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Abstract

We study domination between different types of walks connecting two
non-adjacent vertices u and v of a graph (shortest paths, induced paths,
paths, tolled walks). We succeeded in characterizing those graphs in which
every uv-walk of one particular kind dominates every uv-walk of other spe-
cific kind. We thereby obtained new characterizations of standard graph
classes like chordal, interval and superfragile graphs.

Keywords: domination, paths, geodesics, chordal graphs, interval graphs.

2010 Mathematics Subject Classification: 05C38, 05C75, 05C69, 05C12.

1. Introduction

An interval representation of a graph G is a family (Iw)w∈V (G) of intervals of
the real line satisfying that two vertices of G are adjacent if and only if the cor-
responding intervals have nonempty intersection. Graphs admitting an interval
representation are called interval graphs [2, 9, 16]. A simple idea arising from
the topology of the line is that if P and P ′ are induced paths between two non-
adjacent vertices of an interval graph, then every internal vertex of P is adjacent
to some internal vertex of P ′, and vice versa. This property is not enough to
characterize interval graphs, a counterexample is the graph F2 in Figure 1 which
is not an interval graph. We wonder if interval graphs can be characterized in
terms of domination between paths. In a wider sense, we are interested in un-
derstanding the structure of those graphs in which for every pair of non-adjacent
vertices u and v, and every pair of uv-walks W and W ′, each internal vertex of
W ′ is adjacent to some internal vertex of W .
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Figure 1. Chordal forbidden induced subgraphs for interval graphs.

Inspired by such ideas we studied domination between different types of walks
connecting two non-adjacent vertices u and v of a graph G, not necessarily in-
terval. We succeeded in characterizing the graphs in which every uv-walk of one
particular kind inside tolled walks (which are introduced in the present work),
paths, induced paths or shortest paths dominates every uv-walk of other specific
kind. We thereby obtained new characterizations of standard graph classes like
chordal, interval and superfragile graphs [2].

In the context of convexity theory, several graph convexity spaces arise when
intervals are defined using different types of walks: geodesic convexity, mono-
phonic convexity [14], all-paths convexity [3], triangle-path convexity [4], longest-
path convexity [5], and others [10]. As a by-product, we prove that every geodesic
interval (monophonic interval) of a graph G is chordal if and only if in G there
exists domination between shortest paths (induced paths).

The main results are stated and proved in Section 3. Conclusions and some
remarks on related topics that may be motivating for future works are developed
in Section 4.

2. Definitions and Basic Results

Let G be a finite, simple and connected graph. The vertex set and the edge set
of G are denoted by V (G) and E(G), respectively. We write N(v) for the set
of neighbors of the vertex v and N [v] for the closed neighborhood. A clique is a
subset of pairwise adjacent vertices. A vertex v is simplicial if N(v) is a clique.
The subgraph induced in G by a subset S ⊆ V (G) is denoted by G[S].

A walk in G is a sequence W : v1, v2, . . . , vk whose terms are vertices of G,
not necessarily distinct, such that vi is adjacent to vi+1 for i ∈ {1, 2, . . . , k−1}. If
v1 = u and vk = v, we say that W connects u to v and refer to W as an uv-walk.
The vertices u and v are called the ends of the walk; the vertices v2, v3, . . . , vk−1

are its internal vertices. The integer k− 1 is the length of the walk. The distance

d(u, v) between the vertices u and v is the length of a shortest uv-walk.
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P4 C4

dart co− chair gem D

Figure 2. Graphs used to describe the graph classes considered in our results. They are
named as in [2].

An uv-tolled-walk is an uv-walk satisfying that the only internal vertex adja-
cent to v1 is v2 and the only internal vertex adjacent to vk is vk−1. An uv-path is
an uv-walk with all its vertices distinct. An uv-induced-path (or chordless path,
or monophonic path) is an uv-path such that two of its vertices are adjacent if
and only if they are consecutive. The chordless path of length k is denoted by
Pk. An uv-shortest-path (or geodesic) is an uv-path of length d(u, v).

Notice that every shortest-path is an induced-path and every induced-path is
a tolled-walk. However, paths and tolled-walks are incomparable: the sequence
u, 4, 2, 3, v of vertices of F2 in Figure 4 is an uv-path which is not an uv-tolled-
walk. In the same graph, the sequence u, 1, 2, w, 2, 3, v is an uv-tolled-walk that
is not an uv-path.

The walk W : v1, v2, . . . , vk contains the walk W ′ : v′1, v
′

2, . . . , v
′

ℓ if there exists
an strict increasing function Φ : {1, 2, . . . , ℓ} → {1, 2, . . . , k} such that v′i = vΦ(i)

for 1 ≤ i ≤ ℓ. Notice that this is a transitive relation between walks.
It is well known that every uv-walk contains some uv-path and that every uv-

path contains some uv-induced-path [17]. However, not every uv-induced-path
contains some uv-shortest-path.

Definition. The uv-walk W : v1, v2, . . . , vk dominates the uv-walk W ′ : v′1, v
′

2,
. . . , v′ℓ if every internal vertex of W ′ is adjacent to some internal vertex of W or
belongs to W , i.e., for every i ∈ {2, . . . , ℓ− 1} there exists j ∈ {2, . . . , k− 1} such
that either v′i is adjacent to vj or v′i = vj .

In order to simplify the statement of the main results in the next section, we
introduce the following notation.

W1(u, v) = {W : W is an uv-shortest-path},

W2(u, v) = {W : W is an uv-induced-path},

W3(u, v) = {W : W is an uv-path},
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cW3(u, v) = {W : W is an uv-tolled-walk},

W4(u, v) = {W : W is an uv-walk}.

The following two remarks summarize the relation between the different types
of walks we have considered.

Remark 1.

W1(u, v) ⊆ W2(u, v) ⊆ W3(u, v) ⊆ W4(u, v).

W1(u, v) ⊆ W2(u, v) ⊆ cW3(u, v) ⊆ W4(u, v).

Remark 2. If W ∈ W4(u, v), then W contains some W ′ ∈ W2(u, v).

A cycle of length k in a graph G is a path C : v1, v2, . . . , vk plus and edge
between v1 and vk. The edges vivi+1 for i ∈ {1, 2, . . . , k − 1} and vkv1 are the
edges of the cycle; any other edge of G between two vertices of C is called a chord.
The cycle of length k without chords is denoted by Ck.

Chordal graphs, defined as those graphs in which every cycle of length greater
than three has a chord, have been widely study and admit different character-
izations. As intersection graphs, chordal graphs are described as the graphs
admitting a representation by subtrees of a tree. Thus, clearly, every interval
graph is chordal. In terms of vertex elimination orders, chordal graphs are seen
as those graphs whose vertices can be totally ordered v1, v2, . . . , vn in such a way
that every vi is a simplicial vertex of G[{vi, vi+1, . . . , vn}]. See [2, 9] for more on
interval graphs, chordal graphs and related classes of graphs.

A distance-hereditary graph is a graph in which every induced path is a
geodesic [6]. A graph is Ptolemaic if for every four vertices v1, v2, v3 and v4,

d(v1, v2) · d(v3, v4) ≤ d(v1, v3) · d(v2, v4) + d(v1, v4) · d(v2, v3).

In [7], it was proved that Ptolemaic graphs are exactly the distance-hereditary
chordal graphs. The graph F1 in Figure 1 is Ptolemaic but it is not interval. The
graph gem in Figure 2 is an interval graph but it is not Ptolemaic.

A graph is superfragile [2, 15] if it has a vertex elimination order with re-
spect to the two rules below, such that at each stage every vertex is eligible for
elimination. Recall that P3 denotes the induced path with three vertices.

Rule 1. If v does not appear as an end vertex in an induced P3, then v may be
removed.

Rule 2. If v does not appear as an internal vertex in an induced P3, then v may
be removed.

Chordal, interval, Ptolemaic and superfragile graphs have been characterized
by forbidden induced subgraphs.
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Theorem 3. A graph is chordal if and only if it does not contain a chordless

cycle Ck with k ≥ 4 as induced subgraph.

Theorem 4 [8]. A graph is interval if and only if it is chordal and it does

not contain any one of the graphs F1, F2, F3,k or F4,k in Figure 1 as induced

subgraphs.

Theorem 5 [7]. A graph is Ptolemaic if and only if it is chordal and it does not

contain the graph gem in Figure 2 as induced subgraph.

Theorem 6 [15]. A graph is superfragile if and only if it contains none of the

graphs C4, P4 or dart in Figure 2 as induced subgraph.

Denote by Chordal, Interval, and Superfragile to the classes of chordal,
interval and superfragile graphs, respectively.

3. Main Results

Let G be any graph and i, j ∈ {1, 2, 3, 4}. We say that G ∈ Wi/Wj if for every
pair of non-adjacent vertices u and v of G, every W ∈ Wi(u, v) dominates every
W ′ ∈ Wj(u, v), i.e.,

W ∈ Wi(u, v) and W ′ ∈ Wj(u, v) implies W dominates W ′.

In an analogous way, we define Wi/cW3 and cW3/Wj.

The aim of the present paper is to describe the graph classes Wi/Wj. Our
main results are summarized in Table 1.

W1 W2 W3
cW3 W4

W1 g-Chordal Chordal Ptolemaic− Superfragile

W2 Chordal Chordal Ptolemaic− Interval Superfragile

W3 Chordal Chordal Ptolemaic− Interval Superfragile

cW3 Chordal Chordal Ptolemaic− Interval Superfragile

W4 Chordal Chordal Ptolemaic− Interval Superfragile

Table 1. With Wi in the first column and Wj in the first row, the table describe each

one of the graph classes Wi/Wj except W1/dW3. Recall that W1: shortest-paths; W2:

induced-paths; W3: paths; cW3 :tolled-walks; W4: walks. The classes Ptolemaic−

and g-Chordal are defined in 3 and 3. Theorem 15 provides a partial characterization

of W1/dW3. The classes W1/W1 and W1/dW3 are not closed under taking induced
subgraphs.
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Lemma 7. For every i, j ∈ {1, 2, 3, 4}, the following statements hold.

1. Wi/W1 ⊇ Wi/W2 ⊇ Wi/W3 ⊇ Wi/W4.

2. Wi/W1 ⊇ Wi/W2 ⊇ Wi/cW3 ⊇ Wi/W4.

3. cW3/W1 ⊇ cW3/W2 ⊇ cW3/W3 ⊇ cW3/W4.

4. cW3/W1 ⊇ cW3/W2 ⊇ cW3/cW3 ⊇ cW3/W4.

5. W4/Wj = cW3/Wj = W3/Wj = W2/Wj ⊆ W1/Wj.

6. W4/cW3 = cW3/cW3 = W3/cW3 = W2/cW3 ⊆ W1/cW3.

Proof. Statements 1, 2, 3 and 4 follow in a straightforward way from Remark 1.

Also by Remark 1, we have W4/Wj ⊆ W3/Wj ⊆ W2/Wj ⊆ W1/Wj. And
by Remark 2, W2/Wj ⊆ W3/Wj ⊆ W4/Wj. Thus, W4/Wj = W3/Wj =

W2/Wj ⊆ W1/Wj. In an analogous way, we have W4/Wj = cW3/Wj =
W2/Wj ⊆ W1/Wj, which completes the proof of statement 5.

Statement 6 has an identical proof to that of statement 5 replacing Wj by
cW3.

Notice that Lemma 7 implies that the last four rows of Table 1 must be the
same. The following theorems addresses the characterization of the classes in the
first two columns.

Theorem 8. W2/W1 = W2/W2 = W1/W2 = Chordal.

Proof. Let G be a chordal graph and assume, in order to derive a contradiction,
that G 6∈ W2/W2. Then there exist two non-adjacent vertices u and v, and
two uv-induced-paths W : w1, . . . , wm and W ′ : w′

1, . . . , w
′

ℓ such that W does
not dominate W ′. It follows that there is some internal vertex w′

k of W ′, which
is neither a vertex of W nor adjacent to an internal vertex of W . Denote by r
the greatest i < k such that w′

i is adjacent to some vertex of W . Notice that
1 ≤ r < k. Denote by s the smallest i > k such that w′

i is adjacent to some vertex
of W . Observe that k < s ≤ ℓ. We can choose the nearest vertices wr′ and ws′ of
W adjacent to w′

r and w′

s respectively (by nearest we mean minimizing | r′−s′ |).
Notice it could be r′ = s′. By the concatenation of the subpath of W ′ between
w′

r and w′

s and the subpath of W between ws′ and wr′ , we obtain the induced
cycle w′

r, . . . , w
′

k, . . . , w
′

s, ws′ , . . . , wr′ with at least four vertices, which contradicts
Theorem 3.

On the other hand, if a graph G has an induced cycle Ck with k ≥ 4, then
any two vertices u and v of the cycle at distance 2 determine on the cycle an
uv-shortest-path and an uv-induced-path such that neither of them dominates
the other. Thus W1/W2 and W2/W1 are contained in Chordal. Lemma 7
completes the proof.
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Definition. The class of Ptolemaic graphs which contain none of the graphs co-
chair or D in Figure 2 as induced subgraph is denoted by Ptolemaic−. In other
words,

Ptolemaic− = Ptolemaic ∩ {co-chair, D}-free
= Chordal ∩ {gem, co-chair, D}-free.

Theorem 9. W2/W3 = W1/W3 = Ptolemaic−.

Proof. Let G be a chordal graph with no induced subgraph isomorphic to a gem,
a co-chair or the graph D in Figure 2. Assume, in order to derive a contradiction,
that G 6∈ W2/W3. Then there exist two non-adjacent vertices u and v, an uv-
induced-path W : w1, . . . , wm and an uv-path W ′ : w′

1, . . . , w
′

ℓ satisfying that W
does not dominate W ′. Thus, there is some internal vertex w′

k of W ′ that is
neither a vertex of W nor adjacent to an internal vertex of W .

Without loss of generality, we can assume that W ′ is an uv-path with mini-
mum length between the ones that are not dominated by W . This implies that
the subpaths w′

1, . . . , w
′

k and w′

k, . . . , w
′

ℓ of W ′ are induced-paths. Since G is
chordal, by Theorem 8, W ′ is not an induced-path, thus there is some w′

i with
i < k which is adjacent to some w′

j with j > k; moreover, w′

k−1 must be adjacent
to w′

k+1.
Notice that w′

k−1 and w′

k+1 are not internal vertices of W , and the uv-path
w′

1, . . . , w
′

k−1, w
′

k+1, . . . , w
′

ℓ is dominated by W since it is shorter than W ′.
We will deal with two cases. First assume w′

k−1 6= u and w′

k+1 6= v. Then
both vertices, w′

k−1 and w′

k+1, are adjacent to some internal vertex wh of W .
We claim that wh−1 is non-adjacent to w′

k. Indeed, if it were then wh−1 would
not be an internal vertex of W , thus wh−1 = w1 = w′

1 = u, which contradicts the
fact that w′

1, . . . , w
′

k−1, w
′

k is an induced-path. Therefore, wh−1 must be adjacent
to both vertices w′

k−1 and w′

k+1 because in other case the vertices wh−1, wh, w
′

k−1,
w′

k and w′

k+1 induce a subgraph isomorphic to a gem or to a co-chair.
In an analogous way, we prove that wh+1 is non-adjacent to w′

k and adjacent
to w′

k−1 and w′

k+1.
It follows that the vertices wh−1, wh, wh+1, w

′

k−1, w
′

k and w′

k+1 induce a
subgraph isomorphic to the graph D in Figure 2, in contradiction with the hy-
pothesis.

Now we consider the case w′

k−1 = u or w′

k+1 = v. By symmetry considera-
tions, it is sufficient to address the case w′

k−1 = u. Observe that w′

k−1 = u implies
w′

k+1 is adjacent to u and to w2. Since w′

k is adjacent to no interval vertex of W
and it is not adjacent to v because, as we said previously, w′

k, . . . , w
′

ℓ is a chordless
path, it follows that w′

k is adjacent neither to w2 nor to w3. Therefore, if w3 is
non-adjacent to w′

k+1, then there is an induced co-chair, and if w3 is adjacent to
w′

k+1, then there is an induced gem, both cases contradict our assumptions.
On the other hand, by Lemma 7 and Theorem 8, W1/W3 ⊆ W1/W2 =

Chordal. Morover, as it is shown in Figure 3, each induced forbidden subgraph
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w u v u
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w u v
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Figure 3. In each graph above, the vertex labelled w belongs to an uv-path and it is
adjacent to no internal vertex of the bold uv-shortest-path.

for the class Ptolemaic− (gem, co-chair and D) has a pair of non-adjacent
vertices u and v, and an uv-path which is not dominated by an uv-shortest-path.
Thus the class W1/W3 is contained in Ptolemaic−. Lemma 7 completes the
proof.

Theorem 10. W2/cW3 = Interval.

Proof. Let G be an interval graph and assume, in order to derive a contradiction,
that G 6∈ W2/cW3. Then there exist two non-adjacent vertices u and v, an uv-
induced-path W : w1, . . . , wm and an uv-tolled-walk W ′ : w′

1, . . . , w
′

ℓ such that
W does not dominate W ′. It follows that there is some internal vertex w′

k of W ′,
which is neither a vertex of W nor adjacent to an internal vertex of W .

Let Iu = [xu, yu] and Iv = [xv, yv] with xu < yu < xv < yv be the intervals
corresponding to vertices u and v in a given interval representation of G. It is
clear that the segment of line [yu, xv] is contained in the union of the intervals
corresponding to the internal vertices of W , then we can assume that the interval
Iw′

k
is contained in (−∞, yu). This implies that there is a vertex w′

i with i > k ≥ 2
adjacent to u, which contradicts the fact that W ′ is an uv-tolled-walk.

On the other hand, by Lemma 7 and Theorem 8, W2/cW3 ⊆ W2/W2 =
Chordal. Moreover, as it is shown in Figure 4, each induced forbidden sub-
graph for the class Interval has a pair of non-adjacent vertices u and v, and an
uv-tolled-walk which is not dominated by an uv-induced-path. Thus the class
W2/cW3 is contained in Interval. Lemma 7 completes the proof.

Theorem 11. W1/W4 = W2/W4 = Superfragile.

Proof. Let G be superfragile and assume, in order to derive a contradiction,
that G 6∈ W2/W4. Then there exist two non-adjacent vertices u and v, an uv-
induced-paths W : w1, . . . , wm and an uv-walk W ′ : w′

1, . . . , w
′

ℓ such that W does
not dominate W ′. It follows that there is some internal vertex w′

k of W ′, which
is neither a vertex of W nor adjacent to an internal vertex of W .
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1 2 k 1 2 k

F1 F2 F3,k F4,k

u 1 2 3 v

w

4

w

4

u 1 2 3 v

u

y

v

w u

y′ y

v

w

Figure 4. In each graph above, the vertex labelled w belongs to an uv-tolled-walk W ′

and it is adjacent to no internal vertex of the bold uv-induced-path. For F1 take W ′ :
u, 1, 2, 4, w, 4, 2, 3, v; for F2, W

′ : u, 1, 2, w, 2, 3, v; for F3,k, W
′ : u, 1, 2, . . . , k, w, k, y, v;

and for F4,k take W ′ : u, 1, 2, . . . , k, w, y, v.

Since G has no induced P4, we have that W must be a P3: u,w,v for some
vertex w with w 6= w′

k and w non-adjacent to w′

k, and d(w′

k, u) ≤ 2.

If d(w′

k, u) = 1 and w′

k is adjacent to v, then there is an induced C4. If
d(w′

k, u) = 1 and w′

k is non-adjacent to v, then there is an induced P4. Both
cases contradict Theorem 6.

If d(w′

k, u) = 2, let w′

k,x,u be a shortest path. Notice that x 6= w and x 6= v.
In addition, w′

k is not adjacent to v because otherwise there will be an induced
P4 : w′

k, v, w, u. Moreover, x is adjacent to w because otherwise there will be an
induced P4 : w

′

k, x, u, w.

Thus, either x is adjacent to v and there is an induced subgraph isomorphic
to the graph dart in Figure 2, or x is non-adjacent to v and there is an induced
P4 : w

′

k, x, w, v. Both cases contradict again Theorem 6.

On the other hand, it is easy to see that each induced forbidden subgraph
for the class Superfragile (C4, P4, dart) in Figure 2 has a pair of non-adjacent
vertices u and v, and an uv-walk which is not dominated by an uv-shortest-path.
Notice that in the case of P4 : v1, v2, v3, v4, we can considerer u = v1, v = v3 and
the uv-walk u = v1, v2, v3, v4, v3 = v which is not dominated by the uv-shortest-
path u = v1, v2, v3 = v.

It follows that class W1/W4 is contained in Superfragile. Lemma 7 com-
pletes the proof.

Unlike the graph classes described by the preceding theorems, we will see
that W1/W1 and W1/dW3 are not hereditary classes of graphs, i.e., they are not
closed under taking induced subgraphs.

Indeed, it is easy to see that every cycle C2k with k > 2 plus an universal
vertex belongs to W1/W1, but the cycle C2k does not. Notice that the class of
C4-free diameter 2 graphs is contained in W1/W1 and that

Remark 12. If G ∈ W1/W1, then G is C4-free.
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Since the class W1/W1 is not hereditary, it cannot be characterized by for-
bidden induced subgraphs. Instead, we present in Theorem 14 a characterization
based on geodesic intervals.

The closed geodesic interval Ig[u, v] for two vertices u and v of a graph G
is the set of all vertices lying on some uv-shortest-path of G. Geodesic intervals
were studied and characterized by Nebeský [12, 13] and play an important role
in the study of metric and convexity properties of graphs [2, 11].

The vertices of Ig[u, v] can be partitioned into level sets Li for i ∈ {0, 1, . . . ,
d(u, v)} according to the distance to u by doing

Li = {x ∈ Ig[u, v] : d(u, x) = i}.

Lemma 13. If Li is a level set of a closed geodesic interval Ig[u, v] of a graph

G ∈ W1/W1, then Li is a clique.

Proof. First we will prove the proposition for i = 1. Assume, in order to obtain a
contradiction, that there exist two non-adjacent vertices v1 and v′1 in the level set
L1 of Ig[u, v]. Let P : u, v1, v2, . . . , v and P ′ : u, v′1, v

′

2, . . . , v be two uv-shortest-
paths. Since v′1 must be adjacent to some internal vertex of P , we have that v′1
is adjacent to v2, which implies the existence of the induced C4 : u, v1, v2, v

′

1 in
contradiction with Remark 12.

Now let i > 1 and assume, in order to obtain a contradiction, that vi and
v′i are two non-adjacent vertices in Li. As before, let P : u, v1, . . . , vi, . . . , v and
P ′ : u, v′1, . . . , v

′

i, . . . , v be uv-shortest-paths. Since v′i must be adjacent to some
internal vertex of P , we have that v′i is adjacent to vi−1 or to vi+1; without
loosing generality let v′i be adjacent to vi−1. It follows that vi and v′i belong to
the level set L1 of Ig[vi−1, v], thus vi and v′i are adjacent, in contradiction with
our assumption.

Definition. We let g-Chordal denote the class of graphs G in which any closed
geodesic interval induces a chordal subgraph.

Notice that the class of geodetic graphs (for every pair of its vertices there is
a unique shortest path between them [2]) is contained in g-Chordal.

Theorem 14. W1/W1 = g-Chordal.

Proof. Let u and v be vertices of a graph G ∈ W1/W1. In order to obtain a
contradiction, assume that k ≥ 4 and Ck : v1, v2, . . . , vk is an induced cycle in
the closed geodesic interval Ig[u, v]. For every j ∈ {1, . . . , k}, let Lji be the level
set of Ig[u, v] containing vi. We can clearly assume that j1 ≤ ji for 2 ≤ i ≤ k
and j2 = j1 + 1. By Lemma 13, two vertices of Ck in a same level are adjacent;
thus jk 6= j2. This implies jk = j1 and jk−1 = j2; so vk−1 and v2 are adjacent.
Therefore, k = 4 in contradiction with Remark 12.
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Now let P and P ′ be uv-shortest-paths with u and v two non-adjacent vertices
of a graph G ∈ g-Chordal. We have to prove that P dominates P ′. By definition
of g-Chordal, the subgraph G[Ig[u, v]] induced by Ig[u, v] is chordal. Since P
and P ′ are induced paths in G[Ig[u, v]], by Theorem 8, P dominates P ′.

The rest of the paper is devoted to the study of the more intricate class
W1/dW3. Observe that the graph F1 in Figure 4 does not belong to W1/dW3 (the
bold uv-induced-path is also an uv-shortest-path). However, F1 plus an universal

vertex (i.e., a vertex adjacent to every vertex of F1) belongs to W1/dW3 since it

is C4-free and has diameter 2. Consequently W1/dW3 is not hereditary. Theorem
15 presents a partial characterization of the graphs in this class.

Definition. A graph G belongs to the class Interval+ if G is chordal, contains
none of the graphs F2 or F4,k in Figure 1 as induced subgraph and satisfies the
following condition.

If G has an induced subgraph H isomorphic to F1 (F3,k), then the
distance in G between the vertices of F1 (F3,k) labelled u and v in
Figure 4 is 2, and any vertex of G adjacent to both u and v is universal
to F1 (F3,k).

Notice that every interval graph belongs to Interval+.

Theorem 15. W1/dW3 ⊆ Interval+.

Proof. Let G ∈ W1/dW3. By Lemma 7 and Theorem 8, W1/dW3 ⊆ W1/W2 =
Chordal, therefore G is chordal.

Assume, in order to obtain a contradiction, that G has an induced subgraph
isomorphic to the graph F2 in Figure 1. In Figure 4, we show two non-adjacent
vertices u and v of F2 and an uv-induced-path W which does not dominate an
uv-tolled-walk W ′. Since the length of W is 2 and u and v are non-adjacent, we
have that such W is also an uv-shortest-path in G. It contradicts the fact that
every shortest-path dominates every tolled-walk.

In analogous way it can be proved thatG has no induced subgraph isomorphic
to the graph F4,k.

Notice that using the same argument we can prove that if G has an induced
subgraph isomorphic to F3,k, then the distance in G between the vertices of F3,k

labelled u and v in Figure 4 cannot be 3, then it must be 2. Let x be the internal
vertex of some uv-shortest-path; clearly x is not a vertex of F3,k and is adjacent to

u and v. Since G ∈ W1/dW3 and W ′ : u, 1, 2, . . . , k, w, k, y, v is an uv-tolled-walk
(see Figure 4), it follows that x is adjacent to every vertex of F1.

A reasoning analogous to the one applied in the case of F3,k shows that if
G has an induced subgraph isomorphic to F1, then the distance in G between
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the vertices of F1 labelled u and v in Figure 4 is at most 3, and also resolves the
case d(u, v) = 2. We claim that d(u, v) = 3 leads to a contradiction. Indeed,
assume that u, x, z, v is an uv-shortest-path. Notice that neither x nor z may be
the vertex of T1 labelled w in Figure 4. In addition, since w is an internal vertex
of an uv-tolled-walk, x or z must be adjacent to w. Without loss of generality,
let x be adjacent to w. Thus u, x, w is an uw-shortest-path. Since G ∈ W1/dW3,
and u, 1, 2, 3, v, 3, 2, 4, w is an uw-tolled-walk, we have that x must be adjacent
to v, which contradicts that u, x, z, v is an uv-shortest-path.

4. Conclusions

We have obtained characterization of the graphs in which, for every pair of
non-adjacent vertices u and v, every uv-walk, tolled-walk, path, induced-path
or shortest-path dominates every uv-walk, tolled-walk, path, induced-path or
shortest-path, with the exception of those in which every uv-shortest-path domi-
nates every uv-tolled-walk. We let open the problem of determining if such graphs
are exactly the ones in Interval+.

Conjecture 16. Interval+ ⊆ W1/dW3.

We have proved that the classes W1/W1 and W1/dW3 are not hereditary
(closed under taking induced subgraphs), but W1/W2, W1/W3 and W1/W4

are.
Regarding to convexity theory, we propose the study of the convexity space

obtained by considering tolled-walk intervals.
We have proved that W1/W1 is the class of graphs in which every geodesic

interval is chordal, while W1/W2 is the class of graphs in which every mono-
phonic interval is chordal, we wonder what other graph classes can be character-
ized using this approach.

Finally, we observe the following property of g-Chordal. According to [11],
the interval function of a graph G is the mapping f : V (G) × V (G) → 2V (G)

given by f(u, v) = Ig[u, v] (the closed geodesic interval). It is clear that any
hereditary class of graphs is closed under the interval function, in the sense that
the subgraph induced by f(u, v) also belongs to the class. However, this is not
necessarily true for non-hereditary graph classes. We observe that the class g-

Chordal is closed for the interval function. Other non-hereditary graph class for
which this property holds is the class of median graphs [2, 10, 11].
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Note added in proof: Reference [2] in [1] is the present paper; the notion
of tolled-walk introduced in the current work was used there to develop the toll
convexity.
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