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ABSTRACT

In the scenario of rotating radiation-driven wind theory for massive stars, three types of stationary hydrodynamic
solutions are currently known: the classical ( fast) m-CAK solution, the Ω-slow solution that arises for fast rotators,
and the so-called δ-slow solution if high values of the δ line-force parameter are allowed independently of the
rotation speed. Compared to the fast solution, both “slow solutions” have lower terminal velocities. As the study of
the parameter domain for the slow solution is still incomplete, we perform a comprehensive analysis of the
distinctive flow regimes for B supergiants that emerge from a fine grid of rotation values, Ω, and various ionization
conditions in the wind(δ) parameter. The wind ionization defines two domains: one for fast outflowing winds and
the other for slow expanding flows. Both domains are clear-cut by a gap, where a kink/plateau structure of the
velocity law could exist for a finite interval of δ. The location and width of the gap depend on Teff and Ω. There is a
smooth and continuous transition between the Ω-slow and δ-slow regimes, a single Ω δ-slow regime. We discuss
different situations where the slow solutions can be found and the possibility of a switch between fast and slow
solutions in B supergiant winds. We compare the theoretical terminal velocity with observations of B and A
supergiants and find that the fast regime prevails mostly for early B supergiants while the slow wind regime
matches better for A and B mid- and late-type supergiants.
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1. INTRODUCTION

The standard theory of radiatively driven stellar winds,
which is based on the works of Castor et al. (1975), Abbott
(1982), Friend & Abbott (1986), and Pauldrach et al. (1986),
can be considered as a solid scenario to describe the wind
structure of hot evolved stars. This theory includes the main
features needed to successfully represent observed stellar wind
conditions (massloss and terminal velocity) of early B- and
O-type supergiants. However, large discrepancies are still
observed in the estimates of the wind parameters of supergiants
of mid-B, late B, and Atypes (see, e.g., Verdugo et al. 1999;
Crowther et al. 2006; Markova & Puls 2008; Searle
et al. 2008).

Standard models of radiation-driven winds generally make
use of approximations that reduce considerably the complexity
of the computation of the hydrodynamical solutions. One
example is the extensive use of a simple parameterization for
the velocity field, the so-called β-law, first proposed by Lamers
& Rogerson (1978). It is frequently used as an extension of a
direct result from the CAK theory (Castor et al. 1975), where
pressure gradients are neglected. This approximation has been
proved to be very effective and efficient to describe the winds
of O- and early B-typesupergiants (Crowther et al. 2006;
Markova & Puls 2008), although it provides a constraint for a
detailed analysis of the equation of motion when the effect of a
rotating star is considered.

Inclusion of rotation in the models brought remarkable
progress in the development of the theory of stellar winds.
Besides the classical m-CAK solution (Friend & Abbott 1986;
Pauldrach et al. 1986), hereafter called thefast solution, Curé
(2004) discovered the so-called Ω-slow solution for radiation-
driven winds in stars rotating at speeds close to their critical

(breakup) velocities, Vcrit, i.e., at Ω0.7–0.8, with Ω=Vrot/
Vcrit, where Vrot is the rotation velocity at the starʼs equator. As
compared with the fast solution, the Ω-slow solution leads to a
dense and slow wind, characterized by a lower terminal
velocity. It is worth mentioning that both regimes predict
almost the same mass-loss rate, but the fast solution tends to
deliver lower mass-loss rates.
Curé & Rial (2004) explored the topology of the CAK

solution (point star approximation) assuming a wind frozen in
ionization (δ=0, where δ is the ionization-related line-force
parameter;Abbott 1982)and concluded that the effect of the
rotation is to shift the location of the singular point down-
stream. Thus, the CAK solution is the only physical solution.
Then, these authors analyzed for this model all the solutions for
δ values ranging from 0.0 to 0.2 (typical values given by the
standard m-CAK theory) and found a bifurcation in the solution
topology, with the concurrence of two critical points: one is the
known standard CAK critical point, and the other is a
topological attractor located closer to the star surface.
Later on, Curé et al. (2011) showed the existence of another

type of slow hydrodynamical solution that results when the
parameter δ is assumed to behigher than the values provided
by the standard m-CAK formalism (Abbott 1982; Puls
et al. 2000). High values of δ, even larger than δ=1/3,
which corresponds to a medium with neutral hydrogen as a
trace element (Puls et al. 2000), are expected in strong
ionization gradients. This hydrodynamical solution, call-
edtheδ-slow solution, possesses low terminal velocities,
similar to those predicted by the Ω-slow solution, but without
the requirement of a high-speed rotator. The δ-slow solution
exists even for a nonrotating case. This solution fits quite well
the requirements of the anomalous correlation between ¥V Vesc
and Vescand the wind momentum–luminosity relationship
observed in A supergiants (Curé et al. 2011). However, these
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authors did not explore completely the domain of the δ-slow
solution to derive the parameter space for which δ produces a
switch between fast and slow outflowing regimes. Therefore,
many important topics concerning the behavior of the δ-slow
solution still remainunknown: (1) How is the δ-slow solution
linked to the stellar rotation? (2) What are the values of δ that
lead to a switch between fast and slow outflowing regimes? (3)
How do the slow solutions correlate with other fundamental
parameters of the star, such as effective temperature, stellar
mass, radius, metallicity, etc.? (4) Do the slow solutions
represent the wind structure of B supergiants?

This work is devoted to answering some of the above
questions, mainly when both the rotation (Ω) and different
wind ionization structures (δ) are present. To this purpose, we
perform a numerical analysis of the domains where the fast, Ω-
slow,and δ-slow solutions might exist. We explore the
resulting solutions considering an extended range of values
for δ, in combination with a fine grid of rotation rates
represented by Ω. In addition, we set the main parameters of
our test models for B supergiants, for which the standard theory
gives unsatisfactory estimates of the global parameters of their
winds.

In Section 2 we briefly present the basic hydrodynamic
equations for rotating radiation-driven winds and define the
grid of parameters for the models of this research. Section 3
shows the resulting values of mass-loss and terminal velocity
for each solution of the hydrodynamic equationsand also gives
a description of the domains for the fast, Ω-slow, and δ-slow
solutions. A discussion about the different wind regimes, a
discussion ofthe presence of a gap separating fast from slow
stationary solutions, and a brief comparison with observations
are given in Section 4. Conclusions and work in progress are
addressed in Section 5.

2. THE HYDRODYNAMICAL WIND MODEL

As was described in Curé (2004) and Curé et al. (2011), the
wind velocity profile is obtained by solving the radial
component of the momentum equation at the equatorial plane,
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where Fm is the mass flux.
Expressing ρas afunction of v from Equation (2) and

replacing it in Equation (1), we obtain the equation of motion,
hereafter EoM. The numerical solutions of the EoM give the
mass-loss rate,4 ˙ p=M F4 m, the radial velocity of the fluid, v
(r), and the mass density distribution of the wind, ρ(r), as a
function of the radial coordinate. The first term onthe right-
hand side of Equation (1) represents the force due to the gas
pressure p(r). The second term corresponds to the gravity force,
whereGis the universal gravitational constant, M* the stellar
mass, and Γ the correction due to the acceleration of the
continuum radiation. The third term is the centrifugal force, and

the last one is the radiative acceleration gline due to momentum
absorption in line transitions.
We adopt the m-CAK standard parameterization for the line

acceleration,
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which is expressed in terms of three line-force parameters (k, α,
and δ). The function fD is the finite disk correction factor, W(r)
is the dilution factor, and ( )n rE is the electron number density.
The line-force parameter k is included in the constant C
(eigenvalue), which depends on the mass-loss rate in the form
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where σE is the Thomson scattering constant and vth is the
thermal velocity of the fluid.
The CAK line-force parameters k, α, and δ are closely related

to physical properties of the wind. For instance, k and α
respectively describe the statistical dependence of lines on
frequency position and line strength, while δ is related to the
change in the ionization of the wind.
Alternative formulations of the radiation force (Müller &

Vink 2008) can also be expressed in terms of the m-CAK line-
force parameters (Araya et al. 2014).
In order to solve the above equations, we make use of the

code HYDWIND, which is extensively described by Curé (2004).
The main parameters adopted for modeling the stars are
summarized in Table 1. Each entry of the table is considered a
“basic model.” The first column is the shortname of the basic
model, and the following columns areeffective temperature,
Teff, surface gravity, glog , stellar radius R* in solar units, and
the values adopted for the line-force parameters, k and α. Most
of the values adopted in this table are based on the line-force
parameters (α and k) reported by Pauldrach et al. (1986) and
Abbott (1982), while the fundamental stellar parameters are
basically similar to the ones published by Searle et al. (2008).
All the models were computed using solar abundances. For
each of the“basic models” we look for the hydrodynamic
solution considering a grid of rotation rates ranging from
Ω=0.0 to 0.9, with intervals of 0.1, and δ values ranging from
0.0 to 0.4, in steps of 0.01. We find that the precision of this
grid is goodenough to satisfy our purposes on defining the
boundaries of each solution domain.
In this work, we solve the m-CAK EoM considering the

boundary condition τ*=2/3 at the stellar surface, for the

Table 1
Main Parameters for the Basic Models of B Supergiant Stars

Name Teff glog R* k α

(K) (cgs) (Re)

T13 13000 1.73 68 0.30 0.5
T15 15000 2.11 52 0.32 0.5
T17 17000 2.24 56 0.34 0.5
T19 19000 2.50 40 0.32 0.5
T21 21000 2.67 35 0.32 0.5
T23 23000 2.72 35 0.34 0.53
T25 25000 2.90 35 0.34 0.55

4 The expected mass-loss rate if we assume a spherical star.
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Table 2
Values of ¥v and Ṁ for Computed Models with Teff = 19,000 K (T19)

Ω

δ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

¥v Ṁ ¥v Ṁ ¥v Ṁ ¥v Ṁ ¥v Ṁ ¥v Ṁ ¥v Ṁ ¥v Ṁ ¥v Ṁ ¥v Ṁ

0.00 724.8 1.206 719.5 1.219 703.4 1.261 676.1 1.337 636.3 1.458 582.0 1.645 509.6 1.939 407.5 2.426 217.8 2.395 198.9 2.433
0.01 704.1 1.224 699.0 1.237 683.3 1.281 656.5 1.360 617.5 1.485 564.4 1.680 492.9 1.989 389.6 2.498 216.1 2.418 197.3 2.463
0.02 684.3 1.242 679.2 1.256 663.9 1.301 637.7 1.383 599.5 1.514 547.3 1.718 476.6 2.041 234.8 2.401 214.5 2.444 195.7 2.497
0.03 665.1 1.260 660.2 1.275 645.2 1.322 619.5 1.408 582.0 1.544 530.6 1.758 460.7 2.096 233.1 2.422 212.8 2.472 194.1 2.532
0.04 646.7 1.280 641.8 1.296 627.1 1.344 601.9 1.433 565.1 1.576 514.5 1.799 445.0 2.154 231.3 2.443 211.2 2.502 192.6 2.572
0.05 628.9 1.300 624.1 1.317 609.6 1.368 L L 548.7 1.610 498.8 1.843 429.5 2.216 229.6 2.468 209.6 2.536 191.0 2.615
0.06 611.6 1.322 607.0 1.339 592.8 1.392 L L 532.9 1.645 483.4 1.890 414.0 2.282 227.9 2.495 207.9 2.571 189.5 2.661
0.07 595.0 1.344 590.4 1.362 576.5 1.417 552.5 1.519 517.4 1.682 468.5 1.940 398.3 2.352 226.1 2.524 206.3 2.611 187.9 2.712
0.08 578.9 1.367 574.3 1.386 560.6 1.444 537.1 1.550 502.4 1.722 453.7 1.993 L L 224.4 2.557 204.7 2.654 186.4 2.767
0.09 563.2 1.392 558.8 1.411 545.3 1.472 522.0 1.584 487.7 1.764 439.3 2.049 244.3 2.497 222.6 2.592 203.1 2.701 184.9 2.827
0.10 548.1 1.418 543.7 1.438 530.4 1.502 507.4 1.619 473.4 1.809 424.9 2.109 242.1 2.526 220.9 2.631 201.5 2.753 183.4 2.894
0.11 533.3 1.445 529.0 1.467 515.9 1.534 493.2 1.656 459.4 1.856 410.6 2.173 239.9 2.557 219.1 2.673 199.9 2.809 L L
0.12 519.0 1.475 514.7 1.497 501.7 1.567 479.2 1.696 445.6 1.907 396.2 2.242 237.9 2.592 217.4 2.720 198.3 2.871 L L
0.13 505.1 1.506 500.8 1.529 488.0 1.603 465.6 1.739 432.0 1.962 L L 235.9 2.630 215.7 2.772 196.7 2.939 L L
0.14 491.5 1.539 487.3 1.563 474.5 1.641 452.3 1.785 418.5 2.021 L L 233.9 2.672 214.0 2.829 195.2 3.014 L L
0.15 478.2 1.574 474.0 1.600 461.3 1.682 439.1 1.834 405.1 2.084 L L 231.9 2.719 212.3 2.893 193.6 3.098 L L
0.16 465.2 1.612 461.0 1.640 448.4 1.727 426.2 1.888 391.4 2.153 L L 229.9 2.772 210.6 2.963 192.1 3.191 L L
0.17 452.4 1.653 448.3 1.682 435.6 1.774 413.3 1.945 L L 249.0 2.648 228.0 2.830 208.9 3.041 190.5 3.293 L L
0.18 439.9 1.697 435.8 1.728 423.1 1.826 400.4 2.008 L L 246.3 2.698 226.1 2.896 207.2 3.129 189.0 3.408 L L
0.19 427.5 1.745 423.4 1.778 410.6 1.882 387.3 2.076 L L 243.7 2.753 224.1 2.969 205.5 3.226 187.5 3.536 L L
0.20 415.3 1.797 411.1 1.832 398.1 1.943 L L L L 241.3 2.815 222.2 3.051 203.8 3.335 186.0 3.680 L L
0.21 403.1 1.854 398.9 1.891 385.4 2.010 L L L L 238.9 2.885 220.3 3.143 202.2 3.458 184.6 3.843 L L
0.22 390.9 1.916 386.5 1.957 L L L L 257.0 2.716 236.6 2.963 218.4 3.247 200.5 3.597 183.2 4.027 L L
0.23 378.3 1.986 373.4 2.029 L L L L 253.1 2.792 234.4 3.053 216.6 3.366 198.9 3.755 181.8 4.236 L L
0.24 L L L L L L L L 249.9 2.873 232.2 3.154 214.7 3.501 197.3 3.936 180.4 4.474 L L
0.25 L L L L L L L L 247.0 2.964 230.0 3.270 212.9 3.655 195.8 4.143 179.2 4.748 L L
0.26 L L L L L L 261.4 2.789 244.3 3.067 227.9 3.403 211.1 3.833 194.2 4.382 178.1 5.061 L L
0.27 L L L L L L 257.2 2.894 241.7 3.186 225.8 3.558 209.3 4.039 192.7 4.660 177.2 5.420 L L
0.28 L L L L L L 253.7 3.008 239.2 3.323 223.7 3.737 207.6 4.280 191.3 4.984 176.5 5.830 L L
0.29 L L L L 262.9 2.882 250.5 3.138 236.7 3.484 221.7 3.947 205.9 4.562 190.0 5.364 176.0 6.298 L L
0.30 270.8 2.775 267.2 2.842 258.8 3.017 247.5 3.289 234.3 3.672 219.7 4.196 204.2 4.898 188.9 5.808 176.0 6.831 L L
0.31 265.3 2.926 262.6 2.989 255.2 3.169 244.7 3.467 232.0 3.897 217.7 4.492 202.7 5.298 188.1 6.326 176.4 7.434 L L
0.32 261.1 3.087 258.7 3.153 252.0 3.348 242.0 3.679 229.7 4.165 215.9 4.849 201.3 5.777 187.7 6.929 177.2 8.111 L L
0.33 257.4 3.273 255.2 3.345 248.9 3.561 239.4 3.934 227.5 4.491 214.1 5.282 200.1 6.353 187.7 7.619 178.6 8.666 L L
0.34 254.0 3.496 251.9 3.576 246.0 3.820 236.9 4.246 225.4 4.892 212.5 5.813 199.3 7.039 188.4 8.402 180.6 9.703 L L
0.35 250.8 3.767 248.9 3.858 243.2 4.138 234.5 4.632 223.5 5.388 211.1 6.468 199.2 7.843 189.8 9.280 183.2 10.62 L L
0.36 247.8 4.105 246.0 4.210 240.6 4.537 232.2 5.118 221.7 6.013 210.1 7.269 199.7 8.764 191.9 10.26 L L L L
0.37 245.0 4.533 243.3 4.657 238.1 5.045 230.2 5.738 220.2 6.801 209.9 8.227 201.2 9.801 194.8 11.33 L L L L
0.38 242.4 5.088 240.8 5.237 235.9 5.704 228.4 6.538 219.3 7.783 210.6 9.332 203.6 10.95 198.5 12.51 L L L L
0.39 240.1 5.820 238.5 6.002 234.0 6.569 227.2 7.563 219.4 8.961 212.5 10.57 207.0 12.22 203.0 13.80 L L L L
0.40 238.2 6.799 236.8 7.020 232.7 7.700 226.9 8.834 220.9 10.30 215.6 11.93 211.4 13.60 208.3 15.18 L L L L

The units are kms−1 and 10−6 Me yr−1, respectively.
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monochromatic optical depth τ* defined as
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instead of fixing the value of the mass density at the same layer.

3. RESULTS

After solving the EoM for the “basic models” listed in
Table 1, we found that the radiation-driven wind solution for
stars with low Teff (lower than 23,000 K) shows a different
behavior than the resulting one from stars with high Teff. In this
section we present the results of the calculations and
summarize the main wind properties.

3.1. Flow Regimes for Stars with Low Teff

3.1.1. Distribution of the Solution Domains

In order to give a global overview of the nature of the
hydrodynamic solutions for the winds of mid- and late B-type
supergiants, it is first convenient to select from Table 1 one
“basic model.” To this purpose we choose the “basic model”
T19. Then we report on the differences found with the
remaining “basic models.”

A complete set of the global wind parameters ¥v (terminal
velocity) and Ṁ , related to model T19, are obtained for various
Ω and δ values (see Table 2). For some combinations of Ω and
δ parameters, no stationary solution is found by HYDWIND, and a
blank space is left in the corresponding places of the table. As
the HYDWIND code needs a trial velocity law for starting and
boosting the convergence rate, we apply a trial-and-error
approach, looking for the best well-behaved converged
solution. For each box that remains empty in Table 2, we
have attempted about 6000 runs of test parameters with no

result. Therefore, we are quite confident that there are no
simple stationary solutions for some combination of Ω and δ
parameters.
The distribution of the tabulated values of ¥v and Ṁ has

astraightforward interpretation (see Table 2). The solution
obtained for the basic model T19, considering low values of δ,
is consistent with the one expected for a fast classical radiation-
driven wind solution, with the exception of the results obtained
for Ω 0.8 that switch to a slow flow regime (Curé 2004;
Madura et al. 2007). The behavior of all solutions can be seen
in Figure 1,where the terminal velocities (left panel) and mass-
loss rates (right panel) are plotted against δ. Each curve,
represented by different colors (electronic version) and
different symbols, is the wind solution for a given Ω. For the
studied range of parameters it often results that the lower δ,the
higher ¥v and the lower Ṁ . The topleft branches of each
sequence of curves (Figure 1, left panel) correspond to the fast
solution. Their respective mass-loss rates are represented by the
bottomleft branches seen in Figure 1 (right panel).
At some value of δ, let us say δmin, which depends strongly

on Ω, the fast solution vanishes. The lack of a stationary
physical solution continues for a limited interval of consecutive
values of δ, higher than δmin, which originate a gap. Then for
values of δ higher than those thatencompass the upper limit of
the gap, δ�δmax, a physical stationary wind solution is
attained again, butnowthe found solution (δ-slow solution)
corresponds to a flow regime with lower terminal velocity and
higher mass-loss rate than the fast solution.
Both the location and the width of the gap depend on Ω. If Ω

is lower than ∼0.8, the gap takes place at higher values of δ. As
the rotation rate increases, the starting δ-value, δmin, diminishes
and the gap becomes thinner until it vanishes completely at
Ω; 0.8. For larger values of Ω no fast solution can be found
for any given value of δ. As an example, we can observe that in

Figure 1. Left: terminal velocities in kms−1 as a function of the parameter δ and the rotation rate (in color lines with dots) for model T19. Right: mass-loss rates in
units of 10−6 Me yr−1 as a function of δ and Ω. Note the gap that separates fast from slow solutions.
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the “basic nonrotating model” T19 (Ω=0.0) the width of the
gap (Δ δ=δmax−δmin), in a δ scale, is 0.07, while for
Ω=0.6 it shrinks to 0.02. At Ω=0.7 the gap is even smaller
(0.01) and is located between δ=0.1 and 0.2 (see Table 2).
Finally, for Ω 0.8, Δ δ=0. The location and the width of
the gaps, which represent a discontinuity in the solutions, are
illustrated in Figure 1.

After the gap, for δ�δmax, we find the domain of the slow
wind solution where the variation of the terminal velocity is
small, in contrast with the behavior of Ṁ , whichstrongly
enhances as δ increases. This is shown in the right branches
ofFigure 1 (left panel for the terminal velocity and right panel
for the mass-loss rate). Figure 2 shows color maps for the
different solution domains, terminal velocities, and mass-loss
rates corresponding to the “basic model” T19. It is noticeable
that there is a gap between fast and slow solutions (blank
region) and that there is no sharp boundary between δ-slow and
Ω-slow regimes.

The rotation speed contributes to enlarge the extent of the
slow solution domain. As the rotation rate raises, the gap shifts
toward lower values of δ and the slow solution domain
advances over the fast solution domain.

In the case of rapidly rotating stars (Ω�0.8), the solution is
of the type of the Ω-slow solution, since the centrifugal
acceleration term reduces the effective gravityand moves the
critical point leeward the location of the CAK sonic point. As a
consequence, a lower velocity gradient is established in the
subsonic region.

On the other hand, in the domain of slow rotators, the term of
the radiation force, expressed through the optical depth factor
t−α, dominates the momentum equation. Particularly, the
presence of ionization gradients (expressed by a factor of the
form ( )dn WE in Equation (1)) introduces an additional density
dependence, and its overall effect can be roughly accounted
forby substituting α for αeff=α−δ. The higher the δ, the
lower the αeff, with the consequent increment of Ṁ and
decrement of the wind speed. This kind of solution is of the
type of the δ-slow regime found by Curé et al. (2011).

The inverse variation of Ṁ and ¥v can be understood by
realizing that the product ˙ ¥M v is the momentum loss of the
wind, which, for slowly rotating radiation-driven winds, scales
with the momentum loss of the radiation L/c. In Figure 3 we

plot this behavior for model T19. We can observe there that
within the fast model domain ˙ ¥M v is almost constant, in
agreement with what it is expected. This dependence holds
even for high rotators with low δ values. However, in the slow δ
domain (high δ), the momentum loss enhances strongly as δ
increases. This means that the momentum transfer is more
efficient owingto the fact that the abundance of line-driving
ions decreases more steeply with distance than in a wind with
small values of δ.

3.1.2. Comparison with Other Models of Low Teff

All the models with Teff�21,000 K show analogous
behaviors akin to the already-described model T19 (see
Figures 4 and 5). This means that they supply a fast solution
when δ�δmin and a slow solution for δ�δmax. Both sets of
solutions are separated by a gap. Fast rotators (Ω�0.8) do not
deliver fast solutions at any value of δ, as Curé (2004)
demonstrated.

3.1.3. Remarks on the Gap

Figure 6 (left panel) plots the average of δ values at both
sides of the gap as a function of Ω, providing a rough reference
of the gap location in a δ scale. In all the models it is clear that

Figure 2. Color maps representing the behavior of terminal velocities (left panel) and mass-loss rates in units of 10−6 Me yr−1 (right panel) corresponding to the
“basic model” T19, as afunction of the parameter δ. In the first plot, the region below the gap (blank region) corresponds to the fast solution, while the above bluish
zone contains the slow solution. In the second plot, the region below the gap corresponds to the fast regime, while the upper region correspondsto the slow one.

Figure 3. Ratio between wind and radiation momentum losses vs. δ for model
T19. The momentum transfer becames more efficient within the slow solution
domain.
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the gap shifts toward lower values of δ as Ω increases. In
addition, this figure shows that the gap is centered at almost the
same values of δ even for different values of Teff. On the other
hand, Figure 6 (right panel) illustrates the variation of the gap

width (Δ δ=δmax−δmin in a δ scale), which diminishes as Ω
increases. In this figure, the sequence of basic models with Teff
values lower thanor equal to 21,000 K displays a similar
behavior.

Figure 4. Terminal velocities (left panel) and mass-loss rate (right panel) vs. δ for different values of Ω, for “basic models” T13 and T15. All these wind solutions
exhibit the same domain distribution, with a gap clearly dividing the fast and the slow regimes.

Figure 5. Same as Figure 4 but for “basic models” T17 and T21.
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3.2. Flow Regimes for Stars with High Teff

3.2.1. Distribution of the Solution Domains

For the tested models with effective temperatures larger than
21,000 K, whichare representative of early B-type supergiants,
the EoM does not achieve a converged solution for any value
of δ>δminand any given Ω parameter. Therefore, in the range
of the parameters tabulated in Table 1, the solution domain is
restricted only to the fast wind regime. Figure 7 depicts this
result for models T23 and T25, where the solution remains for δ
values (from 0.0 to around 0.25) lower than the typical δmin

found in the basic models with low Teff. This range of δ values,
which yields a fast solution, is in accordance with the values
predicted by the classical m-CAK model.

However, it is worth mentioning that the existence of the Ω-
slow solution has been reported by Curé (2004) andMadura
et al. (2007) for effective temperatures greater thanor equal to

25,000 K, but with a different setof α and k line force
parameter. We performed some tests for the basic model T25
using a lower value of k,and we were able to recover a small
set of slow solutions. Therefore, in a forthcoming paper we
plan to extend the grid of α and k parameters over the allowed
available parameter space of each model (R. O. J. Venero et al.
2016, in preparation). The reliability of these values will be
discussed by contrasting with observations.

4. DISCUSSION

4.1. Mathematical Properties of the Wind Solutions

From the analysis of the behavior of the 1D hydrodynamical
solution presented in Section 3, it is clear that the line-force
parameter δ, whichaccounts for changes of ionization
throughout the wind, is one of the responsible variables
(together with Ω) forsetting either a fast or a slow regime.

Figure 6. Left: mean value of the gap borders δm=(δmin+δmax)/2 (i.e., the location of the gap in δ scale) vs. Ω for models with Teff�21,000 K. The gap is located
closely at almost the same value of δ. Right: width of the gap in a δ scale vs. Ω for the “basic models” with Teff�21,000 K. The higher the rotation rate, the narrower
the gap.

Figure 7. Same as Figure 4 but for “basic models” T23 and T25. The slow solution is not present for the explored range of parameters.

7

The Astrophysical Journal, 822:28 (11pp), 2016 May 1 Venero et al.



Values of δ lower than δmin give rise to the standard m-CAK
solution (a fast wind regime) in agreement with most of the
published rotating hydrodynamic models. On the other hand,
high values of δ, greater than δmax, are reflected in the δ-slow
solution.

In the slow solution domain, two regions should be
distinguished where δ and Ω values dominate one over the
other. These are the δ-slow regime, for high ionization
gradients along winds (high δ) and low values of Ω, and the
Ω-slow regime, for fast rotators (Ω�0.8) and a low δ. We note
that there is a soft or no transition between both regions,
leading to a single common Ω δ-slow regime, as can be seen
from Table 2.

Fast and slow solution domains are separated by a gap at an
interval delimited by δmin<δ<δmax, where a nonstationary
solution has been found with HYDWIND. For fast rotators, this
gap is placed at lower values of δ. Hence, rotation modulates
the location and the width of the gap. There is also a
dependence of the parameters of the gap onTeff and the line-
force parameters α and k.

The existence of the gap hasbeen overlooked in previous
studies since all of them restricted their analysis to the δ values
given by the standard m-CAK model. Nevertheless, Curé &
Rial (2004), in their analysis of the topology of the CAK
solution, found a bifurcation when non-null Ω and δ values
were considered simultaneously. They also found a forbidden
region where no critical point could be located (Curé &
Rial 2004, see Figure 6). In our opinion, the gap that we are
reporting here could correspond to the analytical prolongation
of the forbidden region found by Curé & Rial (2004).

From now on, we restrict our analysis to stars with effective
temperatures in the interval between 13,000 and 21,000 K,
where the gap structure is present. The gap separates regions of
stationary solutions with different terminal velocities and mass-
loss rates. The differences between the terminal velocities at
both sides of the gap are small for the models with low
effective temperature. The difference in velocity increases
toward higher values of Teff and Ω. This result is displayed in
Figure 8 (left panel). Instead, the difference of mass-loss rate
diminishes as Ω increases (Figure 8, right panel). The relation
for Ṁ is steeper in the early Bsubtypes. In this panel, the
sequence of curves might not be continuous owingto the
choice of the k parameter, on which the massloss depends
strongly.
The main mathematical properties of the stationary solutions

for rotating radiation-driven winds that have been discussed in
the present paper are sketched in Table 3. The fast regime
corresponds to a high accelerated wind solution with ¥V Vesc
ratios greater than 0.9, while the slow regime results when a
low dv/dr is established and the ¥V Vesc ratios are lower
than 0.9.
One question still unanswered is about the possible structure

of the wind for the parameter space of the gap where no
stationary solution was found with the code HYDWIND. We
could wonder whetherthe wind settles down to another
stationary behavior or whether it turns into a chaotic time-
dependent regime. As the gap links a region dominated by a
fast regime with another with a slow outflowing flow, we can
glimpse that the wind regime would be unstable and turn from
fast to slow wind regimes and viceversa.

Figure 8. Left: jump in ¥V (in km s−1) between both boundaries of the gaps vs. Ω, for the “basic models” referred to in the legend. Right:same as the left panel but for
Ṁ (in units of 10−6 Me yr−1).

Table 3
Known Stationary Solutions for Radiation-driven Winds

Wind Regime Solution Type Properties Ω Range δ Range ¥V Vesc

fast m-CAK large acceleration <0.8 0.25 ∼0.9–2.3
low rotation

constant ionization

Ω-slow slow acceleration �0.8 0.25 ∼0.5–0.7
high rotation

slow
δ-slow slow acceleration <0.8 >δmax 0.9

ionization gradients

Note. The tabulated values are rough reference values that correspond to the models computed in this work. They could depend on other line-force parameters such
ask and α. Parameterδmax is the boundary at higher δ of the gap and depends on both Ω and Teff.
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To have a first glance about the wind structure inside the
gap, we perform a preliminary computation of the wind
hydrodynamics using the time-dependent code ZEUS-3D
(Clarke 1996, 2010) under the same assumptions used with
HYDWIND (i.e., 1D computation and radial forces). We used
three different sets of parameters representative of the gap
region and of the fast and slow solution domains. It is worth
mentioning that the code ZEUS-3D reproduces similar results
to the ones obtained previously with HYDWIND, but, in addition,
it provides a solution inside the gap. Figure 9 shows the
corresponding velocity fields obtained with the basic model
T19: a fast solution with δ=0.07 (green line), a δ-slow
solution with δ=0.33 (blue line), and a solution for the
conditions inside the gap (δ=0.26, red line), presenting a
sudden deceleration. The solution found inside the gap seems
to be stationary and displays a kink/plateau velocity field
structure.

Solutions with a kink structure have been discussed by
Cranmer & Owocki (1996) to explain the formation of discrete
absorption components (DACs) in O-type stars. Further studies
on the stability and properties of this solution are worth being
studied.

4.2. Physical Properties and Applications of the Models

In order to evaluate whether these models are capable
ofrepresenting the main features of a B supergiant wind, we
mustfirst determinethe constraints of their major assumptions.
The adopted 1D geometry is one of the basic hypotheses to
discuss from the beginning. Therefore, unless we model a fast
rotator (Ω 0.9) where the geometry of the system is strongly
axisymmetrical, we might accept that the wind structure is
nearly spherical and that the obtained radial component of the
velocity field is a representative solution at any latitude. In fact,
most of the B supergiants satisfy this condition since the
rotational velocity ofearly B supergiants is around 100 km s−1;
this value decreases toward late spectral types, being about
30or 40 km s−1 for A supergiants (Kudritzki et al. 1999). As
expected, 2D and 3D models enable usto explore many
characteristics of the winds that we cannot do with our simple
1D model, e.g., the influence of radial forces on the formation
of disk-like structure (Bjorkman & Cassinelli 1993) or the
effects of nonradial forces inhibiting it (Owocki et al. 1996),
and the formation of prolate non-LTE winds when gravity
darkening is considered (Petrenz & Puls 2000).

A second hypothesis to discuss is the use of the finite
diskspherical correction factor. As we are dealing with slow
rotators, we can neglect the oblate distorsion of the shape of the
star due to stellar rotation. However, this effect would be very
important in the case of fast rotators (i.e., B[e] supergiants). As
a consequence of the distorsion of the stellar surface, the starʼs
oblateness will contribute to acceleratinga polar wind and
originate slower and denser winds toward the equatorial plane.
Preliminary calculations on the effects of the oblate correction
factor were discussed by Araya et al. (2011), who found that
the topology of the hydrodynamical differential equation is
certainly modified and other critical points may exist. There-
fore, new hydrodynamical solutions are expected.
The third hypothesis involved in our models is related to the

assumption of a constant thermal velocity throughout the wind.
In principle, we expect that it has negligible effects on the
solutions when solving the momentum equation, since the
contribution of thermal pressure gradients corresponding to
changes of a few tens of thousands of kelvins would be of a
second order, with respect to the line-radiation acceleration.
However, the assumption of a constant temperature is a
weakness in our models since a nonconstant temperature would
change the wind ionization structure. In this work, these
ionization gradients are taken into account indirectly by
increasing the value of δ (which is assumed to be constant
along the wind), andin this wayit defines the wind regime and
stability.
The role of high-temperature gradients would alsobe

remarkable in very fast rotators (e.g., B[e] stars), where a
decrease in temperature from polar to equatorial regions is
expected. This effect would change the ionization structure of
the flow with latitude, leading to different wind regimes that
favor the formation of outflowing disk or kink structures.
Models based on this assumption were discussed by Zickgraf
et al. (1985), Lamers & Pauldrach (1991), and Curé et al.
(2005). In the last two works, the authors also analyzed the
effects of the bi-stability temperature jump as a mechanism to
produce a switch in the wind regime at a given latitude. The
main issue of these models is that they are restricted to critical
rotators with Teff close to the temperature of the bi-stability
jump (21,000 K;Lamers et al. 1995). Instead, the advantage of
the δ-slow solution is that it holds for a wider effective
temperature range (Teff<21,000 K) and has no restriction on
the rotation velocity of the star. This suggests that gradients of
temperature would favor diskformation in noncritical rotators
or allow the development of instabilities in wind, by switching
the wind conditions between regimes.
Another neglected effect in our models is the contribution of

meridional flows between polar and equatorial zones. These
flows, expected in very fast rotators, would increase the density
at the equatorial plane, making the diskstructure more relevant.
This problem, which is beyond the scope of the present work,
cannot be described by our simple model, and a 2D treatment
should be mandatory.
In spite of the simple assumptions of a spherical and

isothermal wind, our models enable us to describe quite well
the global features of the wind, such as mass-loss rates and
terminal velocities of moderately and slowly rotating B
supergiants. This agreement relies on the fact that most of
the B supergiants are slow rotators and that their thermal
pressure gradients are not so important.

Figure 9. Velocity fields computed with the ZEUS-3D code for aset of
parameters corresponding to the fast domain (green line), theslow domain
(blue line), and the gap (red line). Note that the solution corresponding to the
gap shows a kink or plateau structure.
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4.3. Transitions between Wind Regimes

In many circumstances, the ionization conditions along the
wind could change, producing a transit between two regimes
limited by the particular conditions around a gap. This is very
likely to occur along the evolution of a B supergiant, as Teff and
ionization conditions of the fluid slowly change. Hence, we
would expect switches between fast and slow outflowing
regimes, or viceversa. These mechanisms could contribute to
the understanding of phases of variable mass-loss rate along the
evolutionary stages.

Also, the fact that the δ-slow solution seems not to be present
in stars with Teff>21,000 K restricts the possibility of a switch
between fast and slow regimes at such hightemperatures. That
would provide an alternative physical explanation of the
empirical bi-stability jump observed around 21,000 K in B
supergiants (Lamers et al. 1995). These possibilities should be
explored in more detail and supported by observations.

In a short-term scale, another long-standing problem of
early-type stars is the presence of blueshifted narrow absorption
features (or DACs) superimposed on the wide absorption of the
P Cygni profiles (Morton 1976; Gathier et al. 1981). These
DACs are evident in a wide variety of objects,namely, W-R,
O, early binaries, B supergiants, Be stars, and Central Stars of
Planetary Nebulae (CSPN) (Prinja 1990). Many researchers
have pointed out that DACs are features related to optical depth
enhancements, originated by the presence of plateaus in the
velocity fields (Lamers et al. 1982). The wind solution obtained
with ZEUS-3D using conditions characteristic of a gap region
(Figure 9) resembles this scenario, with a kink/plateau on the
velocity fields. A temporal sequence of models for the
transition of a wind across a gap could explain why DACs
evolve accelerating through line profiles toward higher velocity
as they diminish its widths.

The evolution of DACs was also reported in some binary
systems during half of the orbital period (Arias et al. 2008). To
describe this phenomenon, we propose that the presence of a
hot companion overheats local regions on the star surface,
originating a bright spot, which can produce a local change in
the ionization and trigger a switch in the wind regime. This
switch should be phased with the orbital motion, giving rise to
line profile variations along the orbital period. This way, the
presence of the δ-slow solution and the switch mechanism may
support the Co-rotating Interaction Regions model (CIR-
s;Cranmer & Owocki 1996) proposed to explain the DACs.
It would be interesting to explore whethersuch a scheme is
suitable to describe the behavior of the observed features.

4.4. Wind Properties along the Spectral Sequence
of B Supergiants

As is shown in Figure 6 (left panel), the required values of δ
that might enable a switch between two different wind regimes
are almost the same forthe entireconsidered Teff range.
However, the switch is more probable for stars with low Teff
and high Ω, because of the thin width of the gap (Figure 6, right
panel).

It is generally accepted that most of the O and early B
supergiants can be modeled properly with a β velocity law with
β<1. However, as is mentioned in Section 1, A and late B
supergiants exhibit notorious departures from these values,
since often β�2. The difference in the behavior between both
groups (early B- and late B/A-type supergiants) is clearly seen

in the empirical ¥V Vesc versus Vesc relationship shown in
Figure 10 (symbols represent observations from Prinja
et al. 1990; Lamers et al. 1995; Achmad et al. 1997; Verdugo
et al. 1998), which shows two different slopes. This figure also
shows a comparison between the observations and the results
of our models. Vertical red bars, plotted for different basic
models, represent the range of ¥V Vesc values corresponding to
thefast solution with different δ values and Ω=0. This fast
solution fits quite well the terminal velocities measured in
earlyand mid-B supergiants. Instead, the small vertical blue
bars that correspond to the slow solution regimematch
properly earlyA supergiants and possibly some B late-type
stars (Figure 10, upward-pointingtriangles). Values of ¥V and
line-force parameters for the late B supergiants, which seem to
be an extension of the A supergiants, were derived by fitting
the observed line profiles with those computed with the slow
solution (Haucke et al. 2015).
Further remarks on the solutions obtained with models for

Teff lower than 21,000 K are as follows: (1) No solutions were
found for Ω�0.9 for basic models T13, T15, and, T17, which
correspond to the latest subtype stars. Instead, a few models
with low values of δ and very high values of Ω were found for
T19 and T21 basic models. (2) Ṁ decreases when δ increases,
i.e.,see the slow solution for basic models T15
(Teff=15,000 K) with a low Ω. While the dependence of ¥v
on Ω and δ seems to follow the same trend, in agreement with
the behavior described for the rest of the basic models, the slow
solution obtained for T15 presents a relationship between Ṁ
and δ with a negative slope. Hydrodynamical models for fast
O-type rotators also showed decreases in the mass-loss rate
toward the equator in response tothe computed line accelera-
tion (Müller & Vink 2014). From our results we support that
this peculiar behavior could be attained not only fordepen-
dence of Ṁ on δ but also forthe ratio T glogeff for a given set
of k and α line-force parameters. Extended research on this
dependence for an oblate star is currently under development.

5. CONCLUSIONS

In this work we perform a numerical study of the 1D
hydrodynamical solution for massive spherical rotating stars to
obtain the flow behavior in the δ−Ω domain, using the
condition of τ*=2/3 on the surface of the star. To this

Figure 10. ¥V Vesc vs. Vesc relationship comparing models with observations.
Vertical red bars correspond to the full range of thefast solution for the labeled
basic models and computed for the related values of δ. Blue vertical bars
represent the range of ¥V Vesc values for the slow regime. The blue bars could
extend even more toward low values of ¥V Vesc thanplotted here, because we
impose a limit value for δ (0.4).
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purpose, we consider stellar fundamental parameters of typical
B supergiants. The radiation force is modeled within the frame
of the m-CAK theory, with the exception that the range of δ was
spread out to take into account different ionization structures.
We also analyze the behavior of the solution with Ω (the
rotation rate). We find well-defined domains that can lead to
either fast or slow outflowing regimes.

At high Teff, hotter than 21,000 K, only the fast standard m-
CAK solutions seem to be present among the selected range of
parameters. For Teff�21,000 Kand a given rotation speed,
low values of δ (δ<δmin) yield a fast outflowing regime with
an almost constant wind-momentum loss, while high values of
δ (δ>δmax) lead to a slow expanding wind with a higher
momentum removal efficiency. No wind solution was found
with HYDWIND for values of δ inside the interval
δmin<δ<δmax. However, a time-dependent hydrodynamical
calculation yields a stationary solution inside the gap that
displays a kink/plateau velocity field structure.

The location of this gap shifts toward the lowest values of
δand becomes narrower as the rotation rate Ω increases. In the
domain of the fastest rotators, only the slow solutions remain
and there is no evident difference between the behavior of the
δ-slow solution close to the critical rotation speed and the
known behavior of the Ω-slow solution reported by Curé
(2004). Therefore, we conclude that both solutions belong to
the same family of solutions, and we propose to call them the
Ω δ-slow solutions.

We also show that the terminal velocities observed in
earlyand mid-B supergiants fit the results of fast outflowing
winds while those of lateB and, mainly, earlyA super-
giantsmatch the results for slow stationary outflowing wind
regimes.

We propose that it would be possible to have a switch
between fast and slow regimes, originated by changes in the
ionization conditions, leading to wind variations. This effect
could be more important in fast rotators because the variation in
δ needed to jump the gap is considerablysmall.

On the other hand, the fact that the δ-slow solution seems not
to be present in stars with Teff>21,000 Krestricts the
possibility of a switch between fast and slow regimes at such
hightemperatures. That would provide an alternative physical
explanation of the empirical bi-stability jump observed around
21,000 K in B supergiants (Lamers et al. 1995). In addition, as
a consecuence of this switch, a star has to go through (or
remain inside) the gap; therefore, it should show the evolution
of DACs.

In a forthcoming paper, which is currently under develop-
ment, we will presentextended research on the relevance of the
remaining line-force parameters, α and k, and evaluate their
effects on the solutions together with Ω and δ. We also plan to
replace the condition of τ* by a fixed value of the photospheric
density. In addition, we plan to compute the emergent spectral
line profiles and discuss the applications of the current known
hydrodynamic solutions to the outflowing winds observed in
many B supergiants. The nature of the wind regime inside a
gap and its related effects are worthexploringin detail. All

these new results would allow us to revisit important features of
the winds of massive stars, like the evolution of DACS and the
windmomentum–luminosity relationship.

We thank our anonymous referee for many helpful
comments and suggestions. R.O.J.V. and L.C. acknowledge
financial support from the Agencia de Promoción Científica y
Tecnológica (Préstamo BID PICT 2011/0885), CONICET
(PIP 0177), and the Universidad Nacional de La Plata
(Programa de Incentivos G11/137, and PPID/G003), Argen-
tina. M.C. thanks the support from FONDECYT (project
1130173) and the Centro de Astrofísica de Valparaíso Chile. I.
A. is grateful for the support from Gemini-CONICYT
32120033 (Grants for the Astronomy Graduate Program of
the Universidad de Valparaíso) and Fondo Institucional de
Becas FIB-UV.

REFERENCES

Abbott, D. C. 1982, ApJ, 259, 282
Achmad, L., Lamers, H. J. G. L. M., & Pasquini, L. 1997, A&A, 320, 196
Araya, I., Curé, M., & Cidale, L. S. 2014, ApJ, 795, 81
Araya, I., Curé, M., Granada, A., & Cidale, L. S 2011, in IAU Symp. 272,

Active OB Stars: Structure, Evolution, Mass Loss and Critical Limits, ed.
C. Neiner et al. (Cambridge: Cambridge Univ. Press), 83

Arias, M. L., Sahade, J., & Barbá, R. H. 2008, RMxAC, 33, 118
Bjorkman, J. E., & Cassinelli, J. P. 1993, ApJ, 409, 429
Castor, J. I., Abbott, D. C., & Klein, R. I. 1975, ApJ, 195, 157
Clarke, D. A. 1996, ApJ, 457, 291
Clarke, D. A. 2010, ApJS, 187, 119
Cranmer, S. R., & Owocki, S. P. 1996, ApJ, 462, 469
Crowther, P. A., Lennon, D. J., & Walborn, N. R. 2006, A&A, 446, 279
Curé, M. 2004, ApJ, 614, 929
Curé, M., Cidale, L., & Granada, A. 2011, ApJ, 737, 18
Curé, M., & Rial, D. F. 2004, A&A, 428, 545
Curé, M., Rial, D. F., & Cidale, L. 2005, A&A, 437, 929
Friend, D. B., & Abbott, D. C. 1986, ApJ, 311, 701
Gathier, R., Lamers, H. J. G. L. M., & Snow, T. P. 1981, ApJ, 247, 173
Haucke, M., Araya, I., Arcos, C., et al. 2015, in IAU Symp. 307, New

Windows on Massive Stars Asteroseismology, Interferometry, and
Spectropolarimetry, ed. G. Meynet et al. (Cambridge: Cambridge Univ.
Press), 104

Kudritzki, R. P., Puls, J., Lennon, D. J., et al. 1999, A&A, 350, 970
Lamers, H. J. G., & Pauldrach, A. W. A. 1991, A&A, 244, L5
Lamers, H. J. G. L. M., Gathier, R., & Snow, T. P., Jr. 1982, ApJ, 258, 186
Lamers, H. J. G. L. M., & Rogerson, J. B., Jr. 1978, A&A, 66, 417
Lamers, H. J. G. L. M., Snow, T. P., & Lindholm, D. M. 1995, ApJ, 455, 269
Madura, T. I., Owocki, S. P., & Feldmeier, A. 2007, ApJ, 660, 687
Markova, N., & Puls, J. 2008, A&A, 478, 823
Morton, D. C. 1976, ApJ, 203, 386
Müller, P. E., & Vink, J. S. 2008, A&A, 492, 493
Müller, P. E., & Vink, J. S. 2014, A&A, 564, A57
Owocki, S. P., Cranmer, S. R., & Gayley, K. G. 1996, ApJL, 472, L115
Pauldrach, A., Puls, J., & Kudritzki, R. P. 1986, A&A, 164, 86
Petrenz, P., & Puls, J. 2000, A&A, 358, 956
Prinja, R. K. 1990, MNRAS, 246, 392
Prinja, R. K., Barlow, M. J., & Howarth, I. D. 1990, ApJ, 361, 607
Puls, J., Springmann, U., & Lennon, M. 2000, A&AS, 141, 23
Searle, S. C., Prinja, R. K., Massa, D., & Ryans, R. 2008, A&A, 481, 777
Verdugo, E., Talavera, A., & Gómez de Castro, A. I. 1998, Ap&SS, 263, 263
Verdugo, E., Talavera, A., & Gómez de Castro, A. I. 1999, A&AS, 137, 351
Zickgraf, F.-J., Wolf, B., Stahl, O., Leitherer, C., & Klare, G. 1985, A&A,

143, 421

11

The Astrophysical Journal, 822:28 (11pp), 2016 May 1 Venero et al.

http://dx.doi.org/10.1086/160166
http://adsabs.harvard.edu/abs/1982ApJ...259..282A
http://adsabs.harvard.edu/abs/1997A&amp;A...320..196A
http://dx.doi.org/10.1088/0004-637X/795/1/81
http://adsabs.harvard.edu/abs/2014ApJ...795...81A
http://adsabs.harvard.edu/abs/2011IAUS..272...83A
http://adsabs.harvard.edu/abs/2008RMxAC..33..118A
http://dx.doi.org/10.1086/172676
http://adsabs.harvard.edu/abs/1993ApJ...409..429B
http://dx.doi.org/10.1086/153315
http://adsabs.harvard.edu/abs/1975ApJ...195..157C
http://dx.doi.org/10.1086/176730
http://adsabs.harvard.edu/abs/1996ApJ...457..291C
http://dx.doi.org/10.1088/0067-0049/187/1/119
http://adsabs.harvard.edu/abs/2010ApJS..187..119C
http://dx.doi.org/10.1086/177166
http://adsabs.harvard.edu/abs/1996ApJ...462..469C
http://dx.doi.org/10.1051/0004-6361:20053685
http://adsabs.harvard.edu/abs/2006A&amp;A...446..279C
http://dx.doi.org/10.1086/423776
http://adsabs.harvard.edu/abs/2004ApJ...614..929C
http://dx.doi.org/10.1088/0004-637X/737/1/18
http://adsabs.harvard.edu/abs/2011ApJ...737...18C
http://dx.doi.org/10.1051/0004-6361:20040325
http://adsabs.harvard.edu/abs/2004A&amp;A...428..545C
http://dx.doi.org/10.1051/0004-6361:20052686
http://adsabs.harvard.edu/abs/2005A&amp;A...437..929C
http://dx.doi.org/10.1086/164809
http://adsabs.harvard.edu/abs/1986ApJ...311..701F
http://dx.doi.org/10.1086/159024
http://adsabs.harvard.edu/abs/1981ApJ...247..173G
http://adsabs.harvard.edu/abs/2015IAUS..307..104H
http://adsabs.harvard.edu/abs/1999A&amp;A...350..970K
http://adsabs.harvard.edu/abs/1991A&amp;A...244L...5L
http://dx.doi.org/10.1086/160067
http://adsabs.harvard.edu/abs/1982ApJ...258..186L
http://adsabs.harvard.edu/abs/1978A&amp;A....66..417L
http://dx.doi.org/10.1086/176575
http://adsabs.harvard.edu/abs/1995ApJ...455..269L
http://dx.doi.org/10.1086/512602
http://adsabs.harvard.edu/abs/2007ApJ...660..687M
http://dx.doi.org/10.1051/0004-6361:20077919
http://adsabs.harvard.edu/abs/2008A&amp;A...478..823M
http://dx.doi.org/10.1086/154090
http://adsabs.harvard.edu/abs/1976ApJ...203..386M
http://dx.doi.org/10.1051/0004-6361:20078798
http://adsabs.harvard.edu/abs/2008A&amp;A...492..493M
http://dx.doi.org/10.1051/0004-6361/201323031
http://adsabs.harvard.edu/abs/2014A&amp;A...564A..57M
http://dx.doi.org/10.1086/310372
http://adsabs.harvard.edu/abs/1996ApJ...472L.115O
http://adsabs.harvard.edu/abs/1986A&amp;A...164...86P
http://adsabs.harvard.edu/abs/2000A&amp;A...358..956P
http://adsabs.harvard.edu/abs/1990MNRAS.246..392P
http://dx.doi.org/10.1086/169224
http://adsabs.harvard.edu/abs/1990ApJ...361..607P
http://dx.doi.org/10.1051/aas:2000312
http://adsabs.harvard.edu/abs/2000A&amp;AS..141...23P
http://dx.doi.org/10.1051/0004-6361:20077125
http://adsabs.harvard.edu/abs/2008A&amp;A...481..777S
http://dx.doi.org/10.1023/A:1002187017154
http://adsabs.harvard.edu/abs/1998Ap&amp;SS.263..263V
http://dx.doi.org/10.1051/aas:1999487
http://adsabs.harvard.edu/abs/1999A&amp;AS..137..351V
http://adsabs.harvard.edu/abs/1985A&amp;A...143..421Z
http://adsabs.harvard.edu/abs/1985A&amp;A...143..421Z

	1. INTRODUCTION
	2. THE HYDRODYNAMICAL WIND MODEL
	3. RESULTS
	3.1. Flow Regimes for Stars with Low Teff
	3.1.1. Distribution of the Solution Domains
	3.1.2. Comparison with Other Models of Low Teff
	3.1.3. Remarks on the Gap

	3.2. Flow Regimes for Stars with High Teff
	3.2.1. Distribution of the Solution Domains


	4. DISCUSSION
	4.1. Mathematical Properties of the Wind Solutions
	4.2. Physical Properties and Applications of the Models
	4.3. Transitions between Wind Regimes
	4.4. Wind Properties along the Spectral Sequence of B Supergiants

	5. CONCLUSIONS
	REFERENCES



