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1 Introduction

The AdS/CFT correspondence [1–4] provides a window into the dynamics of strongly cou-

pled systems by identifying the underlying field theory with a weakly coupled gravity dual.

In recent years the methods and scope of the AdS/CFT correspondence have shifted from

traditionally QCD-motivated problems to problems in the area of condensed matter sys-

tems (see reviews [5–8], and references therein). In particular, various models of holographic

s-wave [9, 10] and p-wave [11, 12] superconductors have been constructed.

Among the various paradigms in condensed matter physics, disorder is a fundamental

one as it provides a crucial step away from clean systems toward realistic ones. One

striking manifestation of disorder in non-interacting quantum systems is the phenomenon

of Anderson localization [13], where the conductivity can be completely suppressed by

quantum effects. The study of the interplay between disorder and interactions in quantum

systems has seen little progress on the theoretical side. Recently, however, in the context

of disordered conductors, Basko, Aleiner and Altshuler presented compelling evidence in

favor of a many-body localized phase, based on an analysis of the perturbation theory in

electron-electron interaction to all orders [14]. Subsequent works (see [15–18] and references

therein) have confirmed and sharpened the existence of a phase transition separating the

weakly and strongly interacting limits of electrons in disordered potentials.

Disorder is also particularly relevant in the context of superconductors; it has a rich

history dating back to the pioneering work of Anderson in 1959 [19]. For many years

Anderson’s theorem, stating that superconductivity is insensitive to perturbations that

do not destroy time-reversal invariance (pair breaking), provided the central intuition.
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Critiques to Anderson’s argument were raised, for example, in [20–23] where the effects of

strong localization were considered. More generally, the interplay between interactions and

disorder in superconductors cannot be considered settled. In view of this situation, it makes

sense to consider alternative models where the problem can be analyzed in full detail.

Indeed, in a previous work [24], we initiated a program of directly studying the role

of disorder in holographic superconductors which arguably apply to strongly interacting

superconductors. There have been other approaches to disorder in holography [25–31].

As in [24], we follow a very direct approach to the realization of disorder by coupling

an operator to a randomly distributed space-dependent source. Essentially, we directly

translate a typical condensed matter protocol into the AdS/CFT framework. Namely, we

choose a random space-dependent chemical potential by setting the boundary value of a

U(1) electric potential. The main rationale for this choice of disorder relies on the fact

that the chemical potential defines the local energy of a charge carrier placed at a given

position x, as it couples to the particle number n(x) locally. Therefore, our choice of

disorder replicates a local disorder in the on-site energy. This is the simplest protocol one

would implement. Moreover, once disorder is introduced in such an strongly interacting

system, all observables will become disordered and, therefore, the physics is not expected

to depend on the way disorder is originally introduced.

The direct approach outlined above has now been applied by other authors in the

context of holography. For example, it was used to argued for Anderson localization in [32].

Other interesting applications include [33] and [34].

It is worth mentioning that another very important motivation for our work is related

to the more general and far-reaching problem of translational invariance in holography.

Most holographic models respect translational invariance in the field theory directions.

This underlying translational invariance has adverse effects in applications involving trans-

port properties in condensed matter. Since translational invariance implies momentum

conservation, it means that the charge carriers have nowhere to dissipate their momentum,

resulting in a zero frequency delta function in the optical conductivity which obscures in-

teresting questions such as the temperature dependence of the DC resistivity. A lot of

effort has recently been devoted to addressing this shortcoming. Some progress has been

reported in [35–37]. Another approach to momentum dissipation include models of massive

gravity [38–41]. However, this latter approach struggles with issues of UV completeness of

the gravity models used.

The paper is organized as follows. In section 2, we review the construction of the

holographic p-wave superconductor. In section 3 we introduce our implementation of dis-

order and present some typical results. In section 4 we describe the different branches that

emerge in our setup and determine which one wins the thermodynamic competition by

comparing the free energy. In section 5 we present the disorder phase diagram. Next, in

section 6 we repeat the analysis for the case of noise with a non-flat power spectrum (which

is correlated along the length of the system). Section 7 is devoted to the power spectra of

the response. Namely we establish a fairly universal spectral response for the charge den-

sity and the condensate as a function of the spectral description of the disordered chemical

potential. We conclude in section 8 where we also point out some interesting directions.
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2 Review of the holographic p-wave superconductor

To build a holographic p-wave superconductor in 2+1 dimensions we start with the action

introduced originally in [11] and further studied in [12]. Namely, we consider the dynamics

of a SU(2) Yang-Mills field in a gravitational background:

S =

∫
d4x
√
−g
(

1

16πGN
(R− Λ)− 1

4q2
Tr Fµν F

µν

)
. (2.1)

In the limit where GN/q
2 is very small, gravity can be considered decoupled and then, the

Yang-Mills system is studied on the Schwarzschild-AdS metric:

ds2 =
1

z2

(
−f(z)dt2 +

dz2

f(z)
+ dx2 + dy2

)
,

f(z) = 1− z3 , (2.2)

where we have set the radius of AdS, R = 1, and the position of the horizon to zh = 1.

In [12] an Ansatz was chosen such that the spatial rotational symmetry is spontaneously

broken when the condensate breaking the gauge U(1) symmetry subgroup arises at low

temperatures.

The field strength in the action eq. (2.1) is given by

F aµν = ∂µA
a
ν − ∂νAaµ + fabcA

b
µA

c
ν , (2.3)

and the corresponding Yang-Mills equations of motion:

∇µF aµν + fabcA
b
µF

cµν = 0 . (2.4)

In what follows we specialize to SU(2) with the following generators (further conventions

are as in [42]):

Ti =
1

2
σi , {Ti, Tj} =

1

2
δijI . (2.5)

It is possible to consider more general groups, for example U(2), see [43, 44].

Motivated by condensed matter applications and, in particular superconductivity, we

are interested in a system at finite chemical potential which develops an instability at low

temperatures. One simple Ansatz that achieves this goal is

A = φ(z)dt T3 + wx(z)dxT1 . (2.6)

Following the AdS/CFT dictionary, one reads field theory information from the boundary

data of the gravity fields. Namely, the boundary (z → 0) values of the fields are:

φ(z) = µ− ρ z + o(z2) ,

wx(z) = w(0)
x + w(1)

x z + o(z2) . (2.7)

The field theory interpretation in terms of these boundary values is as follows: µ is a

chemical potential, ρ is the charge density, w
(0)
x is the source and w

(1)
x is the vacuum

– 3 –
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expectation value of the vector order parameter. Since we are interested in spontaneous

symmetry breaking we will require the source to vanish w
(0)
x = 0. Notice that due to

the rescaling that allowed us to set the horizon radius zh = 1, the chemical potential µ

is actually dimensionless and proportional to the ratio of the physical chemical potential

to the temperature. If one works in the grand canonical ensemble, where the chemical

potential is held fixed, the temperature of the system is thus given by T ∝ 1/µ. Hence in

the rest of the paper we will only talk about µ, with the understanding that it is equivalent

to the inverse of the temperature of the boundary field theory at fixed chemical potential.

An intuitive way of understanding the mechanism of condensation is as follows. The

gravity mode wx(z) has an effective mass of the form:

m2
eff = q2 gtt φ2 . (2.8)

Since gtt < 0, as we increase the value of µ the effective mass decreases and goes below

the BF bound in a sufficiently large region of space and, consequently, a zero mode of

wx(z) develops at some µc. Increasing µ above the critical value, µc, leads to the field con-

densing, and a new branch of solutions with nonzero condensate emerges. This instability

mechanism is fairly universal, appearing both in the s-wave [9, 10] and p-wave [11, 12]

holographic superconductors.

The asymptotic value of µ plays the role of chemical potential in the dual field theory.

It is worth mentioning that since the order parameter is determined by the asymptotic

value of the field w which is a vector, we have a vectorial order parameter.

To complete the analogy with the superconducting phase transition the conductivities

were computed for this system [11, 12], and qualitative agreement was established. More

recent studies of this system, some taking into account the gravitational back-reaction,

include: [37, 45–49].

3 Holographic p-wave superconductor with disorder

The main goal in this manuscript is the introduction of disorder in the x-direction of the

field theory dual. To be consistent with the equations of motion, we are not allowed to

choose the direction of the condensate freely as done in the previous section. We, therefore,

consider the following consistent Ansatz for the matter fields:

A = φ(x, z) dt T3 + wx(x, z)T1 dx+ wy(x, z)T1 dy + θ(x, z)T2 dt , (3.1)

where Ti are the SU(2) generators presented before in eq. (2.5).

The Yang-Mills equations of motion following from the Lagrangian (2.1) and the

Ansatz (3.1) are:

−∂2
zφ−

1

f
∂2
xφ+

1

f

(
w2
x + w2

y

)
φ+

1

f
θ∂xwx +

2

f
wx∂xθ = 0 , (3.2)

∂2
zwx +

f ′

f
∂zwx +

1

f2

(
φ2 + θ2

)
wx +

1

f2
φ∂xθ −

1

f2
θ∂xφ = 0 , (3.3)

∂2
zθ +

1

f
∂2
xθ −

1

f

(
w2
x + w2

y

)
θ +

1

f
φ∂xwx +

2

f
wx∂xφ = 0 , (3.4)

∂2
zwy +

1

f
∂2
xwy +

f ′

f
∂zwy +

1

f2

(
φ2 + θ2

)
wy = 0 . (3.5)
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These equations of motion satisfy the constraint

φ∂zθ − θ∂zφ− f ∂z∂xwx = 0 , (3.6)

which is a consequence of gauge fixing: Az = 0.

As in the previous case, discussed around eqs. (2.7), to uncover the physics of the

dual field theory we need to examine the boundary values of the supergravity fields. The

near boundary asymptotics of the solutions to equations (3.2)–(3.5) is given, at small

values of z, by:

φ(x, z) = µ(x)− ρ(x) z + o(z2) , (3.7)

wx(x, z) = w(0)
x (x) + w(1)

x (x) z + o(z2) , (3.8)

θ(x, z) = µ2(x)− ρ2(x) z + o(z2) , (3.9)

wy(x, z) = w(0)
y (x) + w(1)

y (x) z + o(z2) . (3.10)

The values µ(x) and ρ(x) correspond to space-dependent chemical potential and charge

density, respectively. Turning on a chemical potential in the direction T3 means breaking

SU(2) → U(1)3. The functions w
(0)
i (x) and w

(1)
i (x) are identified, under the holographic

duality, with the source and VEV of vectorial operators in the i direction. Finally, µ2(x)

and ρ2(x) are, respectively, a new chemical potential and charge density that are sourced

by the space-dependent condensate.

The near horizon conditions on the gravity fields are completely determined by reg-

ularity of the solution. Regularity, consequently, implies that At vanishes at the horizon.

Hence, we consider an asymptotic expansion about z ∼ 1 of the form

φ(x, z) = (1− z)φ
(1)
h (x) + (1− z)2 φ

(2)
h (x) + . . . ,

φ(x, z) = (1− z) θ
(1)
h (x) + (1− z)2 θ

(2)
h (x) + . . . ,

wi(x, z) = w
(0)
ih (x) + (1− z)w

(1)
ih (x) + (1− z)2w

(2)
ih (x) + . . . , (3.11)

where the ellipses stand for higher order terms.

For numerical reasons, we find it convenient to redefine some of the fields involved in

the equations of motion. Namely:

χi(x, z) = (1− z)wi(x, z) . (3.12)

In terms of the redefined fields (3.12) the equations (3.2)–(3.5) take the form

∂2
zφ+

1

f
∂2
x φ−

χ2

(1− z)2f
φ− 1

(1− z) f
(2χx ∂xθ + (∂xχx) θ) = 0 , (3.13a)

∂2
zθ +

1

f
∂2
xθ −

χ2

f(1− z)2
θ +

2χx ∂xφ+ (∂xχx)φ

f(1− z)
= 0 , (3.13b)

∂2
zχx +

(
f ′

f
+

2

1− z

)
∂zχx +

2f2 + (1− z) f f ′ + (1− z)2(θ2 + φ2))

(1− z)2 f2
χx+

+
1− z
f2

(φ∂xθ − (∂xφ) θ) = 0 , (3.13c)

∂2
zχy+

1

f
∂2
xχy+

(
f ′

f
+

2

1− z

)
∂zχy+

[
2

(1−z)2
+

1

f2
(θ2+φ2)+

f ′

f (1−z)

]
χy = 0 , (3.13d)

where χ2 = χ2
x + χ2

y.

– 5 –
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This redefinition leads to a simpler set of boundary conditions:

χi(x, 0) = 0 , θ(x, 0) = 0 , φ(x, 0) = µ(x) , UV z → 0 ,

χi(x, 1) = 0 , θ(x, 1) = 0 , φ(x, 1) = 0 , IR z → 1 . (3.14)

This choice of boundary conditions corresponds to a spontaneous breaking of the U(1)

symmetry with order parameter 〈O〉 ∝ w
(1)
i (x). From now on we use the angle brackets

associated with O exclusively to refer to the average over x. Moreover, we choose the con-

dition µ2 = 0 (vanishing source for the charge density in the T2 direction) since we want

a disordered version of the p-wave superconductor. Hence, the charge density ρ2 will be

spontaneously induced. In this case, since the symmetry of our action (2.1) is the whole

SU(2), we are effectively realizing a two-component superfluid as recently discussed in the

holographic framework in [42] following original ideas of [50], an important phenomenolog-

ical paradigm in various condensed matter situations. We will however not pursue these

questions in the present manuscript.

It is worth noticing that there are two simplified situations that might be taken into

account, given that they might include all the interesting physics but require less computing

power. It is easy to see that the equations (3.2)–(3.5) allow to consistently set wx = θ = 0

or wy = 0. This is equivalent to going to the two limits in which the system condenses in

the direction of the noise or in the direction perpendicular to the noise. We will devote

ample attention to these branches in section 4.

3.1 Introducing disorder

We are interested in solving the system given by equations (3.13) in the presence of disorder.

Let us take the following form for the noisy chemical potential:

µ(x) = µ0 + ε

k∗∑
k=k0

√
Sk cos(k x+ δk)

= µ0 + ε

k∗∑
k=k0

1

kα
cos(k x+ δk) , (3.15)

where δk is a random phase for each k and Sk is the power spectrum. For the case α = 0,

corresponding to a flat spectrum, in the limit of infinitely many modes (k∗ → ∞) the

function in eq. (3.15) tends to a Gaussian distributed random function. Instead, as we will

see below, for α > 0, the typical length scale of the noise is of the order of the system size.

In this latter case, the power of 1/k determines the differentiability properties of µ(x).

Let us now discuss, in detail, the properties of the correlation function of the disorder

we introduce above. It takes the form

〈µ(x)µ(0)〉 − µ2
0 =

k∗∑
k=k0

1

k2α
cos(kx) . (3.16)

For α > 0 this correlation function is periodic and does not diverge for large x. Moreover,

one could try and go to the continuum limit, replacing the sum in eq. (3.16) by an integral

– 6 –
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over k. The corresponding expression for the correlation function is then given by

〈µ(x)µ(0)〉 − µ2
0 ≈ |x|2α−1Γ(1− 2α) sin(απ) +

k1−2α
0

2α− 1
1F2

(
1

2
− α;

1

2
,

3

2
− α; −1

4
k2

0x
2

)
.

(3.17)

It is clear from this expression that thanks to the IR cutoff k0, no divergence appears in the

correlation function. Note, however, that the first term grows with distance, the second

term kills that divergence and the result is a damped oscillatory correlation function. More

explicitly, the large x limit of the expression above reads

〈µ(x)µ(0)〉 − µ2
0 →

k−2α
0

x
cos(k0x) + . . . . (3.18)

The power law decay of the correlation function, reminiscent of a critical system, does not

allow us to define a correlation length by the usual prescription. Lacking this, the oscilla-

tions define a length scale ∝ 1/k0, which could be as large as the system size. Therefore,

in a broad sense we can say that for α > 0 our noise is correlated along the whole system;

we will denote this case as correlated noise.

Low correlation in the noise can be achieved by taking α = 0 in (3.15), which results

in a correlation function of the form

〈µ(x)µ(0)〉 − µ2
0 =

k∗∑
k=k0

cos(kx) = Re

(
eik0 x

ei(k∗−k0+1)x − 1

eix − 1

)
. (3.19)

Notice that this function, which we plot in figure 1, is the closest to a delta function one

can get with a finite number of modes. Hence, in order to study a more realistic realization

of noise, in the bulk of the work presented in this article we consider the case where α = 0,

which we will denote as uncorrelated noise. However, the correlated noise (α > 0) presents

interesting features, such as a well defined continuum limit. Moreover, as in [24], it will

allow us to study the power spectra of the response functions in our setup. Therefore, in

sections 6 and 7 we will analyze the case of correlated noise (α > 0).

To implement the noise given by eq. (3.15) and solve the coupled PDEs (3.13), we

discretize the space and impose periodic boundary conditions in the x direction, leading

to a discretized k with values:

kn =
2π n

L
with 1 ≤ n ≤ L

2ax
, (3.20)

where L is the length in the x direction of our cylindrical space, and ax is the lattice spacing

in x. Note that there is an IR scale given by k0 and a UV scale defined by k∗.
1 Notice

that the UV scale k∗ is given by L/(2ax), and was chosen here to saturate the Nyquist

limit.2 However, as we explain below, when performing our numerical simulations we will

1Notice that both these two scales, as well as the chemical potential µ are measured in terms of the

temperature, since we have made use of the scaling symmetries of the problem to fix the horizon of the

black hole at zh = 1.
2Nyquist frequency is the highest frequency that can be reconstructed from a signal given a sample rate.

In order to recover all Fourier components of a periodic waveform, it is necessary to use a sampling rate

at least twice the highest waveform frequency. This can be understood from the fact that there are two

Fourier coefficients to fit for each frequency.

– 7 –
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Figure 1. Plot of the correlation function of our chemical potential, eq. (3.19), for the parameters

used in our numerical simulations: L = 2π, k∗ = 21.

take a k∗ sensibly smaller than L/(2ax), in order to allow for our lattice to be sensible to

higher harmonics sourced by our noise. In order to parametrize the strength of the noise,

which in eq. (3.15) is characterized by ε, let us introduce the variable w defined through

the expression

w =
25ε

µ0
, (3.21)

so that w corresponds to a strength relative to the chemical potential µ0.3 Naturally, w = 0

corresponds to the homogeneous case, while the largest w will be chosen by demanding

that µ(x) remains positive all along the system. Notice that this maximum value of w will

depend on the scales k0 and k∗, and for the case of correlated noise also on the power α

characterizing the power spectrum. Our definition of w corresponds, in the standard solid

state notation, to 1/kF l, where kF is the Fermi momentum and l is the mean free path [51].

Numerical methods. In order to solve the system of PDEs we have discretized it on

a rectangular lattice of size Nz × Nx, where Nz and Nx correspond, respectively, to the

number of points in the z and x directions. We used planar lattices for the x direction, and

Chebyshev grids along z. Consequently, the discretization of the derivatives was performed

using pseudo spectral methods (with periodic boundary conditions in the x direction).

To find solutions we employed a Newton-Raphson algorithm on lattices with a typical

size of 25× 90.

In the simulations performed to determine the phase diagram of our setup we set the

system length to L = 2π and take k∗ = 21 and α = 0. We are therefore truncating the sum

in eq. (3.15) at 21 modes. Notice that for a lattice with 90 points along the x directions,

saturating the Nyquist limit would correspond to a k∗ = 45, and hence 45 modes in the

sum (3.15). For this parameters, from eq. (3.19) we can establish a correlation length about

2.3% of L (the system size) or 2 lattice spacings. Finally, in figure 1 we plot the correlation

function (3.19) for this choice of parameters.

3The factor 1
25

is included to keep the same normalization as in [24].
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Figure 2. Example of a simulation corresponding to a noisy chemical potential with w = 2.95,

α = 0, and µ0 = 3.55 below the critical value of the homogeneous chemical potential (µc = 3.66). We

plot the original spatial-dependent chemical potential on the upper-left panel and the corresponding

solutions for the fields φ, θ and χx (χy = 0 for this solution) on the other three panels.

In figures 2, 3 we plot the results of a single typical simulation. In figure 2 we present the

random chemical potential µ(x) (upper left panel) together with the solutions for the fields

φ, θ, χx resulting from solving the system (3.13) with that chemical potential as boundary

condition. Instead, in figure 3 we present the boundary data read from this same solution.

First, notice that the plots presented in these figures correspond to a solution for which

the condensate lies purely in the x component of the vector parameter. We will comment

on the competition between different branches of solutions (with condensate parallel or

perpendicular to the direction of the noise) in section 4.

As expected, the introduction of disorder leads to a space-dependent charge density

and condensate in some cases which we plot in those figures. In a sense one could view

the gravity equations of motion as a tool that provides precise answers to the question:

given a random chemical potential in a strongly coupled system with a superconducting

transition, what is the value of the condensate and the charge density that the system uses

to respond to the random chemical potential?

Notice that the response to the source µ(x) is noisier for the VEV corresponding to

the same field, that is, ρ(x); while the VEVs realized by other fields, namely wx(x) and

ρ2(x), are visibly smoother. We will investigate this behavior in more detail in section 7.

It is worth pointing out, and we will use this result in the upcoming sections, that

we find that for a chemical potential below the critical (in the homogeneous case), there
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Figure 3. Boundary data corresponding to the same simulation as in figure 2. From the upper

left panel and in clockwise sense: µ(x), ρ(x), wx(x), and ρ2(x).

are values of the strength of the disorder that render the expectation value everywhere

non-vanishing; this is our definition of arriving at the superconducting phase via disorder.

3.2 Thermodynamic limit and self-averaging condensate

In the context of condensed matter physics it is quite important to consider the thermo-

dynamic limit. Namely, to study the properties of the system in the limit where its size

goes to infinity. The thermodynamic limit plays a particularly important role in systems

dominated by quenched randomness. In this subsection we address some issues related to

the thermodynamic limit as they apply to the the problem at hand.

Let us review, once more, all the scales involved in the problem, both, physical and

numerical. The three physical dimensionless scales of the problem are T/µ, w, and Lmu

corresponding respectively to the temperature, the strength of the noise, and the length of

the system in the x direction, all measured relative to the chemical potential. Since we are

solving the problem numerically using a lattice we have two extra scales: ax and az which

are the sizes of cells along the x and the z directions.

Discussing the thermodynamic limit is more than a mere academic question. Given

that the realization of disorder is intrinsically related to our way of solving the system

we need to show that there is a limit to which we are truly approximating. In general,

we expect that in the thermodynamic limit certain quantities will be self-averaging. A

property X is self-averaging if most realizations of the randomness have the same value

of X. More precisely, in the numerical context we use that: the system is said to be
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Figure 4. On the left panel we plot the average of the condensate versus the number of lattice

sites Nx, notice that it stabilizes in the thermodynamic limit. The right panel shows the variance

of the condensate versus Nx, and the blue dashed line shows the fit log(var(wx)/〈wx〉2) = −0.90−
3.03 log(Nx). These figures show that the condensate wx is self-averaging. The data results from

averaging over 50 realizations of a noisy chemical potential with α = 0, µ0 = 4.20, and w such

that w2 = 160/Nx (so that the variance of the noisy chemical potential is kept constant as Nx is

increased).

self-averaging with respect to property X if

< X2
n > − < Xn >

2

< Xn >2
→ 0, (3.22)

as the size, n, of the system goes to infinity. Here the angular brackets denote averages

over the realizations of the quenched randomness of the system and Xn is the value of

property X when the system has size n [52, 53].

We will define our thermodynamic limit as the limit in which the correlation length of

the disorder is negligible with respect to the length of the system. In order to do so we will

work with flat spectrum noise, which corresponds to setting α = 0 in eq. (3.15). Then the

scale ax (wich sets k∗ = π/ax) will determine the correlation length of the disorder in our

lattice. Increasing the number of points Nx of the lattice in the x direction while keeping

the length of the system fixed will now imply to decrease the correlation length of the noise

with respect to the size of the system. Using this prescription, we now study the self-

averaging property of the condensate in the x-direction, wx. We claim that the average of

the condensate stabilizes, while its variance goes to zero. Moreover, we provide numerical

evidence that this vanishing goes as a power law ∼ N−3
x (see Log-Log plot in figure 4).

The same procedure as described above can be applied to study the self-averaging

property of the charge density, ρ. The result is presented in figure 5, which clearly shows

that the charge density is indeed self-averaging in the thermodynamic limit.

4 Free energy and competing solutions

As already anticipated when we wrote the system of equations in section 3, there are

different branches or consistent truncations of the system of equations (3.13). One could

expect three main types of solutions:
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Figure 5. On the left we show the average of the charge density ρ versus the number of lattice

sites Nx, while on the right we plot the variance of ρ versus Nx. The blue dashed line results from

the fit log(var(ρ)/〈ρ〉2) = −2.92 − 3.13 log(Nx). These plots follow from the same set of data as

those in figure 4.

• Solutions with χx ≡ 0 and also θ ≡ 0, we will denote these solutions by Y , since

the vector order parameter lies in the direction transverse to the noise. Note that

in this approximation the system (3.13) reduces significantly. In particular, equa-

tions (3.13b) and (3.13c) are identically satisfied.

• Solutions where χy ≡ 0, we denote them by X, as they correspond to a vector

condensate along the x direction. In this limit the system of equations (3.13) leads

to a system with equation (3.13d) trivially satisfied.

• A third possibility would be that of solutions where all functions in the system (3.13)

are nonzero. These would correspond to a vector condensate pointing along an in-

termediate direction in the x y plane. However, our numerics indicate that these

solutions do not exist.

Let us elaborate a bit more about the absence of solutions where the condensate

lies along an intermediate direction in the x y plane. As is clear from the equations, in

the absence of noise the system in the normal phase is rotational invariant. Therefore,

symmetry-breaking solutions with the condensate along any arbitrary direction on the

plane are equivalent. However, as soon as some noise is turned on, our numerics converge

to solutions with the condensate being either parallel or orthogonal to the noise. We

checked this fact by starting from a broad family of seeds.

We will now study the free energy of the X and Y solutions to decide which of them

is energetically favorable. The free energy of the system is given in terms of the on-shell

action (2.1) as

Ω = −TSon−shell

Ly L
= (4.1)

= − 1

4L

∫ L

0
dxµ ρ+

1

4L

∫ L

0
dx

∫ 1

0
dz

1

f

[(
θ2 + φ2

) (
w2
x + w2

y

)
+ wx(φ∂xθ − θ ∂xφ)

]
,
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Figure 6. Subtracted free energy of competing solutions as a function of the strength of the

disorder, w. The blue (black) solid (dashed) line corresponds to the free energy of the X (Y)

solution subtracted from that of the normal phase. On the left panel we present the results for an

average chemical potential µ0 = 3.8 above the critical one. The plot on the right corresponds to

µ0 = 3.55 below the critical µc = 3.66. These plots result from averaging over 5 realizations on

lattices of size 25× 90.

where Ly is the length of the system in the y direction; this is a regulator we need in order

to get a finite result and will simply cancel out when integrating along the y direction since

the solutions are y independent.

In figure 6 we plot the free energy for the two kinds of superconducting solutions,

subtracted from that of the normal phase.4 We observe that, when it exists, the X solution

has always lower free energy. Therefore, in the rest of the paper when we refer to the

superconducting phase we will restrict ourselves to the X solutions, namely those with

condensate pointing in the direction parallel to the noise.

We shall now provide a heuristic explanation for the fact that the X solution is ener-

getically favorable (see [54, 55] for similar arguments). The key observation follows from

comparing the equations for the fields wx and wy, namely eqs. (3.3)–(3.5), which we repro-

duce for convenience

∂2
zwx +

f ′

f
∂zwx +

1

f2

(
φ2 + θ2

)
wx +

1

f2
φ∂xθ −

1

f2
θ∂xφ = 0 , (4.2)

∂2
zwy +

f ′

f
∂zwy +

1

f2

(
φ2 + θ2

)
wy +

1

f
∂2
xwy = 0 , (4.3)

We can, for example, consider that the mode wy is governed by an effective mass of the form:

m2
wy
∝ − 1

f2

(
φ2 + θ2

)
− 1

wyf
∂2
xwy. (4.4)

As noticed already in [55] the last term contributes a positive amount to the effective mass

and impedes condensation.5 Note, however, that the situation is different for the equation

describing the effective mass for the mode wx.

m2
wx
∝ − 1

f2

(
φ2 + θ2

)
− 1

wxf2
(φ∂xθ − θ∂xφ) . (4.5)

4In the normal phase θ = χx = χy = 0, and the system (3.13a)–(3.13d) reduces to the equation (3.13a).

The normal phase solution exists for all values of µ.
5Notice that at linear level one could Fourier transform the equation and consider the effect of a single

wave by replacing ∂x by i k.
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Figure 7. Spatial average of the condensate as a function of the strength of disorder. Each line

corresponds to an average over 25 realizations of noise (with α = 0) on a lattice of size 25 × 90.

The value of the condensate grows with increasing disorder strength, w. Each line corresponds to

a value of µ0 as indicated on the legend, but for the black dashed line which, as explained in the

text, marks the cut off used to define the critical temperature.

There is no term ∼ ∂2
xwx impeding condensation, and it can be argued that the last term

in the above effective mass is small, since the derivatives cancel at linear level. Thus,

condensation of the mode wy seems to be disfavored while for the mode wx it is not. Then,

one may expect the free energy of the X solution to be lower than that of the Y solution,

as our numerics show.

Finally, let us speculate on the consequences the outcome of this free energy com-

putation may have for more realistic systems with bidimensional inhomogeneities. Since

it turns out that the solutions with condensate parallel to the noise are always thermo-

dynamically preferred, one would expect that in the presence of disorder in two spatial

directions the condensate would point in the stiffest direction, thus following the gradient

of the bidimensional noise.

5 Toward the disordered phase diagram

In this section we present the phase diagram of the disordered holographic p-wave su-

perconductor. The key strategy is to repeat the simulations outlined in section 3 with a

random chemical potential µ(x) given by eq. (3.15) in the regime illustrated by figure 1,

and to do that enough times so that we develop meaningful statistics.

One of our main results is the dependence of the condensate on the strength of the

disorder, w, presented in figure 7. The results are qualitatively similar to the s-wave

results [24]. As there, we observe that the average of the condensate grows as the strength

of the disorder is increased. Moreover, for chemical potentials below the critical one,

strong enough disorder drives the system into a phase where the average of the condensate

is non-vanishing.
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Figure 8. Enhancement of Tc with the noise strength w (Tw=0
c stands for the critical temperature

in the absence of disorder). For values of w to the right of the red dashed line the chemical potential

becomes negative at its minimum.

To make direct contact with the condensed matter literature we propose a disordered

phase diagram in figure 8, where we track the value of the critical temperature of the

normal to superconductor phase transition as a function of the strength of the disorder.

Let us explain, for the benefit of clarity how we have proceeded. Since the value of the

condensate increases with the the strength of the disorder, we have determined a value of

the condensate above which we consider the system in the superconducting phase (black

dashed line in figure 7). We then read the average chemical potential6 and use the fact

that the only relevant scale is µ/T to determine the critical temperature. Let us advance

a potential criticism to out method. Clearly, it would have been more relevant to compute

the conductivities and determine the phase diagram based on a conductivity criterion [56];

we expect, as in all previous cases, that there is a direct relation between the existence

of a condensate and the transport properties of the holographic solutions. One important

aspect of figure 7 is its robustness. Namely, the precise form of the phase diagram varies

quantitatively depending on where precisely we draw the cut off line defining the “appear-

ance” of a nonzero condensate. However, qualitatively it is clear from the plot that the

conclusions are stable with respect to parallel shifts of the position of this cut off line.

Finally, let us try and explain the mechanism behind this enhancement of the critical

temperature. Looking at eq. (4.5) it is not evident that the noise would enhance condensa-

tion by lowering the effective mass. Actually the effect of the noise on the average (along x)

of that effective mass is almost negligible. However, the noise does have the effect of pro-

ducing regions (in the x direction) where the effective mass is below the critical value for

condensation. When these regions are large enough they trigger the condensation, resulting

in solutions where the condensate is nonzero along the whole sample (see figure 3); even in

the regions where the chemical potential is below its critical value (for the homogeneous

case) the condensate is nonzero.

6We refer to the average over realizations, not to be confused with the spatial average.
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Figure 9. Example of a simulation corresponding to a noisy chemical potential with w = 3.50,

α = 1.50, and µ0 = 3.50 below the critical value of the homogeneous chemical potential (µc = 3.66).

From the upper left panel and in clockwise sense: µ(x), ρ(x), wx(x), and ρ2(x).

6 Correlated noise

In this section we shall analyze the case of correlated noise, namely that when in eq. (3.15)

we consider α 6= 0. Although, as we have seen in eq. (3.18), this noise is correlated along

the whole system, it is still worth looking at its effect on the condensate, and check if

the main features of the response of the system are similar to those of the s-wave case

studied in [24].

Let us first specify the choice of parameters for our simulations. We will be using

the function (3.15) to implement a noisy chemical potential, setting the power spectrum

α = 1.5, the system length L = 2π, and the UV cut off k∗ = 1/ax saturating the Nyquist

limit. We again parametrize the strength of the noise in terms of w = 25ε
µ0

, and restrict

w to values for which the chemical potential µ(x) stays positive along the whole system.

We will run our simulations in lattices of size Nz × Nx = 25 × 75, and use the numerical

methods described in section 3.1.

In figure 9 we present a typical example of a simulation for a solution with correlated

noise and chemical potential µ0 = 3.50 below the critical value. As one can see, the

main features of this solution are similar to those of that in figure 3 for the uncorrelated

noise, although some of the effects of the disorder are more pronounced in this case. For

example, the difference in free energy among the different branches is visible directly in

the graphs in figure 10, where we plot the free energy of the X and Y condensed solutions

plus that of the normal phase. Another interesting observation following from that figure
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Figure 10. Free energy of competing solutions as a function of the strength of the disorder, w. We

consider values of µ0 below and above the critical one. The left panel corresponds to µ0 = 3.4 < µc,

and the right one to µ0 = 3.8 > µc (both with α = 1.50). The black dashed line corresponds to the

normal phase solution, the blue dot-dashed line to the Y solution, and the red solid line to the X

solution. These plots result from averaging over 5 realizations on lattices of size 22 × 40.
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Figure 11. On the left we plot the spatial average of the condensate as a function of the strength

of disorder. Each line corresponds to an average over 10 realizations of noise (with α = 1.50) on a

lattice of size 22 × 40. Each line corresponds to a value of µ0 as indicated on the legend, but for

the black dashed line which marks the cut off used to define the critical temperature. On the right

panel is shown the resulting phase diagram.

is that for the panel corresponding to µ0 = 3.4 < µc, all solutions coincide up to a noise

strength w ∼ 6. This reflects the fact that for w < 6 only the solution corresponding to

the normal phase exists.

As in section 5, by repeating our simulations for different values of the average chemical

potential we can study the dependence of the condensate on the strength of the disorder.

The results are plotted in figure 11, and are qualitatively similar to those for the s-wave

superconductor with correlated noise, presented in [24]. There are, however, some differ-

ences. First, the saturation for large values of µ0 is different as it seems that the condensate

takes relatively larger values of the average chemical potential with respect to the critical

one to stabilize. This observation is somewhat marred by the fact that, in general, going

to very high values of the chemical potential leads to a region where back-reaction has to
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be included and, therefore, renders the result in the probe limit unreliable. Second, there

seems to be the case that larger values of the chemical potential for the p-wave supercon-

ductor allow for an enhancement of the condensate with a higher slope that larger values

for the s-wave. There are, certainly, some similarities. For example, as in [24], the curves

are noisier at large disorder strength and even noisier for lower values of the chemical po-

tential. It could be suspected that such behavior is the result of numerical limitations but

we have run extensive simulations to that effect and verified that the effect is real and has

to do more with the nature of the system of equations in this regime of parameters.

Finally, as for the case of uncorrelated noise, a tentative phase diagram is presented

on the right panel of figure 11. It is constructed from the data on the left panel of that

figure, following the same procedure as that described in section 5 for the uncorrelated

noise. This phase diagram clearly shows that the introduction of correlated noise results

in an enhancement of the superconductivity very similar to that observed in [24] for the

case of the s-wave superconductor.

7 Spectral properties and disorder

In previous sections we have mostly focused on the average properties of the condensate

and the charge density. For example, in figures 7 and 11 we followed the average value

of the condensate as a function of the strength of the noise. Although this averaging is a

good proxy at first, it is instrumental to the nature of disorder that we look into properties

depending on the spatial coordinate x. In this section we will go beyond that first order

averaging study. Following [24] we continue the study of the spectral properties of some of

the quantities characterizing our system. Our goal is to gain a quantitative understanding.

As in [24], we establish certain universality of the power spectra of the condensate

and charge density as functions of the power spectrum of the signal defining the noise.

Namely, for a given random signal with power spectrum of the form k−2α we study the

power spectrum of the condensate k−2∆(α), of the charge density k−2Γ(α), and of the ρ2

charge density k−2Γ2(α); and report some interesting universal behavior. We interpret this

behavior as a particular form of renormalization of small wave-lengths. We argue that this

kind of smoothing/roughening points to a renormalization of sorts, where higher harmonics

in O are suppressed or enhanced with respect to their spectral weight in µ.

Let us now carefully describe our setup. To characterize this renormalization quanti-

tatively we take a boundary chemical potential of the form presented in equation (3.15),

but now considering different values for α (the choice of α determines the degree of dif-

ferentiability -smoothness- of the initial profile). To make the concept of renormalization

more precise we will study the power spectrum of the modes characterizing the response

of our system (the condensate, charge density ρ, and charge density ρ2), as a function of

the input power spectrum determining our noise. This input power spectrum of µ(x) is

essentially proportional to k−2α. Remarkably, the power spectrum of the condensate O(x)

is numerically well approximated by k−2∆ (see the rightmost panel of figure 12). We find

∆ ' 2.02 + 1.03α, which is clearly larger than α, meaning that the weight of the high-k

harmonics is smaller in O than in µ. The power spectrum of the charge density ρ is very
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Figure 12. Renormalization of the disorder: charge density ρ: Γ = −1.00 + 1.00α (left panel),

charge density ρ2: Γ2 = 1.07 + 1.01α (middle panel), and condensate: ∆ = 2.02 + 1.03α (right

panel). This plot was made considering L = 2π, µ0 = 4, w = 1, and averaging over 5 realizations

on a lattice of size 22× 75.

well approximated by k−2Γ(α) (figure 12 left panel) with Γ ' −1.00 + 1.00α, which implies

that for the charge density the weight of the high-k harmonics is larger than in the spec-

trum of µ. As for the charge density ρ2, again the spectrum approximates very well to a

power law k−2Γ2(α) (figure 12 middle panel), with Γ2 ' 2.02+1.03α. As for the condensate

the weight of the high-k harmonics is smaller than in µ.

Let us stress that the spectra of all the response functions are given by power laws, and

moreover, the exponent of these response power laws is always of the form ∼ α + integer.

This universality of RG is one of the main observations of our work and its origin seems to

be in the strongly coupled nature of the problem. The weak field theory intuition would

dictate that ∆ should be well approximated by the conformal dimension associated with

the order parameter and here we verify that it is not.

It is also interesting to point out that this behavior does not depend on any of the

parameters of our theory, i.e. L, T/µ or w. This means that we can redo figure 12 for the

charge density in the normal phase. This particular case is interesting, since the theory

becomes linear and we can therefore separate variables. Being that the case, we can recom-

pute the power spectrum solving the equations of motion using a simple Mathematica’s

NDSolve command. In this case we get Γ = −1.00 + 1.00α, which agrees with the result

presented in figure 12. It is worth mentioning that the same scalings were found in [24] for

the s-wave holographic superconductor, and similar ones have been observed in a related

holographic model by other authors in [33].

8 Conclusions

In this paper we have studied the influence of disorder in the holographic p-wave supercon-

ductor. We have found that moderate disorder enhances the value of the order parameter

and accordingly of the critical temperature. We have also discussed various branches of

solutions that appear in this particular setup since different solutions are characterized by

the dominant direction of the condensate.

We have established that the dominant solution, according to its free energy, is the

one with the condensate along the x-direction. We have also established that the con-

densate, 〈Ox〉/µ2, is enhanced with the disorder. Moreover, we have demonstrated the
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self-averaging property of 〈Ox〉 under Gaussian and uncorrelated randomness. We identify

this enhancement with the ulterior enhancement of superconductivity. The phase diagram

is similar to the s-wave superconductor reported in [24] and we presented its quantitative

form in section 5. The key property is that the curve delimiting the normal and super-

conducting phase shows an enhancement of the superconductivity with mild disorder. We

have also studied some universal properties of the power spectrum of the corresponding

condensate and charge density. We have found that the response is largely governed by a

simple linear relation depending on the power spectrum of the random chemical potential.

These results expand those presented first in [24] to the case of a disordered holographic

p-wave superconductor. Similar behavior was also reported in [33] in the perturbative

regime for a neutral scalar, and by some of the authors in gravity duals of brane intersec-

tions [56]. One of our main results, the enhancement of superfluidity with mild disorder,

is aligned with experimental and numerical claims of p-wave superfluidity enhancement by

disorder [57, 58].

We would like to finish by highlighting a few problems that are particularly interesting

to us and some of which we hope to pursue in future works. Having constructed the

disordered solutions in [24] and the present manuscript, it is natural to study transport

properties and, in particular, the conductivities. It would also be interesting to understand

the effects of disorder in more general types of holographic p-wave superconductors. Recall

that this type of superconductors present a particularly interesting challenge to Anderson’s

theorem given its directional order parameter. Some interesting models include [12] and

its extension to px + ipy along the lines of [59]. A recent study of conductivity in p-

wave superconductors was presented in [37], where some phenomenological similarities with

high temperature cuprate superconductors were found even in a translational invariant

holographic model. It would be interesting to study the persistence or modification of

such properties under the effect of introducing disorder as a way of breaking translational

invariance in these and similar systems.

Finally, as in [24], we have established the existence of fairly universal response of the

condensate and the charge density to the power spectrum of the random disorder. We view

this as evidence of some universality in cases of strongly coupled systems under a sort of

disorder renormalization. On the other hand, for very small values of k0, we found evidence

of a new scaling for the expectation values of one point functions. We expect to study this

potential universality in more detail in the future [56].
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