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a b s t r a c t 

This study deals with the numerical predictions through Large-Eddy Simulation ( LES ) of the separated–

reattached turbulent flow over a blunt flat plate for analyzing main coherent structure features and their

relation to the unsteady pressure field. A compressible approach that inherently includes acoustic prop- 

agation is here followed to describe the relationship between pressure fluctuations and vortex dynam- 

ics around the separation bubble. The objective of the present work is then to contribute to a better

understanding of the coupling between the vortex dynamics and the wall pressure fluctuations. The fil- 

tered compressible Navier–Stokes equations are then solved with a numerical method that follows a Lax–
Wendroff approach to recover a high accuracy in both time and space. For validations, the present numer- 

ical results are compared to experimental measurements, coming from both the Pprime laboratory (Sicot

el al., 2012) and the literature (Cherry et al., 1984; Kiya and Sasaki, 1985; Tafti and Vanka,1991; Sicot

et al., 2012). Our numerical results very well predict mean and fluctuating pressure and velocity fields.

Flapping, shedding as well as Kelvin–Helmholtz characteristic frequencies educed by present simulations

are in very good agreement with the experimental values generally admitted. These characteristic modes

are also visible on unsteady pressure signatures even far away from the separation. Spectral, POD and

EPOD (extended POD) analyses are then applied to these numerical data to enhance the salient features

of the pressure and velocity fields, especially the unsteady wall pressure in connection with either the

vortex shedding or the low frequency shear-layer flapping. A contribution to the understanding of the

coupling between wall pressure fluctuations and eddy vortices is finally proposed.

1. Introduction

Massively separated flows have engineering concerns since they 

occur in many aerodynamic applications, such as around ground 

vehicles, train or aircraft bodies. Such flow configurations are 

highly 3D and mainly unsteady with however well-known char- 

acteristic frequencies. One of fundamental issues relates to the 

mechanisms driving the acoustic propagation in the far field sur- 

rounding these aerodynamic bodies. Another one is the sound 

propagation toward the interior of the vehicle since main sound 

frequencies occur on the same range as the voice frequencies. If 

one wants to control acoustic disturbances and develop noise re- 

duction process applied to a quiet vehicle, it is first essential to 

better understand the mechanisms involved in the noise genera- 

tion and its transmission toward the habitacle. Sources of noise 

are essentially due to the coupling between eddy structures and 
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the unsteady pressure field in the core of the flow ( Hoarau et al., 

2006 ). A major challenge is therefore to accurately predict the 

pressure fluctuations generated within the flow that is central to 

the acoustic source generation along the solid surfaces. This study 

is hence devoted to a better understanding of the production of 

fluctuating pressures on a solid wall on which a massively sep- 

arated flow impinges. We here deal with the numerical simula- 

tion of the turbulent flow generated around a blunt flat plate with 

a sharp leading edge. This configuration constitutes an academic 

model for studying the main features of massively separated- 

reattached turbulent flows, encountered for instance around vehi- 

cles, mainly in the vicinity of the front hood or close to the win- 

dow or door post of a car. 

In the past, this configuration has widely been studied exper- 

imentally. Numerous experimental results are available in the lit- 

erature on the structure of turbulent flow separation bubbles and 

its relaxation after the reattachment ( Castro and Epik, 1998; Cas- 

tro and Haque, 1987; Cherry et al., 1984; Eaton and Johnston, 1981; 

Hoarau et al., 2006; Kiya and Sasaki, 1983; 1985; Sicot et al., 2012 ). 

The dynamics of the separation bubble and its reattachment have 

http://dx.doi.org/10.1016/j.ijheatfluidflow.2016.08.002
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mainly been reviewed on both the flow along a side of a blunt 

flat plate and the backward-facing step flow field. The structure of 

large scale vortices have been studied by Hillier and Cherry (1981) ; 

Kiya and Sasaki (1983, 1985) and Cherry et al. (1984) that educe 

the main mechanisms involved in the separation bubble dynamics. 

They showed that the flow in the separation bubble is governed by 

two main mechanisms: the shedding of large-scale vortices down- 

stream of the separation and a low-frequency unsteadiness called 

flapping , linked to the shredding and enlargement of the bubble. 

The role of the shear layer edging the separation in the bub- 

ble dynamics and the reattachment was also demonstrated ( Castro 

and Epik, 1998; Castro and Haque, 1987 ). The connection between 

these main mechanisms is still not clear and deserves more results 

for further analysis. The three-dimensional feature of large-scale 

structures in the reattaching zone was underlined and its influence 

on the wall pressure fluctuations was studied through either cross- 

correlations ( Kiya and Sasaki, 1983; Saathoff and Melbourne, 1997 ) 

or extended POD analysis ( Hoarau et al., 2006; Sicot et al., 2012; 

Tran, 2012 ). Wall pressure fluctuations are related to the motion of 

large-scale vortices, especially hairpin vortices in the reattachment 

region that produce large amplitude fluctuations. The influence of 

the free-stream turbulence on the flow dynamics have also been 

reviewed ( Castro and Epik, 1998; Saathoff and Melbourne, 1997 ) 

and an increase of turbulence intensity tends to reduce the reat- 

tachment length. Although the mean pressure was decreased at 

separation, the magnitude of the pressure fluctuations in the sep- 

aration bubble is increased ( Saathoff and Melbourne, 1997 ). It was 

however shown that “the spanwise length of vortices in the sepa- 

ration bubble is not directly related to longitudinal velocity fluctu- 

ations in the free-stream” ( Saathoff and Melbourne, 1997 ). Exper- 

imental analysis also investigated the relaxation occurring down- 

stream the reattachment. Although some characteristics (log-law 

for instance) of canonical boundary layers are re-established rather 

rapidly, the energetic mixing-layer like structures occurring around 

reattachment evolve very slowly since 70 boundary layer thick- 

nesses are needed to recover common structures of a standard 

boundary layer ( Castro and Epik, 1996; 1998; Sicot et al., 2012 ). 

Following these results, authors ( Castro and Epik, 1996; 1998 ) con- 

jectured that second order Reynolds stress models are not able to 

predict the slow decay of the energetic large scale structures in the 

outer part of the flow and its influence on the inner region. We can 

then think that DNS and resolved LES remain ideal tools to mimic 

such flow phenomena. 

Unlike numerous experiments, only few numerical simulations 

of the flow generated around a blunt flat plate exist in the lit- 

erature. Most of these computations concern low to moderate 

Reynolds number configurations aiming at studying steady lami- 

nar flow to unsteady regime with quasi-periodic vortices shed in 

the vicinity of the reattachment ( Lamballais et al., 2010; Tafti and 

Vanka, 1991 ). Authors studied the curvature effects of a rounded 

leading edge on the dynamics of the separation ( Lamballais et al., 

2010 ). Large-Eddy Simulations have also been conducted to inves- 

tigate the transitional separated-reattached flow over a flat plate 

( Yang and Abdalla, 2009; Yang and Voke, 20 0 0; 20 01 ). As far as we 

can note in these previous results for low and moderate Reynolds 

number regimes, the reattachment length seems very sensitive to 

the Reynolds number. Even at high Reynolds number regime, the 

reattachment length ( L R ) does not recover a unique value since it 

is distributed in between [4, 5.5] (See Cherry et al., 1984 for more 

details). To try to explain this wide-ranging of L R values, the influ- 

ence of free-stream turbulence and surface curvature change have 

been reviewed on the transition process from laminar separation 

to reattachment in a turbulent boundary layer. At present, reasons 

of this broadness ( Bruno et al., 2014 ) are still unexplained and no 

specific value of this length emerges from previous result, mean- 

ing that new numerical results must be provided to get a better 

insight into this configuration. Nevertheless, several authors dis- 

cussed the existence of vortex shedding and low frequency shear- 

layer flapping ( Yang and Voke, 2001 ). Although the connection be- 

tween these two main mechanisms is not completely elucidated, 

they postulated that two different topological structures could be 

associated with the normal shedding and the shedding responsi- 

ble for low-frequency flapping. Another connection that needs to 

be elucidated is the relationship between the vortex structure dy- 

namics and the pressure fluctuations. Ji and Wang (2010) stud- 

ied the aeroacoustics of turbulent boundary layer flows over back- 

ward and forward facing small steps. By using incompressible LES 

coupled with the solution of a Green’s function following Light- 

ill’s analogy, they analyzed frequency spectra of wall pressure to 

contribute to a better understanding of noise production. However, 

all these studies essentially concern incompressible flow simula- 

tions and to obtain a better description of the relationship between 

pressure fluctuations and vortex dynamics for separated-reattached 

flow over a flat plate, a compressible approach might be more suit- 

able since acoustic propagation inherently included. This study is 

thus devoted to the numerical predictions through compressible 

Large-Eddy Simulation ( LES ) of the separated–reattached turbulent 

flow over a blunt flat plate with a right-angled leading edge. To 

our knowledge, there does not exist any study of compressible flow 

over the turbulent flow over a forward facing step which provides 

an analysis of the main coherent structure features and their re- 

lation to the unsteady pressure field. Hence, the objective of this 

work is two fold: (i) to provide a well resolved LES reference data- 

basis for analyzing the dynamics of the main coherent structures 

in the separated–reattached turbulent flow over a blunt flat plate, 

and (ii) to contribute to a better understanding of the coupling be- 

tween the vortex dynamics and the wall pressure fluctuations, es- 

pecially in connection with either the vortex shedding or the low 

frequency shear-layer flapping. 

In this work, we solve the filtered compressible Navier–Stokes 

equations following a LES approach with a dynamic vorticity model 

to account for subgrid scales. The governing LES equations and 

the subgrid-scale modeling are presented in Section 1 . Follow- 

ing a Lax–Wendroff approach, the numerical method employs a 

7th-order scheme introduced in Daru and Tenaud (20 04, 20 09) , 

named OS7, which recovers a high accuracy in both time and space 

with a great efficiency in terms of CPU time compared to more 

conventional schemes. Numerical approximations are described in 

Section 2 and the numerical ingredients, including the definition 

of the computational domain, boundary conditions, and grid gen- 

eration, are presented in Section 3 . In Section 4 , we then validate 

our numerical results by comparisons with experimental measure- 

ments, coming from both the Pprime laboratory and different ex- 

periments ( Cherry et al., 1984; Kiya and Sasaki, 1985; Sicot et al., 

2012; Tafti and Vanka, 1991 ). Thus, spectral, POD and EPOD (ex- 

tended POD) analyses are applied on the present numerical data to 

determine the salient features of the pressure and velocity fields. 

A contribution to the understanding of the coupling between wall 

pressure fluctuations and eddy vortices is eventually proposed. Fi- 

nally in Section 6 , we conclude and present prospects for future 

work. 

2. The governing LES equations and the subgrid-scale modeling

The governing equations are the compressible Navier–Stokes 

equations filtered with an implicit spatial filter (noted (. ) ) com- 

bined with the density-weighted Favre decomposition ( Favre, 1965 ) 

( ̃ . ). The characteristic filter size depends both on the local mesh 

size and on the intrinsic dissipation of the numerical scheme. This 

suggests to use schemes for LES that exhibit as low dissipation er- 

ror as possible because the greater the intrinsic dissipation, the 

larger the size of the implicit filter. 



These filtered equations can be written in different ways ( Doris, 

20 0 0; Doris et al., 20 0 0; Lenormand et al., 20 0 0; Lesieur and 

Comte, 2001; Vreman et al., 1995 ), depending on the choice made 

for the resolved quantities. Though the review of Lesieur and 

Comte (2001) upon the use of a macro temperature and a macro 

pressure to simulate a channel flow, concludes that the subgrid 

contribution to pressure and temperature is negligible under a rea- 

sonable subgrid-scale Mach number condition, we prefer to use 

real pressure, temperature and energy, as Vreman et al. (1995) sug- 

gested, because LES results must be compared to experiments. Ac- 

cording to these authors ( Vreman et al., 1995 ), the governing equa- 

tions, written in a conservative form and in cartesian coordinates, 

read as follows: 

∂ U 

∂t 
+ ∇ ·

(
F E 

(
U 

)
+ F V 

(
U , ∇ U 

))
= 0 , (1) 

where U is the vector of the filtered conservative variables and F E 

and F V are the Euler and the viscous vector fluxes, respectively: 

U = 

⎛⎝ 

ρ

ρ ˜ v 

ρẼ 

⎞⎠ ; F E =

⎛⎜ ⎝ 

ρ ˜ v 

ρ ˜ v �˜ v + 

P 
γ M 

2
0

I 

ρ ˜ v ̃  E + ̃

 v P
γ M 

2
0

⎞⎟ ⎠ 

;

F V = 

(
0 

σ + τ˜ v ( σ + τ ) −˜ q − ψ 

)
. (2) 

These equations are written in a dimensionless form by using the 

reference values of the density ( ρ0 ), the velocity ( v 0 ), and the 

length scale ( L 0 ). In terms of large scales, ρ is the filtered den- 

sity of the fluid, ̃  v = { ̃  v i } t ( i ∈ [ 13 ] ) is the density-weighted filtered

velocity vector, P is the filtered static pressure and ̃

 E is the density- 

weighted filtered total energy per unit of mass. The resolved stress 

tensor ( σ) and the resolved heat flux ( ̃  q ) are respectively given 

by: 

σ = − μ̃

R e 

(
∇ ̃

 v + ∇ 

t ˜ v − 2 

3 

∇ ·˜ v I 

)
, (3) 

˜ q = − ˜ μ

(γ − 1) R e Pr M 

2 
0 

∇ ̃

 T , (4) 

where ˜ μ is the dimensionless dynamic viscosity related to the re- 

solved static temperature ˜ T by a Sutherland’s law:

˜ μ( ̃  T ) = ̃

 T 
3
2

1 + 

110 . 4

T 0 ˜ T + 

110 . 4

T 0 

, (5) 

T 0 being the reference temperature. The resolved pressure and 

temperature are expressed in terms of the conservative quantities 

by using an equation of state: 

P = ( γ − 1 ) 

[ 
ρ ˜ E − 1 

2 

ρ ˜ v ·˜ v − τ : I 

] 
, (6)

˜ T = 

P

ρ
. (7) 

This study is restricted to an ideal gas with a constant spe- 

cific heat ratio γ = 1 . 4 and a constant Prandtl number Pr = 0 . 73 , 

for air. The Reynolds number is based on the reference values: 

R e = ρ0 v 0 L 0 /μ(T 0 ) . M 0 = v 0 / (γ R T 0 ) is the Mach number ( R is the 

constant of the gas, R = 287 J.Kg −1 .K 

−1 for air). 

2.1. Subgrid-scale modeling 

The two subgrid-scale contributions, i.e. the subgrid stress ten- 

sor: 

τ = ( ρ v � v − ρ ˜ v �˜ v ) , (8) 

and the subgrid heat flux: 

ψ = 

1 

(γ − 1) M 

2 
0 

(
ρ v T − ρ ˜ v T̃ 

)
, (9) 

need to be related to the resolved part of the quantities by means 

of modelings that are presented hereafter. 

2.1.1. Model of the subgrid stress tensor 

To account for the kinetic energy dissipation occurring at small- 

scales, the model of the subgrid stress tensor ( τ) assumes the en- 

ergy transfer theory. τ is then evaluated by a Boussinesq hypoth- 

esis, meaning that the deviatoric part of the subgrid-scale tensor 

is related to the strain rate tensor of the resolved velocity field by 

using a subgrid viscosity ( μsg ): 

−τ + 

1 

3 

tr ( τ ) I = μsg 

(
∇ ̃

 v + ∇ 

t ˜ v − 2 

3 

∇ ·˜ v I 

)
, (10)

where tr (.) denotes the tensor trace. The subgrid viscosity model 

must mimic the dissipative exchanges between the small and the 

large scale structures. This viscosity should result from the product 

of a length scale and a time scale representative of the small scale 

structures. 

In this study, two sub-grid scale models have been employed 

to enhanced the influence of sub-grid modelings on results: (i) a 

mixed scale model, initialy developed by Sagaut (1995, 1998) for 

incompressible flow calculations and derived for compressible 

flows in Tenaud and Ta Phuoc (1997) ; and (ii) a more sophisticated 

model using a Smagorinsky model ( Smagorinsky, 1963 ) with a dy- 

namic procedure ( Germano et al., 1991 ). 

2.1.1.1. Mixed scale model. The mixed scale model was introduced 

to improve the behavior of the basic vorticity model that is ques- 

tionable in turbulent regions where the dissipative length scale 

is greater than the estimate of the filter cut-off length scale. The 

mixed scale model is derived from a class of models which sup- 

posed that the subgrid viscosity is a function of the transfer rate 

of the kinetic energy, the kinetic energy at the cut-off and the cut- 

off wave number. Following a dimensional analysis and assuming 

a local spectral equilibrium, we may obtain a one parameter fam- 

ily model, written in the physical space as the algebraic average of 

the vorticity model ( Mansour et al., 1978 ) and the TKE model (TKE: 

Turbulent Kinetic Energy) ( Bardina et al., 1980 ): 

μsg = 

⎛⎝ ρ C 2 ω 	
2 ‖ ω ‖ ︸ ︷︷ ︸

μω

⎞ ⎠α ⎛⎝ ρ C B 	
√

q c ︸ ︷︷ ︸
μk

⎞ ⎠(1 −α)

. (11) 

We took α = 1 / 2 , in agreement with simulations carried out with 

this model so far (see Lenormand et al., 20 0 0; Sagaut, 1998; 

Tenaud and Ta Phuoc, 1997 ). C ω and C B are respectively the con- 

stant of the vorticity ( Mansour et al., 1978 ) and the TKE ( Bardina 

et al., 1980 ) models. In practice, common values of C ω are: C ω ∈ 

[0.1, 0.12] ( Deardorff, 1970; Meneveau, 1994; O’Neil and Meneveau, 

1997 ) and, to respect galilean invariance, C B = 1 . ( Bardina et al., 

1980 ). Following Bardina et al. (1980) about the TKE model, this 

velocity scale has been related to the subgrid kinetic energy by us- 

ing a scale similarity assumption. Thanks to an analytical test fil- 

ter ̂ (. ) with a cut-off length scale ̂ 	 larger than 	, the subgrid

scale velocity is estimated by using the subgrid kinetic energy at 

the highest resolved wave numbers ( q c ): 

‖ u 

′′ ‖ := 

√ 

q c =
√

1 

2 

(̃
 v −̂ ˜ v 

)
·
(̃

 v − ̂̃v).
In the followings, the explicit test filter is typically expressed using 

a trapezoidal rule ( Liu et al., 1994 ) and 

̂ 	 = 2 . 	.



Besides the modeling of the subgrid viscosity, one must pro- 

vide a model of the trace of the subgrid tensor, appearing in the 

Boussinesq formulae (10) . To be consistent with the scale similar- 

ity assumption previously made, tr ( τ) is expressed as a function of 

the subgrid kinetic energy ( q c ): 

tr ( τ ) = 2 ρ q c . (12) 

LES of several test-cases at high Reynolds number were already 

performed successfully with the mixed scale model, as for instance 

the simulation of a 3D spatial mixing layer ( Doris et al., 20 0 0 ) or 

the simulation of a compressible jet ( Ferreira Gago et al., 2002 ). 

Moreover, an analysis of the behavior of this model in the bounded 

flow test-case of the temporal channel flow has been proposed by 

Lenormand et al. (20 0 0) . 

2.1.1.2. Dynamical subgrid-scale model. The dynamical subgrid-scale 

model based on the Germano’s procedure ( Germano, 1992; Ger- 

mano et al., 1991 ), has been developed to better account for the 

local flow structure and to improve the modeling of the anisotropic 

behavior. The model is deduced from the relationship between 

subgrid stress tensors evaluated at two filtering grid levels. Con- 

sidering τ as the subgrid stress tensor coming from the implicit 

filtering procedure based on the filtering length-scale 	 (8) , and 

T as the same tensor however evaluated with an analytical filter- 

ing procedure based on a wider filtering length scale 
̂ 

	 > 	, we

write: 

τ − 1 

3 

tr ( τ ) I = C d F 

(
	, ρ, ̃  v 

)
; (13) 

T − 1 

3 

tr ( T ) I = C d F 

(̂ 

	, ̂  ρ, ̂  ˜ v

)
; (14) 

where the anisotropic tensor F stands for the chosen subgrid 

model which here is the vorticity model: 

F ( 	, ρ, u ) = μsg 

(
∇u + ∇ 

t u − 2 

3 

∇ · u I

)
,

with the subgrid viscosity provided by Mansour et al. (1978) : 

μsg = 

(
ρ 	2 ‖ ω‖ )

.

Here, C d corresponds to the parameter of the model that must 

be adjusted following a dynamical procedure. Let us mention that 

without the dynamical procedure, C d must hopefully converge to- 

ward the square of the vorticity model constant ( C d = C 2 ω , with C ω 
∈ [0.1, 0.12], see relation (11) ). 

The relationship between τ and T involves the Leonard’s ten- 

sor (noted L ) that can easily be evaluated without any assumption 

since it is only based on resolved quantities: 

T − ̂ τ = L = 

(
̂ ρ˜ v �˜ v − ̂ ρ̂ ˜ v � ̂̃v). (15) 

The parameter C d is then determined by minimizing the L 2 - 

norm of the modeling error through a Least-Square procedure 

( Lilly, 1992 ), assuming that C d slowly evolves in space: 

C d = 

[ (
L − 1

3 

tr ( L ) I 
)

: M 

]
· [ M : M ] 

−1 
. (16) 

M is a tensor calculated by evaluating F at two different cut-off

wave numbers in (13) and (14) : 

M = −C d [ F( ̂
 

	, ̂  ρ, ̂  ˜ v ) − ̂ F( 	, ρ, ̃  v ) ] . (17) 

C d (16) is evaluated at each point of the domain and at each 

time step. Let us remark that, in regions where the velocity gra- 

dient of the macroscopic velocity is very low, high values of C d 
can be recorded because the modulus of M approaches zero. These 

values are not corrected as far as positive values are calculated 

since the parameter C d , in the modeling of the subgrid stress ten- 

sor, is multiplied by the velocity gradient which gives rather low 

subgrid contributions. Nevertheless, negative C d values can also be 

calculated and relatively large negative C d values introduce anti- 

diffusive contribution that may lead to unstable computation. For 

this reason, as it is generally done in LES computations, we clip 

the C d parameter to avoid negative C d value and force C d = 0 when 

negative values are calculated. 

2.1.2. Model of the subgrid heat flux 

A classic Fourier’s law is used to express the subgrid heat flux 

as a product of the subgrid thermal conductivity and the first gra- 

dient of the resolved temperature. As far as the flow is isother- 

mal, the dynamic procedure is not followed to evaluate the subgrid 

thermal conductivity in order to save computational time. Then, 

following the Reynolds analogy assumption, the subgrid thermal 

conductivity can be evaluated from the subgrid viscosity, simi- 

larly than the molecular thermal conductivity by using a constant 

subgrid Prandtl number assumption ( Comte and Lesieur, 1998 ): 

Pr sg = 0 . 6 . The subgrid heat flux is then given by: 

ψ = − μsg 

(γ − 1) R e Pr sg M 

2 
0 

∇ ̃

 T . (18) 

3. Numerical approach

The resolution of the filtered Navier–Stokes Eqs. (1 ) and ( 2 ) has 

been performed by means of a finite volume approach. LES compu- 

tations must use numerical schemes that can represent small scale 

structures with a minimum of numerical dissipation to minimize 

the interactions with the sub-grid scale modeling. 

In the present study, the Euler part of the equations is 

discretized by means of a high-order coupled time and space 

scheme, named OS7 scheme, we developed in Daru and Tenaud 

(2004) based on a Lax–Wendroff approach, which ensures a high- 

order accuracy in both time and space. Detailed information on the 

development of this scheme and its implementation can be found 

in Daru and Tenaud (20 04, 20 09) . The capabilities and the behavior 

of the OS7 scheme have already been studied on several relevant 

test cases, including those with large unsteady detachments. It was 

shown that, the time-space coupled OS7 scheme gives accurate re- 

sults which compare very well with high order semi discrete pro- 

cedures (methods of line), such as Runge–Kutta/WENO approaches, 

at a much lower computational cost. In Daru and Tenaud (2004) , it 

was also demonstrated that the OS7 scheme achieves a very low 

level of error on coarse grids and, instead of a high-order WENO 

procedure, it should preferably be used in cases where it is not 

possible to use very fine meshes, which is a very standard situ- 

ation for example in LES calculations where all the length scales 

are not fully resolved. Regarding the integration of diffusive fluxes, 

their integration can also be ensured by a coupled time-space pro- 

cedure. The influence of the viscous flux discretization order on 

the solution of wall bounded flows at moderate Reynolds num- 

bers were also performed in Daru and Tenaud (2009) where some 

simulations were conducted by using both 2nd- and 4th-order ac- 

curate centered schemes. It was found that (between 2nd- and 

4th-orders) the order of the viscous scheme has negligible influ- 

ence on the presented solutions of wall bounded flows at moder- 

ate Reynolds numbers. This is why in the present study, the space 

discretization of the diffusive fluxes is then obtained by means of 

a classical centered second-order scheme giving at last a second 

order accurate scheme in both time and space. 



Fig. 1. Sketch of the computational domain around the flat plate (at the left) and prescribed boundary conditions (at the right).

4. Numerical procedure

4.1. Computational domain and boundary conditions 

We consider an adiabatic blunt flat plate having a thickness H 

(taken as a reference length scale), mounted parallel to the free 

stream. It is equipped with a right-angled corner leading-edge. 

This flat plate spans the computational domain horizontally in its 

centerline, as seen in Fig. (1) . The inlet boundary is located 10 H 

upstream of the sharp leading edge to minimize its influence on 

the uniform inlet boundary condition. The flat plate has a stream- 

wise length of 25 H , extending up to the streamwise outlet bound- 

ary. Simulations, that are not reported here for clarity, were previ- 

ously performed on several domain dimensions to check the in- 

fluence of the domain extents on the LES results. The influence 

of the width of the domain, associated to the spanwise homo- 

geneous direction, the streamwise extent as well as the normal 

to the wall dimension were reviewed and no significant influence 

was recorded on mean and fluctuating quantities. Therefore, the 

computational domain sizes we retained to analyze LES results are 

L x = 35 H in the streamwise direction, L y = 5 H in the spanwise 

direction and L z = 17 H in the normal to the flat plate direction. 

These domain sizes provide with blockage ratio that are equiva- 

lent to previous studies ( Lamballais et al., 2010; Langari and Yang, 

2013; Tafti and Vanka, 1991; Yang and Abdalla, 2009 ). These di- 

mensions are required to largely weaken the influence of the do- 

main boundaries. At the upstream boundary, a uniform flow is pre- 

scribed ( ρ∞ 

, U ∞ 

and T ∞ 

) leading to the previous defined Mach 

( Ma = 0 . 115 ) and Reynolds ( Re H = 7500 ) numbers. As spanwise ho- 

mogeneity is recovered in many experiments, for instance Kiya and 

Sasaki (1983) recovered flow uniformity over ± 3.5 H on both sides 

of the midspan, periodicity is considered in the spanwise direction 

to study the intrinsic flow behavior without lateral wall-border ef- 

fect. At the outlet as well as on upper and lower boundaries, non- 

reflecting conditions are prescribed by using characteristics based 

conditions ( Poinsot and Lele, 1992 ). 

4.2. Grid generation 

A mesh refinement study has been undertaken to check its in- 

fluence on statistical results. The mesh that gives rather grid in- 

dependent results, consists in (N x × N y × N z ) = (269 × 121 × 225) 

grid cells along the streamwise, spanwise and normal to the wall 

directions. Uniformly distributed grid points are used in the span- 

wise direction with a grid spacing of δy + = 16 . 6 , in terms of wall 

units. Wall units are calculated with respect to the friction velocity 

measured in the reattached boundary layer at x/L R = 3 ; the friction 

velocity is almost constant further downstream. To well capture 

the flow dynamics, the grid was built with a lot of care, specially 

in the detached/reattached area, by using non-uniform grids in the 

streamwise ( x ) and the normal to the wall ( z ) directions. The mesh 

is then tightened in the normal to the wall direction to ensure a 

first cell size above the wall less than one wall unit ( 	z + = 0 . 94 ). 

It is also tightened in the shear layer region edging the separation 

bubble. Distribution of space steps in wall units as well as grid 

spacing ratio between two consecutive cells are shown on Fig. 2 

in the separated/reattached region. Let us emphasize that about 60 

grid points in the normal to the wall direction are embedded in 

the reattached boundary layer. In the streamwise direction, grid is 

refined both at the leading edge and in the reattachment region 

( 2 . 4 ≤ δx + ≤ 24 ). To judge refinements and stretchings of the mesh 

over the separated/reattached region, grid spacings in wall units 

and grid spacing ratios are given on Fig. 3 in the streamwise direc- 

tion. 

Though the mesh is stretched in the x − and z− directions, the 

grid spacing ratio between two consecutive cells is kept at low val- 

ues over the separated/reattached region. The mesh used here is at 

least as refined as the one used in the study of Langari and Yang 

(2013) (and somewhere probably more refined). 

4.3. Numerical implementation 

Simulations were performed on a parallel / vectorial supercom- 

puter (NEC - SX8) at IDRIS, the CNRS’s national supercomputing 

center. As our LES software is based on explicit time and space in- 

tegrations, a trivial domain decomposition by means of the MPI 

protocol, is adopted to decrease the restitution time. The compu- 

tational domain is split into eight sub-domains having 135 × 61 

× 113 grid points each. The OS7 stencil spreading over nine grid 

points, sub-domains are overlapped over five grid points in each 

direction. On other words, quantities on five planes are exchanged 

per direction through the border between two consecutive sub- 

domains. 

5. Numerical results

We consider an adiabatic blunt flat plate mounted parallel to 

a free stream and equipped with a right-angled leading-edge. The 



Fig. 2. On the left, grid spacing in wall units ( δz+ ) in the normal to the wall direction. On the right, mesh is colored with the ratio values of grid spacings between two 

consecutive cells. Isocountours of the mean streamwise velocity component are also surperimposed on the mesh.

Fig. 3. On the left, Distribution of δx + in the streamwise direction. On the right, mesh is colored with the ratio values of grid spacings between two consecutive cells in the 

streamwise direction. Isocountours of the mean streamwise velocity component are also surperimposed on the mesh.

plate thickness ( H ) and the uniform inlet velocity ( U ∞ 

) are taken 

as the main reference scales of the flow. The Mach number is pre- 

scribed at the value recorded in the Pprime Institute experiments 

at Ma = 0 . 115 . To handle tractable LES regarding the CPU time con- 

sumption, the Reynolds number has been chosen ten times smaller 

than in the Pprime experiments ( Sicot et al., 2012 ). Based on H, 

U ∞ 

, the density ( ρ∞ 

) and the viscosity ( μ∞ 

) evaluated at infinity, 

the Reynolds number is: Re H = 7500 . Note that this value is four to 

ten times smaller than experimental values found in the literature 

( Castro and Epik, 1998; Cherry et al., 1984; Kiya and Sasaki, 1983; 

1985 ). 

Fig. 4 presents an instantaneous field of the Q criterion ( Jeong 

and Hussain, 1995 ) around the blunt flat plate. Isosurfaces of Q are 

colored with the velocity magnitude. This snapshot clearly illus- 

trates the highly 3D feature of the flow structures in the vicinity of 

the blunt flat plate leading-edge. The sharp corner at the leading 

edge fixes the detachment location. Boundary layer separation then 

occurs over a large extent. The upper part of the separation bub- 

ble is bounded by a spatially developing mixing layer whose ini- 

tial stage is certainly laminar and is followed by a breakdown to- 

ward turbulence through Kelvin–Helmholtz instability modes and 

roll pairing (see on Fig. 4 main rolls downstream the leading edge 

at edge of the recirculation for an illustration). Downstream a sta- 

ble mixing layer at the leading edge, large scale structures, namely 

Fig. 4. Snapshot of an isosurface of the Q criterion ( Q = 3 ) colored with the norm 

of the velocity in the vicinity of the plate leading-edge.

Kelvin–Helmholtz rolls, develop and break down to lambda-shape 

like patterns, further downstream. The flow behavior within the 

mixing layer development is mainly responsible for the separa- 



tion extent ( Castro and Epik, 1998 ). According to numerous ex- 

perimental works ( Castro and Epik, 1998; Cherry et al., 1984; Kiya 

and Sasaki, 1983; 1985 ), separation extent is about L R = 5 H. Sev- 

eral flow parameters such as the tunnel blockage, spanwise end- 

walls and the spanwise aspect ratio, free stream turbulence inten- 

sity, for instance, undoubtedly influence the mixing layer develop- 

ment and consequently the L R value ( Castro and Epik, 1998; Cherry 

et al., 1984; Hancock and Castro, 1993 ). When the mixing layer 

impacts the plate surface, a turbulent boundary layer develops fur- 

ther downstream. Structures within the upper part of the distorted 

boundary layer are elongated in the streamwise direction, influ- 

enced by the re-acceleration downstream the reattachment ( Fig. 4 ). 

Two main unsteadinesses associated with the separation are gen- 

erally educed: the shedding and the flapping modes. The former 

is relative to the vortex shedding and is associated with the usual 

large scale motions of the shear layer. The latter, the low-frequency 

flapping mode, is an overall dynamical mechanism linked to suc- 

cessive enlargements and shrinkages of the separated zone. 

It was largely demonstrated that the free-stream turbulence has 

an influence on some flow characteristics. In fact, free stream tur- 

bulence influence the transition in the mixing layer ( Cherry et al., 

1984 ). The turbulence seems to be earlier tripped in the mixing 

layer, inducing earlier reattachment than without free-stream tur- 

bulence ( Hillier and Cherry, 1981; Saathoff and Melbourne, 1997; 

Yang et al., 1999 ). Nevertheless as the first step in this study, we 

decided to not consider the free-stream turbulence as inlet per- 

turbations to decouple the influence of several parameters, unlike 

Langari and Yang (2013) and Yang and Abdalla (2009) . We will 

however see hereafter that taking the separation length as the ref- 

erence length scale, the present LES results obtained without free- 

stream turbulence, compare very well with experiments. Influences 

of free-stream turbulence are not the purpose of this paper and 

could be studied numerically in the near future. 

We first validated LES results obtained through the use of the 

mixed-scale model. We then studied the influence of the subgrid- 

scale model by comparing first results to those obtained by means 

of the dynamical vorticity model. We finally analyzed the space 

and time dynamics of the flow in the vicinity of the leading edge. 

For comparisons we need to evaluate mean quantities (noted 

< 

•> ) that are calculated by using integrations in both time

and spanwise (homogeneous) direction: < • > = 

1 
L y T

∫ 
L y

∫ 
T • d t d y ,

where T is the integration period. Dimensionless times are esti- 

mated by means of the inlet velocity ( U ∞ 

) and the plate thickness 

( H ). Mean quantities are computed as soon as a statistically con- 

verged state is reached. This convergence is checked on the time 

evolution of the L 1 -, L 2 - and L ∞ -norms of both the mean and r.m.s. 

values of the velocity components and the pressure. We assumed 

that it was reached for a dimensionless time of about t 0 = 110 . Sta- 

tistical quantities are then calculated from t 0 and recorded over a 

dimensionless time interval 	t = 340 , approximately correspond- 

ing to forty vortex shedding events. 

5.1. Validation of LES results 

In this section, LES results are obtained by means of two 

subgrid-scale models: the compressible version of the mixed- 

scale model ( Section 1.1.1.1 ) and the well known dynamical proce- 

dure ( Germano et al., 1991 ) applied to a classical vorticity model 

( Mansour et al., 1978 ) ( Section 1.1.1.2 ). Although the numerical 

scheme is deliberately high order accurate to minimize both the 

dissipative and the dispersive errors, while very weak it however 

has a dissipative-diffusive interaction with the diffusive subgrid- 

scale model. It is then mandatory to employ different subgrid-scale 

models to measure their influence on LES results. Both results are 

compared either to the Pprime experiments ( Sicot et al., 2012 ) or 

to results from the literature. 

Fig. 5. Streamlines superimposed onto the isocountours of the streamwise veloc- 

ity component ( < U > ), in the upper region close to the leading edge: LES results

obtained with the mixed-scale model.

Fig. 6. Streamwise distribution, at the upper wall of the blunt flat plate, of the

mean shear stress predicted by the LES through the mixed-scale model ( )

and the dynamic vorticity model ( ).

Fig. 5 shows streamlines of the mean flow predicted by LES 

with the mixed-scale model, which are superimposed onto iso- 

countours of the streamwise velocity component ( < U > ). The thick- 

ness of the main clockwise bubble is estimated at z R /H = 0 . 53 

(corresponding to z R /L R = 0 . 14 , for direct comparison with ( Tafti 

and Vanka, 1991 ), where L R is the reattachment length). A sec- 

ondary mean anti-clockwise vortex is clearly visible very close 

to the leading-edge for which its streamwise location is x R 2 /H ∈
[0 . 355 , 1 . 16] ( x R 2 /L R ∈ [0 . 1 , 0 . 315] ) and its thickness is z R 2 /H =
0 . 048 ( z R 2 /L R = 0 . 013 ). These reverse flow contours are in a good

agreement with those obtained through the DNS results of Tafti 

and Vanka (1991) at however a lower Reynolds number ( Re H = 

1 0 0 0 ). 

The spanwise averaged value of the reattachment length con- 

stitutes the first characteristic quantity of the separation. It is gen- 

erally defined as the distance from the leading-edge where the 

average (in time and spanwise direction) value of the wall shear 

stress reaches zero. Fig. 6 shows the streamwise distribution of the 

mean shear stress predicted along the upper wall of the blunt flat 

plate. The L R value predicted by using the mixed-scale model is 

L R /H = 3 . 68 . The reattachment length is however slightly lowered 

by the dynamic vorticity model since L R /H = 3 . 38 . Present pre- 

dictions underestimate the generally admitted experimental mean 

reattachment length since the value across the literature is L R /H = 

5 ( Cherry et al., 1984 ), at high Reynolds number flows. This specific 

value has clearly been recovered in the Pprime experiments ( Sicot 

et al., 2012 ). However, at high Reynolds number regime, all exper- 

imental studies did not recover a unique value since L R / H is dis- 

tributed in between [4, 5.5] (see Cherry et al., 1984 ). Following pre- 



Fig. 7. Probability density function of ∂u 
∂z 

= 0 along the upper wall of the blunt flat 

plate, predicted by the LES with the dynamic vorticity model.

vious numerical studies at low and moderate Reynolds numbers, 

values found for the reattachment length are clearly dispersed. At 

low Reynolds numbers, much greater values than the one gen- 

erally admitted are recorded: Tafti and Vanka (1991) obtained 

L R /H = 6 . 36 at Re H = 1 0 0 0 while Lamballais et al. (2010) obtained 

values close to L R /H = 7 at Re H = 2 0 0 0 whatever the radius of 

the rounded leading edge is. Transition delay in the mixing layer 

might explain these large L R values. At moderate Reynolds number 

( Re H = 3 450 ), Yang and Voke (20 0 0) ; 20 01 ) recovered a smaller 

value ( L R /H = 2 . 58 ). Besides, Ji and Wang (2010) recorded a reat- 

tachment length that is close to 3 in a forward facing step config- 

uration at Re H = 21 0 0 0 . The present L R value is rather close to the 

lower bound of the experimental values. It is however clearly con- 

sistent with values recorded by other numerical studies at moder- 

ate Reynolds numbers ( Ji and Wang, 2010; Yang and Voke, 20 0 0; 

2001 ). More recently, a benchmark study ( Bruno et al., 2014 ) on 

the aerodynamics of rectangular cylinders was published providing 

numerous results either experimental or numerical, on the blunt 

flat plate configuration at several moderate to high Reynolds num- 

bers. It was reported that a significant variability of the separa- 

tion length was recorded without easily identifying a trend with 

the different simulation parameters. It is then obvious that addi- 

tional investigations must be undertaken to understand the reason 

of such dispersed L R values. 

As pointed out by Yang and Voke (20 0 0) , the reattach- 

ment length largely varies in time. This behavior is exhibited 

in Fig. 7 where the probability density function of zero wall 

shear stress is plotted versus the streamwise location. Regarding 

the main clockwise vortex, the PDF is symmetrically distributed 

around the mean reattachment location. However, amplitudes of 

the reattachment length fluctuations are really important since L R 
varies from 60% of the mean reattachment length ( L R ∈ [0.7, 1.3]). 

Regarding the secondary anti-clockwise vortex, the PDF distribu- 

tion suggests that it could completely disappear from time to time. 

To compare with exiting results of the literature, altitudes of 

both the center ( z c ) and the edge ( z δ) of the mixing layer bound- 

ing the upper part of the separation, are plotted versus the stream- 

wise distance from the leading-edge ( Fig. 8 ). Definitions of z c and 

z δ are the ones used by Tafti and Vanka in their DNS study ( Tafti 

and Vanka, 1991 ). In fact, z c is the altitude where u rms reaches its 

maximum value. Following the early experimental studies of Djilali 

and Gartshore (1991) and Cherry et al. (1984) (see Tafti and Vanka, 

1991 ), the altitude ( z δ) of the mixing layer edge is defined as the 

location where u rms /U ∞ 

= 2 . 5 %. Present LES predictions of z c com- 

pare very well with values estimated from both the Pprime exper- 

iments ( Sicot et al., 2012 ) ( Fig. 8 , left) and the experimental re- 

sults from Kiya and Sasaki (1983) (that have been recorded from 

Tafti and Vanka, 1991 ) ( Fig. 8 , right). Since LES predictions with 

both subgrid-scale models on z c rather collapse, the subgrid-scale 

model does not affect very much the location where u rms is max- 

imum as we will see hereafter on the mean turbulence quantity 

profiles ( Fig. 12 , for instance). More variability is noticeable on the 

altitude of the mixing layer edge ( z δ) ( Fig. 8 ). The subgrid-scale 

model seems to have an influence of the edge position of the mix- 

ing layer. As we can see in the followings, the more diffusive the 

model, the thicker the mixing layer. The predictions obtained by 

means of the mixed-scale model better agree with experimental 

values of Kiya and Sasaki (1983) and the DNS values from Tafti 

and Vanka (1991) while those predicted by using the dynamic vor- 

ticity model are more in accordance with the Pprime experiments 

( Sicot et al., 2012 ). However, we must add that, as PIV measure- 

ments in the Pprime experiments ( Sicot et al., 2012 ) recorded high 

intensities of the free stream turbulence in the most downstream 

PIV window (see Fig. 12 ), it is delicate to extract the edge location. 

Fig. 8. Distributions of the altitudes of both the center ( z c ) and the edge ( z δ ) of the mixing layer: on the left, present LES results obtained with either the mixed-scale model

( ) or the dynamic vorticity model ( ), compared to the Pprime experiments ( Sicot et al., 2012 ) at Re H = 80 0 0 0 and, on the right, present LES results with 

mixed scale model compared to the experiments from Kiya & Sasaki (recorded from Tafti and Vanka, 1991 ), at Re H = 26 0 0 0 , and the DNS results from Tafti and Vanka 

(1991) , at Re H = 1 0 0 0 . 



Fig. 9. Streamwise wall pressure distributions obtained by LES either with the mixed-scales model ( ) or with the dynamic vorticity model ( ), compared to

experiments from Cherry et al. (1984) (red plained square), Kiya and Sasaki (1983) (red opened circle) and Sicot et al. (2012) (black plained diamond), on both the mean

(left) and the fluctuating (right) pressure coefficients. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)

Therefore, we only estimate the value of z δ from Pprime experi- 

ments ( Sicot et al., 2012 ). Though some discrepancies are notice- 

able in the LES predictions, the slope of z δ , mainly for the most 

downstream locations, agrees fairly well with experimental ones 

whatever the model is, in the contrary of the DNS of Tafti and 

Vanka (1991) . 

LES results on velocity and pressure, for instance, can be com- 

pared with different data obtained at several Reynolds numbers, 

when quantities made dimensionless by using reference values at 

infinity, are plotted versus dimensionless coordinates using L R as 

reference length. Fig. 9 shows the predicted streamwise distribu- 

tion of the wall mean pressure coefficient ( Cp = 2 . 
(<P> | wall −P ∞ 

) 

ρ∞ 

.U 2∞ 

) 

and its rms value ( Cp rms = 2 . 

√ 

<p ′ 2 > 
ρ∞ 

.U 2 ∞ 

), both compared to the exper- 

imental results of Cherry et al. (1984) . Regarding the LES results, 

the predicted general trend of the Cp distribution for both sub- 

grid models fit very well the experiments. The abrupt Cp increase 

has to be related to the mean flow deceleration in the longitudi- 

nal direction, upstream of the reattachment. The LES results pre- 

dict correctly the location from where the pressure rise occurs and 

correctly foresee this deceleration. Downstream the reattachment, 

the LES roughly recovers the mean pressure value at infinity, that 

however overpredicts the experimental values. Discrepancies on Cp 

between both subgrid models are not significative and are of the 

same order of differences between experiments. Though some dis- 

crepancies are noticeable on the streamwise distribution of Cp rms , 

the general trend of experimental data is recovered by the present 

LES results. The magnitude of the Cp rms peak is rather well pre- 

dicted since its value is in between experimental measurements 

of Kiya and Sasaki (1983) ; Sicot et al. (2012) ( Cp rms # 0 . 145 ) and 

Cherry et al. (1984) ( Cp rms # 01 . 25 ) ( Fig. 9 ). LES with the mixed- 

scale model predicts the Cp rms peak magnitude of 0.138 at a loca- 

tion x/L R = 0 . 79 which are in very good agreement with the values 

obtained by Tafti and Vanka (1991) through a DNS approach (see 

fig. 12 of Tafti and Vanka, 1991 ). 

Figs. 10 and 11 compare to the Pprime measurements ( Sicot 

et al., 2012 ), the streamwise ( < U > ) and the wall-normal ( < W > ) 

components of the mean velocity obtained by the present LES 

at several streamwise locations ( x/L R = 0 . 2 , 0.4, 0.8, 1., 1.5, 2.). 

From a general point of view, predicted and measured mean ve- 

locity profiles are in a fairly good agreement though the Reynolds 

number in the computations is much lower than in the experi- 

ments. No significant discrepancies on the mean velocity profiles 

are recorded between the two subgrid models. Note that profiles 

of the wall-normal mean velocity are generally not shown in pa- 

pers because large discrepancies are often recorded between ex- 

periments and simulations. Here, they fit very well experiments. 

Let us mention that very close to the wall, a few strange exper- 

imental values were recorded, mainly on the wall-normal com- 

ponent of the mean velocity. Following a private communication 

with Poitiers experimentalists, these “spurious” values must cer- 

tainly be attributed to laser-light reflection on the flat plate sur- 

face. Although the center of the mixing layer is rather well pre- 

dicted as mentioned above, LES results exhibit small discrepancies 

that must be analyzed, when they are compared to experimental 

profiles. At the first locations ( i.e. x/L R = 0 . 2 and 0.4), the stream- 

wise mean velocity is slightly overestimated in the outer flow. This 

might be attributed to a too important longitudinal velocity gradi- 

ent induced by an effect of solid blockage ratio (1/16 in the wall- 

normal direction, in the computations) which is greater than in the 

experiments, although non reflecting boundary conditions are ap- 

plied on the upper and the lower boundaries. Further downstream, 

the external mean velocity values rapidly recover the experimen- 

tal values. Similar trends as the ones predicted here are also no- 

ticeable on mean streamwise velocity profiles coming from both 

the DNS of Tafti and Vanka (1991) and the LES of Yang and Voke 

(2001) . Though discrepancies are here rather small, they might be 

attributed to a possibly low Reynolds number effect since the tran- 

sition in the mixing layer is slightly postponed more downstream 

and the diffusion seems barely higher afterwards. 

Comparisons on Reynolds stress component profiles between 

LES results and Pprime experiments ( Sicot et al., 2012 ) are illus- 

trated at several streamwise locations, in Figs. 12–14 . As men- 

tioned above, we note that the location of the mixing layer is 

rather well predicted so that it is not necessary to redefine the 

vertical coordinate as Tafti & Vanka did in Tafti and Vanka (1991) . 

Uncertainties of measurements are noticeable, mainly in the free 

stream where high turbulence intensity is recorded at several lo- 

cations. free stream turbulence intensities seem very high in the 

experiments since Although PIV measurements ( Sicot et al., 2012 ) 

recorded unusual high intensities of the free stream turbulence in 

the most downstream PIV window, under-predictions of both mod- 

els in the free stream part of the flow must be attributed to lack 

of inlet perturbations to mimic free stream turbulence. However 

elsewhere in the flow, we can remark that the present LES gives 

good results which compare favorably with previous LES results 



Fig. 10. Profiles in the wall-normal direction of the streamwise component of the mean velocity ( < U > / U ∞ ): LES results with either the mixed-scale model ( ) or the

dynamic vorticity model ( ), compared to Pprime experiments ( Sicot et al., 2012 ) ( ).

Fig. 11. Profiles in the wall-normal direction of the wall-normal component of the mean velocity ( < W > / U ∞ ): LES results with either the mixed-scale model ( ) or the

dynamic vorticity model ( ), compared to Pprime experiments ( Sicot et al., 2012 ) ( ).

( Langari and Yang, 2013; Tafti and Vanka, 1991; Yang and Voke, 

2001 ). At the first location ( x/L R = 0 . 2 ) the dynamic vorticity 

model largely overpredicts turbulence intensities and the turbu- 

lent shear-stress. This must come from the vertical gradient of the 

mean streamwise velocity that is greater than the experimental 

one at this location ( Fig. 10 ). The mixed-scale model agrees very 

well with experiments, especially on the vertical rms component 

( Fig. 13 ) and the turbulent shear-stress ( Fig. 14 ), though the peak 

of the streamwise rms component within the mixing layer is barely 

under-predicted ( Fig. 12 ). Further downstream, LES results obtained 

with both models agree rather well. Compared to Pprime experi- 

ments ( Sicot et al., 2012 ), LES overestimated turbulence intensities 

in the middle part of the detachment ( x/L R = 0 . 6 − 0 . 8 ). Further 

downstream, intensities of the Reynolds stress components are 

better estimated, though slight under-predictions are noticeable 

on the streamwise component ( Fig. 12 ) and the cross-correlation 

( Fig. 14 ). The maximum magnitude of the rms and cross-correlation 

values occur close to ( x/L R = 0 . 6 − 0 . 8 ) which is somewhat more 

upstream than in the experiments since maxima are reached close 

to the reattachment ( x/L R = 0 . 8 − 1 ). Then, the mean turbulence 

intensities decrease further downstream, to recover classical tur- 

bulent boundary layer levels while the turbulent boundary layer is 



Fig. 12. Profiles in the wall-normal direction of the streamwise Reynolds stress ( < u ′ 2 > 

1/2 / U ∞ ): LES results with either the mixed-scale model ( ) or the dynamic

vorticity model ( ), compared to Pprime experiments ( Sicot et al., 2012 ) ( ).

Fig. 13. Profiles in the wall-normal direction of the wall-normal Reynolds stress ( < w 

′ 2 > 

1/2 / U ∞ ): LES results with either the mixed-scale model ( ) or the dynamic

vorticity model ( ), compared to Pprime experiments ( Sicot et al., 2012 ) ( ).

far away of reaching an equilibrium state. Let us remark that these 

considerations on streamwise locations and magnitudes of mean 

turbulent quantity maxima are quite consistent with the stream- 

wise distribution of the rms pressure coefficient ( Fig. 9 ). 

To highlight the distortion occurring in the boundary layer de- 

tachment and just downstream, we plot the correlation coeffi- 

cient between the streamwise and the vertical fluctuations ( Fig. 15 ) 

which is almost constant in a standard turbulent boundary layer, 

reaching a value close to −<u ′w 

′> 
(u rms .w rms )

= 0 . 45 . We also plot the ratio

between the turbulent shear-stress and the turbulent kinetic en- 

ergy ( < k > = 

1 
2 (< u ′ 2 > + < w 

′ 2 > + < v ′ 2 > ) ), which normally re- 

covers an almost constant value −<u ′ w 

′ > 
<k>

= 

√ 

C μ = 0 . 3 following 

classical constant value for standard turbulent boundary layer. Re- 

sults obtained by means of the two subgrid-scale models rather 

agree with each other. However, some discrepancies are notice- 

able at the second location ( x/L R = 0 . 4 ) where peaks on 

−<u ′w 

′>
(u rms .w rms )

and 

−<u ′ w 

′ >
<k>

are clearly visible within the mixing layer on re- 

sults with the mixed-scale model while these quantities remain 

rather constant across the boundary layer with the dynamic vor- 

ticity model. This might suggest that the dynamics in the mixing 

layer occurs earlier than by using the mixed-scale model. This is 

also consistent with streamwise evolutions of both the mean quan- 

tity and the Reynolds stress profiles presented above. Across the 

detachment, maxima of ratios are situated within the mixing layer 



Fig. 14. Profiles in the wall-normal direction of turbulent shear-stress − < u ′ w 

′ > /U 2 ∞ ): LES results with either the mixed-scale model ( ) or the dynamic vorticity

model ( ), compared to Pprime experiments ( Sicot et al., 2012 ) ( ).

Fig. 15. Profiles in the wall-normal direction of the correlation coefficient −<u ′ w ′ > 
(u rms .w rms ) 

(bottom axis and blue lines) as well as the ratio −<u ′ w ′ > 
<k> 

(top axis and red lines): LES

results are obtained with either the mixed-scale model ( ) or the dynamic vorticity model ( ). (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)



Fig. 16. Longitudinal distribution of the vorticity thickness ( δω ) of the mixing layer

edging the separation, obtained with the mixed-scale model ( ) or the dy- 

namic vorticity model ( ). For comparison, classical values of the mixing

layer expansion ( Brown and Roshko, 1974; Cherry et al., 1984 ) are also reported.

exhibiting however rather high values compared to the standard 

values. At the reattachment location and further downstream, 

though high levels are recorded across the boundary layer, they de- 

crease in the streamwise direction to reach values ( i.e. −<u ′ w 

′ >
(u rms .w rms )

= 

0 . 48 ; −<u ′ w 

′ > 
<k>

= 0 . 33 ) that are rather close to standard values at 

the most downstream location analyzed ( x/L R = 2 . ). 

Present LES results on the mean velocity as well as on the mean 

turbulent quantities show the same trends as those of both the 

DNS results of Tafti and Vanka (1991) (see fig. 8, 9, 10 and 14 of 

Tafti and Vanka, 1991 ) and the LES of Yang and Voke (2001) (see 

Fig. 3 of Yang and Voke, 2001 ). Similar conclusions were already 

mentioned by these authors on the discrepancies occurring on the 

mean turbulent quantities, pointing out that these discrepancies 

might come from a low Reynolds number effect. 

It is well known that the mixing layer edging the separation 

mainly drives the dynamics of the flow in the separation region 

and even further downstream ( Castro and Epik, 1998; Cherry et al., 

1984; Yang and Voke, 2001 ). To be relevant, it is then mandatory 

that simulations correctly predict the main features of this mix- 

ing layer. As we saw before, the center and the edge of the mix- 

ing layer are rather well predicted by the present LES either with 

the mixed-scale model or the dynamic vorticity model. To better 

characterize the mixing layer, one of the common length scales 

generally used is the vorticity thickness ( δω ), defined as follows:

δω (x ) = 

(
< U > max z − < U > min z 

)
max z 

(
∂<U>

∂z

) . As it is well known ( Brown and 

Roshko, 1974; Cherry et al., 1984 ), ( δω ) must follow a linear evo- 

lution versus the main flow direction, as far as the mixing layer 

reaches an asymptotic behavior, i.e. downstream the first pairing of 

the Kelvin–Helmholtz rolls. The distribution of δω along the main 

flow direction is presented in the Fig. 16 for both the mixed-scale 

model and the dynamic vorticity model. Streamwise evolutions of 

the mixing layer expansion for both subgrid models seem consis- 

tent with distribution of pressure coefficients ( Fig. 9 ) and Reynolds 

stress profiles ( Figs. 12–14 ). Expansions of the mixing layer pre- 

dicted by the two subgrid models agree very well with the classical 

averaged slope value < d δω /d x > = 0 . 17 recovered by Cherry et al. 

(1984) through a collection of measurements resulting from the lit- 

erature. Predicted δω growth rates also agree very well with the 

upper bounds of expansion rate generally admitted for a single- 

stream mixing layer ( i.e. with effectively zero velocity on one side) 

which are in between 0.145 and 0.22 ( Brown and Roshko, 1974 ). 

6. Modal decomposition analysis

In all that follows, all quantities are nondimensionalized with 

the far-stream velocity U ∞ 

and the plate thickness H . 

6.1. The POD technique 

POD is a statistical technique ( Holmes et al., 1996 ) which ex- 

tracts the most energetic motions of the flow. Any physical quan- 

tity q ( x , t ) (which can be the velocity field, density, or any com- 

bination thereof) can be written as: 

q ( x , t) = 

∑ 

n ≥1

(λn ) 1 / 2 a n (t) φn 

q
( x ) , (19) 

where φn 

q 
is the n th eigenvector of the time-averaged spatial auto- 

correlation tensor ( < q ( x , t ) q ( x ′ , t ) > ), λn represents the energy 

of the n th mode, and a n ( t ) is the temporal coefficient representing 

the amplitude of the n th mode. 

A snapshot POD analysis ( Sirovich, 1987 ) was applied to the full 

field q = (ρ, v , E) over the entire numerical domain as well as to 

its restriction to the volume above the plate. No renormalization 

was applied to the different physical variables, i.e. the density, the 

velocity and the total energy. It has been shown in the case of ther- 

mal convection ( Podvin and Quéré, 2001 ) that rescaling had very 

little influence on POD results. Moreover, we checked that velocity 

modes obtained with the full field decomposition were similar to 

those obtained by considering only the velocity field, which is ex- 

pected since the flow is nearly incompressible. We also performed 

POD analysis of the surface pressure field on one of the horizontal 

wall of the plate. In both cases the method of snapshots was used 

with 320 fields with a time separation of 0.08 H / U ∞ 

time units. 

6.2. Full-field POD 

The full flow was included in the analysis and its time-average 

was found to be identical with the first POD mode. The POD en- 

ergy λ1 associated with the mean flow is much higher than the 

total fluctuating energy. As shown in Fig. 5 , a quasi-2D vortex can 

be distinguished in the recirculation bubble for the mean flow. The 

characteristics of the main vortex were determined from examina- 

tion of the flow streamlines. As mentioned earlier, the vertical ex- 

tent of the main vortex is about 0.5 H , which is equal to the height 

of the recirculation bubble. Its longitudinal extent is smaller than 

that of the bubble (2.5 H against 3.38 H ). 

Fig. 17 shows the higher-order eigenvalues n ≥ 2 when the POD 

was applied to the full field over the entire domain. We empha- 

size that the n-th most energetic fluctuation corresponds to the 

n + 1 th mode. The POD spectrum of the 3D velocity fluctuations 

is presented in Fig. 17 (a). No significant differences were observed 

when only the upper half-volume (flow above the plate) was con- 

sidered. The spectrum of the surface pressure fluctuations (on the 

upper wall) is shown in Fig. 17 (b). A blow-up of the spectrum for 

the largest modes is shown in the inset. The velocity spectrum de- 

cays relatively slowly: the 100th fluctuating velocity mode and an 

energy which is still 1/6 of the most energetic fluctuating mode, 

while in contrast that of the 100th pressure mode is less than 1/40 

that of the most energetic pressure mode. The relatively slow de- 

cay of the velocity spectrum is evidence of the complexity of the 



Fig. 17. (a) POD spectrum of the full field fluctuations ( n ≥ 2) (b) POD spectrum of the wall pressure fluctuations . 

Fig. 18. The frequency is nondimensionalized with the plate thickness (a) spectral density of the pressure POD coefficients a n p . The arrow indicates the location of the

Kelvin–Helmholtz frequency (b) spectral density of the POD energy
N+1 ∑ 

n =2

λn | ̂ a n ( f ) | 2 . 

flow. In contrast, the pressure field is relatively less complex, which 

can be expected from the fact that it is a scalar measured on a 

plane, while the velocity is 3D and obtained on the entire domain. 

The temporal amplitudes of the POD spatial modes were com- 

puted and their Fourier transform is represented in Fig. 18 . It 

shows that the POD organization of the flow consists of a super- 

position of modes associated with frequencies which increase with 

the order of the modes. The increase is essentially linear, which is 

reminiscent of wave-like structures. Fig. 18 (a) shows that the 50 

first modes of the velocity field are associated with low frequen- 

cies fU / H ∞ 

≤ 0.2. 

Fig. 18 (b) indicates that four peaks can be clearly identified in 

the total spectrum – one at the frequency of f 1 H/U ∞ 

= 0 . 04 − 0 . 05 , 

another at a frequency of f 2 H/U ∞ 

= 0 . 12 , still another at the fre- 

quency of f 3 H/U ∞ 

= 0 . 24 , and a distant peak at the frequency 

of f 4 H/U ∞ 

= 1 . 28 . The first three frequencies were also educed 

through a DMD decomposition applied on the same configuration 

( Debesse et al., 2016 ). 

The highest frequency peak ( f 4 ) is associated with mode num- 

bers 68 and 69, as is evidenced in Fig. 19 . It can be attributed to 

the Kelvin–Helmholtz mode of the mixing layer edging the separa- 

tion since f 4 matches the Strouhal number of the Kelvin–Helmholtz 

frequency recorded experimentally by numerous authors ( Bernal 

and Roshko, 1986; Delville, 1994 ), i.e. St ω = f 4 δω /U c = 0 . 33 , with 

the local vorticity thickness δω = (< U high > − < U low 

> ) / max y ∇ <

U >, see Fig. 16 and the local convection velocity U c = (< U high > 

+ < U low 

> ) / 2 . Looking at the eigenvector intensity φ69 

u 
of the 69th

POD mode, Fig. 19 (b) confirms that this frequency corresponds to 

mixing layer modes. 

Separated–reattached flows are characterized by two frequency 

modes which are related to shedding and flapping phenom- 

ena. The vortex shedding resulting from the large scale motion 

of the mixing layer, is characterized by a frequency peak band 

around f L R /U ∞ 

= 0 . 6 − 0 . 8 (corresponding to the shedding modes, 

f H/U ∞ 

= 0 . 12 − 0 . 16 ) ( Cherry et al., 1984; Kiya and Sasaki, 1983, 

1985 ). The flapping phenomenon is an overall dynamical mech- 

anism linked to successive enlargements and shrinkages of the 

separated zone. Its characteristic frequencies (corresponding to 

the flapping modes) are much lower than those of the shedding 

modes, e.g. fL R / U ∞ 

� 0.12 ( fH / U ∞ 

� 0.024) ( Cherry et al., 1984; 

Kiya and Sasaki, 1983; 1985 ). 

The two lowest frequencies ( f 1 and f 2 ) are the same as those as- 

sociated in the literature( Cherry et al., 1984; Kiya and Sasaki, 1985 ) 

with the recirculation bubble (the third frequency f 3 H/U ∞ 

= 0 . 24 

is simply likely to be a harmonic of f 2 H/U ∞ 

= 0 . 12 ). The low- 

est frequency f 1 H/U ∞ 

= 0 . 04 − 0 . 05 can be seen to correspond to 

the flapping frequency which is associated with the growth and 

shrinkage of the bubble ( Fouras and Soria, 1995 ). In fact, if this 

frequency is renormalized with the recirculation length, we find 

a dimensionless frequency which matches results in the literature 

( Cherry et al., 1984; Kiya and Sasaki, 1985 ). This time scale was 

compared to the circulation time scale T c associated with the main 

vortex within the bubble. An estimate for T c was obtained from se- 

lecting thirty points along a characteristic streamline and comput- 

ing their velocity. We found that T c ∼ 20 − 25 , which agrees very 

well with the flapping frequency. 

Kiya and Sasaki (1983, 1985_ predict a central frequency of 

fL R / U ∞ 

� 0.6 which is different from the one observed here when 



Fig. 19. Modes associated with the frequency f H/U 0 = 1 . 28 : (a) Spectral density of modes from a 67 to a 70 (from top to bottom); (b) cross-section y = 0 of the eigenvector 

intensity of the streamwise velocity φn

u 
for n = 69 . 

Fig. 20. Horizontal view of the second velocity POD mode at z = 0 . 4 H– the streamwise origin is located at the leading edge of the plate. 

normalized with our recirculation length. However f 2 H/U ∞ 

= 0 . 12 

does match the value they found if we scale the frequency with 

the thickness of the plate. This makes sense as the vortex shed- 

ding process corresponds to a Karman instability ( Roshko, 1955 ) in 

which the vortices interact with the wall, which creates by reflec- 

tion a row of aligned vortices (not staggered, unlike a classical vor- 

tex street) of opposite sign ( Sigurdson, 1995 ). The frequency should 

therefore scale with the vertical distance between the vortex and 

the wall, which depends on the bubble height, while the flapping 

frequency is associated with the recirculation time scale within the 

bubble, and therefore depends on the recirculation length. 

All modes n ≤ 10 were found to contain both the shedding and 

the flapping frequencies. It was not possible to separate both con- 

tributions in any of the modes either using Fourier transform or 

equivalently DMD decomposition Debesse et al. (2016) . This cou- 

pling supports the idea of a single physical origin for the two dif- 

ferent frequencies observed. 

Although both flapping and shedding are usually described as 

primarily two-dimensional processes, the structure of the flow is 

strongly three-dimensional, as illustrated in Fig. 20 by a horizon- 

tal section of the most energetic fluctuating mode. The coherence 

of fluctuations is especially pronounced beyond the reattachment 

point with an identified scale of about L y /3 ( i.e. a characteristic 

spanwise scale of L y /3 ∼ 1.667 H ). 

This is confirmed by the spectral analysis ( Fig. 21 ) that educes 

a characteristic wave number k y = 0 . 6 , i.e. a characteristic length 

scale λy = 1 . 667 H downstream the re-attachement. More up- 

stream ( x/L R = 0 . 4 , 0.6), two more wave numbers could also be 

clearly identified in the spectra, leading to characteristic spanwise 

lengths λy = H and λy = 0 . 71 H that can be glimpsed in Fig. 20 . 

6.3. Surface pressure POD 

POD analysis was also applied to the surface pressure along the 

plate. The pressure spectrum is shown in Fig. 17 (b). As could be ex- 

pected, since the domain is limited to a plane and only one scalar 

is considered, the convergence of the pressure spectrum is faster 

than that of the velocity. The first two modes are nearly equal, 

which suggests the presence of a spatio-temporal symmetry. The 

spectral content of the POD pressure modes can be seen to be very 

similar to that of the velocity counterparts. Higher-order modes are 

almost linearly associated with higher frequencies, with a signifi- 

cant low-frequency contribution observed in the first 100 modes 

of the field ( Fig. 22 (a)). In the first POD pressure modes, two main 

frequencies could be identified which correspond to the flapping 

and shedding frequencies observed for the POD velocity modes, as 

shown in Fig. 22 (b). For the first ten modes, a peak is present at 

f H/U ∞ 

= 0 . 05 , and a second one at f H/U ∞ 

= 0 . 13 , with a signif- 

icant content in the range [0.13, 0.17]. The Kelvin–Helmholtz fre- 

quency does not appear in the pressure spectrum. Let us recall that 

the pressure field is obtained at the upper surface of the plate. 

It is then not unexpected that the Kelvin–Helmholtz waves do 

not reach the surface as they are convected away from the plate. 

Fig. 23 shows the first four fluctuating POD pressure modes. It is 

clear that the two most energetic fluctuating modes are invariant 

in the spanwise direction. This is consistant with the aeroacous- 

tic analysis (Green’s function analysis) performed by Debesse et al. 

(2016) that argued that “only the transverse mean (0th-order span- 

wise Fourier mode) can be efficient in driving propagative pressure 

fluctuations”. The idea that the wall pressure fluctuations consti- 

tute the signature of vortices is supported by application of the ex- 



Fig. 21. Energy spectra versus the spanwise wave number of the fluctuating spanwise velocity recorded by LES from probes located around the centerline of the mixing layer

edging the separation: z = 0 . 1 on the left and z = 0 . 15 on the right. 

Fig. 22. The frequency is nondimensionalized with the plate thickness (a) spectral density of the pressure POD coefficients a np (b) spectral density of the POD energy
N+1 ∑ 

n =2

λn | ̂ a n p ( f ) | 2 . 

Fig. 23. Fluctuating pressure POD mode (a) n = 2 (b) n = 3 (c) n = 4 (d) n = 5 – the streamwise origin is located at the leading edge of the plate. 

tended POD. The extended POD velocity modes based on the pres- 

sure were computed, using the technique first put forth by Borée 

(2003) . If the n th pressure mode �n 
p can be written as 

�n 
p (x, y ) =

∑ 

a n p (t m ) p(x, y, t m ) , (20) 

the corresponding extended velocity mode can be obtained from 

�n 
u (p) (x, y, z) = 

∑ 

a n p (t m ) u (x, y, z, t m ) . (21)

Since the pressure is almost constant in the spanwise direction 

(at least for the highest two fluctuating modes), it makes sense 
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Fig. 24. Pressure-educed spanwise-averaged velocity mode (a) n = 2 (b) n = 3 (c) n = 4 (d) n = 5 – the streamwise origin is located at the leading edge of the plate. 

Fig. 25. Spanwise-averaged full POD velocity mode (a) n = 2 (b) n = 3 (c) n = 4 (d) n = 5 – the streamwise origin is located at the leading edge of the plate. 

to look at the spanwise average of the extended velocity modes, 

which are represented in Fig. 24 . 

The first two fluctuating modes consist of a strong vortex cen- 

tered above the reattachment point and convected outside the re- 

circulation bubble. This is in good agreement with the observations 

of Tran (2012) . The next two modes consist of a series of vortices 

located on either side of the reattachment point and over the en- 

tire extent of the boundary layer. The first vortex is located inside 

the recirculation zone. The size of the vortices increases with the 

streamwise distance and is about 2 . 5 − 3 H at the downstream end 

of the domain. The vortices are elongated and tilted at a angle of 

roughly 45 ° in the wall-normal direction. The center of the vor- 

tices is approximately located at a height of about 0.5 H . From the 

position of the vortices, the first two fluctuating pressure modes 

( n = 2 and n = 3 ) appear to be related to the shedding mode, while 

the modes n = 4 and n = 5 could be associated with the flapping 

mode. 

These modes can be compared with the spanwise average of 

the first POD velocity modes, which are represented in Fig. 25 . A 

significant difference with the pressure modes is that the fluctu- 

ations are much less important within the recirculation zone. The 

first pair of modes consists of essentially two vortices separated 

by a distance of about 2 . 5 − 3 H. The center of the vortices are lo- 

cated at a height of about 0.5 H . They are located downstream of 

the circulation bubble. The next pair of modes consists of similar 

vortices but their signature is strongest closer to the recirculation 

zone. The general characteristics of the vortices downstream of the 

recirculation zone appear to be essentially the same for the veloc- 

ity and the pressure-educed modes. However, the velocity vortices 

are less intense than the pressure-educed ones, which reflects the 

lack of homogeneity due to the finite width of the vortices associ- 

ated with the velocity modes. 

7. Conclusions and prospects

We present resolved LES results of the turbulent flow generated 

around a blunt flat plate with a sharp leading edge, obtained with 

a high-order scheme. A compressible approach has been adopted 

to allows us to study in conjunction both the velocity and the pres- 

sure behaviors. As far as to our knowledge, it is the first time a 

compressible LES of the flow around a blunt flat plate is performed 

to study the separated/reattached phenomenon, we first compare 

these original results to the incompressible ones for validation. Re- 

sults are then compared to experimental measurements coming 

from either PPRIME lab ( Sicot et al., 2012 ) or previous results from 

the literature. 

Mean and fluctuating velocity and pressure fields favorably 

compare to experiments when coordinates are re-scaled by using 

the reattachment length ( L R ) as far as the Reynolds number of the 

computation is lower than in the experiments. The dynamic fea- 

tures of the separation bubble are also very well predicted since 

the LES is able to educe the shedding, the flapping and the Kelvin–

Helmhotz modes as well as the growth of the turbulent mixing 

layer edging the separation. Some small discrepancies, very similar 

to those found in previous numerical studies published in the lit- 

erature, are however noticeable. We suspect that the low Reynolds 

number used in the present simulations could affect the transi- 

tion process and the turbulence development within the mixing 

layer which could contribute to these discrepancies. The sensitiv- 

ity to the Reynolds number might be checked in a future work. 



The relaxation process is also reviewed on some characteristics of 

the boundary layer. The distorsion of the boundary layer is mea- 

sured by the correlation coefficient between Reynolds stress com- 

ponents. While energetic mixing-layer like structures are present 

just downstream the reattachment, the standard values of Reynolds 

stress correlation coefficients are rather well recovered. A modal 

decomposition analysis is also proposed here to contribute to a 

better understanding of the coupling mechanisms between eddy 

structures and wall pressure fluctuations. POD and spectral analy- 

ses conducted here confirm that the most energetic motions con- 

sist of large-scale vortices shed behind the recirculation bubble. 

The spanwise extent of these vortices is of order H and their sep- 

aration is about 1 
2 H. These motions are characterized by two fre- 

quencies f H/U 0 = 0 . 04 and f H/U 0 = 0 . 12 , which are typically asso- 

ciated with the flapping of the recirculation bubble, and the shed- 

ding process. While L R / U ∞ 

seems to be an adequate reference time 

for the flapping mode, we claim that the frequency of the shed- 

ding mode better scales with H / U ∞ 

since it could be likely viewed 

as a Karman instability. The coupling between this two modes sug- 

gested by the POD supports the idea of a single origin for these 

two phenomena which needs more investigation for a better un- 

derstanding. POD analysis of the surface pressure shows that the 

pressure modes are quasi-invariant in the spanwise direction that 

is consistant with a previous aeroacoutic analysis ( Debesse et al., 

2016 ). The vortical motions associated with the pressure modes are 

most intense in the reattachment region where hairpin vortices are 

stretched by the acceleration downstream. Through a Extended- 

POD technique, pressure-educed velocity modes are analyzed. In 

full agreement with Tran (2012) , the most energetic wall pressure 

modes correspond to a strong vortex centered above the reattach- 

ment that has been convected outside the recirculation bubble. 

These most energetic wall pressure modes might be related to the 

shedding mode while next lower energetic wall pressure modes 

consisting of two same-sign vortices located on either side of the 

reattachment point might be related to the flapping mode. 
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