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On Using Risk-Neutral Probabilities to Price Assets  

 

 

ABSTRACT 

 

 

This paper has used the Arbitrage Theorem under binomial case to show that in a complete market 

with no transaction costs and no arbitrage, for any asset, the current spot price is a function of the 

risk-free interest rate, the future possible prices and their probabilities. These probabilities are the actual 

world probabilities, not the so-called risk-neutral probabilities. The paper also proves that for the levered 

firm, (i) under riskless debt, increasing the debt-equity ratio increases the variance of the rate of return on 

equity and has no effect on the rate of return on debt; and (ii) under risky debt, increasing the debt-equity 

ratio increases the variance of the rate of return on debt but does not affect the probability density 

function of the rate of return on equity. With the actual world probabilities, it can be shown that changes 

in the debt-equity ratio do not affect the expected rate of return on the equity of the levered firm. These 

findings refute the Modigliani-Miller second proposition that the expected rate of return on the equity of 

the levered firm increases in proportion to the debt-equity ratio. With the actual world probabilities, it is 

also found that increasing the variance of the underlying asset price may either increase or decrease the 

option prices.  
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“Our expectations for the future will determine our current behavior.”   

 

1. Introduction   

 

The seminal work of Modigliani and Miller (1958) has presented the Modigliani-Miller second 

proposition: in the levered firm, “a premium related to financial risk equal to the debt-to-equity ratio 

times the spread between k  (the expected rate of return on the firm’s total assets) and r  (the expected 

rate of return on the debt)” (p. 271). The corporate finance literature emphasizes that because increasing 

the debt-equity ratio increases risk to equity-holders, the expected rate of return on the equity of the 

levered firm increases in proportion to the debt-equity ratio. Cox, Ross and Rubinstein (1979) argue that 

their binomial option model does not use probabilities to calculate option prices, and the probabilities 

used are the risk-neutral probabilities, not the actual world probabilities.  

Unfortunately, both the Modigliani-Miller second proposition and Cox et al.’s arguments are not 

correct. In this paper, I use the Arbitrage Theorem under binomial case to show that in a complete market 

with no transaction costs and no arbitrage, for any asset, the current spot price is a function of the 

risk-free interest rate, the future possible prices and their probabilities. These probabilities are the actual 

world probabilities, not the so-called risk-neutral probabilities. The paper also proves that for the levered 

firm, (i) under riskless debt, increasing the debt-equity ratio increases the variance of the rate of return on 

equity and has no effect on the rate of return on debt; and (ii) under risky debt, increasing the debt-equity 

ratio increases the variance of the rate of return on debt but does not affect the probability density 

function of the rate of return on equity. With the actual world probabilities, it can be shown that changes 

in the debt-equity ratio do not affect the expected rate of return on the equity of the levered firm. It is also 

found that increasing the variance of the underlying asset price may either increase or decrease the option 

prices.  

The remainder of this paper is organized as follows. Section 2 uses the Arbitrage Theorem under the 

binomial case to show that the current spot price is a function of the risk-free interest rate, the future 

possible prices and their probabilities. Once the risk-free interest rate, the current spot price, and the 

future possible prices are assumed, the probabilities will be determined. Section 3 shows that the 

probabilities used in the binomial option pricing model are the actual world probabilities. Section 4 

clarifies the errors in the literature and proves two capital structure irrelevancy propositions. Concluding 

remarks appear in Section 5.   



 

2. Implications of the Arbitrage Theorem  

 

In the corporate finance literature, the following example is used to explain the Modigliani-Miller 

second proposition:1   

A totally equity-financed firm’s assets are $8,000. The firm is considering issuing riskless debt to 

buy half of the equity, i.e., $4,000. The risk-free interest rate is 10 percent. There are two states of nature: 

expansion and recession, and each has probability 0.5. The outcomes under alternative capital structures 

are shown in Table 1.  

 

Table 1.  Outcomes under alternative capital structures.  

 No debt With debt 

 Recession Expected Expansion Recession Expected Expansion 

       

Rate of Return 

on assets 

5% 15% 25% 5% 15% 25% 

       

Earnings before 

Interest 

$400 $1,200 $2,000 $400 $1,200 $2,000 

       

Interest 0 0 0 $400 $400 $400 

       

Earnings after  

Interest 

$400 $1,200 $2,000 0 $800 $1,600 

       

Rate of return 

on equity 

5% 15% 25% 0% 20% 40% 

 

 After replacing half of the firm’s equity with debt, the expected rate of return on equity increases 

                                                 
1 E.g., see Ross, Westerfield, Jaffe and Jordan (2016, Chapter 16) or Brealey, Myers and Allen (2017, Chapter 17).  



from %15  to %20 . Based on this kind of analysis, it is argued that “the use of debt rather than equity 

funds to finance a given venture may well increase the expected return to the owners, but only at the cost 

of increased dispersion of the outcomes” (Modigliani and Miller, 1958, p. 262); and “any gains from 

using more of what might seem to be cheaper debt capital would thus be offset by correspondingly higher 

cost of the now riskier equity capital” (Miller, 1988, p. 100).  

 Unfortunately, the above example is erroneous. To see this let us rewrite Table 1’s continuous-time 

example as a one-period binomial example:  

                                         

                             5.0p       000,10)
000,8
000,10(000,801  uSS   

              000,80 S  

 %10r       5.01  p     400,8)
000,8
400,8(000,801  dSS   

Figure 1. An erroneous binomial model.  

 
That is, in addition to assuming risk-free interest rate: %10r , current spot price: 000,80 S , future 

possible prices: 000,100 uS  and 400,80 dS  and their probabilities: 5.0p  and 5.01  p  are 

also assumed. This is erroneous because current spot price is determined by risk-free interest rate, future 

possible prices and their probabilities, i.e., among the five variables: dSuSSr 000  , , , , and p , only four 

of them can be freely assumed (or the degree of freedom is only four, not five). For example, if %10r  

and a bank promises a future payoff: 1101 S  with probability one: 1p , the current deposit asked by 

the bank must be: 100)1/(10  rSS . If the current spot price of an asset is 1000 S , %10r , no 

default: 1p  and no storage cost, the forward price of this asset must be 110)1 01  SrS （ . Suppose 

that in Figure 1, one of the four variables: dSuSSr 000  , , ,  changes:  

                                                  

 

 

 



 

'p          000,100 uS                         ''p         000,9'0 uS  

000,80 S                                     000,80 S  

%10r      '1 p        200,8'0 dS            %10r      ''1 p        400,80 dS  

           (a)                                         (b)   

 

'''p         000,100 uS                        ''''p        000,100 uS  

100,8'0 S                                     000,80 S  

%10r      '''1 p       400,80 dS            %12'r       ''''1 p      400,80 dS  

           (c)                                         (d)  

Figure 2. Changes of probabilities.  

 

Case (a): 'p  must be greater than p  of Figure 1. This is because when uS0  and r  remain the same, 

and 400,80 dS  decreases to 200,8'0 dS , the current stock price 0S  can remain the same only when 

investors (the market) believe the probability of the up move uS0  is higher than before.  

Case (b): ''p  must be greater than p  of Figure 1 because when dS0  and r  remain the same, and 

000,100 uS  decreases to 000,9'0 uS , the current stock price 0S  can remain the same only when 

investors (the market) believe the probability of the up move '0uS  is higher than before.  

Case (c): '''p  must be greater than p  of Figure 1 because when dSuS 00  , , and r  remain the same, 

and 0S  can increase from 8,000 to 8,100, this is possible only when investors (the market) believe the 

probability of the up move uS0  is higher than before.  

Case (d): ''''p  must be greater than p  of Figure 1 because when uS0  and dS0  remain the same, 

and r  increases from 10% to 12%, the current stock price 0S  can remain the same only when investors 



(the market) believe the probability of the up move uS0  is higher than before.  

These results show that in the binomial case, the five variables: pdSuSSr  , , , , 000  are closely related, 

and the degree of freedom is four, not five.  

The following theorem proves that the current spot price 0S  is a function of dSuSr 00  , , , and p .2  

Gordan Theorem (the Arbitrage Theorem):  

Let A  be an nm  matrix. Then, exactly one of the following systems has a solution:  

          System 1:  0Ax     for some nRx    

          System 2:  0pA t   for some mRp , 0p  , 1pe t  where 


























1

1
1

e     

In System 2 of the Arbitrage Theorem, the vector p  is a probability measure, and ip , mi  ..., ,1 , can 

be interpreted as the current price of one dollar received at the end of period if state i  occurs. If System 

2 holds and the matrix A  has rank 1m  (i.e., the matrix has 1m  independent rows), the 

probability measure p  will be unique.3  

In the above example (Figure 1), with no arbitrage, i.e., System 2 holds, the probability of the up 

move, p , is equal to 
4
1  rather than 0.5:  












0.1)(1000,88,400        )1.01(000,8000,10

0.1)(111.1                      )1.01(11.1









4/3
4/1









0

0 ,   

or  

                                                 
2 See Chang (2015, p. 41).  
3 0pA t  and p  is a non-zero vector imply the rank of tA , )( tR A , is less than m . Unique solution for ),...,1 mpp（  

and 
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m

i
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1

1  imply 1)(  mtR A .  
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The above matrix tA  has 1121 m  independent column which means a complete market, i.e., 

every asset can be replicated by other 2m  assets.4   

The probabilities in Figure 2 can be calculated from the equation:  

  ])1([
1

1
000 dSpuSp

r
S 


 , and 

du
drp





)1( , 

du
rup





)1(1 .    (2)  

Case (a): when 400,82
0 dS  decreases to 200,8'2

0 dS , 
3
1

025.125.1
025.11.1' 




p
4
1

05.125.1
05.11.1





 p .  

Case (b): when 000,102
0 uS  decreases to 000,9'2

0 uS , 
3
2

05.1125.1
05.11.1'' 




p
4
1

 p .  

Case (c): when 000,82
0 S  increases to 100,82

0 ’S , 
160
51

8100/400,8100,8/000,10
8100/400,81.1''' 




p
4
1

 p .  

Case (d): when %10r  increases to %12'r , 
20
7

05.125.1
05.112.1'''' 




p
4
1

 p .  

From equation (2), we can derive the following properties of the probability p :  

                                                 
4 Riskless asset’s future payoff vector: 
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hence, can replicate any other asset d’s future payoff vector: 
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dependent, i.e., 11)(  mtR A .  



  0


u
p , 0



d
p , 0




r
p , and  0

0




S
p  (where dSuSr 00   and  , ,  remain constant).    (3)  

Among the five variables: dSuSSr 000  , , , , and p , only four of them can be freely assumed, i.e., the 

degree of freedom is only four, not five.  

 

3. There Is No Such Thing as Risk-Neutral Probabilities  

 

Suppose that in the Figure 1 case, the firm issues a European call option C  with strike price 

$8,900K  , and a European put option P  with strike price $8,900K  .    

 

                                        ]0 ,900,8000,10[]0 ,[ 0  MaxKuSMaxCu  

                                        ]0 ,000,10900,8[]0 ,[ 0  MaxuSKMaxPu  

                              p         000,100 uS   

              000,80 S  

%10r         p1      400,80 dS   

               ?C                     ]0 ,900,8400,8[]0 ,[ 0  MaxKdSMaxCd  

               ?P                     0[ ,  0] [8,900 8,400,  0]dP Max K S d Max     

Figure 3. A binomial option pricing model.  
 

To calculate C , in the beginning of the period 0t  , forming the levered hedge strategy: (1) sell 16/11 

calls, (2) buy the firm at $8,000, and (3) borrow $84,000/11 at 10%. At the end of the period t T , as 

shown in Table 2, this hedge strategy gives zero payoff at each state.  

 

 

 

 

 



Table 2.  Zero investment at 0t   gives zero payoff at t T .  

_____________________________________________________________________ 

0t                        t T  

1 $10,000S      1 $8,400S   

Sell 16
11

 calls          16
11

C               1,600             0  

Buy the firm          8,000                10 000,           8,400  

Borrow               
84,000

11
             8,400          8,400  

 

           Total                   0                    0               0  

          _____________________________________________________________________ 

 

That is, 16 84,0008,000 0
11 11

C     implies 250C  . We can also form a portfolio by buying n  units 

of the firm and borrowing B  to replicate the call’s future payoff at t T :   

 

              0

0

(1 )  1,100      
(1 )  0

u

d

n S u r B C
n S d r B C
    

     
,  

where  

   
0 0

0.6875u dC Cn
S u S d


 


, and  0

1 1 5,250
1 1

d u
u

u C d CB C n S u
r r u d

             
, 

and with no arbitrage,  

 
0

1 (1 ) (1 ) 1   (1 ) 250
1 1u d u d

C n S B
r d u rC C pC p C

r u d u d r

  

               

.    (4)5  

                                                 
5 Alternatively, at 0t  , we can buy n  units of the firm and sell one call to construct a portfolio which gives a certain future 

payoff at t T , and 

1110,000( ) 1,100 8,400( ) 0       
16

8,400(11/16) 8,000(11/16) 250
1 0.1

n n n

C C

     

    
 

. That is, 0 0u dn S u C n S d C    
0 0

u dC Cn
S u S d


 


, 

and hence, 



 

 Cox, Ross and Rubinstein (1979) argue that in Table 2, “all we needed to determine the exact value 

of the call was its striking price, underlying asset price, range of movement in the underlying asset price, 

and the rate of interest. What may seem more incredible is what we do not need to know: among other 

things, we do not need to know the probability that the underlying asset price will rise or fall” (p. 232). 

Cox et al. also argue that in the risk-neutral world, the expected rate of return on the underlying asset 

would be the riskless interest rate:  

 

     0 0 0( ) (1 )( ) (1 )q S u q S d r S               (5) 

and  

         (1 )r dq p
u d
 

 


,  

 

thus, “ p  is the value q  would have in equilibrium if investors were risk-neutral … hence, the value of 

the call can be interpreted as the expectation of its discounted future value in a risk-neutral world” (p. 

235).   

 Unfortunately, Cox et al.’s arguments are not correct. First, as shown in equations (2) and (3), 0S  

is a function of 0 0,  ,  r S u S d  and p , and the degree of freedom is four, not five. That is, investors’ 

preferences and risk attitudes (expectations) are incorporated into 0 0,  ,  r S u S d , and p , which in turn 

determine the current spot price 0S . Also, once 0S , 0 0,  ,  and r S u S d  are assumed, p  of eq. (2) (or q  

of eq. (5)) will be determined, and q  and (1 )q  are the actual world’s (subjective) probabilities: p  

and (1 )p , not the so-called risk-neutral probabilities.6  

                                                                                                                                                                           

0 0
0 0

[ ] / (1 )
( ) ( )
u d u d

u
C C C CS u C r S C
S u d S u d

 
     

 
(1 ) (1 )[ (1 ) ] / (1 ),  where ,  1 .u d

r d u rC pC p C r p p
u d u d
   

       
 

  

 
6 In equation (2), we implicitly use the money market account as numeraire. We can also use the firm account as numeraire, 

i.e., a change of measure. That is, from (1 ) (1 )   and  1r d u rp p
u d u d
   

  
 

, we have 

1 11 (1 ) (1 ) (1 )
1 1

u dp p r p p
r u r d

              
. Divide both sides of the equation by 0S  , we 

have
* *

0 0 0 0 0

1 1 1 (1 )(1 ) (1 ) (1 )
1 1

u d q qr p p r
S r S u r S d S u S d

   
                

 or 
* *

0 0 0

1 1 (1 )
1

q q
r S S u S d

     
, where 



 Second, with no arbitrage (i.e., System 2 of the Arbitrage Theorem holds), for Figure 3 we have:  

 

0 0 0

0

1 1 1 3Money Market:  1= [ (1 ) (1 )(1 )] 1.1 1.1       
1 1 0.1 4 4

1 1 1 3The Firm:           8,000 [ (1 ) ] 10,000 8,400
1 1 0.1 4 4

1Call Option:       250 [ ( ) (1 ) 0]
1

p r p r
r

S p S u p S d
r

C p S u K p
r

           
              

      


0

1 1 31,100 0
1 0.1 4 4

3,750 1 1 1 3Put Option:         [ 0 (1 )( )] 0 500
11 1 1 0.1 4 4

P p p K S d
r








         


                

.  (6) 

 

Suppose that in eq. (6), 0 8,400S d   decreases to 0 ' 8,200S d  . Then, because 1 / 4p   increases to 

' 1 / 3p  , 250C   will increase to ' 1,000 / 3C  , and 3,750 /11P   will increase to 

' 14,000 / 33P  . That is, 0p
d





 leads to 0C
d





 and 0P
d





. 7  Eq. (6) shows: when 

0 0 0,  ,  ,  and S r S u S d  are given, probabilities p  and 1 p  will be determined, and 

0 0,  ,  ,  ,  and  p r S u S d K  will determine the option prices C  and P . There is no such thing as: “the 

option pricing formula does not involve the probabilities of the underlying asset price moving up or down. 

For example, we get the same option price when the probability of an upward movement is either 0.5 or 

0.9.”.8  

 

 

 

                                                                                                                                                                           
* (1 ) 0

1
r d uq

u d r
 

  
 

 and * (1 )1 0
1

u r dq
u d r
 

   
 

. Properties of equation (3) still hold: 
*

0q
u





, 

*

0q
d





, 

*

0q
r





, and  

*

0

0q
S





 (where 0 0,  ,  and    remain constantr S u S d ).  

7 These are the Greeks. We can also prove that 0C P
d d
 

 
 

. For more discussions of the Greeks under the binomial 

distribution case and the model-free (distribution-free) case, see Chang’s (2015) Chapters 4 and 5. Also, if we use the firm as 

numeraire, then 
*

0 0 0
1 1[ ( )] ( ) ( )

1 1
u qC p S u K p S u K S u K

r r u u
               

, or * 0

0 0

S u KC q
S S u


  . We have: 

*

0q
d





 

leads to 0C
d





.  



4. Some Applications: New Capital Structure Irrelevancy Propositions, and Volatility and Options  

 

 From equation (6), we can derive:  

    0 0 0 0 0
1 1 1  [ (1 ) ] [(1 )( )] [ ( )]

1 1 1 1
KS P p S u p S d p K S d p S u K

r r r r
            

   
 

          
1

KC
r

 


.                (7) 

That is, the binomial option pricing model satisfies the put-call parity. Rearrange equation (7):  

     0 1
KS C P

r
     

  

where 0S  can be interpreted as the market value of the levered firm, C  as the equity of the firm, and 

1
K P

r
   

 as the risky debt of the firm. In the case of riskless debt, 0P   and  

                     0 1
KS C

r
 


   

where 
r

K
1

 is the riskless debt. At t T , if the equity-holders pay K  to the debtholders, then the 

equity-holders can have the firm, 1S .9 Chang (2016) has shown that with Figure 3, we have:  

(i) Under riskless debt (i.e., 0 $8,400)K S d   where urd  1 .   

 At t T , rate of return on equity at the good time is:  0S u K
C


r
KS

KuS







10

0

KrS
KuSr





)1(
)1(

0

0  , 

 and higher K  means higher 0S u K
C
 .   

 At t T , rate of return on equity at the bad time is:  0S d K
C


r
KS

KdS







10

0

KrS
KdSr





)1(
)1(

0

0  , 

 and higher K  means lower 0S d K
C
 .  

 

                                                                                                                                                                           
8 See Appendix for more discussions on the erroneous arguments in the literature.  
9 Chang (2015, p. 26) shows that the Modigliani-Miller First Proposition is a corollary of the put-call parity. Capital Structure 
Irrelevancy Proposition I should be written as: In a complete market with no transaction costs and no arbitrage, the market 



 __________________________________________________________________________________ 

     0t             t T  

_____________________________________  ____________________________________________ 

 K     Debt:
r

K
1

   Equity: 0 1
KC S

r
 


   Rate of return on debt  Rate of return on equity   

0       0    8000         ---    

10000good time: 1.25
8000

8400bad time: 1.05
8000

 

 


  

100  90.9090       7909.0910        1.1    

9900good time: 1.2517
7909.0910

8300bad time: 1.0494
7909.0910

 

 


 

200  181.8182    7818.1818     1.1    

9800good time: 1.2535
7818.1818

8200bad time: 1.0488
7818.1818

 

 


 

.    .     .       .      .     

8200 7454.5455   545.4545     1.1    

1800good time: 3.30
545.4545

200bad time: 0.3667
545.4545

 

 


 

8300 7545.4545  454.5455      1.1    

1700good time: 3.74
454.5455

100bad time: 0.22
454.5455

 

 


 

8400 7636.3636  363.6364      1.1    

1600good time: 4.4
363.6364

0bad time: 0
363.6364

 

 


  

 ___________________________________________________________________________________ 

 

 

                                                                                                                                                                           
value of the firm is independent of its capital structure.  



(ii) Under risky debt (i.e., 0 $8,400)K S d  .  

 At t T , rate of return on equity at the good time is a constant: 0S u K
C
 0

0
1 [ ( )]

1

S u K

p S u K
r







1 r
p


 ; 

 and rate of return on equity at the bad time is zero: 0
C

0 . That is, changes in the debt-equity ratio (i.e.,    

 changes in )K  have no effect on the rate of return on equity.   

 At t T , rate of return on debt at the good time is:   

 
0

K
S C

0 0 0
1 1[ (1 ) ] [ ( )]

1 1

K

p S u p S d p S u K
r r


    

 
0

1

(1 )

r
S dp p
K




 
 , and higher K  means 

 higher 
0

K
S C

.  

 At t T , rate of return on debt at the bad time is: 0

0

S d
S C

0

0 0
1 [ ( )]

1

S d

S p S u K
r


 



, and higher K  

 means lower C  and lower 0

0

S d
S C

.  

____________________________________________________________________________________ 

     0t             t T  

____________________________________   _____________________________________________ 

K     Debt: 0S C    Equity: C       Rate of return on debt        Rate of return on equity   

         0( )
1

p S u K
r





 

8500    7659.0909  340.9091   

8500good time: 1.1098
7659.0909

8400bad time: 1.0967
7659.0909

 

 


   
good time: 4.4
bad time: 0.0




   

8600 7681.8182     318.1818   

8600good time: 1.1195
7681.8181

8400bad time: 1.0935
7681.8181

 

 


    
good time: 4.4
bad time: 0.0




   



8700 7704.5455   295.4545       

8700good time: 1.1292
7704.5455

8400bad time: 1.0903
7704.5455

 

 


    
good time: 4.4
bad time: 0.0




   

8800 7727.2727      272.7273   

8800good time: 1.1388
7727.2727

8400bad time: 1.0871
7727.2727

 

 


    
good time: 4.4
bad time: 0.0




  

8900 7750     250    

8900good time: 1.1484
7750

8400bad time: 1.0839
7750

 

 


        
good time: 4.4
bad time: 0.0




  

10000 8000   0    

10000good time: 1.25
8000

8400bad time: 1.05
8000

 

 


           ---      

____________________________________________________________________________________ 

 

  In summary, we now have a new capital structure irrelevancy proposition:  

 

Capital Structure Irrelevancy Proposition II  

In a complete market with no transaction costs and no arbitrage, (i) under riskless debt, increasing the 

debt-equity ratio increases the variance of the rate of return on equity and has no effect on the rate of 

return on debt; and (ii) under risky debt, increasing the debt-equity ratio increases the variance of the rate 

of return on debt but does not affect the probability density function of the rate of return on equity.  

 

 From eq. (6) with the actual probabilities p  and 1 p , we know that every asset’s expected rate 

of return is equal to the risk-free interest rate r . The above proposition can be rewritten as:  

 

Capital Structure Irrelevancy Proposition II’  

In a complete market with no transaction costs and no arbitrage, changes in the debt-equity ratio do not 

affect the expected rate of return on the equity of the levered firm.   

 



  These two propositions refute the Modigliani-Miller second proposition that “the use of debt rather 

than equity funds to finance a given venture may well increase the expected return to the owners, but only 

at the cost of increased dispersion of the outcomes” (1958, p. 262); “any gains from using more of what 

might seem to be cheaper debt capital would thus be offset by correspondingly higher cost of the now 

riskier equity capital” (Miller, 1988, p. 100).   

 Chang (2015, pp. 50-51) has shown the following example (with )25.0r :   

(I).                                   7001  uSS   

480 S  

60K                  3001  dSS   
























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








 










 










 




30 
4
10 

4
3

25.01
1 6          :OptionPut 

0 
4
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4
3

25.01
1 6         :Option Call

30 
4
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4
3

25.01
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4
11.25 

4
3

25.01
1 1    :etMoney Mark

0

P

C

S
   

(II).                                  6801  uSS   

480 S  

60K                  201  dSS   

























 










 










 










 




58 
66
80 

66
58

25.01
1 62424.5          :OptionPut 

0 
66
88 

66
58

25.01
1 62424.5         :Option Call

2 
66
868 

66
58

25.01
184                  :Stock

      1.25 
66
81.25 

66
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25.01
1 1    :MarketMoney 

0

P

C

S
 



(III).                                  9001  uSS   

480 S  

60K                  4001  dSS   

























 










 










 










 



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30 

5
2
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0 
5
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2
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5
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0

P

C

S
   

We can find that the range of the stock price 0S  in (II) is larger than that in (I), and (II)’s call and 

put prices are lower. The range of the stock price in (III) is also larger than that in (I), but (III)’s call and 

put prices are higher. Using the actual probabilities p  and 1 p , we can calculate the variances of the 

underlying asset price:  

     For (I), 2 2 2
1

3 1(70 60) (30 60) 300.
4 4

         

    For (II), 2 2 2
2

58 8(68 60) (2 60) 464.
66 66

         

    For (III), 2 2 2
3

2 3(90 60) (40 60) 600.
5 5

          

The variance of the stock price in (II) is larger than that in (I), and (II)’s call and put prices are lower. The 

variance of the stock price in (III) is also larger than that in (I), but (III)’s call and put prices are higher. 

These results are different from the Black-Scholes-Merton option pricing model’s 0








pc , where 

  is the volatility.10   

 

 

                                                 
10 Ross (1993, p. 470) and Chang (2014) have shown that with complete market, no transaction costs and no arbitrage, the 

Black-Scholes-Merton option pricing model has the restriction: 21 .
2

r      



5. Concluding Remarks 

 

This paper has used the Arbitrage Theorem under binomial case to show that in a complete market 

with no transaction costs and no arbitrage, for any asset, the current spot price is a function of the 

risk-free interest rate, the future possible prices and their probabilities. Once the risk-free interest rate, the 

current spot price, and the future possible prices are assumed, the probabilities will be determined. These 

probabilities are actually the real world probabilities, not the so-called risk-neutral probabilities. The 

paper also proves that for the levered firm, (i) under riskless debt, increasing the debt-equity ratio 

increases the variance of the rate of return on equity and has no effect on the rate of return on debt; and (ii) 

under risky debt, increasing the debt-equity ratio increases the variance of the rate of return on debt but 

does not affect the probability density function of the rate of return on equity. With the actual world 

probabilities, it can be shown that changes in the debt-equity ratio do not affect the expected rate of return 

on the equity of the levered firm. These findings refute the Modigliani-Miller second proposition that the 

expected rate of return on the equity of the levered firm increases in proportion to the debt-equity ratio. 

With the actual world probabilities, it is also found that increasing the variance of the underlying asset 

price may either increase or decrease the option prices.  
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APPENDIX 

 

 Wilmott (2007, p. 77) argues: Assume: “(1) two stocks A and B; (2) both have the same value, same 

volatility and are denominated in the same currency; (3) both have call options with the same strike and 

expiration; (4) stock A is doubling in value every year, stock B is halving. Therefore both call options 

have the same value. But which will you buy? That one stock is doubling and the other halving is 

irrelevant. That option prices don’t depend on the direction that the stock is going can be difficult to 

accept initially”.  

Ross (1998, p. 701) argues: “Take two stocks that both follow binomial processes and that are not 

perfectly correlated. Further, suppose that the stocks differ only in that one has a much higher probability 

of an up jump than does the other. If our analysis is to be believed, then when the stock prices of each are 

equal the two option values will be equal! How can this be? How can the value of an option on a stock be 

independent of the probability that the stock will go up?”.  

Both Wilmott’s and Ross’ arguments are erroneous because the assumptions they made contradict 

each other. For Wilmott’s, the second assumption contradicts the fourth one: if stock A is doubling in 

value every year and stock B is halving, it is impossible that now the two stocks can have the same value, 

i.e., stock A must have higher value than stock B. For Ross’ assumptions, if one stock has a much higher 

probability of an up jump than does the other, the two stock prices cannot be equal, i.e., the one with 

higher probability of an up jump must be more expensive than another one.   

 

 

 

 


