
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

10-2019

Detecting Security Leaks in Hybrid Systems with Information Flow Detecting Security Leaks in Hybrid Systems with Information Flow

Analysis Analysis

Luan Viet Nguyen
University of Pennsylvania, luanvn@seas.upenn.edu

Gautam Mohan
University of Pennsylvania, gmohan1@seas.upenn.edu

James Weimer
University of Pennsylvania, weimerj@seas.upenn.edu

Oleg Sokolsky
University of Pennsylvania, sokolsky@cis.upenn.edu

Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

See next page for additional authors Follow this and additional works at: https://repository.upenn.edu/cis_papers

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

Recommended Citation Recommended Citation
Luan Viet Nguyen, Gautam Mohan, James Weimer, Oleg Sokolsky, Insup Lee, and Rajeev Alur, "Detecting
Security Leaks in Hybrid Systems with Information Flow Analysis", 17th ACM-IEEE International
Conference on Formal Methods and Models for Codesign (MemoCODE 2019) . October 2019.
http://dx.doi.org/10.1145/3359986.3361212

The Best Paper AwardThe Best Paper Award at 17th ACM-IEEE International Conference on Formal Methods and Models for Codesign at 17th ACM-IEEE International Conference on Formal Methods and Models for Codesign
(MemoCODE 2019)
San Diego, USA
October 9 - 11, 2019

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_papers/851
For more information, please contact repository@pobox.upenn.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kosmopolis

https://core.ac.uk/display/266337793?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://repository.upenn.edu/
https://repository.upenn.edu/cis_papers
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F851&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=repository.upenn.edu%2Fcis_papers%2F851&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fcis_papers%2F851&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.1145/3359986.3361212
https://memocode.github.io/2019/
https://repository.upenn.edu/cis_papers/851
mailto:repository@pobox.upenn.edu

Detecting Security Leaks in Hybrid Systems with Information Flow Analysis Detecting Security Leaks in Hybrid Systems with Information Flow Analysis

Abstract Abstract
Information flow analysis is an effective way to check useful security properties, such as whether secret
information can leak to adversaries. Despite being widely investigated in the realm of programming
languages, information-flow- based security analysis has not been widely studied in the domain of cyber-
physical systems (CPS). CPS provide interesting challenges to traditional type-based techniques, as they
model mixed discrete-continuous behaviors and are usually expressed as a composition of state
machines. In this paper, we propose a lightweight static analysis methodology that enables information
security properties for CPS models.We introduce a set of security rules for hybrid automata that
characterizes the property of non-interference. Based on those rules, we propose an algorithm that
generates security constraints between each sub-component of hybrid automata, and then transforms
these constraints into a directed dependency graph to search for non-interference violations. The
proposed algorithm can be applied directly to parallel compositions of automata without resorting to
model-flattening techniques. Our static checker works on hybrid systems modeled in Simulink/Stateflow
format and decides whether or not the model satisfies non-interference given a user-provided security
annotation for each variable. Moreover, our approach can also infer the security labels of variables,
allowing a designer to verify the correctness of partial security annotations. We demonstrate the potential
benefits of the proposed methodology on two case studies.

Keywords Keywords
information flow security, static analysis, hybrid systems, Simulink/Stateflow

Disciplines Disciplines
Computer Engineering | Computer Sciences

Comments Comments
The Best Paper AwardThe Best Paper Award at 17th ACM-IEEE International Conference on Formal Methods and Models for at 17th ACM-IEEE International Conference on Formal Methods and Models for
CodesignCodesign (MemoCODE 2019)
San Diego, USA
October 9 - 11, 2019

Author(s) Author(s)
Luan Viet Nguyen, Gautam Mohan, James Weimer, Oleg Sokolsky, Insup Lee, and Rajeev Alur

This conference paper is available at ScholarlyCommons: https://repository.upenn.edu/cis_papers/851

https://memocode.github.io/2019/
https://repository.upenn.edu/cis_papers/851

Detecting Security Leaks in Hybrid Systems with
Information Flow Analysis

Luan Viet Nguyen, Gautam Mohan, James Weimer, Oleg Sokolsky, Insup Lee, and Rajeev Alur
Department of Computer and Information Science,

University of Pennsylvania, PA, USA

Abstract— Information flow analysis is an effective way to
check useful security properties, such as whether secret in-
formation can leak to adversaries. Despite being widely inves-
tigated in the realm of programming languages, information-
flow-based security analysis has not been widely studied in the
domain of cyber-physical systems (CPS). CPS provide interesting
challenges to traditional type-based techniques, as they model
mixed discrete-continuous behaviors and are usually expressed
as a composition of state machines. In this paper, we propose a
lightweight static analysis methodology that enables information
security properties for CPS models. We introduce a set of security
rules for hybrid automata that characterizes the property of
non-interference. Based on those rules, we propose an algorithm
that generates security constraints between each sub-component
of hybrid automata, and then transforms these constraints into
a directed dependency graph to search for non-interference
violations. The proposed algorithm can be applied directly to
parallel compositions of automata without resorting to model-
flattening techniques. Our static checker works on hybrid systems
modeled in Simulink/Stateflow format and decides whether or
not the model satisfies non-interference given a user-provided
security annotation for each variable. Moreover, our approach
can also infer the security labels of variables, allowing a designer
to verify the correctness of partial security annotations. We
demonstrate the potential benefits of the proposed methodology
on two case studies.

Index Terms—information flow security, static analysis, hybrid
systems, Simulink/Stateflow.

I. INTRODUCTION

Cyber-physical systems (CPS) are networked computing
devices communicating with each other and interacting with
the physical environment via sensors and actuators. CPS are
characterized by both continuous and discrete dynamics, so
they are often considered as hybrid systems. Hybrid systems
are increasingly utilized in a variety of domains, modeling
diverse systems such as smart power grids or autonomous ve-
hicles, and even mission-critical military systems. The rapidly
expanding field of CPS has precipitated a corresponding
growth in security concerns [19], [21], [6]. Among of them,
enforcing information flow security plays an important role
to guarantee the safety and and reliability of CPS. Infor-
mation flow properties such as non-interference [7], non-
inference [13], and non-deducibility [18] prevent public users
from inferring any high-level (secret) information by observing
the low-level behaviors of a system. Violating information flow
properties results in compromised safety, integrity, and privacy

as intruders can use the secret information to gain insights into
the system implementation.

Although information flow security has been widely in-
vestigated and enforced in the context of programming lan-
guages [17], it has not been studied extensively in the CPS
domain. As CPS have mixed discrete-continuous behaviors
and are often complex, modeling and analyzing information
flow security of CPS is notably challenging. In an industrial
setting, CPS designers usually validate a system to guarantee
that its safety requirements are satisfied, but often neglect or do
not carefully test information flow properties. Consequently,
the system might expose information leakage during runtime
and be subject to certain classes of attacks where an attacker
can physically observe the system behavior and learn how
to drive the system toward unsafe behaviors [10], [15], [11],
[9], [12], [16], [3]. There is a strong need for light-weight,
inexpensive analysis methods that can efficiently identify
information flow vulnerabilities to strengthen the security of
CPS models, especially as CPS continue to be applied in
safety-critical areas.

In this paper, we propose a methodology that can efficiently
detect violations of information flow properties for hybrid
systems that model CPS. We focus on the property of non-
interference, which requires that the states observed by low-
security users remain unchanged regardless of the actions
taken by high-security users. We introduce an algorithm that
can generate a set of security constraints over the structure of a
hybrid system to enforce non-interference. Given a hybrid sys-
tem modeled as a parallel composition of hybrid automata and
a declaration of security labels for each variable, if our static
security checker accepts the annotated model, it is guaranteed
to have the property of non-interference with respect to the
annotation. In addition, our algorithm can effectively infer the
security labels for variables that are not explicitly declared by
a user. Our algorithm works at a high level in three main steps:
1) a hybrid system is decomposed into individual automata,
2) security constraints are generated for each automaton and
represented as a directed dependency graph, 3) each individual
graph is combined into one graph, which is used to check for
violations and determine the security labels for all variables
in the model. The time complexity of our algorithm is linear
in the description size of the hybrid system. It is worth noting
that our algorithm can both check a composite model for non-
interference and infer security labels without using the process
of flattening, which increases description size exponentially.

We evaluate the effectiveness of our approach to identify

information flow leakage by applying it in two distinct do-
mains: gas transportation and smart power systems. The first
case study models the RussiaUkraine gas pipeline system [5]
in which attackers were able to observe the change of gas flow
rate in Ukraine and compromise system operation. The second
case study is the FREEDM smart grid system [8], where an
attacker can infer private information about the status of a
battery by observing the power flow in and out of a macrogrid
and use that information to inject extra power, potentially
causing the battery to explode. For both case studies, we
will present the original models in Simulink/Stateflow (SLSF)
format, and then demonstrate how our method can be used
to detect non-interference security violations, as well as infer
valid security labels from a partial user specification. Our main
contributions are:

• A formal treatment of non-interference for a hybrid
system modeled as a parallel composition of hybrid
automata.
• A light-weight static analysis technique to detect in-

formation flow violations with complexity linear in the
description size of the system.
• An analysis tool that detects information leaks in real-

world hybrid systems. Our tool works on SLSF models
that are widely used in both industry and academia.

Related work. Until now, only a few results have been
reported for verifying information flow properties of hybrid
systems. The most relevant work to this paper is presented in
[14], which introduces a set of typing rules that enforces non-
interference for a hybrid system expressed as a programming
language. In contrast, we generate security constraints over
the structure of hybrid automata. Moreover, we implement a
static security checker and use it to verify non-interference
property for two case studies while the work proposed in
[14] does not feature any real-world applications of their
work. Whalen et al. proposed a model checking approach
that formalizes non-interference property through a notion of
trace equivalence and then utilizes model checking tools to
analyze non-interference property of Simulink models [22].
Other works of [20] and [1] also apply model checking to
verify information flow properties for the discrete models of
the gas pipeline system and the FREEDM smart grid system,
respectively. Moreover, the recent work of [4] introduces a
hybrid dynamic logic for verifying information-flow properties
of a hybrid system modeled as a hybrid program. Such
logic is impressive; however, it is too expensive to apply the
corresponding analysis for larger-scale CPS.

II. HYBRID SYSTEMS MODELING

Hybrid automata [2] are a popular modeling formalism
used to model hybrid systems which include both continuous
dynamics and discrete state transitions. A hybrid automaton
is essentially a finite state machine extended with a set of
real-valued variables evolving continuously over time.

Definition 1 (Hybrid automata). A hybrid automaton is a tuple
A ∆

= 〈V , Mode, Trans , Init〉 which includes the following
components:
• V: the finite set of variables, partitioned as X ∪U , where X

is the finite set of n state variables, and U is the finite set
of m input variables. We denote x ∈ Rn as the valuations
(i.e., a function mapping each variable to a point in R)
of state variables. The valuations of m input variables are
assigned by an input signal u.
• Mode: the finite set of discrete modes. For each mode m ∈

Mode , m.inv is a Boolean expression over V which denotes
the invariant of mode m, and m.flow is a set of differential
equations (e.g., in which the left-hand side is ẋ and the
right-hand side is an expression over V) that describes the
rate of change of state variables. A state s is a pair (m,x),
where m ∈ Mode and x ∈ Rn. We denote Q ⊆ Mode×Rn

as the state-space of A.
• Trans: the finite set of transitions between modes. Each

transition is a tuple τ ∆
= 〈src, dst , grd , rst〉, where src is a

source mode and dst is a target mode that may be taken
when a guard condition grd , which is a Boolean expression
over X ∪ U , is satisfied; and rst is an assignment of X
after the transition.
• Init ⊆ Q: the set of initial states.

Here, we assume that the output variables of A are the same
as its state variables. We use the dot (.) notation to refer to
different components of tuples of the transitions and modes,
e.g., τ.grd refers to the guard of a transition τ , and m.inv
refers to the invariant of a mode m. Also, an expression e
on the right hand side of a flow equation (ẋ = e) and a
reset assignment (x = e) can be a variable, a constant, or
an arithmetic combination of constants and variables. The
valuation of an expression e at time t, denoted JeK(x(t),u(t)),
is obtained by substituting each input and state variable in e
by their corresponding value from u(t) and x(t).

The semantics of a hybrid automaton A can be defined
in terms of executions, which are alternating sequences of
continuous trajectories and discrete transitions starting from
an initial state s0 ∈ Init following an input signal u over a
time interval [0, δ).

Definition 2 (Execution). Given an initial state s0 ∈ Init ,
an input signal u, an execution is a sequence π(s0,u) =
γ0, τ1, γ1, τ2, . . . , τn−2, γn−1 corresponding to the sequence
of time points ti, i ∈ {0, . . . , n}, t0 = 0, tn = δ, and ti < ti+1

such that:
• γi ∈ Traj is a continuous trajectory which is a mapping

function γi : [ti, ti+1) → Rn such that for every t ∈
[ti, ti+1):
� a mode m ∈ Mode corresponding to γi does not

change,
� ẋ(t) = Jm.flowK(x(t),u(t)), i.e., the continuous evo-

lution is consistent with the flow dynamics of the
corresponding mode, and

� Jm.invK(x(t),u(t)) is true, i.e., all states along the
trajectory must satisfy the invariant at every time point.

• τi ∈ Trans is a transition which models an instantaneous
update from the current state s = (m,x) to the next state
q = (mq,xq) at ti such that:
� τ.src = m ∧ τ.dst = mq ,
� Jτ.grdK(x(ti),u(ti)) is true, and
� xq(ti) = Jτ.rstK(x(ti),u(ti)).

An execution always starts in an initial state, and can
be infinite or finite. If an execution π is finite, it ends in
a trajectory. An execution fragment of π is any alternating
sequence of continuous trajectories and discrete transitions
appearing in π. If an execution fragment of π is finite and
includes an initial state, it is also considered as a prefix of
π. We write π = πp ◦ πf to denote that an execution π can
be concatenated by its prefix πp and execution fragment πf ,
where the last state of πp is the first state of πf . We denote
Exec(A) as the set of all executions of a hybrid automaton A.

Definition 3 (State signal). Given an input signal u and an
initial state s0 = (m0,x0), we define Σ(x0,u) as a state
signal which captures the evolution of the state variables
starting from x0 and following along the execution π(s0,u).

We assume that given an input signal and an initial state,
there always exists a corresponding state signal. During the
execution of a hybrid automaton A, the updates of its modes
are internal and only the updates of its state variables are
observable. In what follows, we use the notion x to represent
for the state of s = (m,x). In this paper, we focus on
a deterministic hybrid automaton whose behavior is unique
according to an input signal u and an initial state x0.

Definition 4 (Deterministic hybrid automaton). A hybrid au-
tomaton A is deterministic if the following conditions hold:
• For every transition τ ∈ Trans , τ.grd ∩ (τ.src).inv = ∅,

i.e., the guard condition of every outgoing transition of a
mode is not intersected with its invariant.
• For every pair of transitions τ1, τ2 ∈ Trans , if τ1.src =
τ2.src, then τ1.grd ∩ τ2.grd = ∅.
• For every mode m ∈ Mode , m.flow is a Lipschitz

continuous function over the state and input variables
so that the solution of m.flow is unique.

Intuitively, a hybrid automaton is deterministic if at most
one of its outgoing transitions can be taken when the mode
invariant is violated, and the solutions of the flows equations
are unique. Hence, any execution and state signal of a deter-
ministic hybrid automata corresponding to an input signal u
and an initial state x0 is uniquely defined.

Next, we define a hybrid system as a parallel composition
of multiple hybrid automata. Given two hybrid automata A1

∆
=

〈V1, Mode1, Trans1, Init1〉, and A2
∆
= 〈V2, Mode2, Trans2,

Init2〉, if X1 ∩ X2 = ∅, then A1 and A2 are compatible and
can be composed.

Definition 5 (Parallel composition). Given two compatible
hybrid automata A1 and A2, the parallel composition of A1

and A2 is a hybrid automaton A, written as A ∆
= A1‖A2,

whose components are specified as follow:

• X = X1 ∪ X2,
• U = (U1 ∪ U2) \ X ,
• Mode = Mode1 × Mode2, and the invariant and flow

dynamic of each model m = m1 × m2 ∈ Mode is the
conjunction and disjunction of the corresponding invari-
ant and flow dynamic of m1 ∈ Mode1 and m2 ∈ Mode2,
respectively,

• for each transition τ1 ∈ Trans1, and τ2 ∈ Trans2, there
exists a corresponding transition τ ∈ Trans such that:
� τ.src = τ1.src × τ2.src, τ.dst = τ1.dst × τ2.src,
τ.grd = τ1.grd , and τ.rst = τ1.rst, or

� τ.src = τ1.src × τ2.src, τ.dst = τ1.src × τ2.dst ,
τ.grd = τ2.grd , and τ.rst = τ2.rst, or

� τ.src = τ1.src × τ2.src, τ.dst = τ1.dst × τ2.dst ,
τ.grd = τ1.grd ∧ τ2.grd , and τ.rst = τ1.rst ∪ τ2.rst,

• Init = Init1 × Init2.

The state space of the composed automaton A is also a
product of the state space of each component A1 and A2,
i.e., Q = Q1 ×Q2. Beside that, all executions of A are also
executions of both A1 and A2, i.e., Exec(A) ↓Ai

⊆ Exec(Ai)
for i ∈ {1, 2}, where Exec(A) ↓Ai is a projection of Exec(A)
on the component Ai. The parallel composition of hybrid
automata is commutative and associative. Multiple compo-
nents can be composed transitively in parallel by recursively
composing two components with a third one, and so on. It is
worth noting that the parallel composition of two deterministic
hybrid automata is also deterministic.

Definition 6 (Hybrid system). A hybrid system H is a
parallel composition of n ≥ 2 hybrid automata, written as
H ∆

= A1‖A2‖ . . . ‖An.

III. NON-INTERFERENCE

In this section, we will define the non-interference property
of a hybrid system based on the semantic execution of a hybrid
automaton. To do so, we first define a security annotation and
low equivalence.

Definition 7 (Security annotation). A security annotation for
a hybrid system H is a function that maps each variable of
H to a security level of low or high.

A variable is annotated low if its value is observable,
and high if it is confidential. Without loss of generality, we
only consider two security levels of low and high, where
low ≤ high meaning that a variable annotated as low is
less confidential than the one annotated as high. Input or state
signals that are observable belong to a low domain, and private
signals belong to a high domain.

Definition 8 (Low equivalence). Two states of a hybrid system
H are said to be low equivalent if their projections on the low
domain have the same value.

We use the notion of =low to denote a low equivalence
relation. For instance, the notion x0 =low x′0 means that initial
states x0 and x′0 are equivalent on the low domain. The above

ẋ1 = u
x1 ≤ 5

ẋ1 = 2u
x1 ≤ 10

ẋ2 = 1
x1 + x2 ≤ 20

x1 > 5
x1 = 0

x1 > 10
x1 = 0

x1 + x2 > 20
x2 = 0

A1 A2

Fig. 1: Examples of two hybrid automata.

definition can directly be applied for state and input signals.
Two state (or input) signals are low equivalent if their low
domain projections are indistinguishable over time.

Definition 9 (Non-interference). A hybrid system H is non-
interference secure iff for every pair of initial state values
x0,x

′
0 ∈ Init , and a pair of input signals u, u′ ∈ U for x0,

x′0 respectively, the following condition holds:

(x0,u) =low (x′0,u
′) =⇒ Σ(x0,u) =low Σ(x′0,u

′). (1)

Intuitively, the Condition 1 can be interpreted as: if two
initial states share the same values on a low domain, then the
behaviors of the system executed w.r.t the same low inputs are
indistinguishable by public observers.

Non-interference prevents two important kinds of informa-
tion leaks: explicit and implicit information flows. An explicit
flow occurs when the value of a low variable is directly
derived from the value of a high variable. For instance, an
assignment x2 := x1 causes an explicit flow from a high
variable x1 to a low variable x2. On the other hand, an implicit
flow occurs when a low variable is updated indirectly due
to information read from a high variable. As an example, a
transition which has the following guard condition and reset
action: x1 > x2;x2 := 1 implicitly discloses the value of a
high variable x1 to a low variable x2.

Problem 1 (Non-interference checking for hybrid systems).
Given a hybrid system H ∆

= A1‖A2‖ . . . ‖An with a set
of security annotations S for all variables of H such that
S = Slow ∪ Shigh, where Slow and Shigh are the sets
of low and high security annotations for input and state
variables, respectively, we want to check whether H satisfies
non-interference property.

Example 1. We consider two hybrid automata A1 and A2

shown in Figure 1, where the security annotations of their
state and input variables decide whether they satisfy non-
interference. For A1, the valuation of a state variable x1
explicitly depends on the input u. If u is high and x1 is low, the
Condition 1 is violated as a state signal of x1 is influenced
by the input signal u. In the case that u is low and x1 is
either low or high, A1 is non-interference secure. Hence, to
ensure that A1 is non-interference secure, the security level of
u cannot be higher than x1. For A2, since the update of x2
implicitly depends on x1, A2 only satisfies Condition 1 if the
security label of x1 is not higher than that of x2. The hybrid
system H ∆

= A1‖A2 preserves the same security constraints

over the state variables x1, x2, and the input variable u such
that the security level of u is not higher than that of x1, and
the security level of x1 is not higher than that of x2. Thus,
if the security annotations provided by a user satisfy these
constraints, H is non-interference secure.

IV. ANALYSIS

To detect information flow violations, we break up a com-
posed hybrid system into individual hybrid automata, recur-
sively break up each hybrid automaton into model compo-
nents, and constrain each component’s security labels to ensure
no information leaks can occur. Then, we check the validity of
a user’s label annotations against a graph representation of the
component label dependencies and see if any violation occurs.
In the case of a violation, the flow producing the information
leak is returned. At a high level, our algorithm is laid out as
follows:

Algorithm 1 Non-Interference Violation Detection
Input: A hybrid system H, a set of security annotations S for
variables of H

1: procedure NON-INTERFERENCE CHECK
2: A ← DECOMPOSE(H) . decompose a hybrid system

into constituent automata
3: G ← foreach Ai in A: BUILDDEPENDENCY-

GRAPHS(Ai)
4: G′ ← MERGEDEPENDENCYGRAPHS(G)
5: return CHECKFORVIOLATIONS(S, G′) . either OK

or a Violation
6: end procedure

A. Constraint Generation

For a hybrid system to have the property of non-
interference, each individual automaton composed in parallel
must have the property in isolation. The first step of our
analysis is to verify a single automaton in isolation. This is
accomplished by breaking an automaton down into recursive
components, assigning labels to each component, and enforc-
ing constraints between labels to eliminate invalid annotations.

Definition 10 (Security labeling). A security labeling is a
function: sl : H → {low, high} mapping each component
of H to a security level of low or high.

We note that the security labeling for the hybrid system H
subsumes the security annotations for its variables provided
by a user. Security labeling indicates the security domain in
which a component can be executed corresponding to given
security levels of variables.

A component with a certain label is valid only if it executes
in the label’s security context. This allows us to reject labelings
based on the semantics of the hybrid system being executed.
Components impose constraints on their subcomponents, re-
stricting the set of valid executions. For instance, specifying a
transition as high prevents low variables from being written in

its reset equations, which creates further labeling restrictions
on the variables and expressions in each of the reset flows.

The two different constraints that can be generated between
components a, b are sl(a) = sl(b) or sl(a) ≤ sl(b). We
decompose a hybrid automaton into different components:
variables, expressions, flows, invariants, modes, transitions,
guards, resets, and models, and then generate constraints for
each component that determine valid security labels.

B. Component Rules

We assume that the set of variables of a hybrid automaton
A can be partitioned as V = Vhigh ∪ Vlow corresponding to
a given set of security annotations, where Vhigh and Vlow are
the sets of high and low input and state variables, respectively.
We introduce the syntax-directed security rules for a hybrid au-
tomaton that enforces non-interference security policy. These
security rules describe what labels can be assigned to different
components of a hybrid automaton to prevent information
flowing from high to low variables. Given h ∈ Vhigh and
` ∈ Vlow as the instances of low and high level variables, our
security rules are described as follows.

Expression rule: given an expression e and V ars(e) which
denotes the set of variables in an expression e, ∀v ∈ V ars(e),
sl(v) ≤ sl(e). Thus, the security level of an expression
(including a Boolean expression such as an invariant and a
guard condition) is at least as restrictive as that of every
variable in it.

Assignment rule: for an assignment a : x = e, we have that
sl(a) ≤ sl(e) ≤ sl(x). The assignment rule prohibits explicit
flows of information from high to low domains. An assignment
of a low variable is secure only if the expression on the right-
hand side is low, e.g., an assignment ` = `+ 1 is allowed, but
an assignment ` = h is not.

Flow equations rule: A flow equation is a sequence of as-
signments a = a1; a2; . . . ; an, where ai : ẋi = ei such that its
security label is restricted as ∀i ∈ {1, . . . , n}, sl(a) ≤ sl(ai).
In other words, the security levels of the flow equations of
a mode is equal to the lowest security level of an individual
assignment.

Mode rule: for every mode m ∈ Mode, sl(m) ≤ sl(m.inv) ≤
sl(m.flow). The security level of a mode depends on its
invariant and flow dynamics. If a mode has a high invariant,
its flow equations must be high. In this case, a mode can be
either high or low.

Reset rule: the resets (updates) of variables of a transition
is also a sequence of assignments a = a1; a2; . . . ; an where
ai : xi = ei such that sl(a) ≤ sl(ai).

Transition rule: To specify the security level for a transition
τ ∈ Trans , we first investigate whether τ.src =low τ.dst .
Here, we abuse the notion of =low to specify the observational
equivalence of the source and destination mode of a transition
when projecting them on a low domain. For instance, if
the source and destination modes’ flows both contain low

expressions as ˙̀ := 1, they are equivalent to a public observer.
High modes are implicitly observationally equivalent in a low
domain. For every tradition τ ∈ Trans ,
• Case 1: if τ.src =low τ.dst is true, then sl(τ) ≤
sl(τ.grd) ≤ sl(τ.rst),

• Case 2: if τ.src =low τ.dst is false, then sl(τ) ≤
sl(τ.grd) ≤ sl(τ.rst)∧sl(τ.grd) ≤ sl(τ.src) ≤ sl(τ.dst)

We note that instead of arbitrarily forcing source and
destination modes to be high if the conditional guard is high,
observational equivalence makes our analysis less conserva-
tive. Intuitively, if a transition with a high guard does not
either cause an instantaneous update or disrupt the continuous
update of low variables, then information will not leak.

Consecutive transition rule: for two transitions τ1, τ2 ∈
Trans , if τ1.dst = τ2.src ∧ τ1.src 6= τ2.dst , then sl(τ1) ≤
sl(τ2). Intuitively, if the preceding transition τ1 is low, the
following transition τ2 can either be low or high. However, if
τ1 is high, τ2 must be high as well. As a result, if any transition
τ in the chain of transitions is high, every transition following
τ in the chain must be high. Such a restriction prohibits any
update of low variables based on a preceding high condition,
ensuring that there are no implicit flows along the path.

C. Translating Constraints into a Dependency Graph
To check whether or not a hybrid system obeys non-

interference, we need to examine the data flows between
various components of the model. We will represent this data
flow information in a dependency graph, and it will provide
some nice analysis properties that we can use to detect security
leaks.

Definition 11 (Dependency Graph). A directed dependency
graph G = (V,E) consists of nodes v ∈ V where each vi
is assigned a security label li, and edges e ∈ E where e =
(vi, vj) implies that li ≤ lj . Additionally, G also contains one
unique node per security level specified, these labels represent
the security levels themselves.

Note that there are implicit edges from the lowest security
level to all other nodes in a dependency graph, as well as edges
from every node to the highest security type. A dependency
graph has two useful properties:

Property 1. Given a dependency graph G, if there is a path
from li to lj , then li ≤ lj .

This property directly follows from the definition of a de-
pendency graph and transitivity on the security label relation.

Property 2. Any nodes in the same strongly connected com-
ponent (SCC) of G must have the same security type.

Since any two nodes vi, vj in the same SCC have paths to
each other, we know that lj ≤ li ∧ li ≤ lj . The only way
this can be true is if li = lj . The dependency graph captures
constraints between different security labels and provides an
efficient check for violations. For a hybrid automaton A, the
dependency graph GA expresses constraints between various
components of the model.

Dependency graph construction. Given a set of constraints
generated from A, we can create its dependency graph GA
by first adding every unique component as a node, and then
rewriting each constraint as edges in GA. A constraint vj < vi
is expressed by adding an edge e = (vj , vi) to GA, and
vi = vj is expressed by adding edges e1 = (vi, vj) and
e2 = (vj , vi) to GA. Representing a set of constraints as a
dependency graph will allow us to efficiently determine if there
are any violations.

Theorem 1. Given a hybrid automatonA with a set of security
annotations S for all variables of A, if the security constraints
of all components of A are satisfied, then there is no path from
high to low in the corresponding dependency graph of A, i.e.,
A is non-interference secure.

Proof. We need to prove that if for any pairs of initial states
and input signals of A such that (x0,u) =low (x′0,u

′), then
we have Σ(x0,u) =low Σ(x′0,u

′). Since an execution of a
hybrid automaton is an altering sequence of 1) a continuous
evolution of state variables associated with a mode, and 2)
a discrete evolution of state variables corresponding to a
transition, we will first prove that Condition 1 holds over each
mode, transition, two consecutive transitions, then inductively
show that it holds for the entire model.

Case 1 (Mode): given a transition m ∈ Mode, we have that
sl(m) ≤ sl(m.inv) ≤ sl(m.flow). If an invariant is high, then
the flow equations of a mode contain only high variables on
the left-hand side. Thus it is apparent that the non-interference
property holds as there are no updates of low variables.

Otherwise, we consider a case where an invariant is low.
Assume there exists at least one differential equation of the
form ˙̀ = e. Based on the security rules of flow dynamic
sl(e) ≤ sl(˙̀), meaning that an expression e does not contain
any high variable. In addition, the solution of a different
equation ˙̀ = e is unique corresponding to the same initial
states and input signals. Therefore, for every t ∈ [0, δ], we
have x(t) =low x′(t). Moreover, x(t) and x′(t) both satisfy
an invariant with respect to the trajectory semantics. Hence,
we have that Σ(x0,u) =low Σ(x′0,u

′) is true.
Case 2 (Transitions): According to the security rule of

transition, if the guard condition is low, then the reset com-
ponent, source and destination modes can be either high or
low. We assume that there is at least one low variable `
has been updated by a transition. Since an instantaneous
update ` = e is low which means that an expression e is
low, i.e., e does not contains any high variables. Because
JeK(x(t),u(t)) =low JeK(x′(t),u′(t)), the value of a low
variable updated by a transition at time t ∈ T is only dependent
on its previous value. Moreover, applying the proof of the
mode case to the source and destination modes of a transition,
the Condition 1 is trivially true.

On the other hand, if the guard condition is high, then the
reset component must be high. Thus, there is no instantaneous
update of low variables. In that case, the source and destination
modes are observational equivalence on a low domain which
means there is also no continuous update of low variables.

Thus, the Condition 1 certainly holds.
Case 3 (Consecutive transitions): Assume that τ1 and τ2

are two consecutive transitions, so sl(τ1) ≤ sl(τ2). Let
π(x0,u) = π1◦π2, where π1 is a prefix π corresponding to τ1,
and π2 is an execution fragment of π corresponding to τ2, we
need to show π(x′0,u

′) = π′1 ◦ π′2 are equivalent to π(x0,u)
on a low domain. If τ1 is high, so does τ2. Thus, all states
along the executions with the same initial state are identical
on a low domain as there are no updates of low variables, then
π(x0,u) =low π(x′0,u

′) is always true. In the case that τ1 is
low, τ2 can either be low or high. From the proof of the case
of individual transition, τ1 is low that implies π1 =low π′1.
As the result, π2 and π′2 share the same first state on a low
domain, so π2 =low π′2 regardless whether τ2 is either high
or low. Thus, we have π(x0,u) =low π(x′0,u

′), implying that
Σ(x0,u) =low Σ(x′0,u

′) always holds.
Now we apply the induction hypothesis on an arbitrary

execution π = πp ◦ πf over the time interval [0, δ), where
πp is a prefix of π over the time interval [0, tp), and πf
is an execution fragment of π over the time interval [tp, δ).
Assume that πp(x0,u) =low πp(x′0,u

′), we need to prove that
πf (u,x0f) =low πf (u′,x′0f), where x0f , and x′0f are the first
states of πf and π′f . Since x(tp) = x′(tp) and the last state
of πp is the first state of πf , it is apparent that x0f =low x′0f ,
respectively. Without loss of generality, we assume that πf
is a continuous trajectory corresponding to a mode. Thus,
for every t ∈ [tp, δ), (u(t),x0f) =low (u′(t),x′0f), we have
πf (u,x0f) =low π′f (u′,x′0f) by applying the proof for Case 1
(mode). As a result, Σ(x0,u) =low Σ(x′0,u

′) is true over the
time interval [0, δ). Considering πf as an execution fragment
corresponding to a transition and two consecutive transitions,
the similar proofs can also be derived according to the proofs
of Case 2 and Case 3. Thus, given any pairs of initial states
and input signals of H such that (x0,u) =low (x′0,u

′), then
we have Σ(x0,u) =low Σ(x′0,u

′).

D. Non-interference Checking

For an individual automaton, a path from high to low in its
corresponding dependency graph represents a non-interference
violation, and the components along that path together allow
an information leak. If there is no such violation, we can use
Property 2 to determine the inferred security labels of various
components by computing the SSC that contains each node
with high and low labels. Any components that are not in a
component containing a label type cannot be inferred, we call
these components “remainders”. The presence of remainders
means that we cannot definitively tell if the model satisfies
non-interference or not based on the partial annotation; the
designer must further specify additional labels to complete the
analysis.

The case for a hybrid system modeled as a parallel com-
position of hybrid automata is more complex. The only way
composed automata can interact is through shared variables. If
A1 and A2 are independent hybrid automata (i.e., do not share
any variables), then it is apparent that no information can flow
between either one; whether or not there is an information

leak that depends on the results of checking each model
individually. If the two models share any variables however,
this is not the case.

To address the case of two parallel automata sharing vari-
ables, we rename the conflicting variables so they are unique
and analyze the automata separately, adding a constraint that
the renamed variables are equivalent. For example, given two
automata sharing x would result in one of them having x
renamed to y and a constraint x = y added. If there are vio-
lations in any of the individual models, those will be reported
first. If all of them pass, the constraints equating renamed
variables will ensure that no variable has been assigned high
that should be low in a different model.

Theorem 2. If two hybrid automata A1 and A2 are non-
interference secure according to the set of security annotations
S1 and S2, respectively, and ∀x ∈ Vc,S1(x) = S2(x), where
Vc is a set of shared variables, then the hybrid system H =
A1‖A2 is also non-interference secure.

Proof. Since A1 and A2 are non-interference secure, accord-
ing to the Condition 1 we have that:

(x01
,u1) =low (x′01

,u′1) =⇒ Σ(x01
,u1) =low Σ(x′01

,u′1),

(x02
,u2) =low (x′02

,u′2) =⇒ Σ(x02
,u2) =low Σ(x′02

,u′2),

where x0i ,x
′
0i is a pair of initial states, and ui, u′i is a pair of

input signals for x0i , x
′
0i of Ai, i ∈ {1, 2}. Assume that the

shared variables of A1 and A2 have the same security levels,
we need to prove that:

(x0,u) =low (x′0,u
′) =⇒ Σ(x0,u) =low Σ(x′0,u

′),

where x0 = x01
× x02

, x′0 = x′01
× x′02

, u = (u1 ∪ u2) \
(Σ(x01

,u1)∪Σ(x′02
,u2)), and u′ = (u′1∪u′2)\(Σ(x′01

,u′1)∪
Σ(x′02

,u′2)).
Proof by contradiction. We assume that there is a case

(x0,u) =low (x′0,u
′), but Σ(x0,u) 6=low Σ(x′0,u

′). We
now project the Condition 1 of a hybrid system H on each
hybrid automaton A1 and A2. Since the shared variables
of A1 and A2 have the same security levels, the projec-
tion of (x0,u) =low (x′0,u

′) on each automaton A1 and
A2 result in (x01

,u1) =low (x′01
,u′1) and (x02

,u2) =low

(x′02
,u′2), regardless the shared variables are both low or both

high. On the other hand, the projections of Σ(x0,u) 6=low

Σ(x′0,u
′) on each automaton A1 and A2 result in at least

either Σ(x01 ,u1) 6=low Σ(x′01
,u′1) or Σ(x02 ,u2) 6=low

Σ(x′02
,u′2), or both are true. Since both A1 and A2 are

deterministic and have unique state signals corresponding
to given initial states and input signals. As a result, either
(x01 ,u1) =low (x′01

,u′1) =⇒ Σ(x01 ,u1) 6=low Σ(x′01
,u′1),

or (x02 ,u2) =low (x′02
,u′2) =⇒ Σ(x02 ,u2) 6=low

Σ(x′02
,u′2) are true. Hence, at least one of the hybrid au-

tomaton A1 and A2 is not non-interference secure, which
contradicts to the original assumption that they both satisfy
non-interference property. Therefore, if A1 and A2 are non-
interference and their shared variables have the same security
levels, their parallel composition H is also non-interference
secure.

x1 x2 u A1 A2 A1||A2

low low low X X X

low low high X X X

low high low X X X

low high high X X X

high low low X X X

high low high X X X

high high low X X X

high high high X X X

TABLE I: Non-interference satisfaction of a hybrid system H
in Example 1 corresponding to different security annotations
for variables, where X: satisfied, X: not satisfied

x2
(var)

x1+x2
(guard)

x2=0
(assn)

0
(expr)

x1
(var)

high
(label)

low
(label)

Fig. 2: A part of the dependency graph of H in Example
1 showing the non-interference violation when x1 is labeled
high, x2 is labeled low.

Intuitively, if two automata have conflicting restrictions on
shared variables to be non-interference secure, their composi-
tion cannot be secure, since the security labels on each variable
would clash. This can be seen as refining the conjunction of
label constraints on shared variables, and keeping only the
combinations where the constraints on the shared variables
agree. Table I shows how certain labeling assignments can be
valid for each individual automata, but are still rejected in the
composed system. For instance, choosing x2 as low forces
x1 to be low, and choosing u as high forces x1 to be high.
This would result in a conflict for the composed system, even
though each individual automaton is non-interference secure
on its own.

Figure 2 shows a part of the dependency graph of the hybrid
system H in Example 1 indicating the non-interference vio-
lation corresponding to the annotations {x1 : high, x2 : low}
(u can be labeled either high or low). We can see that the
violation contains only the relevant components that contribute
towards the information leak. In the example, the supplied
label annotation is indicated by the dashed blue line. This
creates a leak, shown as the highlighted red path from high to
low. The leak results from the transition component, since the
high value can be inferred through the switching condition of
the guard expression.

Remark 1 (Soundness). The proposed algorithm is sound as
if a hybrid system satisfies the Condition 1, then it is non-
interference secure. However, there exists a case that our
algorithm may reject non-interference hybrid systems (false
positives). For instance, the algorithm will report an assign-
ment ` = h ∗ 0 as a violation. However, such an assignment
does not violate non-interference property as ` is always equal
to 0. As another example, a transition which has the following
guard condition and reset action: h > h+2; ` = h is also not
allowed although it will never be executed. In this paper, we
assume that a hybrid automaton does not contain any spurious
expression like h ∗ 0, h− h, or h > h.

E. Time Complexity

The run time of our algorithm is linear in the size of the
hybrid system. Each component of the model is assigned a
unique label, and all constraints are expressed in terms of those
labels. As we have one node per component in the dependency
graph, then the total number of nodes is proportional to the
model input. Since the algorithm for detecting violations is a
graph search, its runtime is linear in the number of nodes and
vertices, and therefore linear in terms of the model input.

V. IMPLEMENTATION

We provide an implementation of the information flow
analysis written in Haskell that works on SLSF models.
Hybrid systems are expressed in SLSF using hierarchies,
where a model may contain any number of child models
executed in parallel. Our tool converts the hierarhical SLSF
model representation into an equivalent parallel composition
of individual automata that fits our algorithm.

Given a text file containing security annotations for vari-
ables in the SLSF model and a .SLX or .MDL file, our tool
will output whether or not the model satisfies non-interference
with respect to these annotations. In the case of a violation,
a detailed error message is printed containing the offending
components as a backtrace. The user can use the information
in this trace to pinpoint the exact components of the original
SLSF model that cause the information leak. They can also
provide a partial security annotation. If the tool is not able to
fully infer the security labels of all variables, the variables
whose security labels cannot be deducted are returned as
an error message, and the user is prompted to add more
annotations before re-running the analysis.

Our analysis tool is open-source and available on Github1

for researchers and model designers to use. Currently it
supports a restricted set of SLSF functionality that is sufficient
to implement hybrid automata matching our definitions in
Section II. Future improvements involve parallelizing the static
analysis, as well as providing support for other modeling tools.

VI. CASE STUDIES

Currently it is difficult to evaluate information flow analysis
on CPS because there are few existing models that have
been analyzed for security leaks. We chose the following

1https://github.com/gautammohan/hybrid-sectypes

Communication
Network

FCSA

FCSB

FCSC𝒇𝒂

𝒇𝒃

𝒇𝒄 Russia

Ukraine

EU

Low-security domain

High-security domain

Fig. 3: The Russia-Ukraine natural gas grid with subnetworks:
C (Russia), B (Ukraine), and A (European Union).

case studies because they have existing annotations that have
been rigorously analyzed and shown to be valid in previous
literature. Though there are many existing SLSF models to
choose from, they lack an in-depth security analysis, making
them unsuitable for evaluating our tool.

We validate that our inexpensive analysis technique detects
the same security violations as existing tools. Additionally,
the hybrid systems we analyze are written in a standard state
machine-based modeling paradigm as opposed to the more
obscure language-based representation favored by existing
approaches. Furthermore, our tool is able to output the model
components that cause a security leak, making it easier for
designers to repair the model.

A. Gas Pipeline System

The first case study is motivated by the RussiaUkraine gas
disputes according to natural gas export and transit prices in
2005. Russia accused Ukraine of utilizing leaked information
during the gas transit to illegally consume gas for domestic
purposes without payment [5], [1]. A similar natural gas
pipeline system to the one in the actual RussiaUkraine gas
dispute is illustrated in Figure 3. The system begins in Russia
and divides into two branches in Ukraine, where one transfers
gas to the European Union (EU) while the other supplies
gas for Ukraine. The transit gas flows are regulated by Flow
Controller Systems (FCS). Based on the change of flow
demand at Ukraine and the EU, their corresponding FCSA and
FCSB will send a message to FCSC to request the increasing
or decreasing of flow supplied from C. All three FCSs are
located in Ukraine, but Ukraine has physical access only to
FCSB . For simplicity, we assume that 1) the gas flow change
at C is a result of either the change of the gas demand at A or
B 2) if the gas demand at B (or A) increases, the additional
gas can be transferred from A (or B) or C, depending on the
gas demand at A (or B), and 3) only the flow change at B is
observable.

SLSF model. We model a simplified version of the Russi-
aUkraine gas pipeline system as an SLSF diagram shown

https://github.com/gautammohan/hybrid-sectypes

A_CONTROLLER

ModeA4
du:
za_dot	=	1;

ModeA3
du:
za_dot	=	1;

ModeA2
du:
za_dot	=	1;

ModeA1
du:

[za	>=	Tca]
{fa	=	fa+tmpA;	za	=	0;}

[ea	>	0&&eb+ea	<=	0]{tmpA	=	ea;}

1

{za	=	0;tmpA	=	0;} [za	>=	Tba]
{fa	=	fa+tmpA;	za	=	0;}

[ea	<=	0]
{tmpA	=	ea;}

3

[za	>=	1]
{fa	=	fa+	tmpA;za	=	0;}

[ea	>	0&&eb+ea	>	0]{tmpA	=	ea;}
2

33

PLANT

du:
Va_dot	=	fa;	Va_out	=	Va;	fa_dot	=	0;	fa_out	=	fa;

Vb_dot	=	fb;	Vb_out	=	Vb;	fb_dot	=	0;	fb_out	=	fb;

Vc_dot	=	fc;	Vc_out	=	Vc;	fc_dot	=	0;	fc_out	=	fc;

11 C_CONTROLLER

C2
du:
zc_dot	=	1;

C1

[ea	+eb	>0	||	ea	+	eb	<0]
{tmpC	=	ea+eb;}

[zc	>=1]
{fc	=	fc+tmpC;	zc	=	0;}

{zc	=	0;	tmpC	=	0;}

44

B_CONTROLLER

ModeB3
du:
zb_dot	=	1;

ModeB2
du:
zb_dot	=	1;

ModeB1

ModeB4
du:
zb_dot	=	1;

[zb	>=	Tcb]
{fb	=	fb+tmpB;	zb	=	0;}

[zb	>=	1]
{fb	=	fb+	tmpB;zb	=	0;}

{fb	=	5;	fc	=	10;	fa	=	5;	zb	=	0;	tmpB	=	0;}

[eb	>	0	&&	eb+ea	>	0]{tmpB	=	eb;}
1

[eb	>	0	&&	eb+ea	<=	0]{tmpB	=	eb;}

2

[eb	<=	0]
{tmpB	=	eb;}

3

[zb	>=	Tba]
{fb	=	fb+tmpB;	zb	=	0;} 22

Fig. 4: The SLSF model of the simplified example of the Russia-Ukraine natural gas pipeline system.

in Figure 4. The model has four parallel components, each
of them represents the physical dynamics of the system and
the flow controller at location A, B and C, respectively. Each
controller is modeled as a time automaton such that the time
instance at which the gas flows in and out at each location
is relied on the change of the gas demand at A and B. In
the model, Vb and fb are state variables that denote the gas
volume and flow rate at B, respectively; an input signal eb
represents the change of gas demand at B; zb is a state variable
representing the local clock at B; tempB is a state variable
captured the value of eb at a time instance; Tcb and Tab are
the required time for gas being transferred from C and A to
B, respectively. Other notations w.r.t A or C such as Va, Vc
can be interpreted in the same fashion as that of B. Since
the flow at B is observable, Vb, fb, zb, tempB, and eB are
considered as low variables. Other variables are considered as
high variables. The safety requirement of the system is that
fa + fb ≤ fc always holds.

Non-interference detection. Our checker rejects the model as
there is an implicit flow from high to low. The update of low

state variable such as Vb, fb, zb, and tempB depend on the
high input signal ea. Intuitively, if the increased gas demand
of B is less than or equal to the decreased gas demand of A,
gas will be transferred from A to B. As the transfer time from
A to B is less than that of from C to A, i.e., Tab < Tcb, the
flow rate into B may be increased at different time instances.
Thus, a low-level observer at B can infer the change of gas
demand of A based on observing the change of gas demand
of B. Based on this knowledge, an observer at B can perform
a man-in-the-middle attack to secretly transfer gas from A to
B without either A or C being aware of the attack. On the
other hand, in the case that the security levels of Vb, fb, zb,
tempB, and eB are not given, our tool infers that all of them
should be high.

B. FREEDM Smart Grid System

In the second case study, we investigate the potential in-
formation leakage of the NSF FREEDM smart grid system
introduced in [8], and further studied in [1], [4]. Particularly,
we focus on the hybrid model of the FREEDM system pro-

BATTERY_CONTROLLER

Bat2

To_grid2To_bat2

[(d2	-	(r2+p2)	<=	0	&&	B2	<	Bmax)||	(d2	-	(r2+p2)	>	0	&&	B2	>	0)]
{b2	=	-(d2	-	(r2+p2));	bm2	=	bm2-m;}

[(d2	-	(r2+p2)	>	0	||	B2	>=	Bmax)	&&	(d2	-	(r2+p2)	<=	0	||	B2	<=	0)]
{b2	=	0;	gr	=	gr	-	(d2	-	(r2+p2));	grm	=	grm	-	m;}

22

Bat1

To_bat1 To_grid1

[(d1	-	(r1+p1)	<=	0	&&	B1	<	Bmax)	||	(d1	-	(r1+p1)>	0	&&	B1	>	0)]
{b1	=	-(d1	-	(r1+p1));	bm1	=	bm1+m;}

[!(d1	-	(r1+p1)	<=	0	&&	B1	<	Bmax)	&&	!(d1	-	(r1+p1)	>	0	&&	B1	>	0)]
{b1	=	0;	gr	=	gr	-	(d1	-	(r1+p1));	grm	=	grm	+	m;}

11
44

PLANT1

Plan11
du:
p1_dot	=	-m;	B1_dot	=	b1;	
b1_dot	=	bm1;gr_dot	=	grm;
t_dot	=	1;	gr_out	=	gr;
B1_out	=	B1;	p1_out	=	p1;
n1_out	=	d1	-	(r1+p1);

Plan12
du:
p1_dot	=	-m;	B1_dot	=	b1;	
b1_dot	=	bm1;	gr_dot	=	grm;
t_dot	=	1;	gr_out	=	gr;
B1_out	=	B1;	p1_out	=	p1;
n1_out	=	d1	-	(r1+p1);

[!(B1	<	0	||		B1	>	Bmax)]

[B1	<	0	||		B1	>	Bmax]{b1	=0;	bm1	=	0}

{p1	=	0;	b1	=	0;	m	=	0;	B1	=	Bmax;gr	=	0;	t	=	0;	p2	=	0;	b2	=	0;	B2	=	0.8*Bmax;	grm	=	grm0;	bm1	=	0;	bm2	=	0;}

11

MIGRATE_CONTROLLER

Migrate2

Mode21 Mode22

[d2	-	(r2+p2)	>=	thresh	&&	d1	-	(r1+p1)	<	0]
{m	=	maxm;	}

[d2	-	(r2+p2)	<	thresh	||	d1	-	(r1+p1)	>=	0]{m	=	0;}
22

Migrate1

Mode11
	

Mode12

[d1	-	(r1+p1)	<	thresh	||	d2	-	(r2+p2)	>=	0]{m	=	0;}

[d1	-	(r1+p1)	>=	thresh	&&	d2	-	(r2+p2)	<	0]	
{m	=	-maxm;	}

11
33

PLANT2

Plan21
du:
p2_dot	=	m;	B2_dot	=	b2;	
b2_dot	=	bm2;B2_out	=	B2;
p2_out	=	p2;	
n2_out	=	d2	-	(r2+p2);

Plan22
du:
p2_dot	=	m;	B2_dot	=	b2;	
b2_dot	=	bm2;B2_out	=	B2;
p2_out	=	p2;
n2_out	=	d2	-	(r2+p2);

[!(B2	<	0	||		B2	>	Bmax)]

[B2	<	0	||		B2	>	Bmax]{b2	=0;	bm2	=	0} 22

Fig. 5: The SLSF model of the FREEDM Smart Grid System proposed in [4].

posed in [4] which illustrates the migration of power between
two neighboring transformers connected to a macrogrid over
a shared line. Each transformer has a separate battery that can
store and supply power to the transformer. Depending on if
the battery is full or not, power is either drawn from or sold
back to the macrogrid. In this model, the macrogrid power
flow is assumed to be publicly observable.

SLSF model. In this paper, we represented the hybrid-
dynamical model proposed in [4] as an SLSF model, which is
shown in Figure 5. The model includes three different compo-
nents that represent the plant dynamics, migration controllers,
and battery controllers of two neighboring transformers. For
each transformer, i ∈ {1, 2}, Bi, bi are the energy and power
of its storage battery. di is the gross power demand input,
and ri and pi are the renewable energy resource supply and
power draw, respectively. gr is the power of the macrogrid,
and variables which end in m denote migration rates. Variables
which include max are the upper bounds of their values. In
this model, we assume that an attacker can observe only the
power of the macrogrid, i.e., gr is a low variable and other
variables are considered high.

Non-interference detection. Our tool reports several security
violations in the battery controllers. An explicit flow occurs in
the assignment gr = gr − (di − (ri + pi)), where the update
of low variable gr is based on the values of high variables
di, ri and pi. Furthermore, there is also an implicit flow since
the low variable gr is updated following the transitions whose
guard conditions depend on the status of the battery, which

is private. If public observers see that the value of gr keeps
increasing over time, they can infer that either one or both
batteries are at capacity.

VII. CONCLUSION

In this paper, we proposed a lightweight approach to detect
security leaks in a hybrid system using static information
flow analysis. We introduced a set of security rules for hy-
brid automata that characterizes the non-interference property.
Based on those rules, we developed a scalable algorithm
that can efficiently perform non-interference checking and
inference for hybrid automata corresponding to a given set
of security annotations of its variables. We showed that the
proposed algorithm is scalable and can be used to analyze a
hybrid system without flattening the model. We demonstrated
the applicability of our algorithm via two case studies. For
future work, we plan to extend our algorithm to capture other
information flow properties such as non-inference and non-
deducibility.

VIII. ACKNOWLEDGMENT

The material presented in this paper is based upon
work supported by the Defense Advanced Research Projects
Agency (DARPA) and Space and Naval Warfare Sys-
tems Center Pacific (SSC Pacific) under Contract No.
N6600118C4007, the National Science Foundation (NSF)
GRFP under Grant No. DGE-1845298, and sponsored in part
by ONR N000141712012.

REFERENCES

[1] R. Akella, H. Tang, and B. M. McMillin, “Analysis of information flow
security in cyber–physical systems,” International Journal of Critical
Infrastructure Protection, vol. 3, no. 3-4, pp. 157–173, 2010.

[2] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine, “The algorithmic
analysis of hybrid systems,” Theoretical computer science, vol. 138,
no. 1, pp. 3–34, 1995.

[3] E. Biham and A. Shamir, “Differential fault analysis of secret key cryp-
tosystems,” in Annual International Cryptology Conference. Springer,
1997, pp. 513–525.

[4] B. Bohrer and A. Platzer, “A hybrid, dynamic logic for hybrid-dynamic
information flow,” in Proceedings of the 33rd Annual ACM/IEEE Sym-
posium on Logic in Computer Science. ACM, 2018, pp. 115–124.

[5] E. Chow and J. Elkind, “Where east meets west: European gas and
ukrainian reality,” The Washington Quarterly, vol. 32, no. 1, pp. 77–92,
2009.

[6] T. T. Gamage, B. M. McMillin, and T. P. Roth, “Enforcing information
flow security properties in cyber-physical systems: A generalized frame-
work based on compensation,” in Computer Software and Applications
Conference Workshops (COMPSACW), 2010 IEEE 34th Annual. IEEE,
2010, pp. 158–163.

[7] J. A. Goguen and J. Meseguer, “Security policies and security models,”
in Security and Privacy, 1982 IEEE Symposium on. IEEE, 1982, pp.
11–11.

[8] A. Q. Huang, “Renewable energy system research and education at the
nsf freedm systems center,” in 2009 IEEE Power & Energy Society
General Meeting. IEEE, 2009, pp. 1–6.

[9] J. Kelsey, B. Schneier, D. Wagner, and C. Hall, “Side channel crypt-
analysis of product ciphers,” in European Symposium on Research in
Computer Security. Springer, 1998, pp. 97–110.

[10] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Annual
International Cryptology Conference. Springer, 1999, pp. 388–397.

[11] P. Kocher, R. Lee, G. McGraw, A. Raghunathan, and S. Moderator-
Ravi, “Security as a new dimension in embedded system design,” in
Proceedings of the 41st annual Design Automation Conference. ACM,
2004, pp. 753–760.

[12] P. C. Kocher, “Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems,” in Annual International Cryptology Conference.
Springer, 1996, pp. 104–113.

[13] J. McLean, “A general theory of composition for trace sets closed under
selective interleaving functions,” in Research in Security and Privacy,
1994. Proceedings., 1994 IEEE Computer Society Symposium on. IEEE,
1994, pp. 79–93.

[14] P. Prabhakar and B. Köpf, “Verifying information flow properties of hy-
brid systems,” in Proceedings of the 2nd ACM international conference
on High confidence networked systems. ACM, 2013, pp. 77–84.

[15] S. Ravi, A. Raghunathan, and S. Chakradhar, “Tamper resistance
mechanisms for secure embedded systems,” in VLSI Design, 2004.
Proceedings. 17th International Conference on. IEEE, 2004, pp. 605–
611.

[16] P. Rohatgi, “Electromagnetic attacks and countermeasures,” in Crypto-
graphic Engineering. Springer, 2009, pp. 407–430.

[17] A. Sabelfeld and A. C. Myers, “Language-based information-flow secu-
rity,” IEEE Journal on selected areas in communications, vol. 21, no. 1,
pp. 5–19, 2003.

[18] D. Sutherland, “A model of information,” in Proceedings of the 9th
national computer security conference, vol. 247. Washington, DC,
1986, pp. 175–183.

[19] J. Wan, A. Canedo, and M. A. Al Faruque, “Security-aware functional
modeling of cyber-physical systems,” in Emerging Technologies &
Factory Automation (ETFA), 2015 IEEE 20th Conference on. IEEE,
2015, pp. 1–4.

[20] J. Wang and H. Yu, “Analysis of the composition of non-deducibility in
cyber-physical systems,” Applied Mathematics & Information Sciences,
vol. 8, no. 6, p. 3137, 2014.

[21] A. Wasicek, P. Derler, and E. A. Lee, “Aspect-oriented modeling of
attacks in automotive cyber-physical systems,” in Design Automation
Conference (DAC), 2014 51st ACM/EDAC/IEEE. IEEE, 2014, pp. 1–6.

[22] M. W. Whalen, D. A. Greve, and L. G. Wagner, “Model checking
information flow,” in Design and Verification of Microprocessor Systems
for High-Assurance Applications. Springer, 2010, pp. 381–428.

	Detecting Security Leaks in Hybrid Systems with Information Flow Analysis
	Recommended Citation

	Detecting Security Leaks in Hybrid Systems with Information Flow Analysis
	Abstract
	Keywords
	Disciplines
	Comments
	Author(s)

	I Introduction
	II Hybrid Systems Modeling
	III Non-interference
	IV Analysis
	IV-A Constraint Generation
	IV-B Component Rules
	IV-C Translating Constraints into a Dependency Graph
	IV-D Non-interference Checking
	IV-E Time Complexity

	V Implementation
	VI Case Studies
	VI-A Gas Pipeline System
	VI-B FREEDM Smart Grid System

	VII Conclusion
	VIII Acknowledgment
	References

