NUCLEC ACDS ENCODING PSEUDOMONAS HOP PROTEINS AND USE THEREOF

Alan Collmer
Ithaca, $N Y$
James R. Alfano
Lincoln, NE
Xiaoyan Tang
Manhattan, KS
C. Robin Buell
Olney, MD
Gregory B. Martin
Ithaca, NY

Follow this and additional works at: https://digitalcommons.unl.edu/plantpathpapers
Part of the Other Plant Sciences Commons, Plant Biology Commons, and the Plant Pathology
Commons

Collmer, Alan; Alfano, James R.; Tang, Xiaoyan; Buell, C. Robin; and Martin, Gregory B., "NUCLEC ACDS ENCODING PSEUDOMONAS HOP PROTEINS AND USE THEREOF" (2006). Papers in Plant Pathology. 624.
https://digitalcommons.unl.edu/plantpathpapers/624

This Article is brought to you for free and open access by the Plant Pathology Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Plant Pathology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
(12) United States Patent

Collmer et al.
(10) Patent No.: US 7,138,569 B2
(45) Date of Patent:

Nov. 21, 2006
(54) NUCLEIC ACIDS ENCODING PSEUDOMONAS HOP PROTEINS AND USE THEREOF

Inventors: Alan Collmer, Ithaca, NY (US); James R. Alfano, Lincoln, NE (US); Xiaoyan Tang, Manhattan, KS (US); C. Robin Buell, Olney, MD (US); Gregory B. Martin, Ithaca, NY (US)
(73) Assignees: Cornell Research Foundation, Inc., Ithaca, NY (US); Kansas State University Research Foundation, Manhattan, KS (US); Boyce Thompson Institute for Plant Research, Inc. Ithaca, NY (US); The Institute for Genomic Research, Rockville, MD (US); The Board of Regents of the University of Nebraska, Lincoln, NE (US)
(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 226 days.

Appl. No.: 10/114,828
Filed: Apr. 2, 2002
Prior Publication Data
US 2003/0182681 A1 Sep. 25, 2003

Related U.S. Application Data

(60) Provisional application No. 60/280,918, filed on Apr. 2, 2001, provisional application No. 60/356,408, filed on Feb. 12, 2002.
(51) Int. Cl.

C12N 15/82	(2006.01)
C12N 15/31	(2006.01)
C12N 15/63	(2006.01)

U.S. Cl. 800/301; 800/279; 536/23.7;

424/93.2; 435/320.1; 435/252.3
Field of Classification Search \qquad 800/301; 536/23.7; 435/252.3, 418, 252.2 See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

6,342,654 Bl 1/2002 Li et al

OTHER PUBLICATIONS

Lazar et al, 1988, Mol. Cell. Biol. 8:1247-1252.*
Hill et al, 1998, Biochem. Biophys. Res. Comm. 244:573-577.*
Keller et al, 1999, Plant Cell 11:223-235.*
Bauer et al. 1999, Acta Hort. 489:301-304.*
Espinosa et al, 2003, Molec. Microlbiol. 49:377-387.*
Collmer et al., "Pseudomonas syringae Hrp Type III Secretion System and Effector Proteins," PNAS 97(16):8770-8777 (2000). Alfano et al., "The Pseudomonas syringae Hrp Pathogenicity Island has a Tripartite Mosaic Structure Composed of a Cluster of Type III Secretion Genes Bounded by Exchangeable Effector and Conserved Effector Loci That Contribute to Parasitic Fitness and Pathogenicity in Plants," PNAS 97(9):4856-4861 (2000).
Fouts et al., "Genomewide Identification of Psetdomonas syringae pv. Tomato DC3000 Promoters Controlled by the HrpL Alternative Sigma Factor," PNAS 99(4):2275-2280 (2002), with supplemental material available online at www.pnas.org.
Petnicki-Ocwieja et al., "Genomewide Identification of Proteins Secreted by the Hrp Type III Protein Secretion System of Pseudomonas syringae pv. Tomato DC3000," PNAS 99(11):76527657 (2002), with supplemental material available online at www. pnas.org

* cited by examiner

Primary Examiner - Anne Kubelik
(74) Attorney, Agent, or Firm-Nixon Peabody LLP

ABSTRACT
The present invention relates to isolated nucleic acid molecules encoding a type III-secreted bacterial protein capable of modifying a cell death pathway in a plant cell. One aspect of the present invention involves an isolated nucleic acid molecule having a nucleotide sequence that encodes the HopPtoD2 protein of Pseudomonas syringae pv. syringae DC 3000. Expression vectors, host cells, and transgenic plants which include the DNA molecules of the present invention are also disclosed. The nucleic acid molecules of the present invention can be used to impart disease resistance to a plant and to make a plant hypersusceptible to colonization by nonpathogenic bacteria.

12 Claims, 1 Drawing Sheet

FIG. 1

FIG. 2A

FIG. 2B

NUCLEIC ACIDS ENCODING PSEUDOMONAS HOP PROTEINS AND USE THEREOF

This application claims benefit of U.S. Provisional Patent Application Ser. Nos. 60/280,918, filed Apr. 2, 2001, and $60 / 356,408$, filed Feb. 12, 2002, each of which is hereby incorporated by reference in its entirety.

This work was supported by National Science Foundation Grant Nos. DBI-0077622 and MCB-9982646 and National Research Initiative Competitive Grants Program, U.S. Department of Agriculture, Grant Nos. 97-35303-4488 and 01-35319-10019. The U.S. Government may have certain rights in this invention.

FIELD OF THE INVENTION

The present invention relates to isolated DNA molecules corresponding to the open reading frames of Pseudomonas syringae pv. tomato DC3000, the isolated avirulence effector proteins and hrp-dependent outer proteins encoded thereby, as well as their various uses.

BACKGROUND OF THE INVENTION

The plant pathogenic bacterium Pseudomonas syringae is noted for its diverse and host-specific interactions with plants. A specific strain may be assigned to one of at least 40 pathovars based on its host range among different plant species and then further assigned to a race based on differential interactions among cultivars of the host. In host plants the bacteria typically grow to high population levels in leaf intercellular spaces and then produce necrotic lesions. In nonhost plants or in host plants with race-specific resistance, the bacteria elicit the hypersensitive response (HR), a rapid, defense-associated programmed death of plant cells in contact with the pathogen (Alfano \& Collmer, J. Bacteriol. 179:5655-5662 (1997)). The ability to produce either of these reactions in plants appears to be directed by hrp (HR and pathogenicity) and hrc (HR and conserved) genes that encode a type III protein secretion pathway and by avr (avirulence) and hop (Hrp-dependent outer protein) genes that encode effector proteins injected into plant cells by the pathway (Alfano \& Collmer, J. Bacteriol. 179:5655-5662 (1997)). These effectors may also betray the parasite to the HR-triggering R-gene surveillance system of potential hosts (hence the avr designation), and plant breeding for resistance based on such gene-for-gene (avr-R) interactions may produce complex combinations of races and differential cultivars (Keen, Annu. Rev. Genet. 24:447-463 (1990)). hrp/hre genes are probably universal among necrosis-causing gramnegative plant pathogens, and they have been sequenced in P. syringae pv. syringae (Psy) 61, Erwinia amylovora Ea321, Xanthomonas campestris pv. vesicatoria (Xcv) 85-10, and Ralstonia solanacearum GMI1000 (Alfano \& Collmer, J. Bacteriol. 179:5655-5662 (1997)). Based on their distinct gene arrangements and regulatory components, the hrp/hrc gene clusters of these four bacteria can be divided into two groups: I (Pseudomonas and Erwinia) and II (Xanthomonas and Ralstonia). The discrepancy between the distribution of these groups and the phylogeny of the bacteria provides some evidence that hrp/hrc gene clusters have been horizontally acquired and, therefore, may represent pathogenicity islands (Pais) (Alfano \& Collmer, J. Bacteriol. 179:5655-5662 (1997)).

Virulence effector proteins delivered to or into host cells by type III secretion systems are key factors in the patho-
genicity of many bacteria, including animal pathogens in the genera Salmonella, Yersinia, Shigella, and Escherichia, and plant pathogens in the genera Pseudomonas, Erwinia, Xanthomonas, Ralstonia, and Pantoea (Galán \& Collmer, Science 284:1322-1328 (1999)). In plant pathogens, the type III secretion machinery is referred to as the hypersensitive response and pathogenicity (Hrp) system because secretion mutants typically lose their ability to elicit the defenseassociated hypersensitive response in nonhost plants and to grow parasitically or be pathogenic in host plants (Alfano \& Collmer, J. Bacteriol. 179:5655-5662 (1997)). These phenotypes demonstrate the importance of the Hrp system in bacterium-plant interactions, and global identification of effectors will be important for understanding the pathogenesis of bacteria that use type III secretion systems. Unfortunately, several factors have hindered searches for type III effector genes. These factors include: (i) effectors are often redundant with mutants having only subtle phenotypes; (ii) with few exceptions (see e.g., Miao \& Miller, Proc. Natl. Acad. Sci. USA 97:7539-7544 (2000)) motifs that can identify proteins as substrates for type III secretion have not been recognized (Lloyd et al., Mol. Microbiol. 39:520-532) (2001); (iii) many effectors show no similarity to known proteins; and (iv) some pathogens have multiple type III secretion systems which deliver different sets of effectors (Cornelis \& Van Gijsegem, Annu. Rev. Microbiol. 54:735-774 (2000)). Thus, a complete inventory of type III effector genes is lacking for any pathogen, although it seems that pathogens such as Salmonella may have many such genes (Worley et al., Mol. Microbiol. 36:749-761 (2000)).
Plant pathogen type III effector proteins are mostly designated Avr or Hop, depending on whether their primary phenotype involves plant reaction or secretion behavior. Many effectors were initially discovered through their ability to betray the pathogen to the host R (resistance) gene surveillance system, thereby rendering the pathogen avirulent on a test plant (Keen, Annu. Rev. Genet. 24:447-463 (1990)). Over 25 effector genes have been identified by Avr or Hop phenotypes in various P. syringae pathovars and races (Vivian \& Arnold, J. Plant Pathol. 82:163-178 (2000); Alfano et al., Proc. Natl. Acad. Sci. USA 97:4856-4861 (2000)). The encoded effectors seem to determine both basic pathogenicity and host range, but the number of such proteins produced by any single strain has not been systematically investigated. P. s. tomato DC3000 is known to carry at least three avr genes, avrPto (Ronald et al., J. Bacteriol. 174:1604-1611 (1992)), avrPtoB, and avrE (Lorang \& Keen, Mol. Plant-Microbe Interact. 8:49-57 (1995)), with the latter being in the Hrp pathogenicity island along with five other candidate effector genes (Alfano et al., Proc. Natl. Acad. Sci. USA 97:4856-486 (2000); Lorang \& Keen, Mol. Plant-Microbe Interact. 8:49-57 (1995)).

The present invention is a further advance in the effort to identify, clone, and sequence Avr and Hop proteins or polypeptides from plant pathogens.

SUMMARY OF THE INVENTION

One aspect of the present invention relates to isolated nucleic acid molecules having a nucleotide sequence which (i) encodes a protein or polypeptide including SEQ ID No: 2, SEQ ID No: 4, SEQ ID No: 6, SEQ ID No: 8, SEQ ID No: 10, SEQ ID No: 12, SEQ ID No: 14, SEQ ID No: 16, SEQ ID No: 18, SEQ ID No: 20, SEQ ID No: 22, or SEQ ID No: 24 ; or (ii) hybridizes, under stringency conditions including a hybridization medium which includes $0.9 \times$ SSC at a temperature of $42^{\circ} \mathrm{C}$., to a DNA molecule complementary to

SEQ ID No: 1, SEQ ID No: 3, SEQ ID No: 5, SEQ ID No: 7, SEQ ID No: 9, SEQ ID No: 11, SEQ ID No: 13, SEQ ID No: 15, SEQ ID No: 17, SEQ ID No: 19, SEQ ID No: 21, or SEQ ID No: 23; or (iii) includes a nucleotide sequence which is complementary to the nucleic acid molecules of (i) and (ii). Expression vectors, host cells, and transgenic plants which include the DNA molecules of the present invention are also disclosed. Methods of making such host cells and transgenic plant are disclosed.

A further aspect of the present invention relates to isolated effector proteins or polypeptides encoded by the nucleic acid molecules of the present invention. Compositions which contain the proteins or polypeptides are also disclosed.

Yet another aspect of the present invention relates to methods of imparting disease resistance to a plant. According to one approach, this method is carried out by transforming a plant cell with a heterologous DNA molecule of the present invention and regenerating a transgenic plant from the transformed plant cell, wherein the transgenic plant expresses the heterologous DNA molecule under conditions effective to impart disease resistance. According to one approach, this method is carried out by treating a plant with a protein or polypeptide of the present invention under conditions effective to impart disease resistance to the treated plant.

A further aspect of the present invention relates to a method of causing eukaryotic cell death which includes: introducing into a eukaryotic cell a cytotoxic Pseudomonas protein of the present invention, said introducing being performed under conditions effective to cause cell death.

A still further aspect of the present invention relates to a method of treating a cancerous condition which includes introducing a cytotoxic Pseudomonas protein of the present invention into cancer cells of a patient under conditions effective to cause death of cancer cells, thereby treating the cancerous condition.

Yet another aspect of the present invention relates to a method of modifying a metabolic pathway in a cell which includes: introducing into a cell a protein or polypeptide of the present invention which interacts with a native cellular protein involved in a metabolic pathway, wherein the protein or polypeptide modifies the metabolic pathway through its interaction with the native cellular protein.

It is believed that bacteria have evolved effector proteins to make exquisite alterations in host metabolism. While plant resistance and cancer cell toxicity are important uses, as mentioned above, it is believed that these effector proteins can be used to modify or effect metabolic targets in eukaryotes, including both yeasts and higher order species, such as plants and animals. It is noteworthy that several of the effector proteins being claimed in this application have homologs in other phytopathogenic bacteria. Thus, these proteins appear to represent a set of effectors that are
conserved among Pseudomonas, Erwinia, Xanthomonas, and Ralstonia spp. By disrupting the function of these effectors through, for example, transgenic expression thereof in a host plant, it is believed that use of these effectors may lead to widely applicable means for controlling diseases of plants.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an RNA blot analysis of HrpL-dependent expression of representative virulence-implicated genes. Each well was loaded with $25 \mu \mathrm{~g}$ of total RNA isolated from CUCPB5114 cultures carrying either vector control pCPP5031 or $\mathrm{P}_{\text {nptII }}$-hrpL plasmid pCPP5032 (lanes 2 and 3, respectively). PCR-amplified internal fragments were used as probes; lane 1 in each case contains PCR product of the corresponding probe. AvrPpiB1 $1_{P t o}$ and $\mathrm{AvrPpiB} 2_{P t o}$ are 100% identical, therefore their signals cannot be distinguished.

FIGS. 2A-B illustrate assays for Hrp system-dependent secretion in culture or translocation in plants of various Avr and Hop proteins. In FIG. 2A, DC3000 or a DC3000 hrcC mutant (Yuan \& He, J. Bacteriol. 178:6399-6402 (1996), which is hereby incorporated by reference in its entirety) carrying test ORFs (i.e., candidate effectors) fused to either the FLAG (F) or hemagglutinin (HA) epitopes were grown in Hrp-inducing media, and cultures were separated into cell (lanes 1-3) and supernatant (lanes 4-5) fractions and analyzed by SDS-PAGE and immunobloting. Lanes: 1 and 4, wild type DC3000; 2 and 5, wild type DC3000(p TestORF); 3 and 6, DC3000 hrcC mutant(pTestORF). As an additional control against leakage, pCPP2318 (which encodes the mature form of β-lactamase, β-lac) was included in all strains. The presence of an epitope-tagged protein in the supernatant fraction of the wild type (lane 5), but absence in the hrcC secretion mutant (lane 6), indicated that the test ORF encoded a secreted product. In FIG. 2B, AvrRpt2 translocation assays were performed with a DC3000 AvrRps4 homolog (now designated HopPtoK). Constructs that contained ORFs fused to AvrRpt2 lacking translocation signals were electroporated into P. s. phaseolicola 3121. Test strains were infiltrated into A. thaliana Col-0 (RPS2). Plant responses were scored 18 hr after inoculation for hypersensitive collapse (HR) or no visible response (N).

DETAILED DESCRIPTION OF THE INVENTION

One aspect of the present invention relates to Pseudomonas syringae pv. syringae DC 3000 nucleic acid molecules which encode Avr or Hop effector proteins.

A first nucleic acid molecule is a homolog of avrPphE of Pseudomonas syringae pv. phaseolicola and has a nucleotide sequence according to SEQ ID No: 1 as follows:

atgaaaatac ataacgctgg cctaacccca cctttgccgg gcatttcgaa tggaaacgtt	60
ggaaaggcgg cgcaatcatc aataactcaa ccgcagagcc agcaaggctc ttatggcttg	120
ccaccagaaa gctctgagac tcgccctgat agggcgcgtg cgaactatcc atattcatca	180
gtacaaacac ggttgccgcc cgttgcgtct gctgggaaac cgctgcctga tacaccatct	240
tctttgcccg gctacttact gttgcgaagg ctggaccatc gccctgtgga tcaggaaggt	300
accaaaagtc tgatcccggc agacaaggct gtggctgaag cgcgccgtgc attgcccttt	360
ggaagaggca atattgatgt ggatgcgcaa ctttccaatc tggaaagtgg agcccgcacc	420

-continued

| cttgcagcaa ggtgcttgag aaagatgcc gaggccgccg gtcatgagcc tatgcctgcg | 480 |
| :--- | :--- | :--- |
| aatgagccga tgaactggca tgttcttgtt gcgatgtcag gccaggtgtt cggcgcgggc | 540 |
| aactgtggcg aacatgctcg tatagcgagc ttcgcctatg gagctttggc ccaggaaaac | 600 |
| ggacgatctg aatatgaaaa catctacttg gctgcatcga ctgaggaaga tcatgtgtgg | 660 |
| gctgaaaccg acgaatccca gtctggcacc tcaacgattg tcatggatcc gtggtcaaat | 720 |
| ggttcagcca tatttgcgga ggacagtagg tttgcgaaaa atcgaaatgc tgtagagcgt | 780 |
| acggatacgt ttaatctttc aaccgcagcc gaagcgggca aaattacgcg tgagacagcc | 840 |
| gagaaggctt tgacgcaggt cacaacccga ttgcagaaac gcctggcgga tcagcaggag | 900 |
| caagtctcgc ccatcaaaag tggtcgctat cgaccagaaa aatcggtact tgatgatgca | 960 |
| tttgtccgca gagtgagcga caagttgacc tcccctgatt tgcggcgtgc actacaggta | 1020 |
| gatattgaag cggtcggagt cgcaatgtcg ctcggcacca agggcgtcaa ggacgctact | 1080 |
| cgacaagccc gacctttggt tgagcttgca gtgaaggtcg cctctcctca aggcttggcg | 1140 |

The encoded protein, designated $\mathrm{AvrPphE}_{P t o}$, has an amino ${ }^{25}$ acid sequence according to SEQ ID No: 2 as follows:

AvrPphE Pto has been shown to be expressed by DC3000. It has been demonstrated that AvrPphE of Pseudomonas syringae pv.phaseolicola is recognized within plant cells and that this protein alone is required for hypersensitive response induction (Stevens et al., "Sequence variations in alleles of the avirulence gene avrPphE: R2 from Pseudomonas syringae pv. phaseolicola lead to loss of recognition of the AvrPphE protein within bean cells and a gain in cultivarspecific virulence," Mol. Microbiol. 29(1):165-177 (1998); Mansfield et al., "Characterization of avrPphE, a gene for cultivar-specific avirulence from Pseudomonas syringae pv.
phaseolicola which is physically linked to hrpY, new hrp gene identified in the halo-blight bacterium," Mol. Plant Microbe Interact. 7(6):726-739 (1994), each of which is hereby incorporated by reference in its entirety). AvrPphE has been shown to be secreted by a type III secretion system and translocated into plants. AvrPphE matches the R2 resistance gene of Phaseolus.
A second nucleic acid molecule is a homolog of avrRps4 of Pseudomonas syringae pv. pisi and has a nucleotide sequence according to SEQ ID No: 3 as follows:

The encoded protein, originally designated AvrRps $_{P t o}$ and now renamed HopPtoK, has an amino acid sequence according to SEQ ID No: 4 as follows:

HopPtoK has been shown to be a secreted protein that is expressed by DC3000. The Pseudomonas syringae pv. pisi AvrRps4 effector matches the disease locus RPS4. It has previously been demonstrated that Pseudomonas syringae strains carrying avrRps 4 induces a hypersensitive response on specific accessions of both Arabidopsis and soybean (Hinsch et al., "Identification of a new Arabidopsis disease
resistance locus, RPs4, and cloning of the corresponding avirulence gene, avrRps4, from Pseudomonas syringae pv. pisi," Mol. Plant Microbe Interact. 9(1):55-61 (1996), which is hereby incorporated by reference in its entirety).

A third nucleic acid molecule is a homolog of avrPphF orf1 of Pseudomonas syringae pv. phaseolicola and has a nucleotide sequence according to SEQ ID No: 5 as follows:

atgaaaaacg catttgacct gcttgtggaa gggctggcta aggactacaa catgccgccc	60
ttgcctgaca agaaacatat cgatgaagtc tattgctttg agtttcaaag tggtatgaac	120
gtaaaagtat accaagacga atttcgctgg gtatatttca ccgctgacgt tgggacattt	180
caagatagca gtattgacac attaaactac gcgctccagc tgaacaactt tagccttaga	240
aaacctttcc tgaccttcgg aatgacgaag gagaaaaatg gtgtattgca tacacgcacc	300
cccttgattg aggtagacaa cgtgcaaatg cgcaggatat ttgaggagct tataggcgtg	360
gcaggtgaaa tcagaaaaac actaaaactc aaatag	396

The encoded protein has an amino acid sequence according to SEQ ID No: 6 as follows:

This protein is believed to be a chaperone protein for the 50 protein of SEQ ID NO: 8 described below.

A fourth nucleic acid molecule is also homolog of avrPphF orf2 of Pseudomonas syringae pv. phaseolicola and has a nucleotide sequence according to SEQ ID No: 7 as follows:
gtgtatagcc catcccatac acaacgaata acttcagctc cctctacatc cactcatgtt 60
ggtggagata cactgacatc cattcatcag ctttcgcata gtcagagaga gcagtttctg 120
aacatgcatg atccaatgag agtaatggga cttgaccatg ataccgagct tttcagaacg 180
acggatagtc gctatataaa aaacgataaa ctcgcgggca atccacaatc catggcgagt 240
atccttatgc atgaagaact gcgccccaat cgttttgcca gccatacagg tgcccaacca 300
cacgaagcaa gggcgtacgt tccgaaaaga ataaagcca cogatctagg agttccatca 360

-continued

ctgaacgtaa tgactggctc gctagcgcga gacggaatta gagcttatga tcacatgagt	420
gataatcagg tctctgtcaa aatgcgactg ggagattttc tcgaaagggg tggcaaggtc	480
tatgccgacg cttcgtctgt agctgacgat ggggaaacat cacaagctct gattgtcaca	540
ttgcccaaag gacagaaagt gccggtcgaa agggtctga	579

The encoded protein, designated AvrPphF $_{P t o}$, has an amino acid sequence according to SEQ ID No: 8 as follows:

$\mathrm{AvrPphF}_{P t o}$ has been shown to be expressed by DC3000. Fusion of both the homolog of AvrPphF orf1 and AvrPph$\mathrm{F}_{\text {Pto }}$ with the AvrRpt2 reporter (AvrRpt2 $\Delta 40$) caused a hypersensitive response in Arabidopsis Col-0, suggesting that AvrPphF $F_{P t o}$ is secreted. Neither Orf1-AvrRpt2 240 (Avr$\operatorname{PphF}_{P t o}$) nor Orf2-AvrRpt2 240 alone causes the hypersensitive response in Arabidopsis Col-0, although mutants of the homolog of AvrPphF orf1 have shown reduced disease symptoms on tomato. The Pseudomonas syringae pv. phaseolicola AvrPphF effector protein has been shown to

5 play a role in both development of the hypersensitive response and virulence in several plants (Tsiamis et al., "Cultivar-specific avirulence and virulence functions assigned to avrPphF in Pseudomonas syringae pv. phaseolicola, the cause of bean halo-blight disease," $E M B O$ J. 19(13):3204-3214 (2000), which is hereby incorporated by reference in its entirety).
A fifth nucleic acid molecule is a homolog of avrPphD of Pseudomonas syringae pv. phaseolicola and has a nucleotide sequence according to SEQ ID No: 9 as follows:

The encoded protein, originally designated $\mathrm{AvrPphD1} 1_{\text {Pto }}$ and now renamed HopPtoD1, has an amino acid sequence according to SEQ ID No: 10 as follows:

```
Met Asn Pro Leu Arg Her Ile Gln His Asn Ile Ala Thr Pro Pro Ile
    er Gly Gly Gln Pro Leu Asp Ala Val Gly Pro Gln Ala Gln Gln Her
                    20 25 30
His Pro Lys Arg Ile Ser Pro Ser Gln Leu Ser Gln Ser Ala His Gln
            3540 45
Ala Leu Glu Arg Leu Ser Ala Asn Ala Glu His Gln Ary Leu Ala Ser
505560
```

-continued

HopPtoD1 has been shown to be a secreted protein that is expressed by DC3000.

A sixth nucleic acid molecule is another homolog of 40 avrPphD of Pseudomonas syringae pv. phaseolicola and has a nucleotide sequence according to SEQ ID No: 11 as follows:

```
atgaatcccc tgcaacctat tcagcacagc attacaaatt cccaaatgag tggtggtcag 60
caattagagg cggagggctc tcaggcccac aattcctatt cccatcctga caggatttcg 120
ctttcccaat tgagccaaag cgctcaccta gctctagatc acctttcaac tcagcctaat 180
accgatcacc aacgcgttgc atcactggta cgcaacgctg tgcaggacgg taagttccaa 240
cttcaatcca gtaacgacac gcaagtaacc tataaaactt cagtctgtcc gccagctaac 300
gccgacacca tgggggccgc ccacttaatt aataacgagc tgacggttca ggcccgatta 360
aatgatcaac ttgagtacga catcgtcagc gctcatttgt atggcccttc ggaagccata 420
tccatcgatg catccagtcc tcectcggcc aacgatctag cgtcctctgg cttgagcgaa 480
cgtacgcacc taggtatgaa tcgtgtcctc ttacgctacg cggtgccccc tcgggaaacc 540
gaagaccaat gtgttatggt gatcgacaaa atgccccccc ccaaacacgg caaaatgtct 600
ttcttccgta ccactaatga cttgagcaaa ctgcctttgg gaatggagac gggcgggttg 660
tccgacctga aattggctgg ttgtgaacgt atttcttccg tcgagcaggt gaagagtatc 720
cgcgcagcgc ttggaggcgg gccgctcacc gtactagate tgcgcgaaga atctcatgcg 780
```


The encoded protein, originally designated AvrPphD2 $2_{\text {Pto }}$ and now renamed HopPtoD2, has an amino acid sequence according to SEQ ID No: 12 as follows:

The encoded protein, originally designated $\mathrm{AvrPpiC}_{\text {Pto }}$ and now renamed HopPtoC, has an amino acid sequence according to SEQ ID No: 14 as follows:

HopPtoC has been shown to be a secreted protein that is expressed by DC3000.

An eighth nucleic acid molecule is a homolog of avrP- 50 piB1 of Pseudomonas syringae pv. pisi and has a nucleotide sequence according to SEQ ID No: 15 as follows:

```
atgcacgcaa atcctttaag ctctttcaac agagctcaac atggcaatct gactaatgta 60
gaggccagcc aagttaaatc ggcaggaacc tcttccacca ctaatataga cagtaaaaac 120
attgaagaac atgttqcaga cagactcagt gatttaggca gacctgatgg tggatggttt 180
ttcgagaagt cacttggcac cttgaaaaat ttaaatcttg agcagttagc cggaatccat 240
gatgtactaa aattaacaga tggcgtaaag aacattgtct cttttggagc tcgggaagga 300
ggcttcgagt tggcaatgca gtttcgtcat gatttataca gatctcaaca tccggatgaa 360
aactcgccgc acgatgccgc aactcattat cttgatgcaa tcagcctgca atcaaacaaa 420
```


The encoded protein, designated AvrPpiB1 $1_{\text {Pto }}$, has an amino acid sequence according to SEQ ID No: 16 as follows:
Met His Ala Asn Pro Leu Ser Ser Phe Asn Arg Ala Gln His Gly Asn
1

AvrPpiB1 $_{P \text { to }}$ has been shown to be expressed by DC3000. A second copy of $\mathrm{AvrPpiB} 1_{\text {pto }}$ is present in the genome of DC3000. This second copy is identical and has been designated $\mathrm{AvrPpiB} 2_{\text {Pto }}$. The Pseudomonas syringae pv. pisi AvrPpiB effector protein was demonstrated to effect the expression of a resistance mechanism governed by the R3 resistance locus of pea (Cournoyer et al., "Molecular characterization of the Pseudomonas syringae pv. pisi plasmid-
borne avirulence gene avrPpiB which matches the R 3 resistance locus in pea," Mol. Plant Microbe Interact. 8(5): $700-708$ (1995), which is hereby incorporated by reference in its entirety).
A ninth nucleic acid molecule is a homolog of avrXv3 of Xanthomonas campestris pv. vesicatoria and has a nucleotide sequence according to SEQ ID No: 17 as follows:

35
The encoded protein, originally designated $\operatorname{AvrXv} 3_{P t o}$ and now renamed HopPtoJ, has an amino acid sequence according to SEQ ID No: 18 as follows:

HopPtoJ has been shown to be a secreted protein that is expressed by DC3000. As reported in Astua-Monge et al. ("Resistance of tomato and pepper to T3 strains of Xanthomonas campestris pv . vesicatoria is specified by a plantinducible avirulence gene," Mol. Plant Microbe Interact. 13:911-921 (2000), which is hereby incorporated by reference in its entirety), it has been demonstrated that the Xanthomonas campestris AvrXv3 effector protein elicits a hypersensitive response in tomato NIL 216 and certain pepper genotypes, which suggests that AvrXv3 is like other
effectors in functioning inside plant cells. A uidA fusion enabled demonstration that the avrXv3 gene is part of the 5 Hrp regulon. A domain in the C terminus of AvrXv3 is possibly responsible for transcriptional activation activity in yeast. For these reasons, it is also believed that HopPtoJ possesses similar characteristics and properties.
A tenth nucleic acid molecule is a homolog of hrmB of Pseudomonas syringae pv. syringae and has a nucleotide sequence according to SEQ ID No: 19 as follows:

atgatcatcg acaatacgtt \quad gcgctgaca ctgtcatgcg attacgcgcg tgagcgcctg	60
ctgttgatcg gcttgcttga gccgcacaag gacatacctc agcagtgcct tttggctggc	120
gctctcaatc cgctcctcaa tgcaggccca ggccttggcc tggatgagaa aagcggcctg	180
tatcacgcgt atcaaagcat ccctcgagaa aaactcagcg tgccgacgct caaacgcgaa	240
atggcaggtc tgctggagtg gatgaggggc tggcgcgaag caagccaata 9	291

The encoded protein, believed to be a chaperone for the 45 protein of SEQ ID No: 22, has an amino acid sequence according to SEQ ID No: 20 as follows:

An eleventh nucleic acid molecule is a homolog of hrmA (also known as hopPsyA) of Pseudomonas syringae pv. syringae and has a nucleotide sequence according to SEQ ID No: 21 as follows:

atgaacceca	ttcagtcacg cttctccagt	gtgcaagage tcagacgatc	aacgttgat	60
attccggcgc	tcaaagccaa tggccaactg	gaggtcgacg gcaagaggta	gagattcgt	120
gcagccgatg	acggaacaat ttcggtcctt	cgaccggage aacaatccaa	agcgaaaagt	180
tttttcaagg	gegcttccca gttgataggt	ggcagcagce agcgcgcgca	gattgcccag	240
gcgctcaacg	agaaggtcgc atcggcacge	actgtcttgc accagagcgc	tatgacgggc	300
ggacgcttgg	acaccettga gcggggcgaa	agcagctcag ccacaacagc	catcaaacce	360
actgccaaac	aggctgcgea aagtactttt	aacagctttc atgagtgggc	aaacaggca	420
gaggcgatgc	gaaacccgtc tcgaatggat	atctacaaga tctataaca	agatgcacct	480
cactcacacc	ccatgagcga cgagcagcaa	gaagagttcc tgcacacgct	aaaggcattg	540
aatggcaaaa	acggcattga ggtgcgcact	caggaccacg acagcgtcag	aaataaaaaa	600
gaccgcaacc	tggacaagta catcgcagag	agcccggatg caaagaggtt	tttctatcga	660
attatcccea	aacatgagcg ccgagaagat	aagaatcaag ggcgattgac	attggcgtg	720
caaccccaat	atgcaacaca gttgacccgc	gccatggcaa ccctgatagg	gaaggaaagt	780
gcaatcacge	atggcaaagt aataggccec	gcctgccacg gccaaatgac	gattcggca	840
gttttgtata	tcaacggtga tgttgcaaag	gcagaaaage tgggcgagaa	ctgaaacag	900
atgagcggca	ttcctctgga tgcgttcgtt	gagcacaccc ctttgagcat	gcaatccotg	960
agtaaaggtc	tgtcotatgc agaaagcatc	ctgggcgaca ccagaggcca	tgggatgtcg	1020
cgagcggaag	tgatcagcga tgccttgagg	atggacggga tgccatttct	ggccagattg	1080
aagctatcac	tgtctgccaa tggctatgac	coggacaacc cggcecttcg	aaacacgaaa	1140
tga				1143

The encoded protein, designated HopPsyA Pto , has an amino ${ }^{40}$ acid sequence according to SEQ ID No: 22 as follows:
Met Asn Pro Ile Gln Ser Arg Phe Ser Ser Val Gln Glu Leu Arg Arg
1

HopPsyA Pro has been shown to be a secreted protein that is expressed by DC3000. It has been shown that HopPsyA is characterized by cytotoxicity when expressed recombinantly in eukaryotes (i.e., in plants and yeast), and further that HopPsyA is capable of altering metabolic (e.g., Mad2) pathways in targeted cells (see PCT Application Publication No. WO 01/75066 to Collmer et al., published Oct. 11, 2001, which is hereby incorporated by reference in its entirety). Moreover, it has been shown that HopPsyA (HrmA) can be used to effect enhanced resistance to bacterial, fungal, and viral pathogens upon recombinant expression thereof in plants (U.S. Pat. No. 6,342,654 to Li et al., which is hereby incorporated by reference in its entirety). Based on its shared amino acid identity of about 52% when compared to HopPsyA, it is believed that HopPsyA Pto possesses these same characteristics.

A twelfth nucleic acid molecule is hopPtoB2, a homolog of hopB of Pseudomonas syringae pv. syringae DC3000, and has a nucleotide sequence according to SEQ ID No: 23 as follows:

-continued	
attgaacacg tcttcgcgca gggtaacggc ctggttttga gtgaagcacc gaagtcggtc	600
gccagcaaac ggctgctgtt actcaacatg cogctgctgg ccgaacagcg tgtcaagatt	660
ctgtatatcg agcacctgct gaccgacaag cacctgtcta aactggccag gtatcgtcaa	720
ctgggcaaaa agagccgctc aggctcgcac gaactcaage attacctgca cgatctcaac	780
cgcgggacge tgaacaattc cagcaccgac tacgactatt accacctcat caaggcagcg	840
catcgctatg gtatcgaggt gcgaccgttc agctcgtcga tcagctaccc gtttctggac	900
catccggtat tgagcgcagc caacgacacg actgcagtac aaaaatgag caattttttc	960
ggccatacge tcatcagcag cgatgtcgca tccgcgccga caaaacgctg ggttgccttg	1020
ctcgaccaga agctggccac gacccacgac ggggtattag gcattgccga aatgcagggc	1080
gtggtcagtg tgcatgtccg cgacatcccg gcaggccgge cgacgcgcat cactaaagge	1140
acaggcgaac tgccacgega gggcacgcag gcccgctgcg acttcacgat tgcgttttcc	1200
gatccgacgc tgattgtgcc coaggcgcct cacccgcacg gtaccaaact ggacgacatg	1260
ctgctcagag aactgagggg ccaatctgce ggtgecgggg gcgaacgetg ggceggecag	1320
tacggattca tccgtgacga ggacggtgcc tggcggtgga tcgcgcctga ggactggccc	1380
gcagacagcc cgatgacggc aatccagcaa tccctgaccg accetgtcta tgagatgcca	1440
ctggacactc gaacaacgct tcatacgctg gcgaacttcg aaagaagggg gctcgacatg	1500
gagtatttct ttgaagaaag ccagtacgaa actgttcgca acgtattcge cctgcaccge	1560
aaaaagctgc aacaggatge ggcettgatc agcgetgtac agttgccgcc tcgtccgacg	1620
atgccggccg tcaaccctcg gacgaccacg gcgcagctgt ttgaaacget gtaccagcac	1680
accgatggca tcgtgatcgg cgagtcgcat ttttcggtcg ccagcaagaa aatgatcatc	1740
gacaacctgc cgttgctgtc gcagcaaaac gtacgaacge tgtacatgga gcacttgctc	1800
accgacttgc atcaggcgga tctggatcge tttttcgaaa cagggcaaat gagcaaaacc	1860
ctgcttcacg acctgaaagt gctggatcgg ggccatcgca ccgacccgga caaggtttac	1920
acctttgagc aactggtcat caaggcgcag cagcacggca tggaagtccg cgccatcgac	1980
tgcgcagcca gctaccacct tagtggcctt gacaacgatg gttcaatcac ccgtcagcaa	2040
atgatgaact actttgcgtc gcgcaccetg cgcaggcatc aggacgtcat gggctcacac	2100
aagtggatcg cgctggtcgg caacagccat tccaatgtct atcaaggcgt cgtgcctggt	2160
atcgccgagc tggaaggegg catcggcetg cgggttatcg acgtggcacc ggggcagtcg	2220
aagggtgtca tgcacgacct gggggagctg gtctcggcag acatctcgag aaccaaagta	2280
cacatcaaag gcgattatcg agtggagata gaaataccge gtgcgaagga tgccattcgg	2340
ccaccccagc ctgttaccct cgaacagcga ctggccagac cgggattgtt tctggtggaa	2400
gagagtgagg gcaatctgct gaccattgtc caccgcgctc gcgacacctg gattcaccgc	2460
acgecggtgc tggtcaatgc cgagggcaag ctgtacctgg agcgcgtgcg ctggccgegc	2520
atccacctca aaccctttga tgacatggac gcgctggtag cggcgetgga ggagatgaac	2580
ctgacgcggg taggctga	2598

The encoded HopPtoB2 protein has an amino acid sequence according to SEQ ID No: 24 as follows:

continued

\author{

-continued
 Leu Glu Arg Val Arg Trp Pro Arg Ile His Leu Lys Pro Phe Asp Asp 835840845
 | Met Asp Ala Leu Val Ala Ala Leu Glu Glu Met Asn | |
| ---: | :--- |
| 850 | 855 |
| 860 | |
 Gly
 865

}

HopPtoB2 has been shown to be a secreted protein that is expressed by DC3000.

Fragments of the above-identified proteins or polypeptides as well as fragments of full length proteins can also be used according to the present invention.

Suitable fragments can be produced by several means. Subclones of the gene encoding a known protein can be produced using conventional molecular genetic manipulation for subcloning gene fragments, such as described by Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Springs Laboratory, Cold Springs Harbor, N.Y. (1989), and Ausubel et al. (ed.), Current Protocols in Molecular Biology, John Wiley \& Sons (New York, N.Y.) (1999 and preceding editions), each of which is hereby incorporated by reference in its entirety. The subclones then are expressed in vitro or in vivo in bacterial cells to yield a smaller protein or polypeptide that can be tested for activity, e.g., as a product required for pathogen virulence.

In another approach, based on knowledge of the primary structure of the protein, fragments of the protein-coding gene may be synthesized using the PCR technique together with specific sets of primers chosen to represent particular portions of the protein. Erlich, H. A., et al., "Recent Advances in the Polymerase Chain Reaction," Science 252: 1643-51 (1991), which is hereby incorporated by reference. These can then be cloned into an appropriate vector for expression of a truncated protein or polypeptide from bacterial cells as described above.

As an alternative, fragments of a protein can be produced by digestion of a full-length protein with proteolytic enzymes like chymotrypsin or Staphylococcus proteinase A, or trypsin. Different proteolytic enzymes are likely to cleave different proteins at different sites based on the amino acid sequence of the particular protein. Some of the fragments that result from proteolysis may be active virulence proteins or polypeptides.

Chemical synthesis can also be used to make suitable fragments. Such a synthesis is carried out using known amino acid sequences for the polyppetide being produced. Alternatively, subjecting a full length protein to high temperatures and pressures will produce fragments. These fragments can then be separated by conventional procedures (e.g., chromatography, SDS-PAGE).

Variants may also (or alternatively) be modified by, for example, the deletion or addition of amino acids that have minimal influence on the properties, secondary structure and hydropathic nature of the polypeptide. For example, a polypeptide may be conjugated to a signal (or leader) sequence at the N -terminal end of the protein which cotranslationally or post-translationally directs transfer of the protein. The polypeptide may also be conjugated to a linker or other sequence for ease of synthesis, purification, or identification of the polypeptide.

The proteins or polypeptides used in accordance with the present invention are preferably produced in purified form (preferably at least about 80%, more preferably 90%, pure)
by conventional techniques. Typically, the protein or polypeptide of the present invention is secreted into the growth medium of recombinant host cells (discussed infra). Alternatively, the protein or polypeptide of the present invention is produced but not secreted into growth medium. In such cases, to isolate the protein, the host cell (e.g., E. coli) carrying a recombinant plasmid is propagated, lysed by sonication, heat, or chemical treatment, and the homogenate is centrifuged to remove bacterial debris. The supernatant is then subjected to sequential ammonium sulfate precipitation. The fraction containing the protein or polypeptide of interest is subjected to gel filtration in an appropriately sized dextran or polyacrylamide column to separate the proteins. If necessary, the protein fraction may be further purified by HPLC.

Other DNA molecules encoding other effector proteins or polypeptides can also be identified by determining whether such DNA molecules hybridize under stringent conditions to a nucleic acid molecule as identified above. An example of suitable stringency conditions is when hybridization is carried out at a temperature of about $37^{\circ} \mathrm{C}$. using a hybridization medium that includes $0.9 \times$ sodium citrate ("SSC") buffer, followed by washing with $0.2 \times \mathrm{SSC}$ buffer at $37^{\circ} \mathrm{C}$. Higher stringency can readily be attained by increasing the temperature for either hybridization or washing conditions or increasing the sodium concentration of the hybridization or wash medium. Nonspecific binding may also be controlled using any one of a number of known techniques such as, for example, blocking the membrane with protein-containing solutions, addition of heterologous RNA, DNA, and SDS to the hybridization buffer, and treatment with RNase. Wash conditions are typically performed at or below stringency. Exemplary high stringency conditions include carrying out hybridization at a temperature of about $42^{\circ} \mathrm{C}$. up to and including about $65^{\circ} \mathrm{C}$. for up to about 20 hours in a hybridization medium containing $1 \mathrm{M} \mathrm{NaCl}, 50 \mathrm{mM}$ Tris$\mathrm{HCl}, \mathrm{pH} 7.4,10 \mathrm{mM}$ EDTA, 0.1% sodium dodecyl sulfate (SDS), 0.2% ficoll, 0.2% polyvinylpyrrolidone, 0.2% bovine serum albumin, and $50 \mu \mathrm{~g} / \mathrm{ml}$ E. coli DNA, followed by washing carried out at between about $42^{\circ} \mathrm{C}$. to about $65^{\circ} \mathrm{C}$. in a $0.2 \times$ SSC buffer.

The delivery of effector proteins or polypeptides can be achieved in several ways: (1) as a stable transgene; (2) transiently expressed via Agrobacterium or viral vectors; (3) delivered by the type III secretion systems of disarmed pathogens or recombinant nonpathogenic bacteria which express a functional, heterologous type III secretion system; or (4) delivered via topical application followed by TAT protein transduction domain-mediated spontaneous uptake into cells. Each of these is discussed infra.

The DNA molecule encoding the protein or polypeptide can be incorporated in cells using conventional recombinant DNA technology. Generally, this involves inserting the DNA molecule into an expression system to which the DNA molecule is heterologous (i.e. not normally present). The heterologous DNA molecule is inserted into the expression
system or vector in proper sense orientation and correct reading frame. The vector contains the necessary elements for the transcription and translation of the inserted proteincoding sequences.
U.S. Pat. No. $4,237,224$ to Cohen and Boyer, which is hereby incorporated by reference in its entirety, describes the production of expression systems in the form of recombinant plasmids using restriction enzyme cleavage and ligation with DNA ligase. These recombinant plasmids are then introduced by means of transformation and replicated in unicellular cultures including prokaryotic organisms and eukaryotic cells grown in tissue culture.

Recombinant genes may also be introduced into viruses, such as vaccina virus. Recombinant viruses can be generated by transfection of plasmids into cells infected with virus.

Suitable vectors include, but are not limited to, the following viral vectors such as lambda vector system gt11, gt WES.tB, Charon 4, and plasmid vectors such as pBR 322 , pBR325, pACYC177, pACYC1084, pUC8, pUC9, pUC18, pUC19, pLG339, pR290, pKC37, pKC101, SV 40, pBluescript II SK +/- or KS +/- (see "Stratagene Cloning Systems" Catalog (1993) from Stratagene, La Jolla, Calif., which is hereby incorporated by reference), $\mathrm{pQE}, \mathrm{pIH8} 21$, pGEX, pET series (see F. W. Studier et. al., "Use of T7 RNA Polymerase to Direct Expression of Cloned Genes," Gene Expression Technology vol. 185 (1990), which is hereby incorporated by reference in its entirety), and any derivatives thereof Recombinant molecules can be introduced into cells via transformation, particularly transduction, conjugation, mobilization, or electroporation. The DNA sequences are cloned into the vector using standard cloning procedures in the art, as described by Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Springs Laboratory, Cold Springs Harbor, N.Y. (1989), which is hereby incorporated by reference in its entirety.

A variety of host-vector systems may be utilized to express the protein-encoding sequence(s). Primarily, the vector system must be compatible with the host cell used. Host-vector systems include but are not limited to the following: bacteria transformed with bacteriophage DNA, plasmid DNA, or cosmid DNA; microorganisms such as yeast containing yeast vectors; mammalian cell systems infected with virus (e.g., vaccinia virus, adenovirus, etc.); insect cell systems infected with virus (e.g., baculovirus); and plant cells infected by bacteria. The expression elements of these vectors vary in their strength and specificities. Depending upon the host-vector system utilized, any one of a number of suitable transcription and translation elements can be used.

Different genetic signals and processing events control many levels of gene expression (e.g., DNA transcription and messenger RNA (mRNA) translation).

Transcription of DNA is dependent upon the presence of a promoter which is a DNA sequence that directs the binding of RNA polymerase and thereby promotes mRNA synthesis. The DNA sequences of eukaryotic promoters differ from those of prokaryotic promoters. Furthermore, eukaryotic promoters and accompanying genetic signals may not be recognized in or may not function in a prokaryotic system, and, further, prokaryotic promoters are not recognized and do not function in eukaryotic cells.

Similarly, translation of mRNA in prokaryotes depends upon the presence of the proper prokaryotic signals which differ from those of eukaryotes. Efficient translation of mRNA in prokaryotes requires a ribosome binding site called the Shine-Dalgarno ("SD") sequence on the mRNA. This sequence is a short nucleotide sequence of mRNA that
is located before the start codon, usually AUG, which encodes the amino-terminal methionine of the protein. The SD sequences are complementary to the 3^{\prime}-end of the 16 S rRNA (ribosomal RNA) and probably promote binding of mRNA to ribosomes by duplexing with the rRNA to allow correct positioning of the ribosome. For a review on maximizing gene expression, see Roberts and Laver, Methods in Enzymology, 68:473 (1979), which is hereby incorporated by reference in its entirety.
Promoters vary in their "strength" (i.e. their ability to promote transcription). For the purposes of expressing a cloned gene, it is desirable to use strong promoters in order to obtain a high level of transcription and, hence, expression of the gene. Depending upon the host cell system utilized, any one of a number of suitable promoters may be used. For instance, when cloning in E. coli, its bacteriophages, or plasmids, promoters such as the T7 phage promoter, lac promoter, trp promoter, recA promoter, ribosomal RNA promoter, the P_{R} and P_{L} promoters of coliphage lambda and others, including but not limited, to lacUV5, ompF, bla, 1pp, and the like, may be used to direct high levels of transcription of adjacent DNA segments. Additionally, a hybrid trp-lacUV5 (tac) promoter or other E. coli promoters produced by recombinant DNA or other synthetic DNA techniques may be used to provide for transcription of the inserted gene.

Bacterial host cell strains and expression vectors may be chosen which inhibit the action of the promoter unless specifically induced. In certain operations, the addition of specific inducers is necessary for efficient transcription of the inserted DNA. For example, the lac operon is induced by the addition of lactose or IPTG (isopropylthio-beta-D-galactoside). A variety of other operons, such as trp, pro, etc., are under different controls.
Specific initiation signals are also required for efficient gene transcription and translation in prokaryotic cells. These transcription and translation initiation signals may vary in "strength" as measured by the quantity of gene specific messenger RNA and protein synthesized, respectively. The DNA expression vector, which contains a promoter, may also contain any combination of various "strong" transcription and/or translation initiation signals. For instance, efficient translation in E. coli requires an SD sequence about $7-9$ bases 5 ' to the initiation codon ("ATG") to provide a ribosome binding site. Thus, any SD-ATG combination that can be utilized by host cell ribosomes may be employed. Such combinations include but are not limited to the SDATG combination from the cro gene or the N gene of coliphage lambda, or from the E. coli tryptophan E, D, C, B or A genes. Additionally, any SD-ATG combination produced by recombinant DNA or other techniques involving incorporation of synthetic nucleotides may be used.

Once the isolated DNA molecule encoding the polypeptide or protein has been cloned into an expression system, it is ready to be incorporated into a host cell. Such incorporation can be carried out by the various forms of transformation noted above, depending upon the vector/host cell system. Suitable host cells include, but are not limited to, bacteria, virus, yeast, mammalian cells, insect, plant, and the like.

Because it is desirable for recombinant host cells to secrete the encoded protein or polypeptide, it is preferable that the host cell also possess a functional type III secretion system. The type III secretion system can be heterologous to host cell (Ham et al., "A Cloned Erwinia chrysanthemi Hrp (Type III Protein Secretion) System Functions in Escherichia coli to Deliver Pseudomonas syringae Avr Signals to

Plant Cells and Secrete Avr Proteins in Culture," Microbiol. 95:10206-10211 (1998), which is hereby incorporated by reference in its entirety) or the host cell can naturally possess a type III secretion system. Host cells which naturally contain a type III secretion system include many pathogenic Gram-negative bacterium, such as numerous Erwinia species, Pseudomonas species, Xanthomonas species, etc. Other type III secretion systems are known and still others are continually being identified. Pathogenic bacteria that can be utilized to deliver effector proteins or polypeptides are preferably disarmed according to known techniques, i.e., as described above. Alternatively, isolation of the effector protein or polypeptide from the host cell or growth medium can be carried out as described above.

Another aspect of the present invention relates to a transgenic plant which express a protein or polypeptide of the present invention and methods of making the same.

In order to express the DNA molecule in isolated plant cells or tissue or whole plants, a plant expressible promoter is needed. Any plant-expressible promoter can be utilized regardless of its origin, i.e., viral, bacterial, plant, etc. Without limitation, two suitable promoters include the nopaline synthase promoter (Fraley et al., Proc. Natl. Acad. Sci. USA 80:4803-4807 (1983), which is hereby incorporated by reference in its entirety) and the cauliflower mosaic virus 35 S promoter (O'Dell et al., "Identification of DNA Sequences Required for Activity of the Cauliflower Mosaic Virus 35S Promoter," Nature, 313(6005):810-812 (1985), which is hereby incorporated by reference in its entirety). Both of these promoters yield constitutive expression of coding sequences under their regulatory control.

While constitutive expression is generally suitable for expression of the DNA molecule, it should be apparent to those of skill in the art that temporally or tissue regulated expression may also be desirable, in which case any regulated promoter can be selected to achieve the desired expression. Typically, the temporally or tissue regulated promoters will be used in connection with the DNA molecule that are expressed at only certain stages of development or only in certain tissues.

In some plants, it may also be desirable to use promoters which are responsive to pathogen infiltration or stress. For example, it may be desirable to limit expression of the protein or polypeptide in response to infection by a particular pathogen of the plant. One example of a pathogeninducible promoter is the gst 1 promoter from potato, which is described in U.S. Pat. Nos. 5,750,874 and 5,723,760 to Strittmayer et al., each of which is hereby incorporated by reference in its entirety.

Expression of the DNA molecule in isolated plant cells or tissue or whole plants also requires appropriate transcription termination and polyadenylation of mRNA. Any 3^{\prime} regulatory region suitable for use in plant cells or tissue can be operably linked to the first and second DNA molecules. A number of 3^{\prime} regulatory regions are known to be operable in plants. Exemplary 3^{\prime} regulatory regions include, without limitation, the nopaline synthase 3 ' regulatory region (Fraley, et al., "Expression of Bacterial Genes in Plant Cells," Proc. Nat'l. Acad. Sci. USA, 80:4803-4807 (1983), which is hereby incorporated by reference in its entirety) and the cauliflower mosaic virus 3 ' regulatory region (Odell, et al., "Identification of DNA Sequences Required for Activity of the Cauliflower Mosaic Virus 35S Promoter," Nature, 313 (6005):810-812 (1985), which is hereby incorporated by reference in its entirety).

The promoter and a 3^{\prime} regulatory region can readily be ligated to the DNA molecule using well known molecular
cloning techniques described in Sambrook et al., Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Press, NY (1989), which is hereby incorporated by reference in its entirety.
One approach to transforming plant cells with a DNA molecule of the present invention is particle bombardment (also known as biolistic transformation) of the host cell. This can be accomplished in one of several ways. The first involves propelling inert or biologically active particles at cells. This technique is disclosed in U.S. Pat. Nos. 4,945, 050, 5,036,006, and 5,100,792, all to Sanford, et al., each of which is hereby incorporated by reference in its entirety. Generally, this procedure involves propelling inert or biologically active particles at the cells under conditions effective to penetrate the outer surface of the cell and to be incorporated within the interior thereof When inert particles are utilized, the vector can be introduced into the cell by coating the particles with the vector containing the heterologous DNA. Alternatively, the target cell can be surrounded by the vector so that the vector is carried into the cell by the wake of the particle. Biologically active particles (e.g., dried bacterial cells containing the vector and heterologous DNA) can also be propelled into plant cells. Other variations of particle bombardment, now known or hereafter developed, can also be used.

Another method of introducing the DNA molecule into plant cells is fusion of protoplasts with other entities, either minicells, cells, lysosomes, or other fusible lipid-surfaced bodies that contain the DNA molecule. Fraley, et al., Proc. Natl. Acad. Sci. USA, 79:1859-63 (1982), which is hereby incorporated by reference in its entirety.

The DNA molecule may also be introduced into the plant cells by electroporation. Fromm, et al., Proc. Natl. Acad. Sci. USA, 82:5824 (1985), which is hereby incorporated by reference in its entirety. In this technique, plant protoplasts are electroporated in the presence of plasmids containing the DNA molecule. Electrical impulses of high field strength reversibly permeabilize biomembranes allowing the introduction of the plasmids. Electroporated plant protoplasts reform the cell wall, divide, and regenerate.

Another method of introducing the DNA molecule into plant cells is to infect a plant cell with Agrobacterium tumefaciens or Agrobacterium rhizogenes previously transformed with the DNA molecule. Under appropriate conditions known in the art, the transformed plant cells are grown to form shoots or roots, and develop further into plants. Generally, this procedure involves inoculating the plant tissue with a suspension of bacteria and incubating the tissue for 48 to 72 hours on regeneration medium without antibiotics at $25-28^{\circ} \mathrm{C}$.

Agrobacterium is a representative genus of the Gramnegative family Rhizobiaceae. Its species are responsible for crown gall (A. tumefaciens) and hairy root disease (A. rhizogenes). The plant cells in crown gall tumors and hairy roots are induced to produce amino acid derivatives known as opines, which are catabolized only by the bacteria. The bacterial genes responsible for expression of opines are a convenient source of control elements for chimeric expression cassettes. In addition, assaying for the presence of opines can be used to identify transformed tissue.

Heterologous genetic sequences such as a DNA molecule of the present invention can be introduced into appropriate plant cells by means of the Ti plasmid of A. tumefaciens or the Ri plasmid of A. rhizogenes. The Ti or Ri plasmid is transmitted to plant cells on infection by Agrobacterium and
is stably integrated into the plant genome. Schell, J., Science, 237:1176-83 (1987), which is hereby incorporated by reference in its entirety.

Plant tissue suitable for transformation include leaf tissue, root tissue, meristems, zygotic and somatic embryos, and anthers.

After transformation, the transformed plant cells can be selected and regenerated.

Preferably, transformed cells are first identified using, e.g., a selection marker simultaneously introduced into the host cells along with the DNA molecule of the present invention. Suitable selection markers include, without limitation, markers coding for antibiotic resistance, such as kanamycin resistance (Fraley, et al., Proc. Natl. Acad. Sci. USA, 80:4803-4807 (1983), which is hereby incorporated by reference in its entirety). A number of antibiotic-resistance markers are known in the art and other are continually being identified. Any known antibiotic-resistance marker can be used to transform and select transformed host cells in accordance with the present invention. Cells or tissues are grown on a selection media containing an antibiotic, whereby generally only those transformants expressing the antibiotic resistance marker continue to grow.

Once a recombinant plant cell or tissue has been obtained, it is possible to regenerate a full-grown plant therefrom. Thus, another aspect of the present invention relates to a transgenic plant that includes a DNA molecule of the present invention, wherein the promoter induces transcription of the first DNA molecule in response to infection of the plant by an oomycete. Preferably, the DNA molecule is stably inserted into the genome of the transgenic plant of the present invention.

Plant regeneration from cultured protoplasts is described in Evans, et al., Handbook of Plant Cell Cultures Vol. 1: (MacMillan Publishing Co., New York, 1983); and Vasil I. R. (ed.), Cell Culture and Somatic Cell Genetics of Plants, Acad. Press, Orlando, Vol. I, 1984, and Vol. III (1986), each of which is hereby incorporated by reference in their entirety.

It is known that practically all plants can be regenerated from cultured cells or tissues, including but not limited to, all major species of rice, wheat, barley, rye, cotton, sunflower, peanut, corn, potato, sweet potato, bean, pea, chicory, lettuce, endive, cabbage, cauliflower, broccoli, turnip, radish, spinach, onion, garlic, eggplant, pepper, celery, carrot, squash, pumpkin, zucchini, cucumber, apple, pear, melon, strawberry, grape, raspberry, pineapple, soybean, tobacco, tomato, sorghum, and sugarcane.

Means for regeneration vary from species to species of plants, but generally a suspension of transformed protoplasts or a petri plate containing transformed explants is first provided. Callus tissue is formed and shoots may be induced from callus and subsequently rooted. Alternatively, embryo formation can be induced in the callus tissue. These embryos germinate as natural embryos to form plants. The culture media will generally contain various amino acids and hormones, such as auxin and cytokinins. It is also advantageous to add glutamic acid and proline to the medium, especially for such species as corn and alfalfa. Efficient regeneration will depend on the medium, on the genotype, and on the history of the culture. If these three variables are controlled, then regeneration is usually reproducible and repeatable.

After the DNA molecule is stably incorporated in transgenic plants, it can be transferred to other plants by sexual crossing or by preparing cultivars. With respect to sexual crossing, any of a number of standard breeding techniques can be used depending upon the species to be crossed.

Cultivars can be propagated in accord with common agricultural procedures known to those in the field.

Diseases caused by the vast majority of bacterial pathogens result in limited lesions. That is, even when everything is working in the pathogen's favor (e.g., no triggering of the hypersensitive response because of R -gene detection of one of the effectors), the parasitic process still triggers defenses after a couple of days, which then stops the infection from spreading. Thus, the very same effectors that enable parasitism to proceed must also eventually trigger defenses. Therefore, premature expression of these effectors is believed to "turn on" plant defenses earlier (i.e., prior to infection) and make the plant resistant to either the specific bacteria from which the effector protein was obtained or many pathogens. An advantage of this approach is that it involves natural products and plants seem highly sensitive to pathogen effector proteins.

According to one embodiment, a transgenic plant is provided that contains a heterologous DNA molecule of the present invention. When the heterologous DNA molecule is expressed in the transgenic plant, plant defenses are activated, imparting disease resistance to the transgenic plant. The transgenic plant can also contain an R-gene whose product is activated by the protein or polypeptide product of the heterologous DNA molecule. The R gene can be naturally occurring in the plant or heterologously inserted therein. By disease resistance, it is believed that the effector proteins of the present invention can impart to plants resistance against bacterial, viral, and/or fungal diseases.
In addition to imparting disease resistance, it is believed that stimulation of plant defenses in transgenic plants of the present invention will also result in a simultaneous enhancement in growth and resistance to insects.
Alternative to transgenic expression is topical application of the effector proteins to plants. The embodiments of the present invention where the effector polypeptide or protein is applied to the plant can be carried out in a number of ways, including: 1) application of an isolated protein (or composition containing the same) or 2) application of bacteria which do not cause disease and are transformed with a gene encoding the effector protein of the present invention. In the latter embodiment, the effector protein can be applied to plants by applying bacteria containing the DNA molecule encoding the effector protein. Such bacteria are preferably capable of secreting or exporting the protein so that the protein can contact plant cells. In these embodiments, the protein is produced by the bacteria in planta.

Such topical application can be carried out using an effector-TAT protein, which will afford transduction domain-mediated spontaneous uptake of the effector protein into cells. Basically, this is carried out by fusing an 11 -amino acid peptide (YGRKKRRQRRR, SEQ ID No: 25) by standard rDNA techniques to the N-terminus of the effector protein, and the resulting tagged protein is taken up into animal cells by a poorly understood process. This peptide is the protein transduction domain (PTD) of the human immunodeficiency virus (HIV) TAT protein (Schwarze et al., "Protein transduction: unrestricted delivery into all cells?" Trends Cell Biol. 10:290-295 (2000), which is hereby incorporated by reference in its entirety). Other PTDs are known and can be used for this purpose (Prochiantz, "Messenger proteins: homeoproteins, TAT and others," Curr. Opin. Cell Biol. 12:400-406 (2000), which is hereby incorporated by reference in its entirety). See PCT Application Publication No. WO 01/19393 to Collmer et al., which is hereby incorporated by reference in its entirety.

When the effector protein is topically applied to plants, it can be applied as a composition, which includes a carrier in the form, e.g., of water, aqueous solutions, slurries, or dry powders. In this embodiment, the composition contains greater than about 5 nM of the protein of the present invention.

Although not required, this composition may contain additional additives including fertilizer, insecticide, fungicide, nematicide, and mixtures thereof Suitable fertilizers include $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{NO}_{3}$. An example of a suitable insecticide is Malathion. Useful fungicides include Captan.

Other suitable additives include buffering agents, wetting agents, coating agents, and, in some instances, abrading agents. These materials can be used to facilitate the process of the present invention.

According to one embodiment, a transgenic plant including a heterologous DNA molecule of the present invention expresses one or more effector proteins, wherein the transgenic plant is capable of supporting growth of compatible nonpathogenic bacteria. The compatible nonpathogenic bacteria can be naturally occurring or it can be recombinant. Preferably, the nonpathogenic bacteria is recombinant and expresses one or more useful products. Thus, the transgenic plant becomes a green factory for producing desirable products. Desirable products include, without limitation, products that can enhance the nutritional quality of the plant or products that are desirable in isolated form If desired in isolated form, the product can be isolated from plant tissues. To prevent competition between the non-pathogenic bacteria which express the desired product and those that do not, it is possible to tailor the needs of recombinant, non-pathogenic bacteria so that only they are capable if living in plant tissues expressing a particular effector protein or polypeptide of the present invention.

The effector proteins or polypeptides of the present invention are believed to alter the plant physiology by shifting metabolic pathways to benefit the parasite and by activating or suppressing cell death pathways. Thus, they may also provide useful tools for efficiently altering the nutrient content of plants and delaying or triggering senescence. There are agricultural applications for all of these possible effects.

Thus, a further aspect of the present invention relates more generally to a method of modifying a metabolic pathway in a cell by introducing into the cell an effector protein or polypeptide of the present invention which interacts with a native cellular protein involved in a metabolic pathway of the cell. As a result of introducing the protein or polypeptide into the cell, the protein or polypeptide modifies the metabolic pathway through its interaction with the native cellular protein. By way of example, the HopPsyA Pto $^{\text {p }}$ protein (SEQ ID No: 22) is believed to interact with Mad2.

Yet another aspect of the present invention relates to a method of causing eukaryotic cell death which is carried out by introducing into a eukaryotic cell a Pseudomonas protein which is cytotoxic and causes cell death. One preferred protein of the present invention is HopPsyA $A_{\text {Po }}$ (SEQ ID No: 22), homolog of HopPsyA. The eukaryotic cell which is treated can be either in vitro or in vivo. When treating eukaryotic cells in vivo, a number of different protein- or DNA-delivery systems can be employed to introduce the effector protein into the target eukaryotic cell.

The protein- or DNA-delivery systems can be provided in the form of pharmaceutical compositions which include the delivery system in a pharmaceutically acceptable carrier, which may include suitable excipients or stabilizers. The dosage can be in solid or liquid form, such as powders,
solutions, suspensions, or emulsions. Typically, the composition will contain from about 0.01 to 99 percent, preferably from about 20 to 75 percent of active compound(s), together with the carrier, excipient, stabilizer, etc.

The compositions of the present invention are preferably administered in injectable or topically-applied dosages by solution or suspension of these materials in a physiologically acceptable diluent with a pharmaceutical carrier. Such carriers include sterile liquids, such as water and oils, with or without the addition of a surfactant and other pharmaceutically and physiologically acceptable carrier, including adjuvants, excipients or stabilizers. Illustrative oils are those of petroleum, animal, vegetable, or synthetic origin, for example, peanut oil, soybean oil, or mineral oil. In general, water, saline, aqueous dextrose and related sugar solution, and glycols, such as propylene glycol or polyethylene glycol, are preferred liquid carriers, particularly for injectable solutions.
Alternatively, the effector proteins can also be delivered via solution or suspension packaged in a pressurized aerosol container together with suitable propellants, for example, hydrocarbon propellants like propane, butane, or isobutane with conventional adjuvants. The materials of the present invention also may be administered in a non-pressurized form such as in a nebulizer or atomizer.
Depending upon the treatment being effected, the compounds of the present invention can be administered orally, topically, transdermally, parenterally, subcutaneously, intravenously, intramuscularly, intraperitoneally, by intranasal instillation, by intracavitary or intravesical instillation, intraocularly, intraarterially, intralesionally, or by application to mucous membranes, such as, that of the nose, throat, and bronchial tubes.
Compositions within the scope of this invention include all compositions wherein the compound of the present invention is contained in an amount effective to achieve its intended purpose. While individual needs vary, determination of optimal ranges of effective amounts of each component is within the skill of the art.
One approach for delivering an effector protein into cells involves the use of liposomes. Basically, this involves providing a liposome which includes that effector protein to be delivered, and then contacting the target cell with the liposome under conditions effective for delivery of the effector protein into the cell.
Liposomes are vesicles comprised of one or more concentrically ordered lipid bilayers which encapsulate an aqueous phase. They are normally not leaky, but can become leaky if a hole or pore occurs in the membrane, if the membrane is dissolved or degrades, or if the membrane temperature is increased to the phase transition temperature. Current methods of drug delivery via liposomes require that the liposome carrier ultimately become permeable and release the encapsulated drug at the target site. This can be accomplished, for example, in a passive manner wherein the liposome bilayer degrades over time through the action of various agents in the body. Every liposome composition will have a characteristic half-life in the circulation or at other sites in the body and, thus, by controlling the half-life of the liposome composition, the rate at which the bilayer degrades call be somewhat regulated.

In contrast to passive drug release, active drug release involves using an agent to induce a permeability change in the liposome vesicle. Liposome membranes can be constructed so that they become destabilized when the environment becomes acidic near the liposome membrane (see, e.g. Proc. Natl. Acad. Sci. USA 84:7851 (1987); Biochemistry

28:908 (1989), each of which is hereby incorporated by reference in their entirety). When liposomes are endocytosed by a target cell, for example, they can be routed to acidic endosomes which will destabilize the liposome and result in drug release.

Alternatively, the liposome membrane can be chemically modified such that an enzyme is placed as a coating on the membrane which slowly destabilizes the liposome. Since control of drug release depends on the concentration of enzyme initially placed in the membrane, there is no real effective way to modulate or alter drug release to achieve "on demand" drug delivery. The same problem exists for pH -sensitive liposomes in that as soon as the liposome vesicle comes into contact with a target cell, it will be engulfed and a drop in pH will lead to drug release.

This liposome delivery system can also be made to accumulate at a target organ, tissue, or cell via active targeting (e.g., by incorporating an antibody or hormone on the surface of the liposomal vehicle). This can be achieved according to known methods.

Different types of liposomes can be prepared according to Bangham et al., J. Mol. Biol. 13:238-252 (1965); U.S. Pat. No. 5,653,996 to Hsu et al.; U.S. Pat. No. 5,643,599 to Lee et al., U.S. Pat. No. 5,885,613 to Holland et al.; U.S. Pat. No. $5,631,237$ to Dzau et al.; and U.S. Pat. No. 5,059,421 to Loughrey et al., each of which is hereby incorporated by reference in their entirety.

An alternative approach for delivery of effector proteins involves the conjugation of the desired effector protein to a polymer that is stabilized to avoid enzymatic degradation of the conjugated effector protein. Conjugated proteins or polypeptides of this type are described in U.S. Pat. No. $5,681,811$ to Ekwuribe, which is hereby incorporated by reference in its entirety.

Yet another approach for delivery of proteins or polypeptides involves preparation of chimeric proteins according to U.S. Pat. No. $5,817,789$ to Heartlein et al., which is hereby incorporated by reference in its entirety. The chimeric protein can include a ligand domain and, e.g., an effector protein of the present invention. The ligand domain is specific for receptors located on a target cell. Thus, when the chimeric protein is delivered intravenously or otherwise introduced into blood or lymph, the chimeric protein will adsorb to the targeted cell, and the targeted cell will internalize the chimeric protein, which allows the effector protein to destabilize the cell checkpoint control mechanism, affording its cytotoxic effects.

When it is desirable to achieve heterologous expression of an effector protein of the present invention in a target cell, DNA molecules encoding the desired effector protein can be delivered into the cell. Basically, this includes providing a nucleic acid molecule encoding the effector protein and then introducing the nucleic acid molecule into the cell under conditions effective to express the effector protein in the cell. Preferably, this is achieved by inserting the nucleic acid molecule into an expression vector before it is introduced into the cell.

When transforming mammalian cells for heterologous expression of an effector protein, an adenovirus vector can be employed. Adenovirus gene delivery vehicles can be readily prepared and utilized given the disclosure provided in Berkner, Biotechniques 6:616-627 (1988) and Rosenfeld et al., Science 252:431-434 (1991), WO 93/07283, WO $93 / 06223$, and WO $93 / 07282$, each of which is hereby incorporated by reference in their entirety. Adeno-associated viral gene delivery vehicles can be constructed and used to deliver a gene to cells. The use of adeno-associated viral
gene delivery vehicles in vitro is described in Chatterjee et al., Science 258:1485-1488 (1992); Walsh et al., Proc. Nat'l. Acad. Sci. 89:7257-7261 (1992); Walsh et al., J. Clin Invest. 94:1440-1448 (1994); Flotte et al., J. Biol. Chem. 268: 3781-3790 (1993); Ponnazhagan et al., J. Exp. Med. 179: 733-738 (1994); Miller et al., Proc. Nat'l Acad. Sci. 91:10183-10187 (1994); Einerhand et al., Gene Ther. 2:336-343 (1995); Luo et al., Exp. Hematol. 23:1261-1267 (1995); and Zhou et al., Gene Ther. 3:223-229 (1996), each of which is hereby incorporated by reference in their entirety. In vivo use of these vehicles is described in Flotte et al., Proc. Nat'l Acad. Sci. 90:10613-10617 (1993); and Kaplitt et al., Nature Genet. 8:148-153 (1994), each of which is hereby incorporated by reference in their entirety. Additional types of adenovirus vectors are described in U.S. Pat. No. 6,057,155 to Wickham et al.; U.S. Pat. No. 6,033, 908 to Bout et al.; U.S. Pat. No. $6,001,557$ to Wilson et al.; U.S. Pat. No. 5,994, 132 to Chamberlain et al.; U.S. Pat. No. 5,981,225 to Kochanek et al.; and U.S. Pat. No. 5,885,808 to Spooner et al.; and U.S. Pat. No. 5,871,727 to Curiel, each of which is hereby incorporated by reference in their entirety).

Retroviral vectors which have been modified to form infective transformation systems can also be used to deliver nucleic acid encoding a desired effector protein into a target cell. One such type of retroviral vector is disclosed in U.S. Pat. No. $5,849,586$ to Kriegler et al., which is hereby incorporated by reference in its entirety.

Regardless of the type of infective transformation system employed, it should be targeted for delivery of the nucleic acid to a specific cell type. For example, for delivery of the nucleic acid into tumor cells, a high titer of the infective transformation system can be injected directly within the tumor site so as to enhance the likelihood of tumor cell infection. The infected cells will then express the desired effector protein, thereby causing cytotoxic effects.

Particularly preferred is use of the effector proteins of the present invention to treat a cancerous condition (i.e., the eukaryotic cell which is affected is a cancer cell). This can be carried out by introducing or administering to a patient, a cytotoxic Pseudomonas protein under conditions effective to inhibit cancer cell division, thereby treating the cancer condition.
By introducing, it is intended that the effector protein is administered to the patient, preferably in the form of a composition which will target delivery to the cancer cells. Alternatively, when using DNA-based therapies, it is intended that the introducing be carried out by administering a targeted DNA delivery system to the patient such that the cancer cells are targeted and the effector protein is expressed therein. A number of known targeted delivery systems are known in the art and can be employed herewith.

EXAMPLES

The following Examples are intended to be illustrative and in no way are intended to limit the scope of the present invention.

Example 1

Detection of Protein Expression by Pseudomonas syringae pv. tomato DC3000

ORF-specific DNA fragments were amplified by PCR from DC3000 genomic DNA and printed onto amine-coated slides from Cell Associates (Houston). Each DNA sample
was printed three times on each slide with a BioRobotics (Boston) Microgrid II Arrayer by using MicroSpot 2500 split pins. Slides were blocked according to the recommended protocol from Cell Associates. Of total RNA, $50-100 \mu \mathrm{~g}$ was used to synthesize cDNA probes for microarray analysis. RNA was mixed with $3 \mu \mathrm{~g}$ of random hexamers (Invitrogen) in a total volume of $15 \mu \mathrm{l}$ and incubated at $65^{\circ} \mathrm{C}$. for 10 min . Reactions were then placed on ice for 2 min , to which were added $3 \mu 1$ of 1 mM FluoroLink Cy3- or Cy5-dUTP (Amersham Biosciences, Piscataway, N.J.), $3 \mu \mathrm{l}$ of 0.1 M DTT, 6 $\mu 1$ of $5 \times$ first-strand buffer, $0.6 \mu 1$ of $50 \times$ dNTPs mix $(25 \mathrm{mM}$ dATP, dCTP, dGTP/ 10 mM dTTP), and $2 \mu 1$ of Superscript II (GIBCO/BRL). Reactions were incubated at room temperature for 10 min , followed by $42^{\circ} \mathrm{C}$. for 110 min . RNA was hydrolyzed by adding $1.5 \mu \mathrm{l}$ of 1 M NaOH at $65^{\circ} \mathrm{C}$. for 10 min followed by neutralizing with $1.5 \mu 1$ of 1 M HCl . cDNA probes were purified by using a PCR purification kit (Qiagen, Valencia, Calif.) and were resuspended in $20 \mu 1$ of hybridization buffer ($5 \times \mathrm{SSC}, 0.1 \%$ SDS, and 25% formamide, where $1 \times \mathrm{SSC}=0.15 \mathrm{M}$ sodium chloride $/ 0.015 \mathrm{M}$ sodium citrate, pH 7). Denatured probes ($99^{\circ} \mathrm{C} ., 2 \mathrm{~min}$) were hybridized to slides at $60^{\circ} \mathrm{C}$. overnight in hybridization cassettes (Coming), after which slides were washed twice with $2 \times \mathrm{SSC}, 0.1 \% \mathrm{SDS}\left(60^{\circ} \mathrm{C}\right.$., 5 min), once with $2 \times \mathrm{SSC}$ (room temperature, 5 min), and once with $0.2 \times \mathrm{SSC}$ (room temperature, 5 min).

Microarray images were visualized by using a ScanArray 5000 (Packard), using laser and PMT settings of 100 and 90 , respectively. Images were overlaid and quantified by using IMAGENE 4.1 software (BioDiscovery; Marina Del Rey, Calif.). Ratio data were extracted by using GENESIGHT 2.1 software (BioDiscovery). For these analyses, local background for each spot was corrected, and signals lower than 50 were flagged and eliminated. After flooring low signals to the value of 100 , ratios of the overlaid images were calculated for individual spots. 16 S rRNA was used and, to normalize the data, the 16 S rRNA was expressed to similar levels in both tested strains based on RNA blots. Finally, all of the replicated data were combined, and mean ratio data and SDs were calculated for each ORF.

To corroborate the microarray results, RNA blotting was performed on 10 ORFs from similarly grown cultures. RNA blot analyses were performed as described (Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Lab. Press, Plainview, N.Y.(1989), which is hereby incorporated by reference). Of each RNA sample, $25 \mu \mathrm{~g}$ was resolved on 1.2% formaldehyde-agarose gels and transferred to Nylon membranes (Hybond-N+) by capillary blotting using $20 \times$ SSC. transferred to Nylon membranes (Hybond$\mathrm{N}+$) by capillary blotting using $20 \times$ SSC. RNA was bound to the membrane by UV cross-linking. Probes were generated by PCR amplification from genomic DNA, using ORFspecific primers, and labeled with ${ }^{32} \mathrm{P}$-dATP by random priming with a DECAprime II kit (Ambion). Hybridization was performed in $5 \times \mathrm{SSC}, 50 \%$ formamide, 0.1% sodiumlauroylsarcosine, 0.02% SDS, and 2% blocking reagent (Roche Molecular Biochemicals) at $42^{\circ} \mathrm{C}$. overnight. Membranes were then washed twice with $2 \times \mathrm{SSC} / 0.1 \%$ SDS for 15 min , twice with $1 \times \mathrm{SSC} / 0.1 \%$ SDS for 15 min , and once with $0.1 \times \mathrm{SSC} / 0.1 \% \mathrm{SDS}$ for 15 min before exposure on a phosphor screen. Signals were detected and evaluated by using a Storm system (Molecular Dynamics) (FIG. 1).

The microarray experiments were in qualitative agreement with the RNA blot. These data indicate that Hrp promoter candidates with E values smaller (more significant) than 1e-4 are expressed at levels detected by the microarray and RNA blotting. However, within this group
there was no apparent relationship between the magnitude of the E value and the level of expression. Furthermore, one of 16 examined ORFs (see Fouts et al. (Proc. Natl. Acad. Sci USA 99: 2275-2280 (2002), which is hereby incorporated by reference in its entirety) with an E value substantially lower than this threshold, AvrXv3 (4e-6), was expressed at a level that was detected only by RNA blot analysis (Table 1 below), indicating that significant E values do not always predict strong expression.

TABLE 1

Results of Microarray Analysis					
Designation	GenBank accession number ${ }^{1}$	Amino acid \% identity	BLASTP p value	HMM E-value	Microarray signal ratio ${ }^{2}$
HopPsy $\mathrm{A}_{\text {Pto }}$	L14926	52	9e-93	$1.0 \mathrm{e}-5$	11 ± 9
$\mathrm{AvrPphE}_{\text {Pto }}$	U16817	67	$1 \mathrm{e}-117$	$2.5 \mathrm{e}-4$	5 ± 2
AvrPphF $_{\text {Pto }}$	AF231452	51	3e-36	$1.7 \mathrm{e}-6$	3 ± 2
AvrPphD1 $1_{\text {Pto }}$	AJ277494	89	0	$1.9 \mathrm{e}-6$	30 ± 17
AvrXv $^{\text {Pto }}$	AF190120	27	$7 \mathrm{e}-12$	$3.4 \mathrm{e}-6$	ND
AvrPpiB1 $1_{\text {Pto }}$	X84843	100	1e-152	$7.8 \mathrm{e}-6$	11 ± 9
AvrPpiB2 Pto	X84843	100	$1 \mathrm{e}-150$	$7.8 \mathrm{e}-6$	10 ± 6
AvrPphD2 ${ }_{\text {Pto }}$	AJ277494	53	2e-44	$3.0 \mathrm{e}-5$	27 ± 11
HopPtoB2 ${ }^{3}$	AF232004			$2.6 \mathrm{e}-3$	ND
AvrRps4 ${ }_{\text {Pto }}$	L43559	72	2e-44	$2.5 \mathrm{e}-2$	ND
Reference genes					
16 SrRNA *					1
$23 \mathrm{SrRNA} * *$					1

${ }^{1}$ GenBank accession number AF232004 is for DC3000 sequences, all others are for homologs originally found in other bacteria.
${ }^{2}$ Microarray signal is the mean ratio and standard deviation from 3 replicates of 2 independent experiments, calculated as described in the Materials and Methods. AvrPpiB1 $1_{\text {Pto }}$ and AvrPpiB2 ${ }_{\text {Pto }}$ are 100% identical, so their signals cannot be distinguished. AvrPphD1 Pto and AvrPphD2 $2_{\text {Pto }}$ are 62%
identical. ND $=$ not detected.
${ }^{3}$ HopPtoB1 is secreted in a Hrp-dependent manner; HopPtoB2 has duplicated regions of homology with HopPtoB1.

By using an iterative process involving computational and gene expression data, an initial inventory of P. s. tomato DC3000 candidate type III secretion effector proteins was obtained. These are the presumed prime agents of host metabolic subversion. These analyses have revealed that the Hrp regulon, the primary regulon known to be expressed during infection, seems to control at least 48 genes and a subsidiary regulon directing phytotoxin production. The iterative process focused on Hrp promoters in DC3000 and featured microarray experiments that tested the activity of novel Hrp promoters and demonstrated the validity of this approach for genomewide transcriptional profiling in DC3000. These findings suggest that the P. syringae Hrp regulon is more complex than expected and encompasses more than type III secretion system genes and effector genes.

The global search for DC3000 ORFs that are similar to known Avr/Hop proteins yielded AvrXv3 $3_{\text {Pto }}$, AvrPtoB, and the AvrPphD families as the only candidate effectors shared with Xanthomonas spp. (Noel et al., Mol. Microbiol. 41:1271-1281 (2001), which is hereby incorporated by reference in its entirety). Notably missing were members of the AvrBs2 and AvrBs3 families, which are widespread in Xanthomonas spp., or any members of the AvrRxv/YopJ family, which are found in genera as diverse as Salmonella, Yersinia, Xanthomonas, Erwinia, and Rhizobium, and have also been reported in another strain of P. syringae (i.e., P. s. syringae B728a) (Galán \& Collmer, Science 284:1322-1328 (1999); Alfano et al., Proc. Natl. Acad. Sci. USA 97:4856-4861 (2000), each of which is hereby incorporated by reference in its entirety). However, it is important to note that further searches after closure and annotation of the

DC3000 genome may yield additional homologs of known effectors. In addition, genomic projects with other pathogens will enlarge the set of candidate effector genes available for comparison.

The majority of P. syringae avr genes that have been cloned on the basis of Avr phenotype have come from three pathovars that parasitize legumes glycinea, phaseolicola, and pisi. P. s. tomato has a different host range and diverges from these other pathovars in rRNA comparisons (Manceau \& Horvais, Appl. Environ. Microbiol. 63:498-505 (1997), which is hereby incorporated by reference in its entirety). Nevertheless, of the 15 avr gene families found in these legume-attacking pathovars, 6 are also found in DC3000. This finding suggests the existence of a core set of P. syringae effectors in addition to those in the Hrp pathogenicity island CEL.

The analyses described above and reported in Fouts et al. (Proc. Natl. Acad. Sci USA 99: 2275-2280 (2002), which is hereby incorporated by reference in its entirety) revealed a striking apparent redundancy among the candidate effector protein genes hopPtoA, hopPtoB, $\operatorname{avrPph} D_{P t o}$, and avrPpiB1 $1_{P t o}$, as well as in three Hrp-related factors that may play a role in type III protein translocation across bacterial and plant cell walls.

All of the analyzed candidate effector genes seem to be expressed in a HrpL-dependent manner except for $\operatorname{avrRps}_{\text {Pto }}$, hopPtoA2, and hopPtoB2 (avrXv3 $3_{\text {Pto }}$ was HrpL-activated, but relatively poorly). avrRps4 $4_{\text {Pto }}$ was cloned originally from Pseudomonas syringae pisi and renders recombinant DC3000 avirulent on most Arabidopsis accessions (Hinsch \& Staskawicz, Mol. Plant-Microbe Interact. 9:55-61 (1996), which is hereby incorporated by reference in its entirety), and avrXv3 is from an Xanthomonas campestris pv. vesicatoria race that is avirulent on tomato carrying the Xv3 R gene (Astua-Monge et al., Mol. Plant-Microbe Interact. 13:911-921 (2000), which is hereby incorporated by reference in its entirety). There exists a possibility that poor expression of these two avr genes in DC3000 is a factor in the virulence of DC3000 on Arabidopsis and tomato carrying the cognate R genes.

Example 2

In vitro Secretion of Effector Proteins

Secretion assays were performed using P. s. tomato DC3000 strains carrying a pML123 derivative containing a PCR-cloned ORF (encoding a candidate Hrp-secreted protein) fused to nucleotide sequences that encoded either the HA or FLAG epitopes along with their native ribosome binding sites and an engineered stop codon (Labes et al., Gene 89:37-46 (1990), which is hereby incorporated by reference in its entirety).

Four effector proteins were tested for their secretion from the above-identified strains. Primers and the constructs used to prepare the transform the host strains are identified as follows:

For HopPtoC expression, the hopPtoC gene was cloned using forward primer (agteggatcegaatagggegetgaaaatatgacaatcgtgtc, SEQ ID No: 26) containing a BamHI site and reverse primer (agtcctcgagtcacttgtcatcgtcgtccttgtagtcgtgtattttgaagegaa, SEQ ID No: 27) containing an XhoI site and FLAG epitope codons. The hopPtoC gene was cloned into plasmid vector pLN50.

For HopPtoD1 expression, the hopPtoD1 gene was cloned using forward primer (ccacacattggatccgattacttcatccgggacagctgatagcge, SEQ ID No: 28) containing a BamHI

Arabidopsis thaliana accession Columbia (Col-0) and rps2-201 mutant plants were grown in a growth chamber with 12 hr of light at $24^{\circ} \mathrm{C}$. ($22^{\circ} \mathrm{C}$. at night) and 70% relative humidity. For HopPtoK expression, the hopPtoK gene was cloned using forward primer (gcgaattcatcggtttaatcacgcaagge, SEQ ID No: 34) containing a EcoRI site and reverse primer (ttggtacetcagcagtagagegtgt, SEQ ID No: 35) containing an KpnI site. The hopPtoK gene was cloned into plasmid vector phopPtoK. In addition, a hopPtoK-'avrRpt2 65 fusion was prepared using SEQ ID No: 34 (above) as forward primer and reverse primer (aaggatccgcagagcgtgtcgcgace, SEQ ID No: 36) containing an BamHI site to The hopPtoD2 gene was cloned into plasmid vector pLN130.

For HopPtoJ expression, the hopPtoJ gene was cloned using forward primer (agtaaagettgagetgcacgeatgegag, SEQ ID No: 32) containing a HindIII site and reverse primer (agtatctagatcacttgteatcgtegtecttgtagtettgtgegaccagatgttt, SEQ ID No: 33) containing an XbaI site and FLAG epitope codons. The hopPtoJ gene was cloned into plasmid vector pLN164.

Constructs carrying different epitope-tagged ORFs were electroporated into DC3000 and a DC3000 hrcC mutant and grown in Hrp-inducing conditions (Yuan \& He, J. Bacteriol. 178:6399-6402 (1996), which is hereby incorporated by reference in its entirety). Additionally, all of the DC3000 strains also carried pCPP2318, a construct that contains blaM lacking signal peptide sequences (Charkowski et al., J. Bacteriol. 179:3866-3874 (1997), which is hereby incorporated by reference in its entirety). DC3000 cultures were separated into cell-bound and supernatant fractions as described (van Dijk et al., J. Bacteriol. 181:4790-4797 (1999), which is hereby incorporated by reference in its entirety). Proteins were separated with SDS-PAGE by standard procedures (Sambrook et al., Molecular Cloning Second Ed. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.) (1989), which is hereby incorporated by reference in its entirety), transferred to polyvinylidene difluoride membranes, and immunoblotted using anti-FLAG (Sigma Chemical Co., St. Louis, Mo.), -HA (Roche Molecular Biochemicals, Indianapolis, Ind.), or - β-lactamase (5 Prime $\rightarrow 3$ Prime Inc., Boulder, Colo.) as primary antibodies. Primary antibodies were recognized by goat anti-rabbit immunoglobulin G-alkaline phosphatase conjugate (Sigma Chemical Co.), which were visualized by chemiluminescence using a Western-Light chemilumincescence detection system (Tropix, Bedford, Mass.) and X-Omat X-ray film.
Each of these DC3000 proteins were found to be secreted (FIG. 2A). Because the secretability of these proteins was demonstrated (and the avirulence activity of these DC3000 homologs is unknown), the proteins were renamed as HopPtoC (AvrPpiC2 homolog), HopPtoD1 and HopPtoD2 (AvrPphD homologs), and HopPtoJ (AvrXv3 homolog).

Example 3

In vitro Translocation of Effectors

site and reverse primer (attctegagtcatttatcatcatcatcttataategggtgegggetgecgegac, SEQ ID No: 29) containing an XhoI site and FLAG epitope codons. The hopPtoD1 gene was cloned into plasmid vector pLN167.
For HopPtoD2 expression, the hopPtoD2 gene was cloned using forward primer (atgcaagcttatccaatgcetttcgtca, SEQ ID No: 30) containing a HindIII site and reverse primer (atgcctcgagtcaagcgtaatctggaacatcgtatgggtattctaacgctattttgc, SEQ ID No: 31) containing an XhoI site and HA epitope codons.
clone the hopPtoK gene. The partial avrRpt2 gene with the N terminal 40 codons deleted was amplified using standard PCR procedures and cloned into pMOD (Madison, Wis.). After confirmation by sequence analysis, it was cloned into the KpnI and SalI sites of the broad-host-plasmid pLK, resulting in $\mathrm{p} \Delta$ avrRpt2. DNA fragments spanning 200 bp upstream of the Hrp boxes and the complete ORFs for hopPtoK was cloned into $\mathrm{p} \Delta \mathrm{avrRpt} 2$ to produce phopPtoKΔ avrRpt2. Additionally, the full-length hopPtoK was cloned using PCR into pLK to generate phopPtoK. Each construct was introduced in P. s. phaseolicola 3121 by electroporation. Bacterial strains in $10 \mathrm{mM} \mathrm{MgCl}_{2}$ at a cell density of 10^{8} cfu $/ \mathrm{ml}$ were infiltrated into A. thaliana Col-0 plants with a needleless syringe. Plant responses were documented 18 hours postinoculation.

The AvrRpt2 translocation assay was used to test whether the DC3000 ORF that is similar to AvrRps4 (Hinsch \& Staskawicz, Mol. Plant-Microbe Interact. 9:55-61 (1996), which is hereby incorporated by reference in its entirety) was translocated into Arabidopsis plant cells (Mudgett et al., Proc. Natl. Acad. Sci. USA 97:13324-13329 (2000);Guttman \& Greenberg, Mol. Plant-Microbe Interact. 14:145-155) (2001), each of which is hereby incorporated by reference in its entirety). P. s. phaseolicola carrying a broad-host-range plasmid expressing the AvrRps 4 homolog fused to the Avr domain of AvrRpt2 (but lacking the secretion signals of AvrRpt2) elicited an RPS2-dependent HR on A. thaliana Col-0 (FIG. 2B), indicating that the amino terminus of the AvrRps4 homolog supplied sufficient information to direct translocation of the fusion protein into plant cells. Consequently, the AvrRps 4 homolog was renamed HopPtoK. P. s. phaseolicola expressing HopPtoK did not elicit an HR, indicating that although translocated into host cells, HopPtoK is probably not recognized by the RPS4 protein present in A. thaliana Col-0, in contrast to its P. s. pisi 151 homolog (Hinsch \& Staskawicz, Mol. Plant-Microbe Interact. 9:55-61 (1996), which is hereby incorporated by reference in its entirety).

Example 4

Determining Cytotoxicity of Effector in Yeast

Effector proteins of the present invention will be cloned into $\mathrm{pFLAG}-\mathrm{CTC}$ (Kodak) to generate an in-frame fusion with the FLAG epitope, which will permit monitoring of protein production with anti-FLAG monoclonal antibodies. The FLAG-tagged genes will then be cloned under the control of the GAL1 promoter in the yeast shuttle vector p415GAL1 (Mumberg et al., 1994). These regulatable promoters of Saccharomyces cerevisiae will allow comparison of transcriptional activity and heterologous expression. The recombinant plasmids will be transformed into uracil auxotrophic yeast strains FY833/4, then selected for growth on SC-Ura (synthetic complete medium lacking uracil) based on the presence of the URA3 gene on the plasmid. The transformants will then be streaked onto SC-Ura medium plates containing either 2% galactose (which will induce expression of the effector proteins) or 2% glucose. The presence or absence of growth on the plates supplemented with 2% galactose will be observed. If no growth is observed on 2% galactose (but growth is observed in the 2% glucose control), this result will suggest that the effector protein is having a cytotoxic effect on the transformed yeast. Empty vector controls will also be used. FLAG-tagged nontoxic Avr proteins will be used to confirm that the recombinant effector genes were differentially expressed, as expected, on
plates containing galactose. To further confirm the results, albeit at lower expression levels, the recombinant effector gene will be recloned into p 416 GALS , which expresses foreign genes at a substantially lower level than p415GAL1.

Example 5

Determining Cytotoxicity of Effector in Plants

To determine whether effector proteins induce cell death on tobacco leaves, a transformation system that delivers the effector gene on T-DNA of Agrobacterium tumefaciens will be used (Rossi et al., Plant Mol. Biol. Reporter 11:220-229 (1993); van den Ackerveken et al., Cell 87:1307-1316 (1996), each of which is hereby incorporated by reference in its entirety). This delivery system works better than biolistics for transiently transforming whole plant leaves. For these experiments, vector pTA7002, kindly provided by Nam-Hai Chua and his colleagues at Rockefeller University, will be used. The unique property of this vector is that it contains an inducible expression system that uses the regulatory mechanism of the glucocorticoid receptor (Picard et a1., Cell 54:1073-1080 (1988); Aoyama and Chua, Plant J. 11(3):605-612 (1997); McNellis et al., Plant J. 14(2): 247-257 (1998), each of which is hereby incorporated by reference in its entirety). pTA7002 encodes a chimeric transcription factor consisting of the DNA-binding domain of GAL4, the transactivating domain of the herpes viral protein VP16, and the receptor domain of the rat glucocorticoid receptor. Also contained on this vector is a promoter containing GAL4 upstream activating sequences (UAS) upstream of a multiple cloning site. Thus, any gene cloned downstream of the promoter containing the GAL4-UAS can be induced by glucocorticoids, of which a synthetic glucocorticoid, dexamethasone (DEX), is available commercially. Effector proteins of the present invention will be PCRcloned downstream of the GAL4-UAS. Thereafter, plant leaves from several different test plants will be infiltrated with Argrobacterium carrying recombinant pTA7002 carrying the effector ORF and after 48 hours these plants will be sprayed with DEX to induce expression of the effectors.

Tobacco (Nicotiana tabacum) and tomato (Lycopersicon esculentum) will be grown under greenhouse conditions and then maintained at $25^{\circ} \mathrm{C}$. with daylight and supplemental halide illumination for HR and virulence assays. Bacteria will be grown overnight on King's medium B agar supplemented with appropriate antibiotics, suspended in 5 mM MES pH 5.6 , and then infiltrated with a needleless syringe into the leaves of test plants at $10^{8} \mathrm{cfu} / \mathrm{ml}$ for HR assays and $10^{4} \mathrm{cfu} / \mathrm{ml}$ for pathogenicity assays (Charkowski et al., J. Bacteriol. 180:5211-5217 (1998), which is hereby incorporated by reference in its entirety). All assays will be repeated at least four times on leaves from different plants. Bacterial growth in tomato leaves will be assayed by excising disks from infiltrated areas with a cork borer, comminuting the tissue in 0.5 ml of 5 mM MES, pH 5.6 , with an appropriate pestle, and then dilution plating the homogenate on King's medium B agar with $50 \mu \mathrm{~g} / \mathrm{ml}$ rifampicin and $2 \mu \mathrm{~g} / \mathrm{ml}$ cycloheximide to determine bacterial populations. The mean and SD from three leaf samples will be determined for each time point.

Plant leaves will be examined to determine the response of plant tissue to the expression of the effector proteins. In particular, plant tissues will be examined for tissue necrosis indicative of a hypersensitive response.

Although the invention has been described in detail for the purposes of illustration, it is understood that such detail is solely for that purpose, and variations can be made therein
by those skilled in the art without departing from the spirit and scope of the invention which is defined by the following claims.

SEQUENCE LISTING

$<160>$ NUMBER OF SEQ ID NOS: 36	
$<210>\text { SEQ ID NO } 1$	
<211> LENGTH: 1155	
$<212>$ TYPE: DNA	
<213> ORGANISM: Pseudomonas syringae	
<400> SEQUENCE: 1	
atgaaaatac ataacgctgg cctaacceca cctttgccgg gcatttcgaa tggaaacgtt 60	
ggaaaggcgg cgcaatcatc aataactcaa ccgcagagce agcaaggctc ttatggettg 120	
ccaccagaaa gctctgagac tcgccetgat agggegcgtg cgaactatcc atattcatca 180	
gtacaaacac ggttgccgcc cgttgcgtct gctgggaaac cgctgcctga tacaccatct 240	
tctttgcceg gctacttact gttgcgaagg ctggaccatc gcoctgtgga tcaggaaggt 300	
accaaaagtc tgatcccggc agacaaggct gtggctgaag cgcgcogtgc attgccettt 360	
ggaagaggca atattgatgt ggatgcgcaa ctttccaatc tggaaagtgg agccogcacc 420	
cttgcagcaa ggtgcttgag aaagatgcc gaggcogccg gtcatgagcc tatgcctgcg 480	
aatgagcega tgaactggca tgttcttgtt gcgatgtcag gcoaggtgtt cggcgcgggc 540	
aactgtggcg aacatgctcg tatagcgagc ttcgectatg gagctttggc ccaggaaaac 600	
ggacgatctg aatatgaaaa catctacttg gctgcatcga ctgaggaaga tcatgtgtgg 660	
gctgaaaccg acgaatccca gtctggcacc tcaacgattg tcatggatcc gtggtcaaat 720	
ggttcagcca tatttgcgga ggacagtagg tttgcgaaaa atcgaaatgc tgtagagcgt 780	
acggatacgt ttaatctttc aaccgcagce gaagegggca aaattacgeg tgagacagcc 840	
gagaaggctt tgacgeaggt cacaaccoga ttgcagaaac gcotggcgga tcagcaggag 900	
caagtctcgc ccatcaaag tggtcgetat cgaccagaaa aatcggtact tgatgatgca 960	
tttgtccgca gagtgagcga caagttgacc tcccotgatt tgcggcgtgc actacaggta 1020	
gatattgaag cggtcggagt cgcaatgtcg ctcggcacca agggcgtcaa ggacgctact	1080
cgacaagcce gacctttggt tgagcttgca gtgaaggtcg cctctcctca aggcttggcg	1140
agacgagatg tctga	1155

```
<210> SEQ ID NO 2
<211> LENGTH: 384
<212> TYPE: PRT
<213> ORGANISM: Pseudomonas syringae
<400> SEQUENCE: 2
```

Met Lys Ile His Asn Ala Gly Leu Thr Pro Pro Leu Pro Gly Ile Ser
$510-15$
Asn Gly Asn Val Gly Lys Ala Ala Gln Ser Ser Ile Thr Gln Pro Gln
202530
Ser Gln Gln Gly Ser Tyr Gly Leu Pro Pro Glu Ser Ser Glu Thr Arg
Pro Asp Arg Ala Arg Ala Asn Tyr Pro Tyr Ser Ser Val Gln Thr Arg
Leu Pro Pro Val Ala Ser Ala Gly Lys Pro Leu Pro Asp Thr Pro Ser

ggctcatcgt cacgcgagct aagccaccga ccggtcaatg atcaggaccg cgcgcccttc	480
agggcgcttg agcggctgca cgccgagttg tttagaggtg ggccgattga gtttgtgcct	540
agaggcagca acgtgttggc ctcaaacgtg agggatgtcg acatggacga gttcgatgtc	600
atcaactcta aagacggctg ccaaggcatt ggcaccactg gcctgggacc ctgcattgca	660
gtgtgtgcaa gaggcatgga tagagaaggg cttccggtgc tgggtgtcta tcaccacagt	720
ggtatcggct caccagagga taccatggct actcttgatc aagcgatgcg cgataaaggt	780
gctttgcaaa tcaaatactc cctggtaggc ggcatgatca tgcctaaaga ggaagaggct	840
ggcagctatg acgacgagca aagctttttg gcattgaaag gcagttattc aatcgaaggg	900
gcgcgcttgc atgtatccga aggcgaagag gacgtgcata ccggcgagga caacagtgtc	960

$<210>$ SEQ ID NO 4
$<211>$ LENGTH: 338
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Pseudomonas syringae
$<400>$ SEQUENCE : 4

$<210>$ SEQ ID NO 6
$<211>$ LENGTH: 131
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Pseudomonas syringae
$<400>$ SEQUENCE : 6
Met Lys Asn Ala Phe Asp Leu Leu Val Glu Gly Leu Ala Lys Asp Tyr
1
$<210>$ SEQ ID NO 7
$<211>$ LENGTH: 579
$<212>$ TYPE $:$ DNA
$<213>$ ORGANISM: Pseudomonas syringae
$<400>$ SEQUENCE $: 7$

gtgtatagcc catcccatac acaacgaata acttcagctc cctctacatc cactcatgtt	60
ggtggagata cactgacatc cattcatcag ctttcgcata gtcagagaga gcagtttctg	120
aacatgcatg atccaatgag agtaatggga cttgaccatg ataccgagct tttcagaacg	180
acggatagtc gctatataaa aaacgataaa ctcgcgggca atccacaatc catggcgagt	240
atccttatgc atgaagaact gcgccccaat cgttttgcca gccatacagg tgcccaacca	300
cacgaagcaa gggcgtacgt tccgaaaaga ataaagcca ccgatctagg agttccatca	360
ctgaacgtaa tgactggctc gctagcgcga gacggaatta gagcttatga tcacatgagt	420
gataatcagg tctctgtcaa aatgcgactg ggagattttc tcgaaagggg tggcaaggtc	480
tatgccgacg cttcgtctgt agctgacgat ggggaaacat cacaagctct gattgtcaca	540
ttgcccaaag gacagaaagt gccggtcgaa agggtctga	

$<210>$ SEQ ID NO 9
$<211>$ LENGTH: 2118
$<212>$ TYPE $:$ DNA
$<213>$ ORGANISM: Pseudomonas syringae
$<400>$ SEQUENCE 9

atgaatcctc tacgatctat tcaacacaac attgcaactc ccccaatcag tggcggtcag	60
acattagacg cggtgggcce tcaggcccag caatcccatc ctaaaggat ttcaccttct	120
caattgagcc aaagcgctca ccaggctcta gaacgccttt cagctaatgc cgaacaccaa	180

-continued

cgccttgcat	cactggtacg caacgctctg	caggatggca catttcaatt tcaatccagt	240
aaccacacge	aagtaaccta taaagcgtca	atctgtctgc cagctgacac cgataccgtg	300
agaaccgacc	acttgattaa taacgagctg	cggttcagg cccgattaaa tgatcaatcg	360
gagtacgaca	tcgtcagcge acatttgcat	ggctcttcga aagccatatc cttcgacgta	420
cecagccecc	cgcocgcaca tggttcagca	cttctgtct tgagtgaacg gacccatcta	480
ggtatgagtc	gcgttctctc acaagatgca	tagacagca gtagcctgga aactccgtta	540
ctgagctcgc	cagaccattc tegtcegcca	cacagccaa agcecgtgca tatcgggtog	600
gtccgcagg 9	actctggtag cottgtttcc	gataacccgg tagtgcaggc cotgctatcg	660
tttgcgcagg	cogaccagge atttccacca	caggcegcga gcattgccgg ggtccagctg	720
gaaatgcggc	cacgtcggga tattgagaaa	gcacttgagg aattcaaagg cgcettcacg	780
gtggtgaagg	cgcaactgat gtccggtgcc	actcgtcgg agcgtgtaga tgaggatgtc	840
aacgcagaca	tccatatccc cttattgctc	aggccatcg agcggggggc tgcggcattt	900
ggtccaaacg	catcaatcgg ccagaatagc	gcgaaagcgt ttctcgcetc atgtgctcce	960
aagatcacgt	ccaatgacga tgtcctctcc	gagttcatca accagaaact caagggggac	1020
gacgatcttc	aggttcgect gggcgcacag	gaattgttgc atgtagccac caagaaggaa	1080
ttccagctcg	gcggtctage cggcagcatc	ggggtcagca gcatactcgg ctcggcatgg	1140
gagcttggcg	cttctgagct gttgaaaaat	gccatcttcg gcaaaaattt ctcaccgagc	1200
caatatgccc	tgcaattggc tggaatcgat	cagtgcctc ctttgattat cgagtccatg	1260
gacaccatgt	gcgtacttgc catcatcaag	ggcatgaagg gtgaggagtg gtccatgagc	1320
gatctacttc	ccaaggcgtt gaaggceggt	gctatttcct cggtggtgtc attccccaat	1380
aatgttttgc	agtatgcagg tttcaaatcc	agagtcggcg atcttgcggc aaactcagtg	1440
acaactgaag	cggccatctt tggcgccgcc	ccggtattc caccogaggt caaggaaagt	1500
gaagagctga	tgcgtgctgg cttattccag	agcatgaagg acggcgtgat ggctcattca	1560
g9cgaggqg	tggacaccaa aaaaacgatt	gagcggatga cgcgceatgc gctggatatc	1620
gctccgggcg	aaagcaccge tgtcaagtcc	atggggctgg catcgattgt cgggatgatt	1680
ccactgattg	ccagcaacaa ggcaaccggg	ctgctgtcgg aacaggtact gcgtattttc	1740
cggagcgceg	tcttcaatcc aatcgaagce	atcgctctga acgcgttggc gcttggcggg	1800
cgtgtcaacg	ttcceggget atttgattcc	gacaatgcca agcatgcacg cgtggtacaa	1860
accatccttg	cgcgggccag ccagcacatg	gaagctggag accgtgacat ttccgcagag	1920
gagctacatc	aaatgetgge tceccggage	gagttcctgc gccatgtggg atctgcgatt	1980
gtcaacggca	tgaatgccag ctttgaggca	attcccgccc tggttcggaa gettggatat	2040
ggtgaggctc	cattggccga acgtattccg	tatcaagacc tggctgtgcc cgacacgtcg	2100
cggcagcceg	caccotga		2118

$<210>$ SEQ ID NO 10
$<211>$ LENGTH: 705
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Pseudomonas syringae
$<400>$ SEQUENCE $: 10$

Met Asn Pro Leu Arg Ser Ile Gln His Asn			
1	5	10	Ile Ala Thr Pro Pro Ile

Ser Gly Gly Gln Pro Leu Asp Ala Val Gly Pro Gln Ala Gln Gln Ser

-continued

$<210>$ SEQ ID NO 11	
$<211>$ LENGTH: 1407	
$<212>$ TYPE DNA	
$<213>$ ORGANISM: Pseudomonas syringae	
$<400>$ SEQUENCE $: 11$	60
atgaatcccc tgcaacctat tcagcacagc attacaaatt cccaaatgag tggtggtcag	120
caattagagg cggagggctc tcaggcccac aattcctatt cocatcctga caggatttcg	180
ctttcccaat tgagccaaag cgctcaccta gctctagatc acctttcaac tcagcctaat	180
accgatcacc aacgcgttgc atcactggta cgcaacgctg tgcaggacgg taagttccaa	240
cttcaatcca gtaacgacac gcaagtaacc tataaaactt cagtctgtcc gccagctaac	300
gccgacacca tgggggccgc ccacttaatt aataacgagc tgacggttca ggcccgatta	360
aatgatcaac ttgagtacga catcgtcagc gctcatttgt atggcccttc ggaagccata	420
tccatcgatg catccagtcc tccctcggcc aacgatctag cgtcctctgg cttgagcgaa	480
cgtacgcatc taggtatgaa tcgtgtcctc ttacgctacg cggtgccccc tcgggaaacc	540

-continued

$<210>$ SEQ ID NO 12
$<211>$ LENGTH: 468
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Pseudomonas syringae
$<400>$ SEQUENCE : 12

-continued

$<210>$ SEQ ID NO 13
$<211>$ LENGTH $: 810$
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Pseudomonas syringae
$<400>$ SEQUENCE $: 13$
atgacaatcg tgtctggaca catcggaaaa cacccaagcc taaccactgt tcaagctggg 60
tcttcggctt cggtcgagaa tcaaatgcct gatcctgcac agttcagtga tggacggtgg 120
aaaagcttc cgacccaatt gtcgtcaatt acattggcga gattcgatca ggatatttgc 180
acgaataatc atggcatcag tcagcgtgca atgtgctttg gcctttcatt gagctggatt 240
aacatgattc atgccgggaa agatcatgtt acgccctatg catcggcaga aagaatgagg 300
tttctgggtt cotttgaagg ggtggtgcat gctcgtactg ttcataactt ctatcggact 360
gagcacaaat ttctgatgga gcaagcttcc gcaaaccccg gagtatcaag tggcgegatg 420
gctggcacag aaagtttatt gcaagctgct gagttgaagg ggttaaagct tcaacctgtt 480
ctagaggaca agtcgaactc aggcctaccc ttcctaattg cgtgtaagca gtcagggcgg 540
caggtgagca cagatgaagc tgcgctaagc tccttatgtg atgcaattgt agaaaataag 600
agagqgqtaa tggtgatata cagccaagaa attqcccacg ctttqgqctt ttctgtatca 660
tcagatggca aaagagcgac cttatttgat cccaatctcg gagagtttca tacacactcg 720
aaagcgttgg ctgatactat cgaaaacata tcatcggcag atgggctgcc tttaatcggc 780

$<210>$ SEQ ID NO 15
$<211>$ LENGTH: 831
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Pseudomonas syringae
$<400>$ SEQUENCE $: 15$
atgcacgcaa atcctttaag ctctttcaac agagctcaac atggcaatct gactaatgta
gaggccagcc aagttaaatc ggcaggaacc tcttccacca ctaatataga cagtaaaaac
attgaagaac atgttgcaga cagactcagt gatttaggca gacctgatgg tggatggttt
ttcgagaagt cacttggcac cttgaaaaat ttaaatcttg agcagttagc cggaatccat

ggcttcgagt tggcaatgca gtttcgtcat gatttataca gatctcaaca tccggatgaa	360
aactcgccgc acgatgccgc aactcattat cttgatgcaa tcagcctgca atcaaacaaa	420
tttacaaac ttgaaaact acaacatgta gatgtattta aaatgcaaaa cccgttttgg	480
gatgtcgggt acaaaaacgg aattgcgcac gcaaaaaaaa tggcattctt cataacgcca	540
gagtggctgg gttctgattt ctgtaaacag gaattccagt ggcttagcga aacaaaaaac	600
aaagacataa aatctgcatt tgtgatcttt aaagatgtag acttaaaaag caaaaatatg	660
acaagtatct tcaattttgc agacttccat aaatcacgcg tcatgatggc aagcacacct	720
cccgaatcgg gattgaataa tgtaaaaatc gaaaatagcg ttgacctgaa tttcaagagg	780
ttattaactg accgtgagtc atgggaacta aataatttcc taggcgacta a	

$<210>$ SEQ ID NO 16
$<211>$ LENGTH: 276
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Pseudomonas syringae
$<400>$ SEQUENCE $: 16$
Met His Ala Asn Pro Leu Ser Ser Phe Asn Arg Ala Gln His Gly Asn
1

$<210\rangle$ SEQ ID NO 17	
<211> LENGTH: 855	
<212> TYPE: DNA	
<213> ORGANISM: Pseudomonas syringae	
<400> SEQUENCE : 17	
atggggctat gtatttcaaa acactctggt agcagttaca gctacagtga tagcgaccge	60
tggcaagtgc ctgcatgcce tccaaacgec aggtctgtat ccagtcatca aacagcatct	120
gcgagtgaca tcgcatcagg cgatgtggat gaacgtcctg caacgttttc tcattttcaa	180
cttgcgcggt gcggtggaga gtacacgett agcatggttt ctgcagcggc ttatcaagca	240
gaaagacggc atcgcggtaa tttaataaaa gatcgtagtc aatccatact cccatgggtc	300
caggtatatc attctaaaa aggtttggat tacagcttcc agatcgacag aactacgact	360
gttaaagtgg ctggattcaa ctgctctatc cccaataaca gagggactcg gcatttatac	420
agcgctggta cgagtcagac aaacatgcct gtcatcgcag acaacatgag cgcatgcatt	480
gctgtcgcgt gtgcggcgga aaacgtggat gctggcacgg gtgaacgtag gccgggggag	540
aagttcgcg tattccatct actccetttt cgacgegaag accttgtgcc agaagaagtt	600
ttagcttctg tgcgcgatta tctgcgaacg accaaagaac aggggctaac aatgcgcgta	660
gctatgcatg gagggaatac agagggtgat ttctcagtca gcactgcgca ggcattgaaa	720
ggcetgtttg ctaatgaagg gatcccgctt gaatttgacg agacctgtgc aaaccgaacg	780
tctgaaacac tgcttggtgc cgttatctta gatgacaact cgactcattt cataaaacat	840
ctggtcgcac aataa	855

$<210>$ SEQ ID NO 18
$<211>$ LENGTH $: 284$
$<212>$ TYPE $:$ PRT
$<213>$ ORGANISM : Pseudomonas syringae
$<400>$ SEQUENCE $: 18$

-continued

$<210>$ SEQ ID NO 19
$<211>$ LENGTH: 291
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Pseudomonas syringae
$<400>$ SEQUENCE $: 19$
atgatcatcg acaatacgtt cgcgctgaca ctgtcatgcg attacgcgcg tgagcgcctg
ctgttgatcg gcttgcttga gccgcacaag gacatacctc agcagtgcct tttggctggc
gctctcaatc cgctcctcaa tgcaggccca ggccttggcc tggatgagaa aagcggcctg
tatcacgcgt atcaaagcat ccctcgagaa aaactcagcg tgccgacgct caaacgcgaa
atggcaggtc tgctggagtg gatgaggggc tggcgcgaag caagccaata g

$<210>$ SEQ ID NO 20
$<211>$ LENGTH $: 96$
$<212>$ TYPE : PRT
$<213>$ ORGANISM : Pseudomonas syringae
$<400>$ SEQUENCE $: 20$

Met Ile Ile Asp Asn Thr Phe Ala Leu Thr Leu Ser Cys Asp Tyr Ala
Arg Glu Arg Leu Leu Leu Ile Gly Leu Leu Glu Pro His Lys Asp Ile
$20-25 \quad 30$
Pro Gln Gln Cys Leu Leu Ala Gly Ala Leu Asn Pro Leu Leu Asn Ala
Gly Pro Gly Leu Gly Leu Asp Glu Lys Ser Gly Leu Tyr His Ala Tyr

Gln Ser Ile Pro Arg Glu Lys Leu Ser Val Pro Thr Leu Lys Arg Glu			
65	70	75	80

Met Ala Gly Leu Leu Glu Trp Met Arg Gly Trp Arg Glu Ala Ser Gln
$<210>$ SEQ ID NO 21
$<211>$ LENGTH: 1143
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Pseudomonas syringae
$<400>$ SEQUENCE : 21
atgaacccca ttcagtcacg cttctccagt gtgcaagagc tcagacgatc caacgttgat
-continued

gcagccgatg acggaacaat ttcggtcctt cgaccggagc aacaatccaa agcgaaagt	180
tttttcaagg gcgcttccca gttgataggt ggcagcagce agcgcgcgca gattgcccag	240
gcgctcaacg agaaggtcge atcggcacge actgtcttgc accagagcge tatgacggge	300
ggacgettgg acacccttga geggggcgaa agcagctcag ccacaacagc catcaaacce	360
actgccaaac aggctgcgca aagtactttt aacagctttc atgagtgggc caaacaggca	420
gaggcgatgc gaaacccgtc tcgaatggat atctacaaga tctataaaca agatgcacct	480
cactcacacc ccatgagcga cgagcagcaa gaagagttcc tgcacacgct aaaggcattg	540
aatggcaaaa acggcattga ggtgcgcact caggaccacg acagcgtcag aaataaaaa	600
gaccgcaacc tggacaagta catcgcagag agccoggatg caaagaggtt tttctatcga	660
attatcccca aacatgagcg cegagaagat aagaatcaag ggcgattgac cattggcgtg	720
caaccecaat atgcaacaca gttgacccge gccatggcaa ccctgatagg gaaggaaagt	780
gcaatcacge atggcaaagt aataggccec gcetgccacg gceaaatgac cgattcggca	840
gttttgtata tcaacggtga tgttgcaaag gcagaaaage tgggcgagaa actgaaacag	900
atgagcggca ttcetctgga tgcgttcgtt gagcacacce ctttgagcat gcaatcoctg	960
agtaaaggtc tgtcctatgc agaaagcatc ctgggcgaca ccagaggcoa tgggatgtcg	1020
cgagcggaag tgatcagcga tgcettgagg atggacggga tgccatttct ggccagattg	1080
aagctatcac tgtctgccaa tggctatgac ccggacaacc cggccettcg aaacacgaaa	1140
tga	1143

$<210>$ SEQ ID NO 22
$<211>$ LENGTH: 380
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Pseudomonas syringae
$<400>$ SEQUENCE $: 22$

Met 1	Asn	Pro	le	$\begin{array}{r} \mathrm{G} \ln \\ 5 \end{array}$	Ser	Arg			$\begin{array}{r} \text { Ser } \\ 10 \end{array}$		Gln Glu		$\begin{array}{r} \text { Arg } \\ 15 \end{array}$	Arg
Ser	Asn	Val	$\begin{array}{r} \text { Asp } \\ 20 \end{array}$	Ile	Pro	Ala	Leu	$\begin{array}{r} \text { Lys } \\ 25 \end{array}$	Ala	Asn	Gly Gln	$\begin{array}{r} \text { Leu } \\ 30 \end{array}$	Glu	Val
Asp	Gly	$\begin{array}{r} \text { Lys } \\ 35 \end{array}$	Arg	Tyr	$1 u$	le	Arg 40	Ala	la	Asp	$\begin{array}{r} \text { Asp Gly } \\ 45 \end{array}$	Thr	Ile	Ser
Val	Leu 50	Arg	Pro	Glu	Gln	$\begin{array}{r} \mathrm{G} \ln \\ 55 \end{array}$	Ser	Lys	Ala	Lys	$\begin{aligned} & \text { Ser Phe } \\ & 60 \end{aligned}$	Phe	Lys	Gly
Ala 65	Ser	Gln		Ile	$\begin{array}{r} \text { Gly } \\ 70 \end{array}$	Gly		er	Gln	Arg 75	Ala Gln	Ile	Ala	$\begin{array}{r} \text { Gln } \\ 80 \end{array}$
Ala	Leu	Asn	Glu	Lys 85	Val	Ala	Ser	Ala	$\begin{array}{r} \text { Arg } \\ 90 \end{array}$	Thr	Val Leu	His	$\begin{array}{r} \mathrm{Gln} \\ 95 \end{array}$	Ser
Ala	et	Thr	$\begin{aligned} & \text { Gly } \\ & 100 \end{aligned}$	Gly	rg	Leu	$s p$	$\begin{aligned} & \text { Thr } \\ & 105 \end{aligned}$	Leu	Glu	Arg Gly	$\begin{gathered} \text { Glu } \\ 110 \end{gathered}$	Ser	Ser
Ser	a	Thr 115	hr	la	Ile	ys	$\begin{aligned} & \text { Pro } \\ & 120 \end{aligned}$	hr	la	Lys		Ala	Gln	Ser
Thr	$\begin{aligned} & \text { Phe } \\ & 130 \end{aligned}$	Asn	er	e	His	$\begin{gathered} \text { Glu } \\ 135 \end{gathered}$	Trp	Ala	Lys	Gln	$\begin{aligned} & \text { Ala Glu } \\ & 140 \end{aligned}$	Ala	Met	Arg
$\begin{aligned} & \text { Asn } \\ & 145 \end{aligned}$	-	Ser	g	et	Asp 150	Ile	Tyr	Lys	Ile	$\begin{aligned} & \text { Tyr } \\ & 155 \end{aligned}$	Lys Gln	Asp	Ala	$\begin{aligned} & \text { Pro } \\ & 160 \end{aligned}$
His	Ser	His	Pro	Met 165	Ser	Asp	Glu	Gln	$\begin{gathered} \text { Gln } \\ 170 \end{gathered}$	Glu	Glu Phe	Leu	$\begin{gathered} \text { His } \\ 175 \end{gathered}$	Thr
Leu	Lys	Ala	Leu 180	Asn	Gly	Lys	sn	Gly	Ile	Glu	Val Arg	Thr	Gln	Asp

$<210>$ SEQ ID NO 23
$<211>$ LENGTH: 2598
$<212>$ TYPE : DNA
$<213>$ ORGANISM : Pseudomonas syringae
$<400>$ SEQUENCE $: 23$gtgccgcgta tcgtcgccgg ccatgcagaa ggcgtgtgcg tggtcaacgg ccggcactat60
gtcgagctgt coggtagaac ctttcaagtc cattacgaca cacatctgcg cggctggcag 120
attgtcgatc cagaaaacce gttcgccttt tttggccagc agccggtgcg cctagatgaa 180
caggggcaat ggcagcttgt cgcccgtcga cgtctgcgtg gcggtggcgt aggtgactcc 240
agccatgccc acctgcccga agaaacaccg ggctccagca caggctcgat tccgagcgac 300
tacgaaatgc cggccgccat gcaggcaggc cttgatgtcg tgttgagcaa caagccctac 360
gacccgaccg ggattggcat ggagtcttac tttgagagct atttcgtgga tctgcgtcag 420
agttttgtgg cgcgcaggga aaagctttat gaggatgccc ggacattttt cgccggtttt 480
tctcegccgc caaagcegca attgcctccg ctggcgccac ctgttgccat cgacaccetg 540
attgaacacg tcttcgcgca gggtaacggc ctggttttga gtgaagcacc gaagtcggtc 600
gccagcaaac ggctgctgtt actcaacatg ccgctgctgg ccgaacagcg tgtcaagatt 660
ctgtatatcg agcacctgct gaccgacaag cacctgtcta aactggccag gtatcgtcaa 720
ctgggcaaaa agagccgctc aggctcgcac gaactcaagc attacctgca cgatctcaac 780
cgcgggacgc tgaacaattc cagcaccgac tacgactatt accacctcat caaggcagcg 840
catcgctatg gtatcgaggt gcgaccgttc agctcgtcga tcagctaccc gtttctggac 900
catccggtat tgagcgcagc caacgacacg actgcagtac aaaaatgag caatttttc 960
ggccatacgc tcatcagcag cgatgtcgca tccgcgccga caaaacgctg ggttgccttg 1020
-continued

$<210>$ SEQ ID NO 24
$<211>$ LENGTH: 865
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Pseudomonas syringae
$<400>$ SEQUENCE $: 24$

Ser His Ala His Leu Pro Glu Glu Thr Pro Gly Ser Ser Thr Gly Ser

-continued


```
<210> SEQ ID NO 25
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: human
    immunodeficiency virus, TAT protein transduction
    domain
```

```
<400> SEQUENCE: 25
Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg
<210> SEQ ID NO 26
<211> LENGTH: 42
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: hopPtoC
        primer
<400> SEQUENCE: 26
```

agtcggatcc gaatagggcg ctgaaaatat gacaatcgtg tc

```
<210> SEQ ID NO 27
<211> LENGTH: 55
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: hopPtoC
        primer
<400> SEQUENCE: 27
```

agtcctcgag tcacttgtca tcgtcgtcct tgtagtcgtg tatttttgaa gcgaa

```
<210> SEQ ID NO 28
<211> LENGTH: 45
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: hopPtoD1
    primer
<400> SEQUENCE: 28
```

ccacacattg gatccgatta cttcatccgg gacagctgat agcgc

```
<210> SEQ ID NO 29
<211> LENGTH: 55
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: hopPtoD1
        primer
<400> SEQUENCE: 29
```

attctcgagt catttatcat catcatcttt ataatcgggt gcgggctgcc gcgac

```
<210> SEQ ID NO 30
<211> LENGTH: 28
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: hopPtoD2
    primer
<400> SEQUENCE: 30
```

atgcaagctt atccaatgcc tttcgtca

```
<210> SEO ID NO 31
<211> LENGTH: 58
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: hopPtoD2
    primer
```

```
<400> SEQUENCE: 31
atgcctcgag tcaagcgtaa tctggaacat cgtatgggta ttctaacgct atttttgc 58
<210> SEQ ID NO 32
<211> LENGTH: 28
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: hopPtoJ
        primer
<400> SEQUENCE: 32
agtaaagctt gagctgcacg catgcgag
<210> SEQ ID NO 33
<211> LENGTH: 55
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: hopPtoJ
    primer
<400> SEQUENCE: 33
agtatctaga tcacttgtca tcgtcgtcct tgtagtcttg tgcgaccaga tgttt
```

<210> SEQ ID NO 34

```
<210> SEQ ID NO 34
<211> LENGTH: 29
<211> LENGTH: 29
<212> TYPE: DNA
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: hopPtoK
<223> OTHER INFORMATION: Description of Artificial Sequence: hopPtoK
    primer
    primer
<400> SEQUENCE: 34
```

<400> SEQUENCE: 34

```
gcgaattcat cggtttaatc acgcaaggc
```

<210> SEQ ID NO 35
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: hopPtoK
primer
<400> SEQUENCE: 35

```
ttggtacctc agcagtagag cgtgt 25
\begin{tabular}{rl}
\(<210>\) & SEQ ID NO 36 \\
\(<211>\) & LENGTH: 26 \\
\(<212>\) & TYPE \(:\) DNA \\
\(<213>\) & ORGANISM: Artificial Sequence \\
\(<220>\) & FEATURE \(:\) \\
\(<223>\) & OTHER INFORMATION: Description of Artificial Sequence: hopPtoK \\
& \(\quad\) primer
\end{tabular}
\(<400\rangle\) SEQUENCE : 36
aaggatccgc agagcgtgtc gegacc

What is claimed:
1. An isolated nucleic acid molecule comprising a nucleotide sequence which
encodes a protein or polypeptide comprising SEQ ID No: 12.
2. The nucleic acid molecule according to claim 1, wherein the nucleic acid molecule comprises the nucleotide sequence according to SEQ ID No: 11.
3. The nucleic acid molecule according to claim 1, 10 wherein the nucleic acid molecule is DNA.
4. An expression system comprising a vector into which is inserted the nucleic acid molecule according to claim 3.
5. The expression system according to claim 4 , wherein the nucleic acid molecule is inserted in sense orientation relative to a promoter.
6. A host cell comprising the nucleic acid molecule according to claim 3.
7. The host cell according to claim 6, wherein the host cell is a bacterial cell or a plant cell.
8. The host cell according to claim 7 , wherein the bacterial cell is Agrobacterium.
9. A transgenic plant comprising the nucleic acid molecule according to claim 3.
10. A method of making a transgenic plant cell comprising:
providing nucleic acid molecule according to claim \(\mathbf{3}\), and transforming a plant cell with the nucleic acid molecule, whereby the nucleic acid molecule is expressed by the transformed plant cell.
11. A method of making a transgenic plant comprising: transforming a plant cell with the nucleic acid molecule according to claim 3 , whereby the nucleic acid molecule is expressed by the transformed plant cell, and
regenerating a transgenic plant from the transformed plant cell.
12. A method of making a plant hypersusceptible to colonization by nonpathogenic bacteria, said method comprising:
transforming a plant cell with the nucleic acid molecule of claim 3, and
regenerating a transgenic plant from the transformed plant cell,
20 wherein a transgenic plant expresses a protein or polopeptide encoded by a nucleic acid molecule, thereby rendering the transgenic plant hypersusceptible to colonization by nonpathogenic bacteria.```

