

final sample size of matched treated and control pairs.

We explore possible bandwidths through a process that allows us to investigate this tradeoff:

1. We divide observations into quintiles of predicted entrant count q ∈ {1,2,3,4,5}.

2. For each observation i in quantile q we find the observation in quantile −q 6= q with the smallest cosine

distance to observation i. Then, we take the average across each quintile q. We denote the maximum

of this average across all quantiles as the “maximum average cosine distance”.

3. For each observation i in quantile q we select a random observation j from a quintile −q 6= q. For

each covariate in the Poisson regressions we take the average of the standardized distance between the

covariate value for observations i and j. We denote the maximum of this average across all quantiles

as the “average maximum Poisson covariate distance”.
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Figure A1: Comparison of cosine distance between treated and control pairs with standardized distance

between Poisson regression variables for varying calliper sizes.

Figure A1 shows the resulting cosine distances and propensity covariate distances for a bandwidth of α
standard deviations in the log of the predicted entrant count for α ∈ {0.05,0.1,0.15,0.2,0.25,0.3}. Based on

these results, we select a bandwidth of 0.25 standard deviations of predicted entrant count for the two-stage

calliper matching procedure.

A.4 Trimming the entrant count

When matching observations with similar predicted entrant counts, we trim observations with very high or

very low predicted entrant counts. In a simpler model with a binary treatment variable Crump, Hotz, Imbens

and Mitnik (2009) demonstrate that this approach improves the precision of the estimate by ensuring overlap

in propensity covariate distributions. Specifically, we only include observations with a predicted entrant

count in the common support of the quintiles of the observed entrant count. We calculate this common

support as follows:

1. Divide the sample into five quintiles according to the observed entrant count at each observation.

2. Calculate the common support for each of the five quintile subsamples in a manner analogous to

(Flores et al. 2012). Let q denote the set of observations in a given quintile subsample. Then, the

common support CSq for quintile subsample q is as follows:

CSq =

[

max

{

min
i∈q

{

P(X j(i))
}

,min
i/∈q

{

P(X j(i))
}

}

,min

{

max
i∈q

{

P(X j(i))
}

,max
i/∈q

{

P(X j(i))
}

}]

(A10)

3. Find the common support for the overall sample as the union of the common supports of the five

quintile subsamples CSq .

Figure A2 shows the range of predicted entrant counts for each quintile of the distribution of observed entrant

counts. Qualitatively, the common support of the sample is the range of predicted entrant counts which lie in

at least two quintiles of the observed entrant count. Trimming the sample to only include observations within
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Figure A2: Range of predicted entrant counts for the five quintiles of observed entrant counts.

this common support ensures that we only match treated observations which could potentially be matched

to a control observation in another quintile of the observed entrant distribution.

A.5 Pre-match differences between treated and control restaurants

As discussed in Section 3.2, a serious concern is that entry intensity may be correlated with location char-

acteristics, making (unmatched) treated and control restaurants systematically different before the treatment

period. The left panel of Table A2 uses the d = 4 sample to compare restaurant and menu characteristics for

unmatched treated and control restaurants, four periods before treatment. The right panel uses the same sam-

ple and compares demographic characteristics of the restaurants’ locations, showing the difference between

the percent of the neighborhood with each characteristic and the count of other nearby restaurants. Treated

restaurants have about 10 fewer items, higher prices at most points of the distribution (although these differ-

ences are not significant), 24 more reviews, and higher user ratings. Treated and control restaurants are also

in quite different areas. Treated restaurants are located in neighborhoods with younger, less impoverished,

and more highly educated residents, whereas control restaurants are found in neighborhoods with a larger

black population share, a greater percentage of households married and in families, and a larger share of the

single-family detached units in the housing stock. Moreover, a treated restaurant has about 11 more nearby

restaurants than a control restaurant. Many of these differences stem from the fact that treated restaurants

are in dense, high-income areas with frequent entry and many restaurants; a large percentage are located in

lower Manhattan.

These differences highlight an identification challenge likely to be an issue for any study using entry to

examine responses to competition. Specifically, locations with high entry intensity have both different demo-

graphic characteristics and different types of firms than locations with lower entry intensity. If a researcher

only has cross-sectional data on post-entry outcomes then comparing firms near entrants to those further

away could yield very misleading results. In our case we would conclude entry leads to shorter menus and

higher prices. Further, if firms in areas with high intensity of entry also vary in the frequency with which

they make changes, then longitudinal studies (including simple difference-in-difference methods) may also

lead to biased conclusions. This motivates the use of the two-stage matching method in this study.
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Table A2: Statistical tests for difference between treated and control restaurants. All values are measured

four periods prior to treatment. Sample excludes outliers and missing price periods.

(a) Menu attributes

Menu stats

t-tests N

item count -9.88∗∗∗ 126233

mean item price 0.16∗ 126233

median item price 0.18∗∗ 126233

p25 item price 0.10∗ 126233

p95 item price 0.14 126233

stars 0.04 121925

review count 24.56∗ 112771

order rating 0.54∗∗ 123590

food rating 0.35 123589

delivery rating 0.84∗∗∗ 123590

Tests difference between treated and control.

Calculated using values 4 periods before treatment.

Sample excludes outliers and missing price periods.

(b) Demographic attributes

Demographics

t-tests N

age.25.29 0.015∗∗∗ 126813

age.30.39 0.017∗∗∗ 126813

age.70.79 -0.001∗∗ 126813

race.white 0.063∗∗∗ 126813

race.black -0.038∗∗∗ 126813

hh.family -0.058∗∗∗ 126813

hh.married -0.026∗∗∗ 126799

educ.degree 0.080∗∗∗ 126799

poverty -0.015∗∗∗ 126799

income.100.150 0.005∗∗∗ 126799

income.150.200 0.005∗∗∗ 126799

unit.detached -0.043∗∗∗ 125600

competitors 500m 10.694∗∗∗ 116750

Tests difference between treated and control.

All demographics calculated as percent of area.

Competitors calculated 4 periods pre-treatment.

Sample excludes outliers and missing price periods.
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A.6 Additional regression results

Table A3: Fixed effect results for physical distance treatment. Dependent variables are quality ratings,

weekly hours of operation, count of listed cuisines, and count of reviews. All specifications include restau-

rant fixed effects and period fixed effects. Standard errors clustered by entrant are shown in parentheses.

Significance levels: *** 1 percent, ** 5 percent, * 10 percent.

(1) (2) (3) (4) (5) (6)

Food Rtng Delivery Rtng Order Rtng Wkly Hrs Num Cuisines Review Ct.

treat post -0.056 -0.048 -0.093** -0.643 0.023 -3.646**

(0.045) (0.046) (0.042) (0.433) (0.039) (1.615)

Observations 23486 23486 23486 23481 24020 21557

Clusters 310 310 310 311 311 308

Treated 1808 1808 1808 1812 1813 1802

DepVarMean 86.73 87.35 90.84 59.52 4.39 498.25

(a) Four period duration

(1) (2) (3) (4) (5) (6)

Food Rtng Delivery Rtng Order Rtng Wkly Hrs Num Cuisines Review Ct.

treat post 0.040 -0.034 -0.023 0.123 -0.041 0.188

(0.070) (0.065) (0.050) (0.652) (0.050) (2.888)

Observations 15488 15488 15488 15484 15768 14085

Clusters 223 223 223 224 224 222

Treated 934 934 934 935 935 927

DepVarMean 86.62 87.41 90.87 60.12 4.39 470.95

(b) Six period duration

(1) (2) (3) (4) (5) (6)

Food Rtng Delivery Rtng Order Rtng Wkly Hrs Num Cuisines Review Ct.

treat post -0.134 -0.048 -0.097 0.218 -0.067 1.591

(0.114) (0.097) (0.084) (1.022) (0.078) (4.846)

Observations 9437 9437 9437 9429 9552 8486

Clusters 150 150 150 150 150 149

Treated 503 503 503 503 503 496

DepVarMean 86.51 87.31 90.37 56.98 4.40 429.27

(c) Eight period duration

A.7 Predicted entrant model
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Table A4: Overlapping durations and heterogeneity. Fixed effect results for physical distance treatment.

First two columns define the pre-periods as [3,5] and post as [10,12]; last four columns include interaction

between treated X post and number of nearby incumbent competitors. All specifications include restau-

rant fixed effects and period fixed effects; standard errors clustered by entrant are shown in parentheses.

Significance levels: *** 1 percent, ** 5 percent, * 10 percent.

(1) (2) (3) (4) (5) (6)

Itm Prc Itm Prc Med Prc p95 Prc Itm Ct Itm Prc

treated X post 0.015 0.050*** 0.013 -0.028 0.093 -0.011**

(0.014) (0.017) (0.021) (0.060) (0.463) (0.006)

post 0.034*** 0.016*** 0.027** 0.074 -0.004 0.030***

(0.007) (0.004) (0.011) (0.056) (0.135) (0.004)

trtd X pst X comps -0.002 0.001 0.124 0.002

(0.004) (0.009) (0.091) (0.002)

open -0.030*** -0.012 1.663***

(0.010) (0.019) (0.199)

Observations 801392 521566 19016 19016 19016 3383522

Clusters 158 104 285 285 285 311

Treated 668 378 1668 1668 1668 1811

Sample d=6 d=8 d=4 d=4 d=4 d=4

DepVarMean 8.62 8.57 8.40 17.95 148.57 8.69
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Table A5: Exit Analysis Specifications. First two specifications show OLS results for survival time (weeks),

last four show results from proportional hazards models. For hazard models we show coefficients, not hazard

ratios. There are 1760 observed exits in the sample. Significance levels: *** 1 percent, ** 5 percent, * 10

percent.

(1) (2) (3) (4) (5) (6)

surv. time surv. time exit haz. exit haz. exit haz. exit haz.

observed entrants -0.0198 -0.1952*** 0.0029 0.0108*** 0.0140*** -0.0243

(0.0237) (0.0640) (0.0031) (0.0039) (0.0051) (0.0212)

predicted entrants 0.2025***

(0.0686)

GPS 0.6198*** 0.6080*** -0.1364

(0.1773) (0.1768) (0.7629)

obs. ents. X GPS -0.0624 0.0464

(0.0675) (0.0961)

obs. ents.2 0.0012*

(0.0006)

GPS2 0.6847

(0.9114)

Observations 9310 9310 9310 9310 9310 9310

Likelihood -39855.1 -39850.7 -15718.4 -15712.6 -15712.2 -15710.3
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Table A6: Poisson regression coefficients for the number of nearby entrants during the sample period. The

unit of observation is a restaurant. We used a LASSO penalty estimator with penalty parameter of 2.5 to

select the regression variables.

Coefficient Std. err. Coefficient Std. err.

Competitors within 25 m -0.010 0.003 Spanish and English -0.076 0.012

Competitors within 50 m -0.017 0.004 Other IE, limited English -0.009 0.006

Competitors within 100 m -0.015 0.005 Other IE, English -0.008 0.004

Competitors within 250 m 0.031 0.008 AP, limited English 0.085 0.005

Competitors within 500 m 0.804 0.014 AP, English 0.030 0.005

Competitors within 1 km 0.345 0.016 Poverty 0.020 0.005

Competitors within 2.5 km 0.061 0.013 Income ¡10k -0.013 0.005

Efficiency rent 0.075 0.013 Income 10k-20k -0.024 0.006

One-bedroom rent 1.575 0.342 Income 20k-30k -0.020 0.005

Two-bedroom rent -2.180 0.543 Income 30k-40k -0.021 0.005

Three-bedroom rent -2.113 0.988 Income 40k-50k -0.042 0.004

Four-bedroom rent 2.752 0.626 Income 50k-60k -0.018 0.003

Age < 10 0.001 0.011 Income 60k-75k -0.018 0.003

10 ≤ Age ≤ 17 0.066 0.012 Income 75k-100k 0.007 0.003

18 ≤ Age ≤ 24 0.044 0.011 Income 100k-150k -0.045 0.004

25 ≤ Age ≤ 29 0.118 0.010 Income 150k-200k -0.036 0.004

30 ≤ Age ≤ 39 0.079 0.011 Owner-occupied 0.086 0.006

40 ≤ Age ≤ 49 0.023 0.007 Detached house 0.075 0.010

50 ≤ Age ≤ 59 -0.001 0.006 3-9 unit structure 0.187 0.010

60 ≤ Age ≤ 64 0.049 0.005 10-49 unit structure 0.158 0.009

65 ≤ Age ≤ 69 0.034 0.005 > 50 unit structure 0.087 0.013

70 ≤ Age ≤ 79 -0.004 0.006 Built post-2010 -0.025 0.003

White -0.037 0.015 Built 2000-2009 0.013 0.002

Black -0.024 0.013 Built 1990-1999 0.041 0.004

Asian 0.023 0.011 Rent 1250-1499 0.039 0.005

Latino -0.055 0.016 Rent 1500-1999 -0.163 0.004

Commute out of county 0.035 0.010 Rent 2000+ 0.021 0.004

Commute out of state -0.025 0.003 Rent-to-income 35-40% -0.026 0.003

Family household 0.108 0.016 Rent-to-income 40-50% 0.013 0.003

Married household -0.142 0.011 Rent-to-income 50%+ 0.006 0.004

Roommate household -0.028 0.005 House value 500k-750k 0.018 0.003

Enrolled in college 0.014 0.013 House value 750k-1m 0.052 0.003

Not enrolled in school -0.012 0.017 House value 1m+ 0.001 0.003

College graduate -0.065 0.013 Distance to subway 0.013 0.010

Spanish, limited English -0.005 0.008 Constant 2.463 0.004

Observations 11909

Adj. Pseudo-R2 0.755
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A.8 Entrant intensity covariate balance
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Table A7: Entrant intensity covariate balance. Sample divided by quintile of entrant count. Only selected

covariates shown. Additional covariates available upon request.

Variable Q1 Q2 Q3 Q4 Q5

Competitors within 100 m
Without callipers 1.36 0.74 0.02 0.82 1.13

With callipers 0.22 0.06 0.05 0.09 0.06

Competitors within 500 m
Without callipers 2.60 0.98 0.11 1.29 1.93

With callipers 0.75 0.02 0.12 0.05 0.31

Competitors within 1 km
Without callipers 2.44 0.91 0.03 1.29 1.95

With callipers 0.69 0.07 0.03 0.07 0.24

One-bedroom rent
Without callipers 1.39 1.02 0.11 1.23 1.20

With callipers 0.07 0.07 0.11 0.08 0.20

Two-bedroom rent
Without callipers 1.38 1.01 0.11 1.23 1.19

With callipers 0.07 0.06 0.11 0.08 0.20

White
Without callipers 0.80 0.64 0.20 0.91 0.54

With callipers 0.01 0.05 0.08 0.14 0.37

Black
Without callipers 0.50 0.44 0.02 0.68 0.63

With callipers 0.02 0.09 0.03 0.26 0.36

Asian
Without callipers 0.14 0.05 0.27 0.07 0.53

With callipers 0.08 0.02 0.13 0.04 0.37

Latino
Without callipers 0.58 0.57 0.13 0.69 0.92

With callipers 0.09 0.02 0.05 0.06 0.06

Family household
Without callipers 1.85 0.86 0.11 0.96 1.79

With callipers 0.43 0.06 0.02 0.08 0.26

Married household
Without callipers 0.92 0.38 0.13 0.40 1.24

With callipers 0.21 0.06 0.01 0.17 0.39

Enrolled in college
Without callipers 0.32 0.19 0.21 0.16 0.71

With callipers 0.09 0.03 0.03 0.25 0.45

College graduate
Without callipers 1.71 0.90 0.04 1.19 1.30

With callipers 0.28 0.01 0.02 0.03 0.15

Poverty
Without callipers 0.60 0.55 0.06 0.81 0.53

With callipers 0.02 0.04 0.05 0.17 0.32

Income 75k-100k
Without callipers 0.24 0.08 0.01 0.16 0.18

With callipers 0.10 0.02 0.04 0.04 0.09

Income 100k-150k
Without callipers 0.29 0.47 0.02 0.50 0.33

With callipers 0.13 0.09 0.02 0.13 0.16

Income 150k-200k
Without callipers 0.66 0.64 0.09 0.55 0.81

With callipers 0.10 0.02 0.02 0.05 0.04

Detached house
Without callipers 0.91 0.12 0.43 0.52 0.51

With callipers 0.30 0.02 0.12 0.18 0.04

3-9 unit structure
Without callipers 0.13 0.23 0.59 0.18 0.77

With callipers 0.06 0.10 0.15 0.06 0.20

> 50 unit structure
Without callipers 0.80 0.36 0.28 0.61 0.71

With callipers 0.32 0.14 0.17 0.03 0.14

Built post-2010
Without callipers 0.12 0.11 0.06 0.06 0.20

With callipers 0.03 0.06 0.15 0.12 0.11

Rent 2000+
Without callipers 0.78 0.59 0.11 0.66 0.52

With callipers 0.07 0.05 0.04 0.04 0.08

Rent-to-income 50%+
Without callipers 0.78 0.58 0.17 0.76 0.56

With callipers 0.01 0.09 0.02 0.05 0.17

House value 500k-750k
Without callipers 0.28 0.07 0.06 0.08 0.20

With callipers 0.15 0.06 0.07 0.06 0.02

House value 750k-1m
Without callipers 0.65 0.06 0.26 0.14 0.23

With callipers 0.23 0.02 0.04 0.12 0.14

House value 1m+
Without callipers 1.04 0.34 0.16 0.49 0.47

With callipers 0.29 0.04 0.02 0.06 0.01

Distance to subway
Without callipers 0.66 0.03 0.29 0.34 0.42

With callipers 0.31 0.09 0.02 0.29 0.45
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