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a b s t r a c t

Large carnivores are declining globally and require baseline population estimates for
management, however large-scale population estimation is problematic for species
without unique natural marks. We used camera trap records of dhole Cuon alpinus, a
group-living species, from three national parks in Thailand as a case study in which we
develop integrated likelihood models to estimate abundance incorporating two different
data sets, count data and detection/non-detection data. We further investigated relative
biases of the models using different proportions of data with lower versus higher quality
and assessed parameter identifiability. The simulations indicated that the relative bias on
average across 24 tested scenarios was 2% with a 95% chance that the simulated data sets
obtained the true animal abundances. We found that bias was high (>10%) when sampling
60 sites with only 5 sampling occasions. We tested four additional scenarios with varying
proportions of count data. Our model tolerated the use of relatively low proportions of the
higher quality count data, but below 10% the results began to show bias (>6%). Data
cloning indicated that the parameters were identifiable with all posterior variances
shrinking to near zero. Our model demonstrates the benefits of combining data from
multiple studies even with different data types. Furthermore, the approach is not limited
to camera trap data. Detection/non-detection data from track surveys or counts from
transects could also be combined. Particularly, our model is potentially useful for assessing
populations of rare species where large amounts of by-catch datasets are available.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Animal conservation often starts with basic information regarding the size of threatened populations (Sutherland, 2000).
Population estimation surveys are possible for globally threatened carnivores with unique marks such as tigers Panthera tigris
(Karanth, 1995), Asiatic leopard Panthera pardus and clouded leopard Neofelis nebulosa (Borah et al., 2014; Ngoprasert et al.,
2017), Asian bears Ursus thibetanus and Helarctos malayanus (Ngoprasert et al., 2012). Population estimation is much more
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problematic for species without such marks (e.g., dhole Cuon alpinus, Golden cat Catopuma temminckii, etc.). Although DNA
mark-recapture can be used for unmarked animals, the cost of specialist researchers and laboratories puts significant con-
straints on this type of survey (Chandler and Clark, 2014). There are several alternatives to estimating populations of un-
marked animals (Royle and Nichols, 2003; Royle, 2004; Kery and Royle, 2016). In particular, Royle and Nichols (2003)
introduced the use of detection/non-detection data from direct or indirect surveys to estimate abundance based on repeated
surveys similar to an occupancy framework. The model has been applied to several taxa (Reynolds et al., 2010; Miller et al.,
2011; Gopalaswamy et al., 2012). Royle (2004) then extended the model to data based on observed counts of animals (Brodie
and Giordano, 2013; Belant et al., 2016; Kutal et al., 2016; Smith et al., 2017). Subsequently, Chandler and Royle (2013)
developed a model to account for spatial correlations in count data by incorporating coordinates of detectors in conjunc-
tionwith count data at each detector. This model uses correlations among the count data to determine the locations of animal
activity centers and the abundance is then estimated based on the number of individual activity centers.

Despite these advances, many threatened species in numerous tropical forest landscapes still lack even rough population
estimates (Ripple et al., 2014), except for a few charismatic species such as tigers. Population estimates of most other tropical
carnivores for example have been restricted to relatively small survey areas (e.g., Gray and Prum, 2012; Athreya et al., 2013;
Steinmetz et al., 2013; Borah et al., 2014; Carter et al., 2015; Jacobson et al., 2016). Major limitations are often logistical in
tropical countries which harbor many secretive/rare species. Fortunately, recent increases in the use of camera traps for
wildlife monitoring in tropical Asia (such as for tiger) now provides a valuable source of by-catch data for the study of rarer
species at broader scales (Jenks et al., 2012; Linkie et al., 2013), although the limitation of such data is that each camera-trap
study is typically designed differently depending on the specific objectives and the landscape context. Previously, such dif-
ferences among available studies meant that the by-catch data was valuable for species occurrence but not usable for pop-
ulation estimation (Jenks et al., 2012; Ngoprasert et al., 2012; Linkie et al., 2013).

Fortunately, another family of recent techniques, integrated likelihoodmodels (or integrated populationmodels, IPM), can
utilize multiple data types in a single model, thereby creating larger datasets andmore precise estimates (McCrea et al., 2010;
Abadi et al., 2012; Freeman and Besbeas, 2012). Likewise, using multiple data types in onemodel potentially reduces the need
for large individual survey efforts (or large sample size requirements per survey), while maintaining the ability to obtain
relatively precise and unbiased parameter estimates (Abadi et al., 2010; Lahoz-Monfort et al., 2014). Such models can utilize
independent datasets from the same population based on different methods e.g., dead recoveries and capture-recapture
(Fieberg et al., 2010), capture-recapture, reproductive success and annual population counts (Abadi et al., 2012; McCaffery
and Lukacs, 2016; Weegman et al., 2016). Alternatively, these models can also use data from the same site but from
different survey years (Zipkin et al., 2017), and as well as datasets of different quality (Pacifici et al., 2017). We therefore
believe that IPM could particularly benefit species that lack unique marks by providing an opportunity to collect and utilize
data that will generate more precise, unbiased parameter estimates across broader landscapes.

The dhole is a relatively well-described species with a large geographic range scattered across Asia (Kamler et al., 2015).
However, its population status is poorly known, even though it is categorized as globally endangered (Kamler et al., 2015),
with only one local abundance (study area <250 km2) estimate available for the entire species (Selvan et al., 2014). The main
reason for this lack of a population estimate is the absence of unique (individual) coat patterns. Dholes are territorial and are
often detected during camera trap surveys throughout Asia although they are rarely a target species (Kawanishi and Sunquist,
2004; Johnson et al., 2006; Gray, 2012, Jenks et al., 2012; Selvan et al., 2014; Riordan et al., 2015; Moo et al., 2017; Thapa and
Kelly, 2017). Camera trap surveys typically provide detection/non-detection data for species occurrence models. However,
photographs can also provide information on minimum group sizes from counts of individuals within a photo frame
(Suwanrat et al., 2015); thus, count data can be used to estimate species abundance. We present an approach that combines
two types of data (count and detection/non-detection) to estimate the abundance of dhole, a group-living unmarked animal.
We demonstrate the application of the model by analyzing by-catch camera trap data obtained from a bear monitoring
program and by-catch from a study that focused on leopards. We believe our model provides a useful approach for estimating
the abundance of dhole and other unmarked wildlife populations over larger landscapes.

2. Methods

2.1. Model description: count data

First, we estimated group size using counts of individuals in individual photographs from camera traps. We assumed that
the number of groupmembers in a photo is correlatedwith the total number of individuals in a group.We used beta-binomial
mixturemodels that accounted for non-independent detections of individuals in our repeated count data (Martin et al., 2011).
The parameter of interest was the number of individuals (N) per sampling site (e.g. camera trap station). The total number of
individuals at a site was assumed to follow a Poisson distribution with rate parameter l, the mean number of individuals per
site. These parameters were unobserved in the data (biological process) but estimated from observation processes later. Field
observations (observation process) were based on the number of individuals detected at multiple sites during repeated
surveys. The individuals observed (C) were assumed to follow a binomial distribution of size N and individual detection
probability p. However, detection of an individual was assumed to be correlated with the detection of each of the other
members of the group, so detection probability pwas assumed to follow a beta distributionwith two shape parameters, alpha
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(a) and beta (b). The correlation within group members produced heterogeneity in detection probabilities among members.
We can measure the correlation coefficient (rho) by the derived parameter rho ¼ 1/(a þ b þ1) following Martin et al. (2011).

Ni ~ Poisson (l)
Cij ~ Beta-Binomial (Ni, pij, rho)
pij ~ Beta (a1, b1)

Where i is indicates site and j indicates the temporal replicate (occasion).

2.2. Model description: detection/non-detection data

For the second process, data Yij was derived from detection and non-detection at sites. In this case, the detection process
was assumed to be similar to the one above but without information regarding the number of group members present in the
detection history. However, the probability of detecting one or more individuals r, is a function of the number of individuals at
a site, N, and individual heterogeneity in the detection process. We modeled this process following Royle and Nichols (2003),
but the probability of detection p of individual animals in the sample unit was assumed to follow a beta distribution instead of
a binomial. We assumed that the detection probability differs between our two survey protocols thus the parameter values of
the beta distribution are estimated separately.

Ni ~ Poisson (l)
Yij ~ Bernoulli (rij)
rij¼ 1- (1- pij)Ni
pij ~ Beta (a2, b2)

The joint parameter between the two processes is animal abundance (N) and expected mean (l). We combined the
likelihood of the two processes to calculate the total abundance of animals. The model can also incorporate covariates to
explain the variation in abundance for each site. A generalized linear model with a Poisson distribution can be incorporated
via a log link function. Sampling covariates can also be added to the model in the same way as site covariates.

log(li)¼ b0 þ b1*covariatei

2.3. Simulation study

We evaluated model performance using simulations. The model scenarios were set up to mimic dhole biology. We
assumed the true value of site abundance followed a Poisson distribution with a mean of one individual (simulated data
ranged from 0 to 8 individuals) (Grassman et al., 2005; Jenks et al., 2015). The plausible detection probability was assumed to
be low for this endangered species (Selvan et al., 2014; Srivathsa et al., 2014); we set possible average detection probabilities
to (0.30, 0.20, 0.15, 0.10). Correlation coefficients among individuals (rho) were unknown, however we assumed that it was
much lower than the detection probability at a given site. Abundance at the sampled units (True N) was generated under a
beta-binomial mixture model for a total of 60 or 120 sites, then the data was divided into two parts (1) count data and (2)
detection/non-detection data. We changed the count data to detection/non-detection data for analysis of the second process.
We assumed the count data was much less available than detection/non-detection data, the typical data derived from oc-
cupancy studies using camera traps. Thus, we generated abundances using a ratio of count relative to detection/non-detection
data of 20:40 (60 sites) for our small data set and 50:70 (120 sites) for our larger dataset. We set the individual detection
probability at a given site for the count data to be higher than the individual detection probability for the detection/non-
detection data for each run, because sites with relatively high detection probabilities might reasonably have enough de-
tections to provide count data. The simulation was designed for temporal replicates of 5, 10 and 30 occasions of camera trap
operations (total 24 scenarios, Appendix 1). This spans the range of survey occasions found in other large mammal surveys in
the region (Zaw et al., 2008; Johnson et al., 2009; Chutipong et al., 2014).

In addition, we simulated data sets with one additional covariate. We assumed that the abundance differs between parks
because the variation of prey availability or levels of protectionwere different among parks. The park covariate was a factor (0
or 1). We used a sample size equal to 120 sites and 10 capture occasions as an “intermediate” scenario with a relatively large
number of camera trap locations tested with both high and low detection probabilities (scenario 25 and 26). Prey and park
covariates affected l with a log link function.

log(li)¼ b0 þ b1*preyi þ b2*parki
For comparison, we also ran scenarios to assess biases where the researcher excluded the use of lower quality data

(detection/non-detection) and instead used only higher quality count data. We referred to these two simulations as scenarios
27 and 28 in Appendix 1.
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We investigated the effect of the ratio of count data to detection/non-detection data by varying the relative proportion of
count data (scenarios 29 to 32), ranging from 10%, 30%, 50% or 70% respectively. Wewere focusing on cases where researchers
may try to apply this method with a high proportion of low-quality data such as detections/non-detections from sign surveys.
Sign surveys are also a practical technique for cryptic species in large landscapes. Also, even camera traps sometimes yield few
detections of rare species, especially with by-catch data. The 10% proportion of good quality data is more of a warning
message to researchers to consider the type/quality of data in such analysis. We set up these simulations based on scenarios of
120 sample sites, 30 sampling occasions, a probability of detection at 0.3 for count data and 0.2 for detection/non-detection,
and correlation coefficients among individuals at 0.2 and 0.1 respectively.

We simulated 100 replicates for each scenario to evaluate bias andprecision of the estimator. Total abundance over all sites in
each simulationwas used to compare with the ‘true’ values. We also evaluated the frequency of how often the true values were
inside the 95% credible intervals of the parameter estimates. In addition, we reported the relative bias of the total abundance
estimated compared to the true abundance for each run (N-hat e True N/True N), where relative bias> 0 indicated over-
estimation and <0 indicated underestimation of the true abundance. We also evaluated the relationship between N-hat and
TrueNwith a standard linear regression. Awell-calibratedmodelwill have an estimated intercept not different fromzero and an
estimated slope not different from one. The simulations were analyzed using a Bayesian analysis with JAGS (Plummer, 2003)
throughpackage “jagsUI” (Kellner, 2018) inR program (RCore Team, 2018).Weused vague priors for all parameters (flat uniform
distribution for covariates affected l and a gammadistribution for a and b). Model convergencewas assessed by using the R-hat
value< 1.05,where a value close to 1 indicated successful convergence (Gelman andHill, 2007) andbyexamining the trace plots
of the chains (Gelman et al., 2014). See Appendix 2 for the simulation code and script for the analysis of the dhole data.

2.4. Dhole surveys

We demonstrated our model by analyzing dhole data from camera trap surveys in two forest complexes. First, a survey
conducted in the World Heritage Dong Phayayen-Khao Yai Forest Complex, DPKY (http://whc.unesco.org/en/list/590). This
complexconsistedoffive studyareas, KhlongE-Tow(KET,December 2009eFebruary 2010), Khlong Samor-Pun (KSP,MarcheMay
2010) and Khao Kampang (KKP, December 2010eMay 2011) in Khao Yai National Park, and Baan Thai Samukee (BTS, December
2012 to May 2013) and Lam Plai Mat (LPM, November 2013 to August 2014) in the Dong Phayayen forest complex (Fig. 1). The
camera-trap setupprotocolwasdesigned formonitoringAsiatic Black Bear (Ursus thibetanus) and SunBear (Helarctosmalayanus)
(Ngoprasert et al., 2015).We used passive infrared-based digital camera-traps to photograph animals visiting bait stations. Three
camera-trapsweremounted on trees approximately 3e4mapart and facing each other in a triangular arrangement. Camera trap
stations were set 1.5e4 km apart. However, based on dhole movements in a site in Thailand (Grassman et al., 2005), the trap
spacing was shorter than the mean daily distance moved (2214m) increasing the chances of double counting. Therefore, spatial
correlation of dhole detections was evaluated using the variogram function in the gstat package (Pebesma, 2004; Gr€aler et al.,
2016). One trap from each pair of trap stations less than 2 km apart were randomly removed to reduce this correlation. After
removing spatial correlated traps, we used 117 camera-trap stations surveyed from December 2009eMay 2011 in Khao Yai
National Park (72 camera-trap stations) and December 2012eAugust 2014 in Dong Phayayen forest complex (45 camera-trap
stations). Camera-traps were operational 38 to 182 trap days. Dhole were rarely present at a given camera-trap station more
thanonce per day.Multiple detectionsof dhole at a single stationwere typicallywithin relatively short time interval (<1 h), and in
this case we included only the highest number of individuals counted. The station was non-reward baited which allowed us to
estimate group size. We used each day (24-h period) as a sample occasion. Consecutive photographs of dhole within a sample
occasion were used to estimate the maximum number of individuals, i.e., daily detection counts. We refer to this DPKY dataset
using subscript 1 for the detection parameters in the model description below.

A second dataset, a survey conducted in the Kaeng Krachan National Park (hereafter Kaeng Krachan), (http://whc.unesco.
org/en/tentativelists/5593), where the data was recorded as detection/non-detection per one-day trapping occasions. In
Kaeng Krachan, passive infrared-based film camera-traps were used to survey leopard from November 2003eJanuary 2004
(Ngoprasert et al., 2007) and tiger in January toMarch 2001 (Ngoprasert and Lynam, 2002), inwhich all camera locationswere
focused along the animal trails. Camera-traps were set at 32 stations (9 stations with two-sided camera-traps in 2001 and 23
stations with a single-sided camera-trap in 2003e2004) within two different areas. Camera-trap stations were operational
for 9 to 38 trap days. The camera-traps were set for 24-h operation for all data sets. We used the last day a camera was
working to calculate the number of trap days per camera. We referred to the Kaeng Krachan dataset by using subscript 2 for
the detection parameters in the model description below.

To compare dhole density between the two forest complexes, we converted estimates of total abundance to density by
dividing the estimated population size (N) by the effective sample area of the camera traps. We used the average home range
radius to calculate the effective sample area. A circular buffer was applied for each camera trap station with a radius equal to
the average home range. We used an average home range radius 3.7 km based on Grassman et al., (2005), Jenks et al., (2015),
and R. Sukmasuang personal communication 2019.

2.5. Site covariates

Dhole prey (Gaur Bos gaurus, Sambar Rusa unicolor, Wild pig Sus scrofa andMuntjacMuntiacus muntjak andMuntiacus feae)
were detected by the same cameras. We estimated the availability of prey in each trap station using counts of independent

D. Ngoprasert et al. / Global Ecology and Conservation 20 (2019) e007924

http://whc.unesco.org/en/list/590
http://whc.unesco.org/en/tentativelists/5593
http://whc.unesco.org/en/tentativelists/5593


photographs. Independent photographs were defined as those separated by� 30min (O'Brien et al., 2003). The sum of prey
photographs at each camera-trap station was used to calculate a relative prey abundance index (RAI) per trap day. We
calculated the total number of trap days at a given camera-trap station by summing trap days of all active cameras. We used
the prey abundance index as a site covariate in the model. However, the use of RAI with different trap setups would provide a
biased RAI (Sollmann et al., 2013), thus we used RAI here for demonstration purposes only.

2.6. Assessment of parameter identifiability

Parameter identifiability is problematic where the model structure is complex (Lele et al., 2010) or the data inadequate
(Dennis et al., 2015; K�ery, 2018), we therefore assessed identifiability of parameters by using data cloning (Lele et al., 2007). A
parameter is identifiable where the posterior variance tends to be smaller (shrinking to zero) with increasing numbers of
clones (Lele et al., 2007). We determined the adequate number of clones by evaluating the posterior variance against the
number of copies. The data were cloned from 1, 5, 10 and 20 copies. We ran the model with a prey covariate as this model was
the best supported using actual field data (see results) where the parameter for monitoring included pcount, pdetection, rhocount,
rhodetection, b0 and b1.

3. Results

3.1. Simulation study

All simulations successfully converged with 100% of R-hats lower than 1.05 and posterior distributions drawn from >2400
effective samples for all parameters in all models. The posterior distributions of detection probability for count data for each of
the scenarios were generally close to the true value (Appendix 3 a). However, when correlation was high and detection
probability was low, bp1 was negatively biased and the bias increased with increasing sampling occasions. The precision of

Fig. 1. Map of study area and camera-trap stations in Dong Phayayen-Khao Yai Forest Compex (A) and Kaeng Krachan Forest Complex (B).
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estimates increased with increasing sampling occasions more than increasing the number of sites. br1 was positively biased,
especially when low (Appendix 3 c). The precision of br1 generally decreased with more sampling occasions or sites. The
estimated detection probability and correlation for detection/non-detection data (p2) followed a similar pattern, except the
positive bias in the correlation was worse (Appendix 3 b and d).

The estimates of the beta coefficient of the intercept (b0) were negatively biased and imprecise when the number of
occasions was low and with fewer sites (Fig. 2 a). Both bias and precision of cb0 improved most with adding more sampling
occasions rather than more sites. cb1 appears less biased than cb0 overall, and there was greater improvement with adding
more sites than sampling occasions (Fig. 2 b).

The simulations indicated that the estimated mean relative bias for the total population size ranged from �15% to 16%
among the 24 scenarios, but the relative bias on average across all scenarios was 2% (Appendix 1). The 95% CrI of the estimated
totalN included the TrueN 85e98% of the time across all scenarios.We found that the bias was high (>10%) when sampling 60
sites with only 5 sampling occasions. Increasing the number of sampling occasions always reduced bias, and in some cases
could reduce it as much as doubling the number of sites. The benefit of more sampling occasions diminishes when the
correlation between individuals is higher. The estimated slopes of the calibration regressions were close to 1 when the
simulated data had a low correlation coefficient among individuals (0.1 and 0.05) using 30 occasions regardless of the total
number of sites (Fig. 3). Precision of the estimates was not affected by changing the detection probabilities and correlation
coefficients.

Adding an additional parameter slightly increased the bias compared to the same scenario with only a single covariate.
There was a mean relative bias of 6%, when p and rho were high (compare scenario 25 to scenario 23 in Appendix 1). In
contrast, there was a negative bias of �6% (compare scenario 26 to scenario 5) where p and rho were low. As expected, the
biases of scenarios 27 and 28 were large when analyzed with count data only even though we used 30 occasions.

The simulation indicated ourmodel was not very sensitive to the ratio of count to detection/non-detection data (Appendix
1). The relative biases were low (<3%) when the proportion of count datawas 30%, 50% or 70% in the simulated data (scenarios
30e32). However, the result using a proportion of only 10% for the count data (scenario 29) was biased high, although
relatively modest (6%).

3.2. Estimated dhole abundance

We photographed dhole at 26 camera-trap stations out of a total of 149 (17/117 stations in DPKY with count data and 9/32
in Kaeng Krachanwith detection/non-detection data). The largest recorded group size was 6 individuals in Khao Yai National
Park and 5 individuals in the Dong Phayayen forest complex. The constant model had the lowest DIC value, and the model
with the prey covariate had the second-highest level of support (delta DIC 1.39, Table 1). The prey coefficient was negative, but
the credible interval overlapped with zero. The prey covariate model estimated a total dhole abundance of the two forest
complexes that was similar to the constant model and the model with park as a covariate. The convergence was successful
with a R-hat < 1.001 and a posterior distribution draw of >5300 MCMC effective samples for all parameters. The individual
detection probability was 15 times higher in Kaeng Krachan compared to DPKY, and the correlation coefficient 2.6 times
higher in Kaeng Krachan than DPKY as well. However, the total abundance was lower in Kaeng Krachan because the trap
stations were fewer. The park model ranked third with a delta DIC of 2.45. The detection probability and the correlation
coefficient were identical to the prey model. The model with two covariates had a delta DIC of 3.56. Data cloning indicated
that the parameters were identifiable with all posterior variances shrinking to near zero with 20 clones (Appendix 4).

The density estimatewas higher in Kaeng Krachan compared to DPKY (3.0 versus 2.2 individuals per 100 km2 respectively)
based on abundance estimates from the constant model. The effective sample area was 1651 km2 for DPKY and 335 km2 for
Kaeng Krachan.

4. Discussion

Our integrated populationmodel wasmotivated by our search for a better method for estimatingwildlife populations with
by-catch data, especially for group-living species with unidentifiable individuals, which face a number of significant con-
straints regarding population estimation. Specifically, our approach combined the Martin et al. (2011) and Royle and Nichols,
2003 type models into an integrated population estimate. Our model demonstrates the benefits of combining camera-trap
data from multiple studies even with different data types. Furthermore, the approach is not limited to camera trap data.
Detection/non-detection data from track surveys or counts from transects could also be combined. We also demonstrated
how data can be used to estimate abundances of group-living species at larger scales by combining different data types.

As expected, our results indicated having more sites provides better results than having fewer sites, and from our sim-
ulations sample sizes >60 across both survey types are needed to obtain well-calibrated, unbiased and precise estimates.
Estimation would be improved further if some sites shared both types of surveys, although this is unlikely to occur given the
nature of combining by-catch data from multiple surveys. Once a survey is in place, the primary option for improving esti-
mation is extending the duration of monitoring at each site (Fig. 3). The number of occasions can also be adjusted after the fact
by changing the temporal resolution over which photographs are aggregated. Photos should be aggregated at the finest
temporal resolution consistent with the assumption of independence of observations. The proportion of different data types
was less important as long as the amount of high-quality data was not too low (>30% in our simulations). 30 sampling
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occasions is recommended if the number of sites is low (<60). Our model was able to tolerate the use of a relatively low
proportion of higher quality (count) data, but at 10% the results began to show bias. Our real data had sample sizes larger than
we simulated and with a higher proportion of count data relative to detection sitesethese produced a narrow credible
interval.

Fig. 2. Regression coefficient estimates from 24 scenarios where the red line indicates the true value. (a): intercept (b0), (b): beta coefficient (b1). (For inter-
pretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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The model we developed in this study demonstrated that parameter identifiability was not a problem. We cloned our real
data with the prey covariate model Lambda(prey) p(.). The posterior standard deviation indicated all parameters were
shrinking towards zero as the number of clones increased. Our results were also congruent with recent findings that with or
without covariates Poisson mixture models had no identifiability problems (K�ery, 2018). However, the estimate of the cor-
relation parameter (rho) using a beta-binomial distribution suggested therewas a numerical problem as noted byMartin et al.
(2011), “when the data followed a binomial distribution, the chains for the beta-binomial mixture model did not mix well”.
We set our correlation parameter to be relatively lowas is expectedwith endangered species. The parameter rho can approach
zero but cannot be exactly zero, otherwise, the data follow a binomial distribution (with no overdispersion). We also explored
the rhocount and rhodetection with scenarios 29e32 where we varied the proportion of count data. The rhodetections 29-32 were

Fig. 3. Regression coefficient estimates from 24 scenarios with expected intercept¼ 0 and slope¼ 1 (dashed line). Blue line indicates model fit. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Table 1
Parameter estimates and 95% credible intervals (in parentheses) for four tested models for dhole, including individual detection probability and abundance
(N) from integrated count and detection/non-detection data applied to Khao Yai National Park, Dong Phayayen Forest and Kaeng Krachan National Park,
Thailand.

Model l(.), p(.) l(Prey), p(.) l(Park), p(.) l(Prey þ Park), p(.)

Parameters
Intercept 1.384 (1.264e1.537) �1.013 (-1.379 e -0.672) �1.261 (-2.207 e -0.285) �1.323 (-2.282 e -0.344)
Prey e e �2.544 (-7.124 e1.128) e e �3.031 (-7.804 e 0.929)
Park e e e e 0.096 (-0.704 e 0.818) 0.272 (-0.563 e 1.037)

pcount 0.001 (0.000e0.004) 0.001 (0.000e0.004) 0.001 (0.000e0.004) 0.001 (0.000e0.004)
pdetect/non-detect 0.015 (0.000e0.049) 0.015 (0.000e0.049) 0.014 (0.000e0.047) 0.014 (0.000e0.047)

N
Khao Yai 23 (17e31) 25 (17e35) 23 (16e31) 24 (16e34)
Dong Phayayen 14 (10e18) 14 (9e20) 14 (10e19) 13 (8e19)
Kang Krachan 10 (8e14) 9 (5e14) 12 (5e21) 11 (5e22)

DIC 707.20 708.59 709.65 710.76
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similar to the first 24 scenarios which were also biased low because the data followed a binomial distribution. However, the
rhocount, where the proportion of count data was 10% (scenario29), was also biased. As expected, the individual detection
probabilities of the detection/non-detection data (p2) was less informative with most of the data being detection/non-
detection only (90% of data followed a binomial distribution). Here the mixture model caused the rhocount of scenario 29
to be particularly biased, but it was not biased where the count data was >30%. In general, a lower correlation parameter can
cause biased estimates of rho, but it was not especially biased regarding individual detection probability. However, we did not
explore the lower limits of rho, indeed, our data (Appendix 3c) indicated that a rho >0.1 was less biased than 0.05 or 0.1.
Therefore, we suggest future research consider this point when analyzing data with a relatively small proportion of counts.

To illustrate the application of our model for real empirical data, we used multiple datasets across years. The limitation of
combining sites across years is that the method may sometimes violate closure assumptions. We treated the data from Kaeng
Krachan as one site between the 2001 and the 2003e2004 samples (similar to a multi-session analysis). Here, we were
confident that our estimate did not violate closure assumptions because the actual locations between the two surveys focused
on different areas within the park. The closest distance between points along the two surveys areas was 2.3 km. However, the
total abundance estimated across years should be inferred carefully when combining among different areas and times.

Although, we fit separate detection probabilities, trap setup differences likely incurred differences in our ability to detect
dhole. In Kaeng Krachan, the individual detection probability of dhole was probably higher because the camera trap setups
were along animal trails as the objective of the survey focused on tiger and leopard. Dhole is known to extensively use trails or
roads inside forests for movement (Venkataraman et al., 1995; Srivathsa et al., 2014). Camera traps in Khao Yai and Dong
Phayayen were all set up off trails but were baited. Therefore, the park covariate in our data represents variation due to
different camera setups rather than real site variation in individual detection probabilities.

The negative relationship between dhole and their prey in our data seems unrealistic but could reflect differences in the
abundance of the two main competitors of dhole among our three main study sites, Khao Yai, Dong Phayayen, and Kaeng
Krachan. Kaeng Krachan had the highest prey abundance (13.2/100 trap days), but supported three large carnivores (tiger,
leopard, and dhole). Dong Phayayen had moderate prey abundance levels (8.5/100 trap days) but supported only tiger and
dhole (leopard did not occur here and Khao Yai historically). In contrast, Khao Yai had only dhole present, but the lowest prey
abundance (2.0/100 trap days). Tiger went locally extinct in Khao Yai sometime between 2001 and 2005, and therefore the
lack of competition with other large carnivores may be at least partly responsible for the higher dhole abundance in Khao Yai
despite the lower prey base (Steinmetz et al., 2013; Ngoprasert and Gale, 2019). However, the park model indicated a positive
relationship between prey abundance and dhole abundance whereby dhole abundance was lower in DPKY (lambda¼ 0.32;
95%CrI 0.22e0.43) than Kaeng Krachan (lambda¼ 0.36; 95% CrI 0.17e0.64). It is also possible that the fewer sample units in
Kaeng Krachanmight have affected the parameter estimates as indicated by thewider 95%CrIs. Overall, comparisons between
different studies should be interpreted with some caution because direct comparisons of prey relative abundance may be
limited due to differences in duration of surveys and/or the different trap set-ups (Sollmann et al., 2013).

The density estimates for dhole were low in both forest complexes and a cause for conservation concern. Our densities
were notably smaller than previously reported in Pakke Tiger Reserve, India (Selvan et al., 2014) 6.6 individuals per 100 km2,
although a similar density 3.3 individuals per 100 km2 was observed in the Pench landscape of central India (Majumder et al.,
2011). However, the Pench landscape was more heterogenous in terms of densities and there was probably higher food
competition with other large carnivores including tiger, wolf, and hyena. In general, our estimates were much smaller than
those reported for India (Majumder et al., 2011). In Thailand, dholemay be as seriously threatened as tiger as a consequence of
significant declines in large ungulate prey in many protected areas (Pisdamkham et al., 2010). Furthermore, we detected
domestic animals (i.e. dogs and cattle) in our study areas, these could cause additional threats to our small populations of
dhole, i.e. transmission of disease from domestic dogs to dhole (Hughes and Macdonald, 2013).

In this study we have assumed that the dhole detections at each camera-trap site were independent. However, as trap
spacing gets smaller, this is increasingly unlikely. Amismatch is quite possiblewhen using by-catch from surveys designed for
other species. This is currently a disadvantage of by-catch data where data would need to be discarded if sampling locations
are spatially correlated. Future models that incorporate spatial correlation processes within a hierarchical spatial framework
could resolve issues in detection/non-detection data such as by incorporating random effects (Johnson et al., 2013).
Furthermore, spatial correlations within count data may provide further possibilities of combining models (Chandler and
Royle, 2013). Chandler and Royle's unmarked model framework use explicit spatial correlations of count data to infer loca-
tions of individual activity centers in which detection probability declines with distance. Thus, the ability to account for
spatial correlation is an important focus for future model development as typically prior knowledge about movement of
target species will be unavailable. Therefore, care should also be givenwhen applying our current model to species which are
likely to move long distances relative to sampling occasions.

In our particular application, we used camera trapping to obtain both count and detection/non-detection data but such
integrated likelihood models described here can use a variety of detection/non-detection data from almost any survey design
such as tracks from transect surveys (Karanth et al., 2011; Srivathsa et al., 2014), or presence of feces/dung (Long et al., 2007).
Transect surveys are relatively easily to implement for large-scale monitoring for elusive or rare species (e.g., Guillera-Arroita
et al., 2011; Gopalaswamy et al., 2012). This method offers an alternative to existing data, however further work is required to
maximize trap set-ups to increase the chances of determining group size from count data. Also, for detection/non-detection
data, the model requires a sampling design where the spacing between detection devices is relatively larger than the home-
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range radius of the species of interest. In conclusion, our model should be applicable to a wide variety of by-catch datasets
available in a given region for inferences regarding large scale abundance of group-living unmarked animals.
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Appendix 1. Simulation scenarios, percentage of estimates with True N within 95% CrI, and mean relative bias of
estimated total N

Covariates

Scenario Number of sites Number of occasions p1 Rho1 p2 Rho2 Prey Park TrueN in 95%CrI Mean relative bias

1 60 5 0.15 0.10 0.10 0.05 1 0 91 �0.15
2 60 10 0.15 0.10 0.10 0.05 1 0 98 �0.03
3 60 30 0.15 0.10 0.10 0.05 1 0 98 0.02
4 120 5 0.15 0.10 0.10 0.05 1 0 94 �0.07
5 120 10 0.15 0.10 0.10 0.05 1 0 97 �0.03
6 120 30 0.15 0.10 0.10 0.05 1 0 98 0.00
7 60 5 0.15 0.20 0.10 0.10 1 0 92 �0.05
8 60 10 0.15 0.20 0.10 0.10 1 0 98 0.07
9 60 30 0.15 0.20 0.10 0.10 1 0 94 0.05
10 120 5 0.15 0.20 0.10 0.10 1 0 98 0.01
11 120 10 0.15 0.20 0.10 0.10 1 0 98 0.04
12 120 30 0.15 0.20 0.10 0.10 1 0 96 0.04
13 60 5 0.30 0.10 0.20 0.05 1 0 98 0.09
14 60 10 0.30 0.10 0.20 0.05 1 0 96 0.03
15 60 30 0.30 0.10 0.20 0.05 1 0 98 0.02
16 120 5 0.30 0.10 0.20 0.05 1 0 85 �0.07
17 120 10 0.30 0.10 0.20 0.05 1 0 93 �0.03
18 120 30 0.30 0.10 0.20 0.05 1 0 95 0.03
19 60 5 0.30 0.20 0.20 0.10 1 0 93 0.16
20 60 10 0.30 0.20 0.20 0.10 1 0 91 0.12
21 60 30 0.30 0.20 0.20 0.10 1 0 95 0.06
22 120 5 0.30 0.20 0.20 0.10 1 0 98 0.11
23 120 10 0.30 0.20 0.20 0.10 1 0 96 0.03
24 120 30 0.30 0.20 0.20 0.10 1 0 93 0.03

25 120 10 0.30 0.20 0.20 0.10 1 1 96 0.06
26 120 10 0.15 0.10 0.10 0.05 1 1 93 �0.06
27 20 30 0.30 0.20 0.20 0.10 1 0 1 3.88
28 20 30 0.15 0.10 0.10 0.05 1 0 10 2.20

29 120 30 0.30 0.20 0.20 0.10 1 1 88 0.06
30 120 30 0.30 0.20 0.20 0.10 1 1 96 0.02
31 120 30 0.30 0.20 0.20 0.10 1 1 94 0.03
32 120 30 0.30 0.20 0.20 0.10 1 1 89 0.02

Appendix 2. R script used to analyze dhole data presented in this paper.
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Appendix 3. Simulation results of detection probability (p) and correlation coefficients (rho) from 24 scenarios where
the red line indicates the true value. Left panel: (a) p1 and (c) rho1 of count data, Right panel: (b) p2 and (d) rho2 of
detection/non-detection data.
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Appendix 4. Parameter estimates using data cloning to check parameter identifiability for dhole data with the prey
covariate in the model. Posterior standard deviations of all parameters are shrinking as the number of copies
increase indicating that the parameters are identifiable.

Number of copies Count data Detection data b0 b1

p rho p rho

1 0.0010 0.0060 0.0130 0.0250 0.1820 2.1140
5 0.0000 0.0020 0.0050 0.0120 0.0820 0.9380
10 0.0000 0.0010 0.0030 0.0090 0.0580 0.6660
20 0.0001 0.0009 0.0023 0.0062 0.0415 0.4703
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