# University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln

Papers in Plant Pathology

Plant Pathology Department

11-21-2006

# NUCLEC ACDS ENCODING PSEUDOMONAS HOP PROTEINS AND USE THEREOF

Alan Collmer Ithaca, NY

James R. Alfano *Lincoln, NE* 

Xiaoyan Tang *Manhattan, KS* 

C. Robin Buell Olney, MD

Gregory B. Martin *Ithaca, NY* 

Follow this and additional works at: https://digitalcommons.unl.edu/plantpathpapers

Part of the Other Plant Sciences Commons, Plant Biology Commons, and the Plant Pathology Commons

Collmer, Alan; Alfano, James R.; Tang, Xiaoyan; Buell, C. Robin; and Martin, Gregory B., "NUCLEC ACDS ENCODING PSEUDOMONAS HOP PROTEINS AND USE THEREOF" (2006). *Papers in Plant Pathology*. 624. https://digitalcommons.unl.edu/plantpathpapers/624

This Article is brought to you for free and open access by the Plant Pathology Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Plant Pathology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.



US007138569B2

# (12) United States Patent

### Collmer et al.

#### (54) NUCLEIC ACIDS ENCODING PSEUDOMONAS HOP PROTEINS AND USE THEREOF

- Inventors: Alan Collmer, Ithaca, NY (US); James R. Alfano, Lincoln, NE (US); Xiaoyan Tang, Manhattan, KS (US); C. Robin Buell, Olney, MD (US); Gregory B. Martin, Ithaca, NY (US)
- (73) Assignees: Cornell Research Foundation, Inc., Ithaca, NY (US); Kansas State University Research Foundation, Manhattan, KS (US); Boyce Thompson Institute for Plant Research, Inc., Ithaca, NY (US); The Institute for Genomic Research, Rockville, MD (US); The Board of Regents of the University of Nebraska, Lincoln, NE (US)
- (\*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 226 days.
- (21) Appl. No.: 10/114,828
- (22) Filed: Apr. 2, 2002

#### (65) **Prior Publication Data**

US 2003/0182681 A1 Sep. 25, 2003

#### **Related U.S. Application Data**

- (60) Provisional application No. 60/280,918, filed on Apr. 2, 2001, provisional application No. 60/356,408, filed on Feb. 12, 2002.
- (51) Int. Cl.

| C12N 15/82 | (2006.01) |
|------------|-----------|
| C12N 15/31 | (2006.01) |
| C12N 15/63 | (2006.01) |

# (10) Patent No.: US 7,138,569 B2

# (45) **Date of Patent:** Nov. 21, 2006

#### (56) **References Cited**

#### U.S. PATENT DOCUMENTS

6,342,654 B1 1/2002 Li et al.

#### OTHER PUBLICATIONS

Lazar et al, 1988, Mol. Cell. Biol. 8:1247-1252.\* Hill et al, 1998, Biochem. Biophys. Res. Comm. 244:573-577.\* Keller et al, 1999, Plant Cell 11:223-235.\* Bauer et al. 1999, Acta Hort. 489:301-304.\* Espinosa et al, 2003, Molec. Microlbiol. 49:377-387.\*

Collmer et al., "Pseudomonas syringae Hrp Type III Secretion System and Effector Proteins," PNAS 97(16):8770-8777 (2000). Alfano et al., "The Pseudomonas syringae Hrp Pathogenicity Island has a Tripartite Mosaic Structure Composed of a Cluster of Type III Secretion Genes Bounded by Exchangeable Effector and Conserved Effector Loci That Contribute to Parasitic Fitness and Pathogenicity in Plants," PNAS 97(9):4856-4861 (2000).

Fouts et al., "Genomewide Identification of *Pseudomonas syringae* pv. Tomato DC3000 Promoters Controlled by the HrpL Alternative Sigma Factor," *PNAS* 99(4):2275-2280 (2002), with supplemental material available online at www.pnas.org.

Petnicki-Ocwieja et al., "Genomewide Identification of Proteins Secreted by the Hrp Type III Protein Secretion System of *Pseudomonas syringae* pv. Tomato DC3000," *PNAS* 99(11):7652-7657 (2002), with supplemental material available online at www. pnas.org.

\* cited by examiner

Primary Examiner—Anne Kubelik

(74) Attorney, Agent, or Firm-Nixon Peabody LLP

#### (57) **ABSTRACT**

The present invention relates to isolated nucleic acid molecules encoding a type III—secreted bacterial protein capable of modifying a cell death pathway in a plant cell. One aspect of the present invention involves an isolated nucleic acid molecule having a nucleotide sequence that encodes the HopPtoD2 protein of *Pseudomonas syringae* pv. *syringae* DC 3000. Expression vectors, host cells, and transgenic plants which include the DNA molecules of the present invention are also disclosed. The nucleic acid molecules of the present invention can be used to impart disease resistance to a plant and to make a plant hypersusceptible to colonization by nonpathogenic bacteria.

#### 12 Claims, 1 Drawing Sheet



**FIĞ.** 1



FIG. 2A



**FIG.** 2B

#### NUCLEIC ACIDS ENCODING PSEUDOMONAS HOP PROTEINS AND USE THEREOF

This application claims benefit of U.S. Provisional Patent 5 Application Ser. Nos. 60/280,918, filed Apr. 2, 2001, and 60/356,408, filed Feb. 12, 2002, each of which is hereby incorporated by reference in its entirety.

This work was supported by National Science Foundation Grant Nos. DBI-0077622 and MCB-9982646 and National 10 Research Initiative Competitive Grants Program, U.S. Department of Agriculture, Grant Nos. 97-35303-4488 and 01-35319-10019. The U.S. Government may have certain rights in this invention.

#### FIELD OF THE INVENTION

The present invention relates to isolated DNA molecules corresponding to the open reading frames of Pseudomonas syringae pv. tomato DC3000, the isolated avirulence effector 20 proteins and hrp-dependent outer proteins encoded thereby, as well as their various uses.

#### BACKGROUND OF THE INVENTION

The plant pathogenic bacterium Pseudomonas syringae is noted for its diverse and host-specific interactions with plants. A specific strain may be assigned to one of at least 40 pathovars based on its host range among different plant species and then further assigned to a race based on differ- 30 ential interactions among cultivars of the host. In host plants the bacteria typically grow to high population levels in leaf intercellular spaces and then produce necrotic lesions. In nonhost plants or in host plants with race-specific resistance, the bacteria elicit the hypersensitive response (HR), a rapid, 35 defense-associated programmed death of plant cells in contact with the pathogen (Alfano & Collmer, J. Bacteriol. 179:5655-5662 (1997)). The ability to produce either of these reactions in plants appears to be directed by hrp (HR and pathogenicity) and hrc (HR and conserved) genes that 40 encode a type III protein secretion pathway and by avr (avirulence) and hop (Hrp-dependent outer protein) genes that encode effector proteins injected into plant cells by the pathway (Alfano & Collmer, J. Bacteriol. 179:5655-5662 (1997)). These effectors may also betray the parasite to the 45 HR-triggering R-gene surveillance system of potential hosts (hence the avr designation), and plant breeding for resistance based on such gene-for-gene (avr-R) interactions may produce complex combinations of races and differential cultivars (Keen, Annu. Rev. Genet. 24:447-463 (1990)). hrp/hrc 50 genes are probably universal among necrosis-causing gramnegative plant pathogens, and they have been sequenced in P. syringae pv. syringae (Psy) 61, Erwinia amylovora Ea321, Xanthomonas campestris pv. vesicatoria (Xcv) 85-10, and Ralstonia solanacearum GMI1000 (Alfano & 55 polypeptides from plant pathogens. Collmer, J. Bacteriol. 179:5655-5662 (1997)). Based on their distinct gene arrangements and regulatory components, the hrp/hrc gene clusters of these four bacteria can be divided into two groups: I (Pseudomonas and Erwinia) and II (Xanthomonas and Ralstonia). The discrepancy between 60 nucleic acid molecules having a nucleotide sequence which the distribution of these groups and the phylogeny of the bacteria provides some evidence that hrp/hrc gene clusters have been horizontally acquired and, therefore, may represent pathogenicity islands (Pais) (Alfano & Collmer, J. Bacteriol. 179:5655-5662 (1997)). 65

Virulence effector proteins delivered to or into host cells by type III secretion systems are key factors in the patho2

genicity of many bacteria, including animal pathogens in the genera Salmonella, Yersinia, Shigella, and Escherichia, and plant pathogens in the genera Pseudomonas, Erwinia, Xanthomonas, Ralstonia, and Pantoea (Galán & Collmer, Science 284:1322-1328 (1999)). In plant pathogens, the type III secretion machinery is referred to as the hypersensitive response and pathogenicity (Hrp) system because secretion mutants typically lose their ability to elicit the defenseassociated hypersensitive response in nonhost plants and to grow parasitically or be pathogenic in host plants (Alfano & Collmer, J. Bacteriol. 179:5655-5662 (1997)). These phenotypes demonstrate the importance of the Hrp system in bacterium-plant interactions, and global identification of effectors will be important for understanding the pathogen-15 esis of bacteria that use type III secretion systems. Unfortunately, several factors have hindered searches for type III effector genes. These factors include: (i) effectors are often redundant with mutants having only subtle phenotypes; (ii) with few exceptions (see e.g., Miao & Miller, Proc. Natl. Acad. Sci. USA 97:7539-7544 (2000)) motifs that can identify proteins as substrates for type III secretion have not been recognized (Lloyd et al., Mol. Microbiol. 39:520-532) (2001); (iii) many effectors show no similarity to known proteins; and (iv) some pathogens have multiple type III secretion systems which deliver different sets of effectors (Cornelis & Van Gijsegem, Annu. Rev. Microbiol. 54:735–774 (2000)). Thus, a complete inventory of type III effector genes is lacking for any pathogen, although it seems that pathogens such as Salmonella may have many such genes (Worley et al., Mol. Microbiol. 36:749-761 (2000)).

Plant pathogen type III effector proteins are mostly designated Avr or Hop, depending on whether their primary phenotype involves plant reaction or secretion behavior. Many effectors were initially discovered through their ability to betray the pathogen to the host R (resistance) gene surveillance system, thereby rendering the pathogen avirulent on a test plant (Keen, Annu. Rev. Genet. 24:447-463 (1990)). Over 25 effector genes have been identified by Avr or Hop phenotypes in various P. syringae pathovars and races (Vivian & Arnold, J. Plant Pathol. 82:163-178 (2000); Alfano et al., Proc. Natl. Acad. Sci. USA 97:4856-4861 (2000)). The encoded effectors seem to determine both basic pathogenicity and host range, but the number of such proteins produced by any single strain has not been systematically investigated. P. s. tomato DC3000 is known to carry at least three avr genes, avrPto (Ronald et al., J. Bacteriol. 174:1604–1611 (1992)), avrPtoB, and avrE (Lorang & Keen, Mol. Plant-Microbe Interact. 8:49-57 (1995)), with the latter being in the Hrp pathogenicity island along with five other candidate effector genes (Alfano et al., Proc. Natl. Acad. Sci. USA 97:4856-486 (2000); Lorang & Keen, Mol. Plant-Microbe Interact. 8:49-57 (1995)).

The present invention is a further advance in the effort to identify, clone, and sequence Avr and Hop proteins or

#### SUMMARY OF THE INVENTION

One aspect of the present invention relates to isolated (i) encodes a protein or polypeptide including SEQ ID No: 2, SEQ ID No: 4, SEQ ID No: 6, SEQ ID No: 8, SEQ ID No: 10, SEQ ID No: 12, SEQ ID No: 14, SEQ ID No: 16, SEQ ID No: 18, SEQ ID No: 20, SEQ ID No: 22, or SEQ ID No: 24; or (ii) hybridizes, under stringency conditions including a hybridization medium which includes 0.9×SSC at a temperature of 42° C., to a DNA molecule complementary to SEQ ID No: 1, SEQ ID No: 3, SEQ ID No: 5, SEQ ID No: 7, SEQ ID No: 9, SEQ ID No: 11, SEQ ID No: 13, SEQ ID No: 15, SEQ ID No: 17, SEQ ID No: 19, SEQ ID No: 21, or SEQ ID No: 23; or (iii) includes a nucleotide sequence which is complementary to the nucleic acid molecules of (i) 5 and (ii). Expression vectors, host cells, and transgenic plants which include the DNA molecules of the present invention are also disclosed. Methods of making such host cells and transgenic plant are disclosed.

A further aspect of the present invention relates to isolated 10 effector proteins or polypeptides encoded by the nucleic acid molecules of the present invention. Compositions which contain the proteins or polypeptides are also disclosed.

Yet another aspect of the present invention relates to methods of imparting disease resistance to a plant. Accord-15 ing to one approach, this method is carried out by transforming a plant cell with a heterologous DNA molecule of the present invention and regenerating a transgenic plant from the transformed plant cell, wherein the transgenic plant expresses the heterologous DNA molecule under conditions 20 effective to impart disease resistance. According to one approach, this method is carried out by treating a plant with a protein or polypeptide of the present invention under conditions effective to impart disease resistance to the treated plant. 25

A further aspect of the present invention relates to a method of causing eukaryotic cell death which includes: introducing into a eukaryotic cell a cytotoxic *Pseudomonas* protein of the present invention, said introducing being performed under conditions effective to cause cell death.

A still further aspect of the present invention relates to a method of treating a cancerous condition which includes introducing a cytotoxic *Pseudomonas* protein of the present invention into cancer cells of a patient under conditions effective to cause death of cancer cells, thereby treating the 35 cancerous condition.

Yet another aspect of the present invention relates to a method of modifying a metabolic pathway in a cell which includes: introducing into a cell a protein or polypeptide of the present invention which interacts with a native cellular 40 protein involved in a metabolic pathway, wherein the protein or polypeptide modifies the metabolic pathway through its interaction with the native cellular protein.

It is believed that bacteria have evolved effector proteins to make exquisite alterations in host metabolism. While 45 plant resistance and cancer cell toxicity are important uses, as mentioned above, it is believed that these effector proteins can be used to modify or effect metabolic targets in eukaryotes, including both yeasts and higher order species, such as plants and animals. It is noteworthy that several of the 50 effector proteins being claimed in this application have homologs in other phytopathogenic bacteria. Thus, these proteins appear to represent a set of effectors that are 4

conserved among *Pseudomonas, Erwinia, Xanthomonas,* and *Ralstonia* spp. By disrupting the function of these effectors through, for example, transgenic expression thereof in a host plant, it is believed that use of these effectors may lead to widely applicable means for controlling diseases of plants.

#### BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an RNA blot analysis of HrpL-dependent expression of representative virulence-implicated genes. Each well was loaded with 25 µg of total RNA isolated from CUCPB5114 cultures carrying either vector control pCPP5031 or  $P_{nptII}$ -hrpL plasmid pCPP5032 (lanes 2 and 3, respectively). PCR-amplified internal fragments were used as probes; lane 1 in each case contains PCR product of the corresponding probe. AvrPpiB1<sub>Pto</sub> and AvrPpiB2<sub>Pto</sub> are 100% identical, therefore their signals cannot be distinguished.

FIGS. 2A-B illustrate assays for Hrp system-dependent secretion in culture or translocation in plants of various Avr and Hop proteins. In FIG. 2A, DC3000 or a DC3000 hrcC mutant (Yuan & He, J. Bacteriol. 178:6399-6402 (1996), which is hereby incorporated by reference in its entirety) carrying test ORFs (i.e., candidate effectors) fused to either the FLAG (F) or hemagglutinin (HA) epitopes were grown in Hrp-inducing media, and cultures were separated into cell (lanes 1-3) and supernatant (lanes 4-5) fractions and analyzed by SDS-PAGE and immunobloting. Lanes: 1 and 4, wild type DC3000; 2 and 5, wild type DC3000(pTestORF); 3 and 6, DC3000 hrcC mutant(pTestORF). As an additional control against leakage, pCPP2318 (which encodes the mature form of  $\beta$ -lactamase,  $\beta$ -lac) was included in all strains. The presence of an epitope-tagged protein in the supernatant fraction of the wild type (lane 5), but absence in the hrcC secretion mutant (lane 6), indicated that the test ORF encoded a secreted product. In FIG. 2B, AvrRpt2 translocation assays were performed with a DC3000 Avr-Rps4 homolog (now designated HopPtoK). Constructs that contained ORFs fused to AvrRpt2 lacking translocation signals were electroporated into P. s. phaseolicola 3121. Test strains were infiltrated into A. thaliana Col-0 (RPS2). Plant responses were scored 18 hr after inoculation for hypersensitive collapse (HR) or no visible response (N).

#### DETAILED DESCRIPTION OF THE INVENTION

One aspect of the present invention relates to *Pseudomo-nas syringae* pv. *syringae* DC 3000 nucleic acid molecules which encode Avr or Hop effector proteins.

A first nucleic acid molecule is a homolog of avrPphE of *Pseudomonas syringae* pv. *phaseolicola* and has a nucleotide sequence according to SEQ ID No: 1 as follows:

atgaaaatac ataacgetgg eetaaceeea eetttgeegg geatttegaa tggaaaegtt 60 ggaaaggegg egeaateate aataaeteaa eegeaggee ageaaggete ttatggettg 120 eeaeeagaaa getetgagae tegeeetga agggegegg egaaetatee atatteatea 180 gtaeaaaeae ggttgeegee egttgegtet getgggaaae egetgeetga taeaeeate 240 tetttgeeeg getaettaet gttgegaagg etggaeeate geeetgga teaggaaggt 300 aeceaaaagte tgateeegge agaeaagget gtggetgaag egegeegtge attgeeett 360 ggaagaggea atattgatgt ggatgegeaa ettteeaate tggaaagtg ageeegeace 420

#### -continued

cttgcagcaaggtgcttgagaaaagatgccgaggccgccggtcatgagcctatgcctgc480aatgagccgatgaactggcatgttcttgttgcgatgtcaggccaggtgttcggcgggg540aactgtggcgaacatgctcgtatagcgagcttcgcctatggagctttggcccaggaaaac600ggacgatctgaatatgaaaacatctactggctgcatcgactggggaga600gctgaaaccgacgaatcccagtctggcacctcaacgattgtcatggatcc910ggttcagccatattgcggaggacgatgggttgcgaaaaactggatgg900caagtctcgccatcaaaagtggtcgcattgcgcagga960tttgtccgcagagtgagcgacaagttgacctcccctgatttgcggcgtca1020gatattgaagcggtcggagtcgcaatgtcgctcgcaccaaggcgcgtcaggacgttgc1140agacgagatgtctgatgagcttgagtgaggggtagaggc1145agacgagatgtctgatgagcttgatgagaggc1155

The encoded protein, designated AvrPphE<sub>*Pto*</sub>, has an amino  $^{25}$  acid sequence according to SEQ ID No: 2 as follows:

Met Lys Ile His Asn Ala Gly Leu Thr Pro Pro Leu Pro Gly Ile Ser -5 Asn Gly Asn Val Gly Lys Ala Ala Gln Ser Ser Ile Thr Gln Pro Gln Ser Gln Gln Gly Ser Tyr Gly Leu Pro Pro Glu Ser Ser Glu Thr Arg Pro Asp Arg Ala Arg Ala Asn Tyr Pro Tyr Ser Ser Val Gln Thr Arg Leu Pro Pro Val Ala Ser Ala Gly Lys Pro Leu Pro Asp Thr Pro Ser Ser Leu Pro Gly Tyr Leu Leu Leu Arg Arg Leu Asp His Arg Pro Val Asp Gln Glu Gly Thr Lys Ser Leu Ile Pro Ala Asp Lys Ala Val Ala Glu Ala Arg Arg Ala Leu Pro Phe Gly Arg Gly Asn Ile Asp Val Asp Ala Gln Leu Ser Asn Leu Glu Ser Gly Ala Arg Thr Leu Ala Ala Arg Cys Leu Arg Lys Asp Ala Glu Ala Ala Gly His Glu Pro Met Pro Ala Asn Glu Pro Met Asn Trp His Val Leu Val Ala Met Ser Gly Gln Val Phe Gly Ala Gly Asn Cys Gly Glu His Ala Arg Ile Ala Ser Phe Ala Tyr Gly Ala Leu Ala Gln Glu Asn Gly Arg Ser Glu Tyr Glu Asn Ile Tyr Leu Ala Ala Ser Thr Glu Glu Asp His Val Trp Ala Glu Thr Asp Glu Ser Gln Ser Gly Thr Ser Thr Ile Val Met Asp Pro Trp Ser Asn 

|            |            |            |            |            |                    | -          | con        | tinı       | ued        |            |            |            |            |            |            |
|------------|------------|------------|------------|------------|--------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Gly        | Ser        | Ala        | Ile        | Phe<br>245 | Ala                | Glu        | Asp        | Ser        | Arg<br>250 | Phe        | Ala        | Lys        | Asn        | Arg<br>255 | Asn        |
| Ala        | Val        | Glu        | Arg<br>260 | Thr        | Asp                | Thr        | Phe        | Asn<br>265 | Leu        | Ser        | Thr        | Ala        | Ala<br>270 | Glu        | Ala        |
| Gly        | Lys        | Ile<br>275 | Thr        | Arg        | Glu                | Thr        | Ala<br>280 | Glu        | Lys        | Ala        | Leu        | Thr<br>285 | Gln        | Val        | Thr        |
| Thr        | Arg<br>290 | Leu        | Gln        | Lys        | Arp                | Leu<br>295 | Ala        | Asp        | Gln        | Gln        | Glu<br>300 | Gln        | Val        | Ser        | Pro        |
| Ile<br>305 | Lys        | Ser        | Gly        | Arp        | <b>Ty</b> r<br>310 | Arg        | Pro        | Glu        | Lys        | Ser<br>315 | Val        | Leu        | Asp        | Asp        | Ala<br>320 |
| Phe        | Val        | Arg        | Arg        | Val<br>325 | Ser                | Asp        | Lys        | Leu        | Thr<br>330 | Ser        | Pro        | Asp        | Leu        | Arg<br>335 | Arg        |
| Ala        | Leu        | Gln        | Val<br>340 | Asp        | Ile                | Glu        | Ala        | Val<br>345 | Gly        | Val        | Ala        | Met        | Ser<br>350 | Leu        | Gly        |
| Thr        | Lys        | Gly<br>355 | Val        | Lys        | Asp                | Ala        | Thr<br>360 | Arg        | Gln        | Ala        | Arg        | Pro<br>365 | Leu        | Val        | Glu        |
| Leu        | Ala<br>370 | Val        | Lys        | Val        | Ala                | Ser<br>375 | Pro        | Gln        | Gly        | Leu        | Ala<br>380 | Arg        | Arg        | Asp        | Val        |

AvrPphE<sub>Pto</sub> has been shown to be expressed by DC3000. It <sup>25</sup> has been demonstrated that AvrPphE of *Pseudomonas syrin*gae pv. phaseolicola is recognized within plant cells and that this protein alone is required for hypersensitive response induction (Stevens et al., "Sequence variations in alleles of the avirulence gene avrPphE: R2 from *Pseudomonas syrin-*<sup>30</sup> gae pv. phaseolicola lead to loss of recognition of the AvrPphE protein within bean cells and a gain in cultivar-specific virulence," *Mol. Microbiol.* 29(1):165–177 (1998); Mansfield et al., "Characterization of avrPphE, a gene for cultivar-specific avirulence from *Pseudomonas syringae* pv.

*phaseolicola* which is physically linked to hrpY, new hrp gene identified in the halo-blight bacterium," *Mol. Plant Microbe Interact.* 7(6):726–739 (1994), each of which is hereby incorporated by reference in its entirety). AvrPphE has been shown to be secreted by a type III secretion system and translocated into plants. AvrPphE matches the R2 resistance gene of *Phaseolus*.

A second nucleic acid molecule is a homolog of avrRps4 of *Pseudomonas syringae* pv. *pisi* and has a nucleotide sequence according to SEQ ID No: 3 as follows:

atgaatcgca tttcaaccag ctcagtaaat tccagcttca attacacggc ccctacggag 60 gaagegeaaa accepttege steagegees gacaattees steagttgt caccacaaca 120 tctatcgccc aagcgtcgga agggctacaa aggccggggg caacgctaag catgcaggcc 180 cagcgactgc gccaattgat ggggagcccg tctgagcagt gccggaggga cacaatgtta 240 gctaaagctt ttgatgctca acgcctaaac attaacactc aagcaggctc ttccaacagc 300 ccacacttga acgeteteaa caegeteeaa caaegaeaet teaaaeetge ggetggtggg 360 ctagaaatcc cagttacatc caactcctta ttgggcggtg gcaggcaagt ctatcaaatt 420 ggctcatcgt cacgcgagct aagccaccga ccggtcaatg atcaggaccg cgcgcccttc 480 agggcgcttg agcggctgca cgccgagttg tttagaggtg ggccgattga gtttgtgcct 540 agaggcagca acgtgttggc ctcaaacgtg agggatgtcg acatggacga gttcgatgtc 600 atcaactcta aagacggctg ccaaggcatt ggcaccactg gcctgggacc ctgcattgca 660 gtgtgtgcaa gaggcatgga tagagaaggg cttccggtgc tgggtgtcta tcaccacagt 720 ggtatcggct caccagagga taccatggct actcttgatc aagcgatgcg cgataaaggt 780 gctttgcaaa tcaaatactc cctggtaggc ggcatgatca tgcctaaaga ggaagaggct 840 ggcagctatg acgacgagca aagctttttg gcattgaaag gcagttattc aatcgaaggg 900 gcgcgcttgc atgtatccga aggcgaagag gacgtgcata ccggcgagga caacagtgtc 960 aatgttctgc tgatgcctga ccgcgttctg tacggtcgcg acacgctcta ctgctga 1017 The encoded protein, originally designated AvrRps<sub>*Pto*</sub> and now renamed HopPtoK, has an amino acid sequence according to SEQ ID No: 4 as follows:

| Met<br>1   | Asn        | Arg                 | Ile                | Her<br>5   | Thr        | Ser        | Ser                | Val                 | Asn<br>10  | Ser                | Ser        | Phe        | Asn                | Tyr<br>15  | Thr        |
|------------|------------|---------------------|--------------------|------------|------------|------------|--------------------|---------------------|------------|--------------------|------------|------------|--------------------|------------|------------|
| Ala        | Pro        | Thr                 | Glu<br>20          | Glu        | Ala        | Gln        | Asn                | Arg<br>25           | Phe        | Ala                | Ser        | Ala        | Pro<br>30          | Asp        | Asn        |
| Ser        | Pro        | Leu<br>35           | Val                | Val        | Thr        | Thr        | Thr<br>40          | Ser                 | Ile        | Ala                | Gln        | Ala<br>45  | Ser                | Glu        | Gly        |
| Leu        | Gln<br>50  | Arg                 | Pro                | Gly        | Ala        | Thr<br>55  | Leu                | Ser                 | Met        | Gln                | Ala<br>60  | Gln        | Arg                | Leu        | Arg        |
| Gln<br>65  | Leu        | Met                 | Gly                | Ser        | Pro<br>70  | Ser        | Glu                | Gln                 | Сув        | Arg<br>75          | Arg        | Asp        | Thr                | Met        | Leu<br>80  |
| Ala        | Lys        | Ala                 | Phe                | Asp<br>85  | Ala        | Gln        | Arg                | Leu                 | Asn<br>90  | Ile                | Asn        | Thr        | Gln                | Ala<br>95  | Gly        |
| Ser        | Ser        | Asn                 | Ser<br>100         | Pro        | His        | Leu        | Asn                | Ala<br>105          | Leu        | Asn                | Thr        | Leu        | Gln<br>110         | Gln        | Arg        |
| His        | Phe        | L <b>y</b> s<br>115 | Pro                | Ala        | Ala        | Gly        | Gl <b>y</b><br>120 | Leu                 | Glu        | Ile                | Pro        | Val<br>125 | Thr                | Ser        | Asn        |
| Ser        | Leu<br>130 | Leu                 | Gly                | Gly        | Gly        | Arg<br>135 | Gln                | Val                 | Tyr        | Gln                | Ile<br>140 | Gly        | Ser                | Per        | Ser        |
| Arg<br>145 | Glu        | Leu                 | Ser                | His        | Arg<br>150 | Pro        | Val                | Asn                 | Asp        | Gln<br>155         | Asp        | Arg        | Ala                | Pro        | Phe<br>160 |
| Arg        | Ala        | Leu                 | Glu                | Arg<br>165 | Leu        | His        | Ala                | Glu                 | Leu<br>170 | Phe                | Arg        | Gly        | Gly                | Pro<br>175 | Ile        |
| Glu        | Phe        | Val                 | Pro<br>180         | Arg        | Gly        | Ser        | Asn                | Val<br>185          | Leu        | Ala                | Ser        | Asn        | Val<br>190         | Arg        | Asp        |
| Val        | Asp        | Met<br>195          | Asp                | Glu        | Phe        | Asp        | Val<br>200         | Ile                 | Asn        | Ser                | Lys        | Asp<br>205 | Gly                | Cys        | Gln        |
| Gly        | Ile<br>210 | Gly                 | Thr                | Thr        | Gly        | Leu<br>215 | Gly                | Pro                 | Сув        | Ile                | Ala<br>220 | Val        | Сув                | Ala        | Arg        |
| Gly<br>225 | Met        | Asp                 | Arg                | Glu        | Gly<br>230 | Leu        | Pro                | Val                 | Leu        | Gly<br>235         | Val        | Tyr        | His                | His        | Ser<br>240 |
| Gly        | Ile        | Gly                 | Ser                | Pro<br>245 | Glu        | Asp        | Thr                | Met                 | Ala<br>250 | Thr                | Leu        | Asp        | Gln                | Ala<br>255 | Met        |
| Arg        | Asp        | Lys                 | Gl <b>y</b><br>260 | Ala        | Leu        | Gln        | Ile                | L <b>y</b> s<br>265 | Tyr        | Ser                | Leu        | Val        | Gl <b>y</b><br>270 | Gly        | Met        |
| Ile        | Met        | Pro<br>275          | Lys                | Glu        | Glu        | Glu        | Ala<br>280         | Gly                 | Per        | Tyr                | Asp        | Asp<br>285 | Glu                | Gln        | Ser        |
| Phe        | Leu<br>290 | Ala                 | Leu                | Lys        | Gly        | Ser<br>295 | Tyr                | Ser                 | Ile        | Glu                | Gly<br>300 | Ala        | Arg                | Leu        | His        |
| Val<br>305 | Ser        | Glu                 | Gly                | Glu        | Glu<br>310 | Asp        | Val                | His                 | Thr        | Gl <b>y</b><br>315 | Glu        | Asp        | Asn                | Ser        | Val<br>320 |
| Asn        | Val        | Leu                 | Leu                | Met<br>325 | Pro        | Asp        | Arg                | Val                 | Leu<br>330 | Tyr                | Gly        | Arp        | Asp                | Thr<br>335 | Leu        |

HopPtoK has been shown to be a secreted protein that is expressed by DC3000. The *Pseudomonas syringae* pv. *pisi* AvrRps4 effector matches the disease locus RPS4. It has previously been demonstrated that *Pseudomonas syringae* strains carrying avrRps4 induces a hypersensitive response 5 on specific accessions of both Arabidopsis and soybean (Hinsch et al., "Identification of a new Arabidopsis disease resistance locus, RPs4, and cloning of the corresponding avirulence gene, avrRps4, from *Pseudomonas syringae* pv. *pisi,* "*Mol. Plant Microbe Interact.* 9(1):55–61 (1996), which is hereby incorporated by reference in its entirety).

A third nucleic acid molecule is a homolog of avrPphF orf1 of *Pseudomonas syringae* pv. *phaseolicola* and has a nucleotide sequence according to SEQ ID No: 5 as follows:

| ttgcctgaca agaaacatat cgatgaagtc tattgctttg agtttcaaag tggtatgaac   | 120<br>180 |
|---------------------------------------------------------------------|------------|
|                                                                     | 180        |
| gtaaaagtat accaagacga atttcgctgg gtatatttca ccgctgacgt tgggacattt 🔅 |            |
| caagatagca gtattgacac attaaactac gegeteeage tgaacaactt tageettaga 💈 | 240        |
| aaacctttcc tgaccttcgg aatgacgaag gagaaaaatg gtgtattgca tacacgcacc   | 300        |
| cccttgattg aggtagacaa cgtgcaaatg cgcaggatat ttgaggagct tataggcgtg   | 360        |
| gcaggtgaaa tcagaaaaac actaaaactc aaatag                             | 396        |

The encoded protein has an amino acid sequence according to SEQ ID No: 6 as follows:

Met<br/>1LysAsnAlaPhe<br/>5AspLeuValGlu<br/>10GluGluLusAlaLysAspTyrAsnMetProLeuProAspLysLysLysHisIleAspGluValTyrCysAsnMetProProLeuProAspLysLysHisIleAspGluValTyrCysPheGluPheGlnSerGlyMetAsnValLysValTyrGlnAspGluPhoArpTrySoTyrPheThrAlsAspValGlyFurPhoGluAspSerSerArpTryValTyrPhoFurAspAspValGlyFurPhoGluAspSerSerArpTryLusAspTyrAlaLeuGluLusAspAspAspAspAspAspSerSerArpTryLusTryAlaLusGluLusAspAspGluLysAspSerSerSerArpTryLusTryGluMetTryLusAspAspSerSerSerSerSerArpTryLusTryGluKitSerTryLusAspAspSerSerSerSerSerSer<td

This protein is believed to be a chaperone protein for the <sup>50</sup> protein of SEQ ID NO: 8 described below.

A fourth nucleic acid molecule is also homolog of avrPphF orf2 of *Pseudomonas syringae* pv. *phaseolicola* and has a nucleotide sequence according to SEQ ID No: 7 as follows:

gtgtatagcc catcccatac acaacgaata acttcagctc cctctacatc cactcatgtt 60 ggtggagata cactgacatc cattcatcag ctttcgcata gtcagagaga gcagtttctg 120 aacatgcatg atccaatgag agtaatggga cttgaccatg ataccgagct tttcagaacg 180 acggatagtc gctatataaa aaacgataaa ctcgcgggca atccacaatc catggcgagt 240 atccttatgc atgaagaact gcgccccaat cgttttgcca gccatacagg tgcccaacca 300 cacgaagcaa gggcgtacgt tccgaaaaga ataaaagcca ccgatctagg agttccatca 360

#### -continued

| ctgaacgtaa | tgactggctc | gctagcgcga | gacggaatta | gagcttatga | tcacatgagt | 420 |
|------------|------------|------------|------------|------------|------------|-----|
| gataatcagg | tctctgtcaa | aatgcgactg | ggagattttc | tcgaaagggg | tggcaaggtc | 480 |
| tatgccgacg | cttcgtctgt | agctgacgat | ggggaaacat | cacaagctct | gattgtcaca | 540 |
| ttgcccaaag | gacagaaagt | gccggtcgaa | agggtctga  |            |            | 579 |
|            |            |            |            |            |            |     |

The encoded protein, designated AvrPphF<sub>Pto</sub>, has an amino acid sequence according to SEQ ID No: 8 as follows:

| Val<br>1   | Tyr        | Ser        | Pro        | Ser<br>5   | His        | Thr        | Gln        | Arg        | Ile<br>10  | Thr        | Ser        | Ala        | Pro        | Ser<br>15  | Thr        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Ser        | Thr        | His        | Val<br>20  | Gly        | Gly        | Asp        | Thr        | Lou<br>25  | Thr        | Ser        | Ile        | His        | Gln<br>30  | Leu        | Ser        |
| His        | Ser        | Gln<br>35  | Arg        | Glu        | Gln        | Phe        | Leu<br>40  | Asn        | Met        | His        | Asp        | Pro<br>45  | Met        | Arg        | Val        |
| Met        | Gly<br>50  | Leu        | Asp        | His        | Asp        | Thr<br>55  | Glu        | Leu        | Phe        | Arg        | Thr<br>60  | Thr        | Asp        | Ser        | Arg        |
| Tyr<br>65  | Ile        | Lys        | Asn        | Asp        | Lys<br>70  | Leu        | Ala        | Gly        | Asn        | Pro<br>75  | Gln        | Ser        | Met        | Ala        | Ser<br>80  |
| Ile        | Leu        | Met        | His        | Glu<br>85  | Glu        | Leu        | Arg        | Pro        | Asn<br>90  | Arg        | Phe        | Ala        | Ser        | His<br>95  | Thr        |
| Gly        | Ala        | Gln        | Pro<br>100 | His        | Glu        | Ala        | Arg        | Ala<br>105 | Tyr        | Val        | Pro        | Lys        | Arg<br>110 | Ile        | Lys        |
| Ala        | Thr        | Asp<br>115 | Leu        | Gly        | Val        | Pro        | Ser<br>120 | Leu        | Asn        | Val        | Met        | Thr<br>125 | Gly        | Ser        | Leu        |
| Ala        | Arg<br>130 | Asp        | Gly        | Ile        | Arg        | Ala<br>135 | Tyr        | Asp        | His        | Met        | Ser<br>140 | Asp        | Asn        | Gln        | Val        |
| Ser<br>145 | Val        | Lys        | Met        | Arg        | Leu<br>150 | Gly        | Asp        | Phe        | Leu        | Glu<br>155 | Arg        | Gly        | Gly        | Lys        | Val<br>160 |
| Tyr        | Ala        | Asp        | Ala        | Ser<br>165 | Ser        | Val        | Ala        | Asp        | Asp<br>170 | Gly        | Glu        | Thr        | Ser        | Gln<br>175 | Ala        |
| Leu        | Ile        | Val        | Thr<br>180 | Leu        | Pro        | Lys        | Gly        | Gln<br>185 | Lys        | Val        | Pro        | Val        | Glu<br>190 | Arg        | Val        |

AvrPphF<sub>Pto</sub> has been shown to be expressed by DC3000. 45 play a role in both development of the hypersensitive Fusion of both the homolog of AvrPphF orf1 and AvrPph- $F_{Pto}$  with the AvrRpt2 reporter (AvrRpt2 $\Delta$ 40) caused a hypersensitive response in Arabidopsis Col-0, suggesting that AvrPphF<sub>Pto</sub> is secreted. Neither Orf1-AvrRpt2 $\Delta$ 40 (Avr-PphF<sub>Pto</sub>) nor Orf2-AvrRpt2 $\Delta$ 40 alone causes the hypersen- 50 sitive response in Arabidopsis Col-0, although mutants of the homolog of AvrPphF orf1 have shown reduced disease symptoms on tomato. The Pseudomonas syringae pv. phaseolicola AvrPphF effector protein has been shown to

response and virulence in several plants (Tsiamis et al., "Cultivar-specific avirulence and virulence functions assigned to avrPphF in Pseudomonas syringae pv. phaseolicola, the cause of bean halo-blight disease," EMBO J. 19(13):3204-3214 (2000), which is hereby incorporated by reference in its entirety).

A fifth nucleic acid molecule is a homolog of avrPphD of Pseudomonas syringae pv. phaseolicola and has a nucleotide sequence according to SEQ ID No: 9 as follows:

atgaatcctc tacgatctat tcaacacaac attgcaactc ccccaatcag tggcggtcag 60 ccattagacg cggtgggccc tcaggcccag caatcccatc ctaaaaggat ttcaccttct 120 caattgagcc aaagcgctca ccaggctcta gaacgccttt cagctaatgc cgaacaccaa 180 cgccttgcat cactggtacg caacgctctg caggatggca catttcaatt tcaatccagt 240 aaccacacgc aagtaaccta taaagcgtca atctgtctgc cagctgacac cgataccgtg 300 agaaccgacc acttgattaa taacgagctg acggttcagg cccgattaaa tgatcaatcg 360

-continued gagtacgaca tcgtcagcgc acatttgcat ggctcttcga aagccatatc cttcgacgta 420 cccagccccc cgcccgcaca tggttcagca tcttctgtct tgagtgaacg gacccatcta 480 ggtatgagtc gcgttctctc acaagatgca gtagacagca gtagcctgga aactccgtta 540 ctgagctcgc cagaccattc tcgtccgcca tcacagccaa agcccgtgca tatcgggtcg 600 gtccgcaggg actctggtag ccttgtttcc gataacccgg tagtgcaggc cctgctatcg 660 tttgcgcagg ccgaccaggc atttccacca caggccgcga gcattgccgg ggtccagctg 720 gaaatgcggc cacgtcggga tattgagaaa gcacttgagg aattcaaagg cgccttcacg 780 gtggtgaagg cgcaactgat gtccggtgcc aactcgtcgg agcgtgtaga tgaggatgtc 840 aacgcagaca tccatatccc cttattgctc aaggccatcg agcggggggc tgcggcattt 900 ggtccaaacg catcaatcgg ccagaatagc gcgaaagcgt ttctcgcctc atgtgctccc 960 aagatcacgt ccaatgacga tgtcctctcc gagttcatca accagaaact caaggggggac 1020 gacgatette aggttegeet gggegeacag gaattgttge atgtageeae caagaaggaa 1080 ttccagctcg gcggtctagc cggcagcatc ggggtcagca gcatactcgg ctcggcatgg 1140 gagettggeg ettetgaget gttgaaaaat geeatetteg geaaaaattt etcaeegage 1200 caatatgccc tgcaattggc tggaatcgat tcagtgcctc ctttgattat cgagtccatg 1260 gacaccatgt gcgtacttgc catcatcaag ggcatgaagg gtgaggagtg gtccatgagc 1320 gatctacttc ccaaggcgtt gaaggccggt gctatttcct cggtggtgtc attccccaat 1380 aatgttttgc agtatgcagg tttcaaatcc agagtcggcg atcttgcggc aaactcagtg 1440 acaactgaag cggccatctt tggcgccgcc tccggtattc cacccgaggt caaggaaagt 1500 gaagagctga tgcgtgctgg cttattccag agcatgaagg acggcgtgat ggctcattca 1560 ggcgaggggg tggacaccaa aaaaacgatt gagcggatga cgcgccatgc gctggatatc 1620 gctccgggcg aaagcaccgc tgtcaagtcc atggggctgg catcgattgt cgggatgatt 1680 ccactgattg ccagcaacaa ggcaaccggg ctgctgtcgg aacaggtact gcgtattttc 1740 cggagegeeg tetteaatee aategaagee ategetetga acgegttgge gettggeggg 1800 cgtgtcaacg ttcccgggct atttgattcc gacaatgcca agcatgcacg cgtggtacaa 1860 accatecttg egegggeeag ceageacatg gaagetggag acegtgaeat tteegeagag 1920 gagetacate aaatgetgge teeecgage gagtteetge gecatgtggg atetgegatt 1980 gtcaacggca tgaatgccag ctttgaggca attcccgccc tggttcggaa gcttggatat 2040 ggtgaggctc cattggccga acgtattccg tatcaagacc tggctgtgcc cgacacgtcg 2100 cggcagcccg caccctga 2118

The encoded protein, originally designated AvrPphD1<sub>*Pto*</sub> and now renamed HopPtoD1, has an amino acid sequence according to SEQ ID No: 10 as follows:

Met Asn Pro Leu Arg Her Ile Gln His Asn Ile Ala Thr Pro Pro Ile 1 5 10 15 Ser Gly Gly Gln Pro Leu Asp Ala Val Gly Pro Gln Ala Gln Gln Her 25 20 30 His Pro Lys Arg Ile Ser Pro Ser Gln Leu Ser Gln Ser Ala His Gln 35 40 45 Ala Leu Glu Arg Leu Ser Ala Asn Ala Glu His Gln Ary Leu Ala Ser 50 55 60

-continued Leu Val Arg Asn Ala Leu Gln Asp Gly Thr Phe Gln Phe Gln Ser Ser Asn His Thr Gln Val Thr Tyr Lys Ala Ser Ile Cys Leu Pro Ala Asp 85 90 95 Thr Asp Thr Val Arg Thr Asp His Leu Ile Asn Asn Glu Leu Thr Val Gln Ala Arg Leu Asn Asp Gln Ser Glu Tyr Asp Ile Val Ser Ala His Leu His Gly Ser Ser Lys Ala Ile Ser Phe Asp Val Pro Ser Pro Pro 130 135 140 Pro Ala His Gly Ser Ala Ser Ser Val Leu Ser Glu Arg Thr His Leu Gly Met Ser Arg Val Leu Ser Gln Asp Ala Val Asp Ser Ser Ser Leu Glu Thr Pro Leu Leu Ser Ser Pro Asp His Ser Arg Pro Pro Ser Gln Pro Lys Pro Val His Ile Gly Ser Val Arg Arg Asp Ser Gly Ser Leu 195 200 205 Val Ser Asp Asn Pro Val Val Gln Ala Leu Leu Ser Phe Ala Gln Ala Asp Gln Ala Phe Pro Pro Gln Ala Ala Ser Ile Ala Gly Val Gln Leu Glu Met Arg Pro Arg Arg Asp Ile Glu Lys Ala Leu Glu Glu Phe Lys 245 250 255 Gly Ala Phe Thr Val Val Lys Ala Gln Leu Met Ser Gly Ala Asn Ser 260 265 270 Ser Glu Arg Val Asp Glu Asp Val Asn Ala Asp Ile His Ile Pro Leu 275 280 285 Leu Leu Lys Ala Ile Glu Arg Gly Ala Ala Ala Phe Gly Pro Asn Ala 290 295 300 Ser Ile Gly Gln Asn Ser Ala Lys Ala Phe Leu Ala Ser Cys Ala Pro Lys Ile Thr Ser Asn Asp Asp Val Leu Ser Glu Phe Ile Asn Gln Lys Leu Lys Gly Asp Asp Asp Leu Gln Val Arg Leu Gly Ala Gln Glu Leu 340 345 350 Leu His Val Ala Thr Lys Lys Glu Phe Gln Leu Gly Gly Leu Ala Gly Ser Ile Gly Val Ser Ser Ile Leu Gly Ser Ala Trp Glu Leu Gly Ala Ser Glu Leu Lys Asn Ala Ile Phe Gly Lys Asn Phe Ser Pro Ser Gln Tyr Ala Leu Gln Leu Ala Gly Ile Asp Ser Val Pro Pro Leu Ile Ile Glu Ser Met Asp Thr Met Cys Val Leu Ala Ile Ile Lys Gly Met Lys Gly Glu Glu Trp Ser Met Ser Asp Leu Leu Pro Lys Ala Leu Lys Ala Gly Ala Ile Ser Ser Val Val Ser Phe Pro Asn Asn Val Leu Gln Tyr Ala Gly Phe Lys Ser Arg Val Gly Asp Leu Ala Ala Asn Ser Val Thr Thr Glu Ala Ala Ile Phe Gly Ala Ala Ser Gly Ile Pro Pro Glu 485 490 495

#### -continued

| Val        | Lys        | Glu        | Ser<br>500 | Glu        | Glu        | Leu        | Met                | Arg<br>505 | Ala        | Gly        | Leu        | Phe        | Gln<br>510 | Ser        | Met        |
|------------|------------|------------|------------|------------|------------|------------|--------------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Lys        | Asp        | Gly<br>515 | Val        | Met        | Ala        | His        | Ser<br>520         | Gly        | Glu        | Gly        | Val        | Asp<br>525 | Thr        | Lys        | Lys        |
| Thr        | Ile<br>530 | Glu        | Arg        | Met        | Thr        | Arg<br>535 | His                | Ala        | Leu        | Asp        | Ile<br>540 | Ala        | Pro        | Gly        | Glu        |
| Ser<br>545 | Thr        | Ala        | Val        | Lys        | Ser<br>550 | Met        | Gly                | Leu        | Ala        | Ser<br>555 | Ile        | Val        | Gly        | Met        | Ile<br>560 |
| Pro        | Leu        | Ile        | Ala        | Ser<br>565 | Asn        | Lys        | Ala                | Thr        | Gly<br>570 | Leu        | Leu        | Ser        | Glu        | Gln<br>575 | Val        |
| Leu        | Arg        | Ile        | Phe<br>580 | Arg        | Ser        | Ala        | Val                | Phe<br>585 | Asn        | Pro        | Ile        | Glu        | Ala<br>590 | Ile        | Ala        |
| Leu        | Asn        | Ala<br>595 | Leu        | Ala        | Leu        | Gly        | Gly<br>600         | Arg        | Val        | Asn        | Val        | Pro<br>605 | Gly        | Leu        | Phe        |
| Asp        | Ser<br>610 | Asp        | Asn        | Ala        | Lys        | His<br>615 | Ala                | Arg        | Val        | Val        | Gln<br>620 | Thr        | Ile        | Leu        | Ala        |
| Arg<br>625 | Ala        | Ser        | Gln        | His        | Met<br>630 | Glu        | Ala                | Gly        | Asp        | Arg<br>635 | Asp        | Ile        | Ser        | Ala        | Glu<br>640 |
| Glu        | Leu        | His        | Gln        | Met<br>645 | Leu        | Ala        | Pro                | Arg        | Ser<br>650 | Glu        | Phe        | Leu        | Arg        | His<br>655 | Val        |
| Gly        | Ser        | Ala        | Ile<br>660 | Val        | Asn        | Gly        | Met                | Asn<br>665 | Ala        | Ser        | Phe        | Glu        | Ala<br>670 | Ile        | Pro        |
| Ala        | Leu        | Val<br>675 | Arg        | Lys        | Leu        | Gly        | <b>Ty</b> r<br>680 | Gly        | Glu        | Ala        | Pro        | Leu<br>685 | Ala        | Glu        | Arg        |
| Ile        | Pro<br>690 | Tyr        | Gln        | Asp        | Leu        | Ala<br>695 | Val                | Pro        | Asp        | Thr        | Ser<br>700 | Arg        | Gln        | Pro        | Ala        |
| Pro        |            |            |            |            |            |            |                    |            |            |            |            |            |            |            |            |

<sup>705</sup> 

HopPtoD1 has been shown to be a secreted protein that is expressed by DC3000.

A sixth nucleic acid molecule is another homolog of <sup>40</sup> avrPphD of *Pseudomonas syringae* pv. *phaseolicola* and has a nucleotide sequence according to SEQ ID No: 11 as follows:

atgaatcccc tgcaacctat tcagcacagc attacaaatt cccaaatgag tggtggtcag 60 caattagagg cggagggctc tcaggcccac aattcctatt cccatcctga caggattcg 120 ctttcccaat tgagccaaag cgctcaccta gctctagatc acctttcaac tcagcctaat 180 accgatcacc aacgcgttgc atcactggta cgcaacgctg tgcaggacgg taagttccaa 240 cttcaatcca gtaacgacac gcaagtaacc tataaaactt cagtctgtcc gccagctaac 300 gccgacacca tgggggccgc ccacttaatt aataacgagc tgacggttca ggcccgatta 360 aatgatcaac ttgagtacga catcgtcagc gctcattgt atggcccttc ggaagccat 420 tccatcgatg catccagtcc tccctcggcc aacgatctag cgtcctctgg cttgagggaa 480 cgtacgcacc taggtatga tcgtgtcctc ttacgctacg cggtgcccc tcgggaaacc 540 gaagaccaat gtgttatggt gatcgacaa atgcccccc ccaaacacgg caaaatgtct 600 ttcttccgta ccactaatga cttgagcaaa ctgccttgg gaatggagac gggcgggttg 660 tccgacctga aattggctgg ttgtgaacgt attcttccg tcgagcaga atctcatgcg 720

The encoded protein, originally designated AvrPphD2<sub>*Pto*</sub> and now renamed HopPtoD2, has an amino acid sequence according to SEQ ID No: 12 as follows:

Met Asn Pro Leu Gln Pro Ile Gln His Ser Ile Thr Asn Ser Gln Met Ser Gly Gly Gln Gln Leu Glu Ala Glu Gly Ser Gln Ala His Asn Ser Tyr Her His Pro Asp Arg Ile Ser Leu Ser Gln Leu Ser Gln Ser Ala His Leu Ala Leu Asp His Leu Her Thr Gln Pro Asn Thr Asp His Gln Arg Val Ala Ser Leu Val Arg Asn Ala Val Gln Asp Gly Lys Phe Gln Leu Gln Ser Ser Asn Asp Thr Gln Val Thr Tyr Lys Thr Ser Val Cys Pro Pro Ala Asn Ala Asp Thr Met Gly Ala Ala His Leu Ile Asn Asn Glu Leu Thr Val Gln Ala Arg Leu Asn Asp Gln Leu Glu Tyr Asp Ile Val Ser Ala His Leu Tyr Gly Pro Ser Glu Ala Ile Ser Ile Asp Ala Ser Ser Pro Pro Ser Ala Asn Asp Leu Ala Ser Ser Gly Len Ser Glu Arg Thr His Leu Gly Met Asn Arg Val Leu Leu Arg Tyr Ala Val Pro Pro Arg Glu Thr Glu Asp Gln Cys Val Met Val Ile Asp Lys Met Pro Pro Pro Lys His Gly Lys Met Ser Phe Phe Arg Thr Thr Asn Asp Leu Ser Lys Leu Pro Leu Gly Met Glu Thr Gly Gly Leu Ser Asp Leu Lys Leu Ala Gly Cys Glu Arg Ile Ser Ser Val Glu Gln Val Lys Ser Ile Arg Ala Ala Leu Gly Gly Gly Pro Leu Thr Val Leu Asp Leu Arg Glu 

|            |            |                    |            |            |            | -          | cont       | tinu       | ıed        |            |                     |                    |            |                    |            |
|------------|------------|--------------------|------------|------------|------------|------------|------------|------------|------------|------------|---------------------|--------------------|------------|--------------------|------------|
| Glu        | Ser        | His                | Ala<br>260 | Ile        | Val        | Asn        | Gly        | Leu<br>265 | Pro        | Ile        | Thr                 | Leu                | Arg<br>270 | Gly                | Pro        |
| Met        | Asp        | <b>T</b> rp<br>275 | Ala        | Asn        | Ala        | Gly        | Leu<br>280 | Ser        | Gln        | Val        | Asp                 | Gl <b>y</b><br>285 | Ala        | Ala                | Arg        |
| Glu        | Ser<br>290 | Ala                | Met        | Ile        | Thr        | Glu<br>295 | Leu        | Lys        | Arg        | Thr        | L <b>y</b> s<br>300 | Ser                | Leu        | Thr                | Leu        |
| Val<br>305 | Asp        | Ala                | Asn        | Tyr        | Val<br>310 | Lys        | Gly        | Lys        | Lys        | Ser<br>315 | Asn                 | Pro                | Gln        | Thr                | Thr<br>320 |
| Glu        | Leu        | Lys                | Asn        | Leu<br>325 | Asn        | Val        | Arg        | Ser        | Glu<br>330 | Arg        | Glu                 | Val                | Val        | Thr<br>335         | Glu        |
| Ala        | Gly        | Ala                | Thr<br>340 | Tyr        | Arg        | Arg        | Val        | Ala<br>345 | Ile        | Thr        | Asp                 | His                | Asn<br>350 | Arg                | Pro        |
| Ser        | Pro        | Glu<br>355         | Ala        | Thr        | Asp        | Glu        | Leu<br>360 | Val        | Asp        | Ile        | Met                 | Arg<br>365         | His        | Сув                | Leu        |
| Gln        | Ala<br>370 | Asn                | Glu        | Ser        | Leu        | Val<br>375 | Val        | His        | Cys        | Asn        | Gly<br>380          | Gly                | Arg        | Gly                | Arg        |
| Thr<br>385 | Thr        | Thr                | Ala        | Met        | Ile<br>390 | Met        | Val        | Asp        | Met        | Leu<br>395 | Lys                 | Asn                | Ala        | Arg                | Asn<br>400 |
| His        | Ser        | Ala                | Glu        | Thr<br>405 | Leu        | Ile        | Thr        | Arg        | Met<br>410 | Ala        | Lys                 | Leu                | Ser        | <b>Ty</b> r<br>415 | Asp        |
| Tyr        | Asn        | Met                | Thr<br>420 | Asp        | Leu        | Gly        | Ser        | Ile<br>425 | Ser        | Ala        | Leu                 | Lys                | Arg<br>430 | Pro                | Phe        |
| Leu        | Glu        | Asp<br>435         | Arg        | Leu        | Lys        | Phe        | Leu<br>440 | Gln        | Ala        | Phe        | His                 | Asp<br>445         | Tyr        | Ala                | Arg        |
| Asn        | Asn<br>450 | Pro                | Ser        | Gly        | Leu        | Ser<br>455 | Leu        | Asn        | Trp        | Thr        | Gln<br>460          | Trp                | Arg        | Ala                | Lys        |
| Ile<br>465 | Ala        | Leu                | Glu        |            |            |            |            |            |            |            |                     |                    |            |                    |            |

HopPtoD2 has been shown to be a secreted protein that is expressed by DC3000.

A seventh nucleic acid molecule is a homolog of avrPpiC2 of *Pseudomonas syringae* pv. *pisi* and has a nucleotide <sup>40</sup> sequence according to SEQ ID No: 13 as follows:

atgacaatcg tgtctggaca catcggaaaa cacccaagcc taaccactgt tcaagctggg60tcttcggctt cggtcgagaa tcaaatgcct gatcctgcac agttcagtga tggacggtgg120aaaaagcttc cgacccaatt gtcgtcaatt acattggcga gattcgatca ggatatttgc180acqaataatc atggcatcag tcagcgtgca atgtgcttg gcctttcatt gagctggatt240aacatgattc atgccgggaa agatcatgtt acgccctatg catcggcaga aagaatgagg300tttctgggtt cctttgaagg ggtggtgcat gctcgtactg ttcataactt ctatcggact360gagcacaaat ttctgatgga gcaagcttcc gcaaaccccg gagtatcaag tggcgcgatg420gctggcacag aagttatt gcaagctgct gagttgaagg ggttaaagct tcaacctgtt480ctagagggca cagatgaagc tgcgctaccc ttcctaattg cgtgtaagca gtcagggcgg540caggtgggca cagatgaagc tgcgctaagc tccttatgtg atgcaattgt agaaaataag600agaaggggtaa tggtgatata cagccaaga attgcccacg ctttgggctt ttctgtatca660tcagatggca aaagagcgac cttattgat cccaatctcg gagagttca taccacctcg720aaagcgttgg ctgatactat cgaaacata tcatcggcag atggccgc tttaatcgcc780gttcaagtat tcgcttcaaa aatacactga810

The encoded protein, originally designated AvrPpiC2<sub>*Pto*</sub> and now renamed HopPtoC, has an amino acid sequence according to SEQ ID No: 14 as follows:

| Met<br>1   | Thr        | Ile        | Val        | Ser<br>5   | Gly        | His        | Ile        | Gly                | Lys<br>10  | His        | Pro        | Ser        | Leu        | Thr<br>15  | Thr        |
|------------|------------|------------|------------|------------|------------|------------|------------|--------------------|------------|------------|------------|------------|------------|------------|------------|
| Val        | Gln        | Ala        | Gly<br>20  | Ser        | Ser        | Ala        | Ser        | Val<br>25          | Glu        | Asn        | Gln        | Met        | Pro<br>30  | Asp        | Pro        |
| Ala        | Gln        | Phe<br>35  | Ser        | Asp        | Gly        | Arg        | Trp<br>40  | Lys                | Lys        | Leu        | Pro        | Thr<br>45  | Gln        | Leu        | Ser        |
| Ser        | Ile<br>50  | Thr        | Leu        | Ala        | Arg        | Phe<br>55  | Asp        | Gln                | Asp        | Ile        | Cys<br>60  | Thr        | Asn        | Asn        | His        |
| Gly<br>65  | Ile        | Ser        | Gln        | Arg        | Ala<br>70  | Met        | Cys        | Phe                | Gly        | Leu<br>75  | Ser        | Leu        | Ser        | Trp        | Ile<br>80  |
| Asn        | Met        | Ile        | His        | Ala<br>85  | Gly        | Lys        | Asp        | His                | Val<br>90  | Thr        | Pro        | Tyr        | Ala        | Ser<br>95  | Ala        |
| Glu        | Arg        | Met        | Arg<br>100 | Phe        | Leu        | Gly        | Ser        | Phe<br>105         | Glu        | Gly        | Val        | Val        | His<br>110 | Ala        | Arg        |
| Thr        | Val        | His<br>115 | Asn        | Phe        | Tyr        | Arg        | Thr<br>120 | Glu                | His        | Lys        | Phe        | Leu<br>125 | Met        | Glu        | Gln        |
| Ala        | Ser<br>130 | Ala        | Asn        | Pro        | Gly        | Val<br>135 | Ser        | Ser                | Gly        | Ala        | Met<br>140 | Ala        | Gly        | Thr        | Glu        |
| Ser<br>145 | Leu        | Leu        | Gln        | Ala        | Ala<br>150 | Glu        | Leu        | Lys                | Gly        | Leu<br>155 | Lys        | Leu        | Gln        | Pro        | Val<br>160 |
| Leu        | Glu        | Asp        | Lys        | Ser<br>165 | Asn        | Ser        | Gly        | Leu                | Pro<br>170 | Phe        | Leu        | Ile        | Ala        | Сув<br>175 | Lys        |
| Gln        | Ser        | Gly        | Arg<br>180 | Gln        | Val        | Ser        | Thr        | <b>A</b> sp<br>185 | Glu        | Ala        | Ala        | Leu        | Ser<br>190 | Ser        | Leu        |
| Cys        | Asp        | Ala<br>195 | Ile        | Val        | Glu        | Asn        | Lys<br>200 | Arg                | Gly        | Val        | Met        | Val<br>205 | Ile        | Tyr        | Ser        |
| Gln        | Glu<br>210 | Ile        | Ala        | His        | Ala        | Leu<br>215 | Gly        | Phe                | Ser        | Val        | Ser<br>220 | Ser        | Asp        | Gly        | Lys        |
| Arg<br>225 | Ala        | Thr        | Leu        | Phe        | Asp<br>230 | Pro        | Asn        | Leu                | Gly        | Glu<br>235 | Phe        | His        | Thr        | His        | Ser<br>240 |
| Lys        | Ala        | Leu        | Ala        | Asp<br>245 | Thr        | Ile        | Glu        | Asn                | Ile<br>250 | Ser        | Ser        | Ala        | Asp        | Gly<br>255 | Leu        |
| Pro        | Leu        | Ile        | Gly<br>260 | Val        | Gln        | Val        | Phe        | Ala<br>265         | Ser        | Lys        | Ile        | His        |            |            |            |

HopPtoC has been shown to be a secreted protein that is expressed by DC3000.

An eighth nucleic acid molecule is a homolog of avrP- 50 piB1 of *Pseudomonas syringae* pv. *pisi* and has a nucleotide sequence according to SEQ ID No: 15 as follows:

atgcacgcaa atcctttaag ctctttcaac agagctcaac atggcaatct gactaatgta 60 gaggccagcc aagttaaatc ggcaggaacc tcttccacca ctaatataga cagtaaaaac 120 attgaagaac atgttqcaga cagactcagt gattaggca gacctgatgg tggatggttt 180 ttcgagaagt cacttggcac cttgaaaaat ttaaatcttg agcagttagc cggaatccat 240 gatgtactaa aattaacaga tggcgtaaag aacattgtct cttttggagc tcgggaagga 300 ggcttcgagt tggcaatgca gttcgtcat gattataca gatctcaaca tccggatgaa 360 aactcgccgc acgatgccgc aactcattat cttgatgcaa tcagcctgca atcaaacaaa 420

-continued<br/>attacaaaac tigaaaaact acaacatgta gatgtattaaaatgcaaa cccgtttteg480gatgtoggg acaaaaacg aattgogcac gcaaaaaaa tiggcattet cataacgca540gagtggetgg gttetgatt etgtaaacag gaattecagt ggettagega aacaaaaaa600aaagacataa aatetgeat tigtgatett aaagatgtag acttaaaaag caaaaatag620acaagtatet teaatttige agaettecat aaateageg teatgage aageacae720cccgaategg gattgaataa tigtaaaaat ggaaatage tigaeette taagegaeta attee780taataacg accgtgagte atgggaacta aatattee tagggaeta a831

The encoded protein, designated AvrPpiB1<sub>*Pto*</sub>, has an amino acid sequence according to SEQ ID No: 16 as follows:

| Met<br>1   | His                | Ala        | Asn                | Pro<br>5            | Leu        | Ser        | Ser        | Phe        | Asn<br>10  | Arg        | Ala                 | Gln        | His        | Gly<br>15  | Asn        |
|------------|--------------------|------------|--------------------|---------------------|------------|------------|------------|------------|------------|------------|---------------------|------------|------------|------------|------------|
| Leu        | Thr                | Asn        | Val<br>20          | Glu                 | Ala        | Ser        | Gln        | Val<br>25  | Lys        | Ser        | Ala                 | Gly        | Thr<br>30  | Ser        | Ser        |
| Thr        | Thr                | Asn<br>35  | Ile                | Asp                 | Ser        | Lys        | Asn<br>40  | Ile        | Glu        | Glu        | His                 | Val<br>45  | Ala        | Asp        | Arg        |
| Leu        | Ser<br>50          | Asp        | Leu                | Gly                 | Arg        | Pro<br>55  | Asp        | Gly        | Gly        | Trp        | Phe<br>60           | Phe        | Glu        | Lys        | Ser        |
| Leu<br>65  | Gly                | Thr        | Leu                | Lys                 | Asn<br>70  | Leu        | Asn        | Leu        | Glu        | Gln<br>75  | Leu                 | Ala        | Gly        | Ile        | His<br>80  |
| Asp        | Val                | Leu        | Lys                | Leu<br>85           | Thr        | Asp        | Gly        | Val        | Lys<br>90  | Asn        | Ile                 | Val        | Ser        | Phe<br>95  | Gly        |
| Ala        | Arg                | Glu        | Gl <b>y</b><br>100 | Gly                 | Phe        | Glu        | Leu        | Ala<br>105 | Met        | Gln        | Phe                 | Arg        | His<br>110 | Asp        | Leu        |
| Tyr        | Arg                | Ser<br>115 | Gln                | His                 | Pro        | Asp        | Glu<br>120 | Asn        | Ser        | Pro        | His                 | Asp<br>125 | Ala        | Ala        | Thr        |
| His        | <b>Ty</b> r<br>130 | Leu        | Asp                | Ala                 | Ile        | Ser<br>135 | Leu        | Gln        | Ser        | Asn        | L <b>y</b> s<br>140 | Phe        | Thr        | Lys        | Leiu       |
| Glu<br>145 | Lys                | Leu        | Gln                | His                 | Val<br>150 | Asp        | Val        | Phe        | Lys        | Met<br>155 | Gln                 | Asn        | Pro        | Phe        | Trp<br>160 |
| Asp        | Val                | Gly        | Tyr                | L <b>y</b> s<br>165 | Asn        | Gly        | Ile        | Ala        | His<br>170 | Ala        | Lys                 | Lys        | Met        | Ala<br>175 | Phe        |
| Phe        | Ile                | Thr        | Pro<br>180         | Glu                 | Trp        | Leu        | Gly        | Ser<br>185 | Asp        | Phe        | Cys                 | Lys        | Gln<br>190 | Glu        | Phe        |
| Gln        | Trp                | Leu<br>195 | Ser                | Glu                 | Thr        | Lys        | Asn<br>200 | Lys        | Asp        | Ile        | Lys                 | Ser<br>205 | Ala        | Phe        | Val        |
| Ile        | Phe<br>210         | Lys        | Asp                | Val                 | Asp        | Leu<br>215 | Lys        | Ser        | Lys        | Asn        | Met<br>220          | Thr        | Ser        | Ile        | Phe        |
| Asn<br>225 | Phe                | Ala        | Asp                | Phe                 | His<br>230 | Lys        | Ser        | Arg        | Val        | Met<br>235 | Met                 | Ala        | Ser        | Thr        | Pro<br>240 |
| Pro        | Glu                | Ser        | Gly                | Leu<br>245          | Asn        | Asn        | Val        | Lys        | Ile<br>250 | Glu        | Asn                 | Ser        | Val        | Asp<br>255 | Leu        |
| Asn        | Phe                | Lys        | Arg<br>260         | Leu                 | Leu        | Thr        | Asp        | Arg<br>265 | Glu        | Ser        | Trp                 | Glu        | Leu<br>270 | Asn        | Asn        |
| Phe        | T.em               | Glv        | Asn                |                     |            |            |            |            |            |            |                     |            |            |            |            |

Phe Leu Gly Asp 275 AvrPpiB1<sub>*Pto*</sub> has been shown to be expressed by DC3000. A second copy of AvrPpiB1<sub>*Pto*</sub> is present in the genome of DC3000. This second copy is identical and has been designated AvrPpiB2<sub>*Pto*</sub>. The *Pseudomonas syringae* pv. *pisi* AvrPpiB effector protein was demonstrated to effect the 5 expression of a resistance mechanism governed by the R3 resistance locus of pea (Cournoyer et al., "Molecular characterization of the *Pseudomonas syringae* pv. *pisi* plasmid-

30

borne avirulence gene avrPpiB which matches the R3 resistance locus in pea," *Mol. Plant Microbe Interact.* 8(5): 700–708 (1995), which is hereby incorporated by reference in its entirety).

A ninth nucleic acid molecule is a homolog of avrXv3 of *Xanthomonas campestris* pv. *vesicatoria* and has a nucleotide sequence according to SEQ ID No: 17 as follows:

atggggctat gtatttcaaa acactctggt agcagttaca gctacagtga tagcgaccgc 60 tggcaagtgc ctgcatgccc tccaaacgcc aggtctgtat ccagtcatca aacagcatct 120 gcgagtgaca tcgcatcagg cgatgtggat gaacgtcctg caacgttttc tcattttcaa 180 cttgcgcggt gcggtggaga gtacacgctt agcatggttt ctgcagcggc ttatcaagca 240 gaaagacggc atcgcggtaa tttaataaaa gatcgtagtc aatccatact cccatgggtc 300 caggtatatc attctaaaaa aggtttggat tacagcttcc agatcgacag aactacgact 360 gttaaagtgg ctggattcaa ctgctctatc cccaataaca gagggactcg gcatttatac 420 agcgctggta cgagtcagac aaacatgcct gtcatcgcag acaacatgag cgcatgcatt 480 gctgtcgcgt gtgcggcgga aaacgtggat gctggcacgg gtgaacgtag gccggggggcg 540 aaagttcgcg tattccatct actccctttt cgacgcgaag accttgtgcc agaagaagtt 600 ttagcttctg tgcgcgatta tctgcgaacg accaaagaac aggggctaac aatgcgcgta 660 gctatgcatg gagggaatac agagggtgat ttctcagtca gcactgcgca ggcattgaaa 720 ggcctgtttg ctaatgaagg gatcccgctt gaatttgacg agacctgtgc aaaccgaacg 780 tctgaaacac tgcttggtgc cgttatctta gatgacaact cgactcattt cataaaacat 840 ctggtcgcac aataa 855

35

The encoded protein, originally designated AvrXv3<sub>*Pto*</sub> and now renamed HopPtoJ, has an amino acid sequence according to SEQ ID No: 18 as follows:

| Met<br>1   | Gly        | Leu        | Cys        | Ile<br>5  | Ser        | Lys        | His        | Ser        | Gly<br>10 | Ser        | Ser               | Tyr                | Ser        | Tyr<br>15 | Ser        |
|------------|------------|------------|------------|-----------|------------|------------|------------|------------|-----------|------------|-------------------|--------------------|------------|-----------|------------|
| Asp        | Ser        | Asp        | Arg<br>20  | Trp       | Gln        | Val        | Pro        | Ala<br>25  | Сув       | Pro        | Pro               | Asn                | Ala<br>30  | Arg       | Ser        |
| Val        | Ser        | Ser<br>35  | His        | Gln       | Thr        | Ala        | Ser<br>40  | Ala        | Ser       | Asp        | Ile               | Ala<br>45          | Ser        | Gly       | Asp        |
| Val        | Asp<br>50  | Glu        | Arg        | Pro       | Ala        | Thr<br>55  | Phe        | Ser        | His       | Phe        | Gln<br>60         | Leu                | Ala        | Arg       | Cys        |
| Gly<br>65  | Gly        | Glu        | Tyr        | Thr       | Leu<br>70  | Ser        | Met        | Val        | Ser       | Ala<br>75  | Ala               | Ala                | Tyr        | Gln       | Ala<br>80  |
| Glu        | Arg        | Arg        | His        | Arg<br>85 | Gly        | Asn        | Leu        | Ile        | Lys<br>90 | Asp        | Arg               | Ser                | Gln        | Ser<br>95 | Ile        |
| Leu        | Pro        | Trp        | Val<br>100 | Gln       | Val        | Tyr        | His        | Ser<br>105 | Lys       | Lys        | Gly               | Leu                | Asp<br>110 | Tyr       | Ser        |
| Phe        | Gln        | Ile<br>115 | Asp        | Arg       | Thr        | Thr        | Thr<br>120 | Val        | Lys       | Val        | Ala               | Gl <b>y</b><br>125 | Phe        | Asn       | Cys        |
| Ser        | Ile<br>130 | Pro        | Asn        | Asn       | Arg        | Gly<br>135 | Thr        | Arg        | His       | Leu        | <b>Tyr</b><br>140 | Ser                | Ala        | Gly       | Thr        |
| Ser<br>145 | Gln        | Thr        | Asn        | Met       | Pro<br>150 | Val        | Ile        | Ala        | Asp       | Asn<br>155 | Met               | Ser                | Ala        | Сув       | Ile<br>160 |

|                    |            |            |            |            |            | -          | con        | tin        | ued        |            |            |            |            |            |            |
|--------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Ala                | Val        | Ala        | Cys        | Ala<br>165 | Ala        | Glu        | Asn        | Val        | Asp<br>170 | Ala        | Gly        | Thr        | Gly        | Glu<br>175 | Arg        |
| Arg                | Pro        | Gly        | Ala<br>180 | Lys        | Val        | Arg        | Val        | Phe<br>185 | His        | Leu        | Leu        | Pro        | Phe<br>190 | Arg        | Arg        |
| Glu                | Asp        | Leu<br>195 | Val        | Pro        | Glu        | Glu        | Val<br>200 | Leu        | Ala        | Ser        | Val        | Arg<br>205 | Asp        | Tyr        | Leu        |
| Arg                | Thr<br>210 | Thr        | Lys        | Glu        | Gln        | Gly<br>215 | Leu        | Thr        | Met        | Arg        | Val<br>220 | Ala        | Met        | His        | Gly        |
| Gl <b>y</b><br>225 | Asn        | Thr        | Glu        | Gly        | Asp<br>230 | Phe        | Ser        | Val        | Ser        | Thr<br>235 | Ala        | Gln        | Ala        | Leu        | Lys<br>240 |
| Gly                | Leu        | Phe        | Ala        | Asn<br>245 | Glu        | Gly        | Ile        | Pro        | Leu<br>250 | Glu        | Phe        | Asp        | Glu        | Thr<br>255 | Сув        |
| Ala                | Asn        | Arg        | Thr<br>260 | Ser        | Glu        | Thr        | Leu        | Leu<br>265 | Gly        | Ala        | Val        | Ile        | Leu<br>270 | Asp        | Asp        |
| Asn                | Ser        | Thr<br>275 | His        | Phe        | Ile        | Lys        | His<br>280 | Leu        | Val        | Ala        | Gln        |            |            |            |            |

HopPtoJ has been shown to be a secreted protein that is expressed by DC3000. As reported in Astua-Monge et al. ("Resistance of tomato and pepper to T3 strains of *Xanth-*<sup>25</sup> *omonas campestris* pv. *vesicatoria* is specified by a plantinducible avirulence gene," *Mol. Plant Microbe Interact.* 13:911–921 (2000), which is hereby incorporated by reference in its entirety), it has been demonstrated that the *Xanthomonas campestris* AvrXv3 effector protein elicits a <sup>30</sup> hypersensitive response in tomato NIL 216 and certain pepper genotypes, which suggests that AvrXv3 is like other

effectors in functioning inside plant cells. A uidA fusion enabled demonstration that the avrXv3 gene is part of the Hrp regulon. A domain in the C terminus of AvrXv3 is possibly responsible for transcriptional activation activity in yeast. For these reasons, it is also believed that HopPtoJ possesses similar characteristics and properties.

A tenth nucleic acid molecule is a homolog of hrmB of *Pseudomonas syringae* pv. *syringae* and has a nucleotide sequence according to SEQ ID No: 19 as follows:

| atgatcatcg | acaatacgtt | cgcgctgaca | ctgtcatgcg | attacgcgcg | tgagcgcctg | 60  |
|------------|------------|------------|------------|------------|------------|-----|
| ctgttgatcg | gcttgcttga | gccgcacaag | gacatacctc | agcagtgcct | tttggctggc | 120 |
| gctctcaatc | cgctcctcaa | tgcaggccca | ggccttggcc | tggatgagaa | aagcggcctg | 180 |
| tatcacgcgt | atcaaagcat | ccctcgagaa | aaactcagcg | tgccgacgct | caaacgcgaa | 240 |
| atggcaggtc | tgctggagtg | gatgaggggc | tggcgcgaag | caagccaata | g          | 291 |

The encoded protein, believed to be a chaperone for the <sup>45</sup> protein of SEQ ID No: 22, has an amino acid sequence according to SEQ ID No: 20 as follows:

| Met<br>1 | Ile | Ile | Asp | Asn<br>5 | Thr | Phe | Ala | Leu | Thr<br>10 | Leu | Ser | Cys | Asp | Tyr<br>15 | Ala |
|----------|-----|-----|-----|----------|-----|-----|-----|-----|-----------|-----|-----|-----|-----|-----------|-----|
| 1        |     |     |     | 5        |     |     |     |     | 10        |     |     |     |     | 15        |     |
| Arg      | Glu | Arg | Leu | Leu      | Leu | Ile | Gly | Leu | Leu       | Glu | Pro | His | Lys | Asp       | Ile |
|          |     |     | 20  |          |     |     |     | 25  |           |     |     |     | 30  |           |     |
| Pro      | Gln | Gln | Cys | Leu      | Leu | Ala | Gly | Ala | Leu       | Asn | Pro | Leu | Leu | Asn       | Ala |
|          |     | 35  |     |          |     |     | 40  |     |           |     |     | 45  |     |           |     |
| Gly      | Pro | Gly | Leu | Gly      | Leu | Asp | Glu | Lys | Her       | Gly | Leu | Tyr | His | Ala       | Tyr |
|          | 50  |     |     |          |     | 55  |     |     |           |     | 60  |     |     |           |     |
| Gln      | Ser | TIP | Pro | Ara      | Glu | Lvs | Len | Ser | Val       | Pro | Thr | Len | Lvs | Ara       | Glu |
| 65       | 001 | 110 | 110 | 9        | 70  | 275 | 204 | 201 | vur       | 75  |     | 204 | 275 | 9         | 80  |
|          |     |     |     |          |     |     |     |     |           |     |     |     |     |           |     |
| Met      | Ala | Gly | Leu | Leu      | Glu | Trp | Met | Arg | Gly       | Trp | Arg | Glu | Ala | Ser       | Gln |
|          |     |     |     | 90       |     |     |     |     | 90        |     |     |     |     | 90        |     |

An eleventh nucleic acid molecule is a homolog of hrmA (also known as hopPsyA) of *Pseudomonas syringae* pv. *syringae* and has a nucleotide sequence according to SEQ ID No: 21 as follows:

atgaacccca ttcagtcacg cttctccagt gtgcaagagc tcagacgatc caacgttgat 60 attccggcgc tcaaagccaa tggccaactg gaggtcgacg gcaagaggta cgagattcgt 120 gcagccgatg acggaacaat ttcggtcctt cgaccggagc aacaatccaa agcgaaaagt 180 tttttcaagg gcgcttccca gttgataggt ggcagcagcc agcgcgcgca gattgcccag 240 gcgctcaacg agaaggtcgc atcggcacgc actgtcttgc accagagcgc tatgacgggc 300 ggacgettgg acaecettga geggggegaa ageageteag ceaeaacage cateaaacee 360 actgccaaac aggctgcgca aagtactttt aacagctttc atgagtgggc caaacaggca 420 gaggcgatgc gaaacccgtc tcgaatggat atctacaaga tctataaaca agatgcacct 480 cactcacacc ccatgagcga cgagcagcaa gaagagttcc tgcacacgct aaaggcattg 540 aatggcaaaa acggcattga ggtgcgcact caggaccacg acagcgtcag aaataaaaaa 600 gaccgcaacc tggacaagta catcgcagag agcccggatg caaagaggtt tttctatcga 660 attatcccca aacatgagcg ccgagaagat aagaatcaag ggcgattgac cattggcgtg 720 caaccccaat atgcaacaca gttgacccgc gccatggcaa ccctgatagg gaaggaaagt 780 gcaatcacgc atggcaaagt aataggcccc gcctgccacg gccaaatgac cgattcggca 840 gttttgtata tcaacggtga tgttgcaaag gcagaaaagc tgggcgagaa actgaaacag 900 atgagcggca ttcctctgga tgcgttcgtt gagcacaccc ctttgagcat gcaatccctg 960 agtaaaggtc tgtcctatgc agaaagcatc ctgggcgaca ccagaggcca tgggatgtcg 1020 cgagcggaag tgatcagcga tgccttgagg atggacggga tgccatttct ggccagattg 1080 aagctatcac tgtctgccaa tggctatgac ccggacaacc cggcccttcg aaacacgaaa 1140 tga 1143

The encoded protein, designated HopPsyA<sub>*Pto*</sub>, has an amino  $^{40}$  acid sequence according to SEQ ID No: 22 as follows:

Met Asn Pro Ile Gln Ser Arg Phe Ser Ser Val Gln Glu Leu Arg Arg 5 10 Ser Asn Val Asp Ile Pro Ala Leu Lys Ala Asn Gly Gln Leu Glu Val 25 Asp Gly Lys Arg Tyr Glu Ile Arg Ala Ala Asp Asp Gly Thr Ile Ser 35 40 45 Val Leu Arg Pro Glu Gln Gln Ser Lys Ala Lys Ser Phe Phe Lys Gly 50 55 60 Ala Ser Gln Leu Ile Gly Gly Ser Ser Gln Arg Ala Gln Ile Ala Gln 65 75 70 80 Ala Leu Asn Glu Lys Val Ala Ser Ala Arg Thr Val Leu His Gln Ser 90 Ala Met Thr Gly Gly Arg Leu Asp Thr Leu Glu Arg Gly Glu Ser Ser 100 105 110 Ser Ala Thr Thr Ala Ile Lys Pro Thr Ala Lys Gln Ala Ala Gln Ser 120 125 115 Thr Phe Asn Ser Phe His Glu Trp Ala Lys Gln Ala Glu Ala Met Arg 135 140 130

|            |            |            |            |            |            | _                   | con        | tinu               | led        |                    |            |            |            |            |            |
|------------|------------|------------|------------|------------|------------|---------------------|------------|--------------------|------------|--------------------|------------|------------|------------|------------|------------|
| Asn<br>145 | Pro        | Ser        | Arg        | Met        | Asp<br>150 | Ile                 | Tyr        | Lys                | Ile        | <b>Ty</b> r<br>155 | Lys        | Gln        | Asp        | Ala        | Pro<br>160 |
| His        | Ser        | His        | Pro        | Met<br>165 | Ser        | Asp                 | Glu        | Gln                | Gln<br>170 | Glu                | Glu        | Phe        | Leu        | His<br>175 | Thr        |
| Leu        | Lys        | Ala        | Leu<br>180 | Asn        | Gly        | Lys                 | Asn        | Gl <b>y</b><br>185 | Ile        | Glu                | Val        | Arg        | Thr<br>190 | Gln        | Asp        |
| His        | Asp        | Ser<br>195 | Val        | Arg        | Asn        | Lys                 | Lys<br>200 | Asp                | Arg        | Asn                | Leu        | Asp<br>205 | Lys        | Tyr        | Ile        |
| Ala        | Glu<br>210 | Ser        | Pro        | Asp        | Ala        | L <b>y</b> s<br>215 | Arg        | Phe                | Phe        | Tyr                | Arg<br>220 | Ile        | Ile        | Pro        | Lys        |
| His<br>225 | Glu        | Arg        | Arg        | Glu        | Asp<br>230 | Lys                 | Asn        | Gln                | Gly        | Arg<br>235         | Leu        | Thr        | Ile        | Gly        | Val<br>240 |
| Gln        | Pro        | Gln        | Tyr        | Ala<br>245 | Thr        | Gln                 | Leu        | Thr                | Arg<br>250 | Ala                | Met        | Ala        | Thr        | Leu<br>255 | Ile        |
| Gly        | Lys        | Glu        | Ser<br>260 | Ala        | Ile        | Thr                 | His        | Gl <b>y</b><br>265 | Lys        | Val                | Ile        | Gly        | Pro<br>270 | Ala        | Сув        |
| His        | Gly        | Gln<br>275 | Met        | Thr        | Asp        | Ser                 | Ala<br>280 | Val                | Leu        | Tyr                | Ile        | Asn<br>285 | Gly        | Asp        | Val        |
| Ala        | Lys<br>290 | Ala        | Glu        | Lys        | Leu        | Gly<br>295          | Glu        | Lys                | Leu        | Lys                | Gln<br>300 | Met        | Ser        | Gly        | Ile        |
| Pro<br>305 | Leu        | Asp        | Ala        | Phe        | Val<br>310 | Glu                 | His        | Thr                | Pro        | Leu<br>315         | Ser        | Met        | Gln        | Ser        | Leu<br>320 |
| Ser        | Lys        | Gly        | Leu        | Ser<br>325 | Tyr        | Ala                 | Glu        | Ser                | Ile<br>330 | Leu                | Gly        | Asp        | Thr        | Arg<br>335 | Gly        |
| His        | Gly        | Met        | Ser<br>340 | Arg        | Ala        | Glu                 | Val        | Ile<br>345         | Ser        | Asp                | Ala        | Leu        | Arg<br>350 | Met        | Asp        |
| Gly        | Met        | Pro<br>355 | Phe        | Leu        | Ala        | Arg                 | Leu<br>360 | Lys                | Leu        | Ser                | Leu        | Ser<br>365 | Ala        | Asn        | Gly        |
| Tyr        | Asp<br>370 | Pro        | Asp        | Asn        | Pro        | Ala<br>375          | Leu        | Arg                | Asn        | Thr                | Lys<br>380 |            |            |            |            |

HopPsyA<sub>Pto</sub> has been shown to be a secreted protein that is  $_{40}$  viral pathogens upon recombinant expression thereof in expressed by DC3000. It has been shown that HopPsyA is characterized by cytotoxicity when expressed recombinantly in eukaryotes (i.e., in plants and yeast), and further that HopPsyA is capable of altering metabolic (e.g., Mad2) pathways in targeted cells (see PCT Application Publication 45 No. WO 01/75066 to Collmer et al., published Oct. 11, 2001, which is hereby incorporated by reference in its entirety). Moreover, it has been shown that HopPsyA (HrmA) can be used to effect enhanced resistance to bacterial, fungal, and

plants (U.S. Pat. No. 6,342,654 to Li et al., which is hereby incorporated by reference in its entirety). Based on its shared amino acid identity of about 52% when compared to HopPsyA, it is believed that HopPsyA<sub>Pto</sub> possesses these same characteristics.

A twelfth nucleic acid molecule is hopPtoB2, a homolog of hopB of Pseudomonas syringae pv. syringae DC3000, and has a nucleotide sequence according to SEQ ID No: 23 as follows:

gtgccgcgta tcgtcgccgg ccatgcagaa ggcgtgtgcg tggtcaacgg ccggcactat 60 gtcgagctgt ccggtagaac ctttcaagtc cattacgaca cacatctgcg cggctggcag 120 attgtcgatc cagaaaaccc gttcgccttt tttggccagc agccggtgcg cctagatgaa 180 cagggggcaat ggcagcttgt cgcccgtcga cgtctgcgtg gcggtggcgt aggtgactcc 240 agccatgccc acctgcccga agaaacaccg ggctccagca caggctcgat tccgagcgac 300 tacgaaatgc cggccgccat gcaggcaggc cttgatgtcg tgttgagcaa caagccctac 360 gacccgaccg ggattggcat ggagtcttac tttgagagct atttcgtgga tctgcgtcag 420 agttttgtgg cgcgcaggga aaagctttat gaggatgccc ggacattttt cgccggtttt 480 tctccgccgc caaagccgca attgcctccg ctggcgccac ctgttgccat cgacaccctg 540

-continued attgaacacg tottogogca gggtaacggo otggttttga gtgaagcaco gaagtoggto 600 gccagcaaac ggctgctgtt actcaacatg ccgctgctgg ccgaacagcg tgtcaagatt 660 ctgtatatcg agcacctgct gaccgacaag cacctgtcta aactggccag gtatcgtcaa 720 ctgggcaaaa agagccgctc aggctcgcac gaactcaagc attacctgca cgatctcaac 780 cgcgggacgc tgaacaattc cagcaccgac tacgactatt accacctcat caaggcagcg 840 catcgctatg gtatcgaggt gcgaccgttc agctcgtcga tcagctaccc gtttctggac 900 catccggtat tgagcgcagc caacgacacg actgcagtac aaaaaatgag caattttttc 960 ggccatacgc tcatcagcag cgatgtcgca tccgcgccga caaaacgctg ggttgccttg 1020 ctcgaccaga agctggccac gacccacgac ggggtattag gcattgccga aatgcagggc 1080 gtggtcagtg tgcatgtccg cgacatcccg gcaggccggc cgacgcgcat cactaaaggc 1140 acaggegaac tgccaegega gggeaegeag geeegetgeg actteaegat tgegttttee 1200 gatecgaege tgattgtgce ceaggegeet caecegeaeg gtaceaaact ggaegaeatg 1260 ctgctcagag aactgagggg ccaatctgcc ggtgccgggg gcgaacgctg ggccggccag 1320 tacggattca tccgtgacga ggacggtgcc tggcggtgga tcgcgcctga ggactggccc 1380 gcagacagee cgatgaegge aateeageaa teeetgaeeg accetgteta tgagatgeea 1440 ctggacactc gaacaacgct tcatacgctg gcgaacttcg aaagaagggg gctcgacatg 1500 gagtatttct ttgaagaaag ccagtacgaa actgttcgca acgtattcgc cctgcaccgc 1560 aaaaagctgc aacaggatgc ggccttgatc agcgctgtac agttgccgcc tcgtccgacg 1620 atgccggccg tcaaccctcg gacgaccacg gcgcagctgt ttgaaacgct gtaccagcac 1680 accgatggca tcgtgatcgg cgagtcgcat ttttcggtcg ccagcaagaa aatgatcatc 1740 gacaacctgc cgttgctgtc gcagcaaaac gtacgaacgc tgtacatgga gcacttgctc 1800 accgacttgc atcaggcgga tctggatcgc tttttcgaaa cagggcaaat gagcaaaacc 1860 ctgcttcacg acctgaaagt gctggatcgg ggccatcgca ccgacccgga caaggtttac 1920 acctttgagc aactggtcat caaggcgcag cagcacggca tggaagtccg cgccatcgac 1980 tgcgcagcca gctaccacct tagtggcctt gacaacgatg gttcaatcac ccgtcagcaa 2040 atgatgaact actttgcgtc gcgcaccctg cgcaggcatc aggacgtcat gggctcacac 2100 aagtggatcg cgctggtcgg caacagccat tccaatgtct atcaaggcgt cgtgcctggt 2160 atcgccgagc tggaaggcgg catcggcctg cgggttatcg acgtggcacc ggggcagtcg 2220 aagggtgtca tgcacgacct ggggggggctg gtctcggcag acatctcgag aaccaaagta 2280 cacatcaaaag gcgattatcg agtggagata gaaataccgc gtgcgaagga tgccattcgg 2340 ccaccccagc ctgttaccct cgaacagcga ctggccagac cgggattgtt tctggtggaa 2400 gagagtgagg gcaatctgct gaccattgtc caccgcgctc gcgacacctg gattcaccgc 2460 acgccggtgc tggtcaatgc cgagggcaag ctgtacctgg agcgcgtgcg ctggccgcgc 2520 atccacctca aaccctttga tgacatggac gcgctggtag cggcgctgga ggagatgaac 2580 2598

ctgacgcggg taggctga

The encoded HopPtoB2 protein has an amino acid sequence according to SEQ ID No: 24 as follows:

Val Pro Arg Ile Val Ala Gly His Ala Glu Gly Val Cys Val Val Asn Gly Arg His Tyr Val Glu Leu Ser Gly Arg Thr Phe Gln Val His Tyr Asp Thr His Leu Arg Gly Trp Gln Ile Val Asp Pro Glu Asn Pro Phe Ala Phe Phe Gly Gln Gln Pro Val Arg Leu Asp Glu Gln Gly Gln Trp 50 55 60 Gln Leu Val Ala Arg Arg Arg Leu Arg Gly Gly Gly Val Gly Asp Ser 65 70 75 80 Ser His Ala His Leu Pro Glu Glu Thr Pro Gly Ser Ser Thr Gly Ser Ile Pro Ser Asp Tyr Glu Met Pro Ala Ala Met Gln Ala Gly Leu Asp 100 105 110 Val Val Leu Ser Asn Lys Pro Tyr Asp Pro Thr Gly Ile Gly Met Glu 115 120 125 Ser Tyr Phe Glu Ser Tyr Phe Val Asp Leu Arg Gln Ser Phe Val Ala Arg Arg Glu Lys Leu Tyr Glu Asp Ala Arg Thr Phe Phe Ala Gly Phe Ser Pro Pro Pro Lys Pro Gln Leu Pro Pro Leu Ala Pro Pro Val Ala Ile Asp Thr Leu Ile Glu His Val Phe Ala Gln Gly Asn Gly Leu Val Leu Ser Glu Ala Pro Lys Ser Val Ala Ser Lys Arg Leu Leu Leu Asn Met Pro Leu Leu Ala Glu Gln Arg Val Lys Ile Leu Tyr Ile Glu His Leu Leu Thr Asp Lys His Leu Ser Lys Leu Ala Arg Tyr Arg Gln Leu Gly Lys Lys Ser Arg Ser Gly Ser His Glu Leu Lys His Tyr Leu His Asp Leu Asn Arg Gly Thr Leu Asn Asn Ser Ser Thr Asp Tyr Asp Tyr Tyr His Leu Ile Lys Ala Ala His Arg Tyr Gly Ile Glu Val Arg Pro Phe Ser Ser Ser Ile Ser Tyr Pro Phe Leu Asp His Pro Val Leu Ser Ala Ala Asn Asp Thr Thr Ala Val Gln Lys Met Ser Asn Phe Phe Gly His Thr Leu Ile Ser Ser Asp Val Ala Ser Ala Pro Thr Lys Arp Trp Val Ala Leu Leu Asp Gln Lys Leu Ala Thr Thr His Asp Gly Val Leu Gly Ile Ala Glu Met Gln Gly Val Val Ser Val His Val Arg Asp Ile Pro Ala Gly Arg Pro Thr Arg Ile Thr Lys Gly Thr Gly Glu Leu Pro Arp Glu Gly Thr Gln Ala Arg Cys Asp Phe Thr Ile Ala Phe Ser 

-continued Asp Pro Thr Leu Ile Val Pro Gln Ala Pro His Pro His Gly Thr Lys 405 410 415 Leu Asp Asp Met Leu Leu Arg Glu Leu Arg Gly Gln Ser Ala Gly Ala Gly Gly Glu Arg Trp Ala Gly Gln Tyr Gly Phe Ile Arg Asp Glu Asp Gly Ala Trp Arg Trp Ile Ala Pro Glu Asp Trp Pro Ala Asp Ser Pro 
 Met Thr Ala Ile Gln Gln Ser Leu Thr Asp Pro Val Tyr Glu Met Pro

 465
 470
 475
 480
 Leu Asp Thr Arg Thr Thr Leu His Thr Leu Ala Asn Phe Glu Arg Arg Gly Leu Asp Met Glu Tyr Phe Phe Glu Glu Ser Gln Tyr Glu Thr Val Arg Asn Val Phe Ala Leu His Arg Lys Lys Leu Gln Gln Asp Ala Ala Leu Ile Ser Ala Val Gln Leu Pro Pro Arg Pro Thr Met Pro Ala Val Asn Pro Arg Thr Thr Thr Ala Gln Leu Phe Glu Thr Leu Tyr Gln His Thr Asp Gly Ile Val Ile Gly Glu Ser His Phe Ser Val Ala Ser Lys Lys Met Ile Ile Asp Asn Leu Pro Leu Leu Ser Gln Gln Asn Val Arg Thr Leu Tyr Met Glu His Leu Leu Thr Asp Leu His Gln Ala Asp Leu 595 600 605 Asp Arg Phe Phe Glu Thr Gly Gln Met Ser Lys Thr Leu Leu His Asp 610 615 620 Leu Lys Val Leu Asp Arg Gly His Arg Thr Asp Pro Asp Lys Val Tyr Thr Phe Glu Gln Leu Val Ile Lys Ala Gln Gln His Gly Met Glu Val Arg Ala Ile Asp Cys Ala Ala Ser Tyr His Leu Ser Gly Leu Asp Asn Asp Gly Ser Ile Thr Arg Gln Gln Met Met Asn Tyr Phe Ala Ser Arg Thr Leu Arg Arg His Gln Asp Val Met Gly Ser His Lys Trp Ile Ala Leu Val Gly Asn Ser His Ser Asn Val Tyr Gln Gly Val Val Pro Gly Ile Ala Glu Leu Glu Gly Gly Ile Gly Leu Arg Val Ile Asp Val Ala Pro Gly Gln Ser Lys Gly Val Met His Asp Leu Gly Glu Leu Val Ser Ala Asp Ile Ser Arg Thr Lys Val His Ile Lys Gly Asp Tyr Arg Val Glu Ile Glu Ile Pro Arg Ala Lys Asp Ala Ile Arg Pro Pro Gln Pro Val Thr Leu Glu Gln Arg Leu Ala Arg Pro Gly Leu Phe Leu Val Glu Glu Ser Glu Gly Asn Leu Leu Thr Ile Val His Arg Ala Arg Asp Thr 805 810 815 Trp Ile His Arg Thr Pro Val Leu Val Asn Ala Glu Gly Lys Leu Tyr 820 825 830

#### -continued

Met Asp Ala Leu Val Ala Ala Leu Glu Glu Met Asn Leu Thr Arg Val 855 850 860

Gly

865

HopPtoB2 has been shown to be a secreted protein that is expressed by DC3000.

Fragments of the above-identified proteins or polypeptides as well as fragments of full length proteins can also be 15 used according to the present invention.

Suitable fragments can be produced by several means. Subclones of the gene encoding a known protein can be produced using conventional molecular genetic manipulation for subcloning gene fragments, such as described by 20 Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Springs Laboratory, Cold Springs Harbor, N.Y. (1989), and Ausubel et al. (ed.), Current Protocols in Molecular Biology, John Wiley & Sons (New York, N.Y.) (1999 and preceding editions), each of which is hereby incorporated by 25 reference in its entirety. The subclones then are expressed in vitro or in vivo in bacterial cells to yield a smaller protein or polypeptide that can be tested for activity, e.g., as a product required for pathogen virulence.

In another approach, based on knowledge of the primary 30 structure of the protein, fragments of the protein-coding gene may be synthesized using the PCR technique together with specific sets of primers chosen to represent particular portions of the protein. Erlich, H. A., et al., "Recent Advances in the Polymerase Chain Reaction," Science 252: 35 1643-51 (1991), which is hereby incorporated by reference. These can then be cloned into an appropriate vector for expression of a truncated protein or polypeptide from bacterial cells as described above.

As an alternative, fragments of a protein can be produced  $_{40}$ by digestion of a full-length protein with proteolytic enzymes like chymotrypsin or Staphylococcus proteinase A, or trypsin. Different proteolytic enzymes are likely to cleave different proteins at different sites based on the amino acid sequence of the particular protein. Some of the fragments 45 that result from proteolysis may be active virulence proteins or polypeptides.

Chemical synthesis can also be used to make suitable fragments. Such a synthesis is carried out using known amino acid sequences for the polyppetide being produced. 50 Alternatively, subjecting a full length protein to high temperatures and pressures will produce fragments. These fragments can then be separated by conventional procedures (e.g., chromatography, SDS-PAGE).

Variants may also (or alternatively) be modified by, for 55 example, the deletion or addition of amino acids that have minimal influence on the properties, secondary structure and hydropathic nature of the polypeptide. For example, a polypeptide may be conjugated to a signal (or leader) sequence at the N-terminal end of the protein which co- 60 translationally or post-translationally directs transfer of the protein. The polypeptide may also be conjugated to a linker or other sequence for ease of synthesis, purification, or identification of the polypeptide.

The proteins or polypeptides used in accordance with the 65 present invention are preferably produced in purified form (preferably at least about 80%, more preferably 90%, pure)

by conventional techniques. Typically, the protein or polypeptide of the present invention is secreted into the growth medium of recombinant host cells (discussed infra). Alternatively, the protein or polypeptide of the present invention is produced but not secreted into growth medium. In such cases, to isolate the protein, the host cell (e.g., E. *coli*) carrying a recombinant plasmid is propagated, lysed by sonication, heat, or chemical treatment, and the homogenate is centrifuged to remove bacterial debris. The supernatant is then subjected to sequential ammonium sulfate precipitation. The fraction containing the protein or polypeptide of interest is subjected to gel filtration in an appropriately sized dextran or polyacrylamide column to separate the proteins. If necessary, the protein fraction may be further purified by HPLC.

Other DNA molecules encoding other effector proteins or polypeptides can also be identified by determining whether such DNA molecules hybridize under stringent conditions to a nucleic acid molecule as identified above. An example of suitable stringency conditions is when hybridization is carried out at a temperature of about 37° C. using a hybridization medium that includes 0.9× sodium citrate ("SSC") buffer, followed by washing with 0.2×SSC buffer at 37° C. Higher stringency can readily be attained by increasing the temperature for either hybridization or washing conditions or increasing the sodium concentration of the hybridization or wash medium. Nonspecific binding may also be controlled using any one of a number of known techniques such as, for example, blocking the membrane with protein-containing solutions, addition of heterologous RNA, DNA, and SDS to the hybridization buffer, and treatment with RNase. Wash conditions are typically performed at or below stringency. Exemplary high stringency conditions include carrying out hybridization at a temperature of about 42° C. up to and including about 65° C. for up to about 20 hours in a hybridization medium containing 1M NaCl, 50 mM Tris-HCl, pH 7.4, 10 mM EDTA, 0.1% sodium dodecyl sulfate (SDS), 0.2% ficoll, 0.2% polyvinylpyrrolidone, 0.2% bovine serum albumin, and 50 µg/ml E. coli DNA, followed by washing carried out at between about 42° C. to about 65° C. in a 0.2×SSC buffer.

The delivery of effector proteins or polypeptides can be achieved in several ways: (1) as a stable transgene; (2) transiently expressed via Agrobacterium or viral vectors; (3) delivered by the type III secretion systems of disarmed pathogens or recombinant nonpathogenic bacteria which express a functional, heterologous type III secretion system; or (4) delivered via topical application followed by TAT protein transduction domain-mediated spontaneous uptake into cells. Each of these is discussed infra.

The DNA molecule encoding the protein or polypeptide can be incorporated in cells using conventional recombinant DNA technology. Generally, this involves inserting the DNA molecule into an expression system to which the DNA molecule is heterologous (i.e. not normally present). The heterologous DNA molecule is inserted into the expression

system or vector in proper sense orientation and correct reading frame. The vector contains the necessary elements for the transcription and translation of the inserted proteincoding sequences.

U.S. Pat. No. 4,237,224 to Cohen and Boyer, which is 5 hereby incorporated by reference in its entirety, describes the production of expression systems in the form of recombinant plasmids using restriction enzyme cleavage and ligation with DNA ligase. These recombinant plasmids are then introduced by means of transformation and replicated in 10 unicellular cultures including prokaryotic organisms and eukaryotic cells grown in tissue culture.

Recombinant genes may also be introduced into viruses, such as vaccina virus. Recombinant viruses can be generated by transfection of plasmids into cells infected with virus.

Suitable vectors include, but are not limited to, the following viral vectors such as lambda vector system gt11, gt WES.tB, Charon 4, and plasmid vectors such as pBR322, pBR325, pACYC177, pACYC1084, pUC8, pUC9, pUC18, pUC19, pLG339, pR290, pKC37, pKC101, SV 40, pBlue- 20 script II SK +/- or KS +/- (see "Stratagene Cloning Systems" Catalog (1993) from Stratagene, La Jolla, Calif., which is hereby incorporated by reference), pQE, pIH821, pGEX, pET series (see F. W. Studier et. al., "Use of T7 RNA Polymerase to Direct Expression of Cloned Genes," Gene 25 Expression Technology vol. 185 (1990), which is hereby incorporated by reference in its entirety), and any derivatives thereof Recombinant molecules can be introduced into cells via transformation, particularly transduction, conjugation, mobilization, or electroporation. The DNA sequences are 30 cloned into the vector using standard cloning procedures in the art, as described by Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Springs Laboratory, Cold Springs Harbor, N.Y. (1989), which is hereby incorporated by reference in its entirety. 35

A variety of host-vector systems may be utilized to express the protein-encoding sequence(s). Primarily, the vector system must be compatible with the host cell used. Host-vector systems include but are not limited to the following: bacteria transformed with bacteriophage DNA, 40 plasmid DNA, or cosmid DNA; microorganisms such as yeast containing yeast vectors; mammalian cell systems infected with virus (e.g., vaccinia virus, adenovirus, etc.); insect cell systems infected with virus (e.g., baculovirus); and plant cells infected by bacteria. The expression elements 45 of these vectors vary in their strength and specificities. Depending upon the host-vector system utilized, any one of a number of suitable transcription and translation elements can be used.

Different genetic signals and processing events control 50 many levels of gene expression (e.g., DNA transcription and messenger RNA (mRNA) translation).

Transcription of DNA is dependent upon the presence of a promoter which is a DNA sequence that directs the binding of RNA polymerase and thereby promotes mRNA synthesis. 55 The DNA sequences of eukaryotic promoters differ from those of prokaryotic promoters. Furthermore, eukaryotic promoters and accompanying genetic signals may not be recognized in or may not function in a prokaryotic system, and, further, prokaryotic promoters are not recognized and 60 do not function in eukaryotic cells.

Similarly, translation of mRNA in prokaryotes depends upon the presence of the proper prokaryotic signals which differ from those of eukaryotes. Efficient translation of mRNA in prokaryotes requires a ribosome binding site 65 called the Shine-Dalgarno ("SD") sequence on the mRNA. This sequence is a short nucleotide sequence of mRNA that

is located before the start codon, usually AUG, which encodes the amino-terminal methionine of the protein. The SD sequences are complementary to the 3'-end of the 16S rRNA (ribosomal RNA) and probably promote binding of mRNA to ribosomes by duplexing with the rRNA to allow correct positioning of the ribosome. For a review on maximizing gene expression, see Roberts and Lauer, *Methods in Enzymology*, 68:473 (1979), which is hereby incorporated by reference in its entirety.

Promoters vary in their "strength" (i.e. their ability to promote transcription). For the purposes of expressing a cloned gene, it is desirable to use strong promoters in order to obtain a high level of transcription and, hence, expression of the gene. Depending upon the host cell system utilized, any one of a number of suitable promoters may be used. For instance, when cloning in E. coli, its bacteriophages, or plasmids, promoters such as the T7 phage promoter, lac promoter, trp promoter, recA promoter, ribosomal RNA promoter, the  $P_R$  and  $P_L$  promoters of coliphage lambda and others, including but not limited, to lacUV5, ompF, bla, lpp, and the like, may be used to direct high levels of transcription of adjacent DNA segments. Additionally, a hybrid trp-lacUV5 (tac) promoter or other E. coli promoters produced by recombinant DNA or other synthetic DNA techniques may be used to provide for transcription of the inserted gene.

Bacterial host cell strains and expression vectors may be chosen which inhibit the action of the promoter unless specifically induced. In certain operations, the addition of specific inducers is necessary for efficient transcription of the inserted DNA. For example, the lac operon is induced by the addition of lactose or IPTG (isopropylthio-beta-D-galactoside). A variety of other operons, such as trp, pro, etc., are under different controls.

Specific initiation signals are also required for efficient gene transcription and translation in prokaryotic cells. These transcription and translation initiation signals may vary in "strength" as measured by the quantity of gene specific messenger RNA and protein synthesized, respectively. The DNA expression vector, which contains a promoter, may also contain any combination of various "strong" transcription and/or translation initiation signals. For instance, efficient translation in E. coli requires an SD sequence about 7-9 bases 5' to the initiation codon ("ATG") to provide a ribosome binding site. Thus, any SD-ATG combination that can be utilized by host cell ribosomes may be employed. Such combinations include but are not limited to the SD-ATG combination from the cro gene or the N gene of coliphage lambda, or from the E. coli tryptophan E, D, C, B or A genes. Additionally, any SD-ATG combination produced by recombinant DNA or other techniques involving incorporation of synthetic nucleotides may be used.

Once the isolated DNA molecule encoding the polypeptide or protein has been cloned into an expression system, it is ready to be incorporated into a host cell. Such incorporation can be carried out by the various forms of transformation noted above, depending upon the vector/host cell system. Suitable host cells include, but are not limited to, bacteria, virus, yeast, mammalian cells, insect, plant, and the like.

Because it is desirable for recombinant host cells to secrete the encoded protein or polypeptide, it is preferable that the host cell also possess a functional type III secretion system. The type III secretion system can be heterologous to host cell (Ham et al., "A Cloned *Erwinia chrysanthemi* Hrp (Type III Protein Secretion) System Functions in *Escherichia coli* to Deliver *Pseudomonas syringae* Avr Signals to Plant Cells and Secrete Avr Proteins in Culture," *Microbiol.* 95:10206–10211 (1998), which is hereby incorporated by reference in its entirety) or the host cell can naturally possess a type III secretion system. Host cells which naturally contain a type III secretion system include many pathogenic 5 Gram-negative bacterium, such as numerous *Erwinia* species, *Pseudomonas* species, *Xanthomonas* species, etc. Other type III secretion systems are known and still others are continually being identified. Pathogenic bacteria that can be utilized to deliver effector proteins or polypeptides are 10 preferably disarmed according to known techniques, i.e., as described above. Alternatively, isolation of the effector protein or polypeptide from the host cell or growth medium can be carried out as described above.

Another aspect of the present invention relates to a 15 transgenic plant which express a protein or polypeptide of the present invention and methods of making the same.

In order to express the DNA molecule in isolated plant cells or tissue or whole plants, a plant expressible promoter is needed. Any plant-expressible promoter can be utilized 20 regardless of its origin, i.e., viral, bacterial, plant, etc. Without limitation, two suitable promoters include the nopaline synthase promoter (Fraley et al., *Proc. Natl. Acad. Sci. USA* 80:4803–4807 (1983), which is hereby incorporated by reference in its entirety) and the cauliflower mosaic virus 25 35S promoter (O'Dell et al., "Identification of DNA Sequences Required for Activity of the Cauliflower Mosaic Virus 35S Promoter," *Nature*, 313(6005):810–812 (1985), which is hereby incorporated by reference in its entirety). Both of these promoters yield constitutive expression of 30 coding sequences under their regulatory control.

While constitutive expression is generally suitable for expression of the DNA molecule, it should be apparent to those of skill in the art that temporally or tissue regulated expression may also be desirable, in which case any regulated promoter can be selected to achieve the desired expression. Typically, the temporally or tissue regulated promoters will be used in connection with the DNA molecule that are expressed at only certain stages of development or only in certain tissues. 40

In some plants, it may also be desirable to use promoters which are responsive to pathogen infiltration or stress. For example, it may be desirable to limit expression of the protein or polypeptide in response to infection by a particular pathogen of the plant. One example of a pathogen-45 inducible promoter is the gst1 promoter from potato, which is described in U.S. Pat. Nos. 5,750,874 and 5,723,760 to Strittmayer et al., each of which is hereby incorporated by reference in its entirety.

Expression of the DNA molecule in isolated plant cells or 50 tissue or whole plants also requires appropriate transcription termination and polyadenylation of mRNA. Any 3' regulatory region suitable for use in plant cells or tissue can be operably linked to the first and second DNA molecules. A number of 3' regulatory regions are known to be operable in 55 plants. Exemplary 3' regulatory regions include, without limitation, the nopaline synthase 3' regulatory region (Fraley, et al., "Expression of Bacterial Genes in Plant Cells," Proc. Nat'l. Acad. Sci. USA, 80:4803-4807 (1983), which is hereby incorporated by reference in its entirety) and the 60 cauliflower mosaic virus 3' regulatory region (Odell, et al., "Identification of DNA Sequences Required for Activity of the Cauliflower Mosaic Virus 35S Promoter," Nature, 313 (6005):810-812 (1985), which is hereby incorporated by reference in its entirety). 65

The promoter and a 3' regulatory region can readily be ligated to the DNA molecule using well known molecular cloning techniques described in Sambrook et al., *Molecular Cloning: A Laboratory Manual*, Second Edition, Cold Spring Harbor Press, NY (1989), which is hereby incorporated by reference in its entirety.

One approach to transforming plant cells with a DNA molecule of the present invention is particle bombardment (also known as biolistic transformation) of the host cell. This can be accomplished in one of several ways. The first involves propelling inert or biologically active particles at cells. This technique is disclosed in U.S. Pat. Nos. 4,945, 050, 5,036,006, and 5,100,792, all to Sanford, et al., each of which is hereby incorporated by reference in its entirety. Generally, this procedure involves propelling inert or biologically active particles at the cells under conditions effective to penetrate the outer surface of the cell and to be incorporated within the interior thereof When inert particles are utilized, the vector can be introduced into the cell by coating the particles with the vector containing the heterologous DNA. Alternatively, the target cell can be surrounded by the vector so that the vector is carried into the cell by the wake of the particle. Biologically active particles (e.g., dried bacterial cells containing the vector and heterologous DNA) can also be propelled into plant cells. Other variations of particle bombardment, now known or hereafter developed, can also be used.

Another method of introducing the DNA molecule into plant cells is fusion of protoplasts with other entities, either minicells, cells, lysosomes, or other fusible lipid-surfaced bodies that contain the DNA molecule. Fraley, et al., *Proc. Natl. Acad. Sci. USA*, 79:1859–63 (1982), which is hereby incorporated by reference in its entirety.

The DNA molecule may also be introduced into the plant cells by electroporation. Fromm, et al., *Proc. Natl. Acad. Sci. USA*, 82:5824 (1985), which is hereby incorporated by reference in its entirety. In this technique, plant protoplasts are electroporated in the presence of plasmids containing the DNA molecule. Electrical impulses of high field strength reversibly permeabilize biomembranes allowing the introduction of the plasmids. Electroporated plant protoplasts reform the cell wall, divide, and regenerate.

Another method of introducing the DNA molecule into plant cells is to infect a plant cell with *Agrobacterium tumefaciens* or *Agrobacterium rhizogenes* previously transformed with the DNA molecule. Under appropriate conditions known in the art, the transformed plant cells are grown to form shoots or roots, and develop further into plants. Generally, this procedure involves inoculating the plant tissue with a suspension of bacteria and incubating the tissue for 48 to 72 hours on regeneration medium without antibiotics at 25–28° C.

Agrobacterium is a representative genus of the Gramnegative family Rhizobiaceae. Its species are responsible for crown gall (*A. tumefaciens*) and hairy root disease (*A. rhizogenes*). The plant cells in crown gall tumors and hairy roots are induced to produce amino acid derivatives known as opines, which are catabolized only by the bacteria. The bacterial genes responsible for expression of opines are a convenient source of control elements for chimeric expression cassettes. In addition, assaying for the presence of opines can be used to identify transformed tissue.

Heterologous genetic sequences such as a DNA molecule of the present invention can be introduced into appropriate plant cells by means of the Ti plasmid of *A. tumefaciens* or the Ri plasmid of *A. rhizogenes*. The Ti or Ri plasmid is transmitted to plant cells on infection by *Agrobacterium* and is stably integrated into the plant genome. Schell, J., *Science*, 237:1176–83 (1987), which is hereby incorporated by reference in its entirety.

Plant tissue suitable for transformation include leaf tissue, root tissue, meristems, zygotic and somatic embryos, and 5 anthers.

After transformation, the transformed plant cells can be selected and regenerated.

Preferably, transformed cells are first identified using, e.g., a selection marker simultaneously introduced into the 10 host cells along with the DNA molecule of the present invention. Suitable selection markers include, without limitation, markers coding for antibiotic resistance, such as kanamycin resistance (Fraley, et al., *Proc. Natl. Acad. Sci. USA*, 80:4803–4807 (1983), which is hereby incorporated 15 by reference in its entirety). A number of antibiotic-resistance markers are known in the art and other are continually being identified. Any known antibiotic-resistance marker can be used to transform and select transformed host cells in accordance with the present invention. Cells or tissues are 20 grown on a selection media containing an antibiotic, whereby generally only those transformants expressing the antibiotic resistance marker continue to grow.

Once a recombinant plant cell or tissue has been obtained, it is possible to regenerate a full-grown plant therefrom. 25 Thus, another aspect of the present invention relates to a transgenic plant that includes a DNA molecule of the present invention, wherein the promoter induces transcription of the first DNA molecule in response to infection of the plant by an oomycete. Preferably, the DNA molecule is stably 30 inserted into the genome of the transgenic plant of the present invention.

Plant regeneration from cultured protoplasts is described in Evans, et al., *Handbook of Plant Cell Cultures Vol.* 1: (MacMillan Publishing Co., New York, 1983); and Vasil I. 35 R. (ed.), *Cell Culture and Somatic Cell Genetics of Plants*, Acad. Press, Orlando, Vol. I, 1984, and Vol. III (1986), each of which is hereby incorporated by reference in their entirety.

It is known that practically all plants can be regenerated 40 from cultured cells or tissues, including but not limited to, all major species of rice, wheat, barley, rye, cotton, sunflower, peanut, corn, potato, sweet potato, bean, pea, chicory, lettuce, endive, cabbage, cauliflower, broccoli, turnip, radish, spinach, onion, garlic, eggplant, pepper, celery, carrot, 45 squash, pumpkin, zucchini, cucumber, apple, pear, melon, strawberry, grape, raspberry, pineapple, soybean, tobacco, tomato, sorghum, and sugarcane.

Means for regeneration vary from species to species of plants, but generally a suspension of transformed protoplasts 50 or a petri plate containing transformed explants is first provided. Callus tissue is formed and shoots may be induced from callus and subsequently rooted. Alternatively, embryo formation can be induced in the callus tissue. These embryos germinate as natural embryos to form plants. The culture 55 media will generally contain various amino acids and hormones, such as auxin and cytokinins. It is also advantageous to add glutamic acid and proline to the medium, especially for such species as corn and alfalfa. Efficient regeneration will depend on the medium, on the genotype, and on the 60 history of the culture. If these three variables are controlled, then regeneration is usually reproducible and repeatable.

After the DNA molecule is stably incorporated in transgenic plants, it can be transferred to other plants by sexual crossing or by preparing cultivars. With respect to sexual 65 crossing, any of a number of standard breeding techniques can be used depending upon the species to be crossed.

Cultivars can be propagated in accord with common agricultural procedures known to those in the field.

Diseases caused by the vast majority of bacterial pathogens result in limited lesions. That is, even when everything is working in the pathogen's favor (e.g., no triggering of the hypersensitive response because of R-gene detection of one of the effectors), the parasitic process still triggers defenses after a couple of days, which then stops the infection from spreading. Thus, the very same effectors that enable parasitism to proceed must also eventually trigger defenses. Therefore, premature expression of these effectors is believed to "turn on" plant defenses earlier (i.e., prior to infection) and make the plant resistant to either the specific bacteria from which the effector protein was obtained or many pathogens. An advantage of this approach is that it involves natural products and plants seem highly sensitive to pathogen effector proteins.

According to one embodiment, a transgenic plant is provided that contains a heterologous DNA molecule of the present invention. When the heterologous DNA molecule is expressed in the transgenic plant, plant defenses are activated, imparting disease resistance to the transgenic plant. The transgenic plant can also contain an R-gene whose product is activated by the protein or polypeptide product of the heterologous DNA molecule. The R gene can be naturally occurring in the plant or heterologously inserted therein. By disease resistance, it is believed that the effector proteins of the present invention can impart to plants resistance against bacterial, viral, and/or fungal diseases.

In addition to imparting disease resistance, it is believed that stimulation of plant defenses in transgenic plants of the present invention will also result in a simultaneous enhancement in growth and resistance to insects.

Alternative to transgenic expression is topical application of the effector proteins to plants. The embodiments of the present invention where the effector polypeptide or protein is applied to the plant can be carried out in a number of ways, including: 1) application of an isolated protein (or composition containing the same) or 2) application of bacteria which do not cause disease and are transformed with a gene encoding the effector protein of the present invention. In the latter embodiment, the effector protein can be applied to plants by applying bacteria containing the DNA molecule encoding the effector protein. Such bacteria are preferably capable of secreting or exporting the protein so that the protein can contact plant cells. In these embodiments, the protein is produced by the bacteria in planta.

Such topical application can be carried out using an effector-TAT protein, which will afford transduction domain-mediated spontaneous uptake of the effector protein into cells. Basically, this is carried out by fusing an 11-amino acid peptide (YGRKKRRQRRR, SEQ ID No: 25) by standard rDNA techniques to the N-terminus of the effector protein, and the resulting tagged protein is taken up into animal cells by a poorly understood process. This peptide is the protein transduction domain (PTD) of the human immunodeficiency virus (HIV) TAT protein (Schwarze et al., "Protein transduction: unrestricted delivery into all cells?" Trends Cell Biol. 10:290-295 (2000), which is hereby incorporated by reference in its entirety). Other PTDs are known and can be used for this purpose (Prochiantz, "Messenger proteins: homeoproteins, TAT and others," Curr. Opin. Cell Biol. 12:400–406 (2000), which is hereby incorporated by reference in its entirety). See PCT Application Publication No. WO 01/19393 to Collmer et al., which is hereby incorporated by reference in its entirety.

When the effector protein is topically applied to plants, it can be applied as a composition, which includes a carrier in the form, e.g., of water, aqueous solutions, slurries, or dry powders. In this embodiment, the composition contains greater than about 5 nM of the protein of the present 5 invention.

Although not required, this composition may contain additional additives including fertilizer, insecticide, fungicide, nematicide, and mixtures thereof Suitable fertilizers include  $(NH_4)_2NO_3$ . An example of a suitable insecticide is 10 Malathion. Useful fungicides include Captan.

Other suitable additives include buffering agents, wetting agents, coating agents, and, in some instances, abrading agents. These materials can be used to facilitate the process of the present invention.

According to one embodiment, a transgenic plant including a heterologous DNA molecule of the present invention expresses one or more effector proteins, wherein the transgenic plant is capable of supporting growth of compatible nonpathogenic bacteria. The compatible nonpathogenic bac- 20 teria can be naturally occurring or it can be recombinant. Preferably, the nonpathogenic bacteria is recombinant and expresses one or more useful products. Thus, the transgenic plant becomes a green factory for producing desirable products. Desirable products include, without limitation, 25 products that can enhance the nutritional quality of the plant or products that are desirable in isolated form If desired in isolated form, the product can be isolated from plant tissues. To prevent competition between the non-pathogenic bacteria which express the desired product and those that do not, it 30 is possible to tailor the needs of recombinant, non-pathogenic bacteria so that only they are capable if living in plant tissues expressing a particular effector protein or polypeptide of the present invention.

The effector proteins or polypeptides of the present inven- 35 tion are believed to alter the plant physiology by shifting metabolic pathways to benefit the parasite and by activating or suppressing cell death pathways. Thus, they may also provide useful tools for efficiently altering the nutrient content of plants and delaying or triggering senescence. 40 There are agricultural applications for all of these possible effects.

Thus, a further aspect of the present invention relates more generally to a method of modifying a metabolic pathway in a cell by introducing into the cell an effector 45 protein or polypeptide of the present invention which interacts with a native cellular protein involved in a metabolic pathway of the cell. As a result of introducing the protein or polypeptide into the cell, the protein or polypeptide modifies the metabolic pathway through its interaction with the native 50 cellular protein. By way of example, the HopPsyA<sub>*Pto*</sub> protein (SEQ ID No: 22) is believed to interact with Mad2.

Yet another aspect of the present invention relates to a method of causing eukaryotic cell death which is carried out by introducing into a eukaryotic cell a *Pseudomonas* protein 55 which is cytotoxic and causes cell death. One preferred protein of the present invention is HopPsyA<sub>Pro</sub> (SEQ ID No: 22), homolog of HopPsyA. The eukaryotic cell which is treated can be either in vitro or in vivo. When treating eukaryotic cells in vivo, a number of different protein- or 60 DNA-delivery systems can be employed to introduce the effector protein into the target eukaryotic cell.

The protein- or DNA-delivery systems can be provided in the form of pharmaceutical compositions which include the delivery system in a pharmaceutically acceptable carrier, 65 which may include suitable excipients or stabilizers. The dosage can be in solid or liquid form, such as powders,

solutions, suspensions, or emulsions. Typically, the composition will contain from about 0.01 to 99 percent, preferably from about 20 to 75 percent of active compound(s), together with the carrier, excipient, stabilizer, etc.

The compositions of the present invention are preferably administered in injectable or topically-applied dosages by solution or suspension of these materials in a physiologically acceptable diluent with a pharmaceutical carrier. Such carriers include sterile liquids, such as water and oils, with or without the addition of a surfactant and other pharmaceutically and physiologically acceptable carrier, including adjuvants, excipients or stabilizers. Illustrative oils are those of petroleum, animal, vegetable, or synthetic origin, for example, peanut oil, soybean oil, or mineral oil. In general, water, saline, aqueous dextrose and related sugar solution, and glycols, such as propylene glycol or polyethylene glycol, are preferred liquid carriers, particularly for injectable solutions.

Alternatively, the effector proteins can also be delivered via solution or suspension packaged in a pressurized aerosol container together with suitable propellants, for example, hydrocarbon propellants like propane, butane, or isobutane with conventional adjuvants. The materials of the present invention also may be administered in a non-pressurized form such as in a nebulizer or atomizer.

Depending upon the treatment being effected, the compounds of the present invention can be administered orally, topically, transdermally, parenterally, subcutaneously, intravenously, intramuscularly, intraperitoneally, by intranasal instillation, by intracavitary or intravesical instillation, intraocularly, intraarterially, intralesionally, or by application to mucous membranes, such as, that of the nose, throat, and bronchial tubes.

Compositions within the scope of this invention include all compositions wherein the compound of the present invention is contained in an amount effective to achieve its intended purpose. While individual needs vary, determination of optimal ranges of effective amounts of each component is within the skill of the art.

One approach for delivering an effector protein into cells involves the use of liposomes. Basically, this involves providing a liposome which includes that effector protein to be delivered, and then contacting the target cell with the liposome under conditions effective for delivery of the effector protein into the cell.

Liposomes are vesicles comprised of one or more concentrically ordered lipid bilayers which encapsulate an aqueous phase. They are normally not leaky, but can become leaky if a hole or pore occurs in the membrane, if the membrane is dissolved or degrades, or if the membrane temperature is increased to the phase transition temperature. Current methods of drug delivery via liposomes require that the liposome carrier ultimately become permeable and release the encapsulated drug at the target site. This can be accomplished, for example, in a passive manner wherein the liposome bilayer degrades over time through the action of various agents in the body. Every liposome composition will have a characteristic half-life in the circulation or at other sites in the body and, thus, by controlling the half-life of the liposome composition, the rate at which the bilayer degrades call be somewhat regulated.

In contrast to passive drug release, active drug release involves using an agent to induce a permeability change in the liposome vesicle. Liposome membranes can be constructed so that they become destabilized when the environment becomes acidic near the liposome membrane (see, e.g., *Proc. Natl. Acad. Sci. USA* 84:7851 (1987); *Biochemistry*  28:908 (1989), each of which is hereby incorporated by reference in their entirety). When liposomes are endocy-tosed by a target cell, for example, they can be routed to acidic endosomes which will destabilize the liposome and result in drug release.

Alternatively, the liposome membrane can be chemically modified such that an enzyme is placed as a coating on the membrane which slowly destabilizes the liposome. Since control of drug release depends on the concentration of enzyme initially placed in the membrane, there is no real 10 effective way to modulate or alter drug release to achieve "on demand" drug delivery. The same problem exists for pH-sensitive liposomes in that as soon as the liposome vesicle comes into contact with a target cell, it will be engulfed and a drop in pH will lead to drug release. 15

This liposome delivery system can also be made to accumulate at a target organ, tissue, or cell via active targeting (e.g., by incorporating an antibody or hormone on the surface of the liposomal vehicle). This can be achieved according to known methods.

Different types of liposomes can be prepared according to Bangham et al., *J. Mol. Biol.* 13:238–252 (1965); U.S. Pat. No. 5,653,996 to Hsu et al.; U.S. Pat. No. 5,643,599 to Lee et al., U.S. Pat. No. 5,885,613 to Holland et al.; U.S. Pat. No. 5,631,237 to Dzau et al.; and U.S. Pat. No. 5,059,421 to 25 Loughrey et al., each of which is hereby incorporated by reference in their entirety.

An alternative approach for delivery of effector proteins involves the conjugation of the desired effector protein to a polymer that is stabilized to avoid enzymatic degradation of 30 the conjugated effector protein. Conjugated proteins or polypeptides of this type are described in U.S. Pat. No. 5,681,811 to Ekwuribe, which is hereby incorporated by reference in its entirety.

Yet another approach for delivery of proteins or polypep- 35 tides involves preparation of chimeric proteins according to U.S. Pat. No. 5,817,789 to Heartlein et al., which is hereby incorporated by reference in its entirety. The chimeric protein can include a ligand domain and, e.g., an effector protein of the present invention. The ligand domain is specific for 40 receptors located on a target cell. Thus, when the chimeric protein is delivered intravenously or otherwise introduced into blood or lymph, the chimeric protein will adsorb to the targeted cell, and the targeted cell will internalize the chimeric protein, which allows the effector protein to de-45 stabilize the cell checkpoint control mechanism, affording its cytotoxic effects.

When it is desirable to achieve heterologous expression of an effector protein of the present invention in a target cell, DNA molecules encoding the desired effector protein can be delivered into the cell. Basically, this includes providing a nucleic acid molecule encoding the effector protein and then introducing the nucleic acid molecule into the cell under conditions effective to express the effector protein in the cell. Preferably, this is achieved by inserting the nucleic acid 55 molecule into an expression vector before it is introduced into the cell.

When transforming mammalian cells for heterologous expression of an effector protein, an adenovirus vector can be employed. Adenovirus gene delivery vehicles can be 60 readily prepared and utilized given the disclosure provided in Berkner, *Biotechniques* 6:616–627 (1988) and Rosenfeld et al., *Science* 252:431–434 (1991), WO 93/07283, WO 93/06223, and WO 93/07282, each of which is hereby incorporated by reference in their entirety. Adeno-associated 65 viral gene delivery vehicles can be constructed and used to deliver a gene to cells. The use of adeno-associated viral

54

gene delivery vehicles in vitro is described in Chatterjee et al., Science 258:1485-1488 (1992); Walsh et al., Proc. Nat'l. Acad. Sci. 89:7257-7261 (1992); Walsh et al., J. Clin Invest. 94:1440-1448 (1994); Flotte et al., J. Biol. Chem. 268: 3781-3790 (1993); Ponnazhagan et al., J. Exp. Med. 179: 733-738 (1994); Miller et al., Proc. Nat'l Acad. Sci. 91:10183-10187 (1994); Einerhand et al., Gene Ther. 2:336-343 (1995); Luo et al., Exp. Hematol. 23:1261-1267 (1995); and Zhou et al., Gene Ther. 3:223-229 (1996), each of which is hereby incorporated by reference in their entirety. In vivo use of these vehicles is described in Flotte et al., Proc. Nat'l Acad. Sci. 90:10613-10617 (1993); and Kaplitt et al., Nature Genet. 8:148-153 (1994), each of which is hereby incorporated by reference in their entirety. Additional types of adenovirus vectors are described in U.S. Pat. No. 6,057,155 to Wickham et al.; U.S. Pat. No. 6,033, 908 to Bout et al.; U.S. Pat. No. 6,001,557 to Wilson et al.; U.S. Pat. No. 5,994,132 to Chamberlain et al.; U.S. Pat. No. 5,981,225 to Kochanek et al.; and U.S. Pat. No. 5,885,808 20 to Spooner et al.; and U.S. Pat. No. 5.871,727 to Curiel, each of which is hereby incorporated by reference in their entirety).

Retroviral vectors which have been modified to form infective transformation systems can also be used to deliver nucleic acid encoding a desired effector protein into a target cell. One such type of retroviral vector is disclosed in U.S. Pat. No. 5,849,586 to Kriegler et al., which is hereby incorporated by reference in its entirety.

Regardless of the type of infective transformation system employed, it should be targeted for delivery of the nucleic acid to a specific cell type. For example, for delivery of the nucleic acid into tumor cells, a high titer of the infective transformation system can be injected directly within the tumor site so as to enhance the likelihood of tumor cell infection. The infected cells will then express the desired effector protein, thereby causing cytotoxic effects.

Particularly preferred is use of the effector proteins of the present invention to treat a cancerous condition (i.e., the eukaryotic cell which is affected is a cancer cell). This can be carried out by introducing or administering to a patient, a cytotoxic *Pseudomonas* protein under conditions effective to inhibit cancer cell division, thereby treating the cancer condition.

By introducing, it is intended that the effector protein is administered to the patient, preferably in the form of a composition which will target delivery to the cancer cells. Alternatively, when using DNA-based therapies, it is intended that the introducing be carried out by administering a targeted DNA delivery system to the patient such that the cancer cells are targeted and the effector protein is expressed therein. A number of known targeted delivery systems are known in the art and can be employed herewith.

#### **EXAMPLES**

The following Examples are intended to be illustrative and in no way are intended to limit the scope of the present invention.

#### Example 1

#### Detection of Protein Expression by *Pseudomonas* syringae pv. tomato DC3000

ORF-specific DNA fragments were amplified by PCR from DC3000 genomic DNA and printed onto amine-coated slides from Cell Associates (Houston). Each DNA sample

was printed three times on each slide with a BioRobotics (Boston) Microgrid II Arrayer by using MicroSpot2500 split pins. Slides were blocked according to the recommended protocol from Cell Associates. Of total RNA, 50-100 µg was used to synthesize cDNA probes for microarray analysis. 5 RNA was mixed with 3 µg of random hexamers (Invitrogen) in a total volume of 15 µl and incubated at 65° C. for 10 min. Reactions were then placed on ice for 2 min, to which were added 3 µl of 1 mM FluoroLink Cy3- or Cy5-dUTP (Amersham Biosciences, Piscataway, N.J.), 3 µl of 0.1 M DTT, 6 10 µl of 5× first-strand buffer, 0.6 µl of 50×dNTPs mix (25 mM dATP, dCTP, dGTP/10 mM dTTP), and 2 µl of Superscript II (GIBCO/BRL). Reactions were incubated at room temperature for 10 min, followed by 42° C. for 110 min. RNA was hydrolyzed by adding 1.5 µl of 1 M NaOH at 65° C. for 15 10 min followed by neutralizing with 1.5 µl of 1 M HCl. cDNA probes were purified by using a PCR purification kit (Qiagen, Valencia, Calif.) and were resuspended in 20 µl of hybridization buffer (5×SSC, 0.1% SDS, and 25% formamide, where 1×SSC=0.15 M sodium chloride/0.015 M 20 sodium citrate, pH 7). Denatured probes (99° C., 2 min) were hybridized to slides at 60° C. overnight in hybridization cassettes (Coming), after which slides were washed twice with 2×SSC, 0.1% SDS (60° C., 5 min), once with 2×SSC (room temperature, 5 min), and once with 0.2×SSC 25 (room temperature, 5 min).

Microarray images were visualized by using a ScanArray 5000 (Packard), using laser and PMT settings of 100 and 90, respectively. Images were overlaid and quantified by using IMAGENE 4.1 software (BioDiscovery; Marina Del Rey, 30 Calif.). Ratio data were extracted by using GENESIGHT 2.1 software (BioDiscovery). For these analyses, local background for each spot was corrected, and signals lower than 50 were flagged and eliminated. After flooring low signals to the value of 100, ratios of the overlaid images were calcu-35 lated for individual spots. 16S rRNA was used and, to normalize the data, the 16S rRNA was expressed to similar levels in both tested strains based on RNA blots. Finally, all of the replicated data were combined, and mean ratio data and SDs were calculated for each ORF. 40

To corroborate the microarray results, RNA blotting was performed on 10 ORFs from similarly grown cultures. RNA blot analyses were performed as described (Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Lab. Press, Plainview, N.Y.(1989), which is hereby 45 incorporated by reference). Of each RNA sample, 25 µg was resolved on 1.2% formaldehyde-agarose gels and transferred to Nylon membranes (Hybond-N+) by capillary blotting using 20×SSC. transferred to Nylon membranes (Hybond-N+) by capillary blotting using 20×SSC. RNA was bound to 50 the membrane by UV cross-linking. Probes were generated by PCR amplification from genomic DNA, using ORFspecific primers, and labeled with <sup>32</sup>P-dATP by random priming with a DECAprime II kit (Ambion). Hybridization was performed in 5×SSC, 50% formamide, 0.1% sodium- 55 lauroylsarcosine, 0.02% SDS, and 2% blocking reagent (Roche Molecular Biochemicals) at 42° C. overnight. Membranes were then washed twice with 2×SSC/0.1% SDS for 15 min, twice with 1×SSC/0.1% SDS for 15 min, and once with 0.1×SSC/0.1% SDS for 15 min before exposure on a 60 phosphor screen. Signals were detected and evaluated by using a Storm system (Molecular Dynamics) (FIG. 1).

The microarray experiments were in qualitative agreement with the RNA blot. These data indicate that Hrp promoter candidates with E values smaller (more signifi-65 cant) than 1e–4 are expressed at levels detected by the microarray and RNA blotting. However, within this group

there was no apparent relationship between the magnitude of the E value and the level of expression. Furthermore, one of 16 examined ORFs (see Fouts et al. (*Proc. Natl. Acad. Sci USA* 99: 2275–2280 (2002), which is hereby incorporated by reference in its entirety) with an E value substantially lower than this threshold, AvrXv3 (4e–6), was expressed at a level that was detected only by RNA blot analysis (Table 1 below), indicating that significant E values do not always predict strong expression.

TABLE 1

| Results of Microarray Analysis |                                             |                             |                   |                |                                         |  |  |  |  |  |  |
|--------------------------------|---------------------------------------------|-----------------------------|-------------------|----------------|-----------------------------------------|--|--|--|--|--|--|
| Des-<br>ignation               | GenBank<br>accession<br>number <sup>1</sup> | Amino<br>acid<br>% identity | BLASTP<br>p value | HMM<br>E-value | Microarray<br>signal ratio <sup>2</sup> |  |  |  |  |  |  |
| HopPsyA <sub>Pto</sub>         | L14926                                      | 52                          | 9e-93             | 1.0e-5         | 11 ± 9                                  |  |  |  |  |  |  |
| AvrPphE <sub>Pto</sub>         | U16817                                      | 67                          | 1e-117            | 2.5e-4         | 5 ± 2                                   |  |  |  |  |  |  |
| AvrPphF <sub>Pto</sub>         | AF231452                                    | 51                          | 3e-36             | 1.7e-6         | 3 ± 2                                   |  |  |  |  |  |  |
| AvrPphD1 <sub>Pto</sub>        | AJ277494                                    | 89                          | 0                 | 1.9e-6         | $30 \pm 17$                             |  |  |  |  |  |  |
| AvrXv3 <sub>Pto</sub>          | AF190120                                    | 27                          | 7e-12             | 3.4e-6         | ND                                      |  |  |  |  |  |  |
| AvrPpiB1 <sub>Pto</sub>        | X84843                                      | 100                         | 1e-152            | 7.8e-6         | 11 ± 9                                  |  |  |  |  |  |  |
| AvrPpiB2 <sub>Pto</sub>        | X84843                                      | 100                         | 1e-150            | 7.8e-6         | 10 ± 6                                  |  |  |  |  |  |  |
| AvrPphD2 <sub>Pto</sub>        | AJ277494                                    | 53                          | 2e-44             | 3.0e-5         | 27 ± 11                                 |  |  |  |  |  |  |
| HopPtoB2 <sup>3</sup>          | AF232004                                    |                             |                   | 2.6e-3         | ND                                      |  |  |  |  |  |  |
| AvrRps4 <sub>Pto</sub>         | L43559                                      | 72                          | 2e-44             | 2.5e-2         | ND                                      |  |  |  |  |  |  |
| Reference gei                  | ies                                         |                             |                   |                |                                         |  |  |  |  |  |  |
| 16S rRNA*                      |                                             |                             |                   |                | 1                                       |  |  |  |  |  |  |
| 23S rRNA**                     |                                             |                             |                   |                | 1                                       |  |  |  |  |  |  |

<sup>1</sup>GenBank accession number AF232004 is for DC3000 sequences, all others are for homologs originally found in other bacteria.

<sup>2</sup>Microarray signal is the mean ratio and standard deviation from 3 replicates of 2 independent experiments, calculated as described in the Materials and Methods. AvrPpiBl<sub>Pto</sub> and AvrPpiB2<sub>Pto</sub> are 100% identical, so their signals cannot be distinguished. AvrPphD1<sub>Pto</sub> and AvrPphD2<sub>Pto</sub> are 62% identical. ND = not detected

identical. ND = not detected. <sup>3</sup>HopPtoB1 is secreted in a Hrp-dependent manner; HopPtoB2 has duplicated regions of homology with HopPtoB1.

By using an iterative process involving computational and gene expression data, an initial inventory of P. s. tomato DC3000 candidate type III secretion effector proteins was obtained. These are the presumed prime agents of host metabolic subversion. These analyses have revealed that the Hrp regulon, the primary regulon known to be expressed during infection, seems to control at least 48 genes and a subsidiary regulon directing phytotoxin production. The terative process focused on Hrp promoters in DC3000 and featured microarray experiments that tested the activity of novel Hrp promoters and demonstrated the validity of this approach for genomewide transcriptional profiling in DC3000. These findings suggest that the *P. syringae* Hrp regulon is more complex than expected and encompasses more than type III secretion system genes and effector genes.

The global search for DC3000 ORFs that are similar to known Avr/Hop proteins yielded AvrXv3<sub>Pto</sub>, AvrPtoB, and the AvrPphD families as the only candidate effectors shared with Xanthomonas spp. (Noel et al., Mol. Microbiol. 41:1271–1281 (2001), which is hereby incorporated by reference in its entirety). Notably missing were members of the AvrBs2 and AvrBs3 families, which are widespread in Xanthomonas spp., or any members of the AvrRxv/YopJ family, which are found in genera as diverse as Salmonella, Yersinia, Xanthomonas, Erwinia, and Rhizobium, and have also been reported in another strain of P. syringae (i.e., P. s. syringae B728a) (Galán & Collmer, Science 284:1322–1328 (1999); Alfano et al., Proc. Natl. Acad. Sci. USA 97:4856-4861 (2000), each of which is hereby incorporated by reference in its entirety). However, it is important to note that further searches after closure and annotation of the

DC3000 genome may yield additional homologs of known effectors. In addition, genomic projects with other pathogens will enlarge the set of candidate effector genes available for comparison.

The majority of *P. syringae* avr genes that have been 5 cloned on the basis of Avr phenotype have come from three pathovars that parasitize legumes *glycinea*, *phaseolicola*, and *pisi*. P. s. tomato has a different host range and diverges from these other pathovars in rRNA comparisons (Manceau & Horvais, *Appl. Environ. Microbiol.* 63:498–505 (1997), 10 which is hereby incorporated by reference in its entirety). Nevertheless, of the 15 avr gene families found in these legume-attacking pathovars, 6 are also found in DC3000. This finding suggests the existence of a core set of *P. syringae* effectors in addition to those in the Hrp pathoge- 15 nicity island CEL.

The analyses described above and reported in Fouts et al. (*Proc. Natl. Acad. Sci USA* 99: 2275–2280 (2002), which is hereby incorporated by reference in its entirety) revealed a striking apparent redundancy among the candidate effector 20 protein genes hopPtoA, hopPtoB, avrPphD<sub>*Pto*</sub>, and avrPpiB1<sub>*Pto*</sub>, as well as in three Hrp-related factors that may play a role in type III protein translocation across bacterial and plant cell walls.

All of the analyzed candidate effector genes seem to be 25 expressed in a HrpL-dependent manner except for avrRps4<sub>Pto</sub>, hopPtoA2, and hopPtoB2 (avrXv3<sub>Pto</sub> was HrpL-activated, but relatively poorly). avrRps4<sub>Pto</sub> was cloned originally from Pseudomonas syringae pisi and renders recombinant DC3000 avirulent on most Arabidopsis 30 accessions (Hinsch & Staskawicz, Mol. Plant-Microbe Interact. 9:55-61 (1996), which is hereby incorporated by reference in its entirety), and avrXv3 is from an Xanthomonas campestris pv. vesicatoria race that is avirulent on tomato carrying the Xv3 R gene (Astua-Monge et al., Mol. 35 Plant-Microbe Interact. 13:911-921 (2000), which is hereby incorporated by reference in its entirety). There exists a possibility that poor expression of these two avr genes in DC3000 is a factor in the virulence of DC3000 on Arabidopsis and tomato carrying the cognate R genes.

#### Example 2

#### In vitro Secretion of Effector Proteins

Secretion assays were performed using P. s. tomato DC3000 strains carrying a pML123 derivative containing a PCR-cloned ORF (encoding a candidate Hrp-secreted protein) fused to nucleotide sequences that encoded either the HA or FLAG epitopes along with their native ribosome 50 binding sites and an engineered stop codon (Labes et al., *Gene* 89:37–46 (1990), which is hereby incorporated by reference in its entirety).

Four effector proteins were tested for their secretion from the above-identified strains. Primers and the constructs used 55 to prepare the transform the host strains are identified as follows:

For HopPtoC expression, the hopPtoC gene was cloned using forward primer (agtcggatccgaatagggcgctgaaaatatgacaatcgtgte, SEQ ID No: 26) containing a BamHI <sub>60</sub> site and reverse primer (agtcctcgagtcacttgtcatcgtcgtccttgtagtcgtgtatttttgaagcgaa, SEQ ID No: 27) containing an XhoI site and FLAG epitope codons. The hopPtoC gene was cloned into plasmid vector pLN50.

For HopPtoD1 expression, the hopPtoD1 gene was cloned 65 using forward primer (ccacacattggatccgattacttcatccgggacagctgatagcgc, SEQ ID No: 28) containing a BamHI 58

site and reverse primer (attctcgagtcatttatcatcatcatcatttataatcgggtgcgggctgccgcgac, SEQ ID No: 29) containing an XhoI site and FLAG epitope codons. The hopPtoD1 gene was cloned into plasmid vector pLN167.

For HopPtoD2 expression, the hopPtoD2 gene was cloned using forward primer (atgcaagcttatccaatgcctttcgtca, SEQ ID No: 30) containing a HindIII site and reverse primer (atgcctcgagtcaagcgtaatctggaacatcgtatgggtattctaacgctattttgc, SEQ ID No: 31) containing an XhoI site and HA epitope codons. The hopPtoD2 gene was cloned into plasmid vector pLN130.

For HopPtoJ expression, the hopPtoJ gene was cloned using forward primer (agtaaagcttgagctgcacgcatgcgag, SEQ ID No: 32) containing a HindIII site and reverse primer (agtatctagatcacttgtcatcgtcgtccttgtagtcttgtgcgaccagatgttt,

SEQ ID No: 33) containing an XbaI site and FLAG epitope codons. The hopPtoJ gene was cloned into plasmid vector pLN164.

Constructs carrying different epitope-tagged ORFs were electroporated into DC3000 and a DC3000 hrcC mutant and grown in Hrp-inducing conditions (Yuan & He, J. Bacteriol. 178:6399-6402 (1996), which is hereby incorporated by reference in its entirety). Additionally, all of the DC3000 strains also carried pCPP2318, a construct that contains blaM lacking signal peptide sequences (Charkowski et al., J. Bacteriol. 179:3866-3874 (1997), which is hereby incorporated by reference in its entirety). DC3000 cultures were separated into cell-bound and supernatant fractions as described (van Dijk et al., J. Bacteriol. 181:4790-4797 (1999), which is hereby incorporated by reference in its entirety). Proteins were separated with SDS-PAGE by standard procedures (Sambrook et al., Molecular Cloning Second Ed. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.) (1989), which is hereby incorporated by reference in its entirety), transferred to polyvinylidene difluoride membranes, and immunoblotted using anti-FLAG (Sigma Chemical Co., St. Louis, Mo.), -HA (Roche Molecular Biochemicals, Indianapolis, Ind.), or  $-\beta$ -lactamase (5 Prime→3 Prime Inc., Boulder, Colo.) as primary antibodies. 40 Primary antibodies were recognized by goat anti-rabbit immunoglobulin G-alkaline phosphatase conjugate (Sigma Chemical Co.), which were visualized by chemiluminescence using a Western-Light chemilumincescence detection system (Tropix, Bedford, Mass.) and X-Omat X-ray film.

Each of these DC3000 proteins were found to be secreted (FIG. 2A). Because the secretability of these proteins was demonstrated (and the avirulence activity of these DC3000 homologs is unknown), the proteins were renamed as HopPtoC (AvrPpiC2 homolog), HopPtoD1 and HopPtoD2 (AvrPphD homologs), and HopPtoJ (AvrXv3 homolog).

#### Example 3

#### In vitro Translocation of Effectors

Arabidopsis thaliana accession Columbia (Col-0) and rps2–201 mutant plants were grown in a growth chamber with 12 hr of light at 24° C. (22° C. at night) and 70% relative humidity. For HopPtoK expression, the hopPtoK gene was cloned using forward primer (gcgaattcatcggtttaatcacgcaaggc, SEQ ID No: 34) containing a EcoRI site and reverse primer (ttggtacctcagcagtagagcgtgt, SEQ ID No: 35) containing an KpnI site. The hopPtoK gene was cloned into plasmid vector phopPtoK. In addition, a hopPtoK-'avrRpt2 fusion was prepared using SEQ ID No: 34 (above) as forward primer and reverse primer (aaggatccgcagagcgtgtcgcgacc, SEQ ID No: 36) containing an BamHI site to

4∩

clone the hopPtoK gene. The partial avrRpt2 gene with the N terminal 40 codons deleted was amplified using standard PCR procedures and cloned into pMOD (Madison, Wis.). After confirmation by sequence analysis, it was cloned into the KpnI and SalI sites of the broad-host-plasmid pLK, 5 resulting in p $\Delta$ avrRpt2. DNA fragments spanning 200 bp upstream of the Hrp boxes and the complete ORFs for hopPtoK was cloned into p $\Delta$ avrRpt2 to produce phopPtoK- $\Delta$ avrRpt2. Additionally, the full-length hopPtoK was cloned using PCR into pLK to generate phopPtoK. Each construct 10 was introduced in *P. s. phaseolicola* 3121 by electroporation. Bacterial strains in 10 mM MgCl<sub>2</sub> at a cell density of 10<sup>8</sup> cfu/ml were infiltrated into *A. thaliana* Col-0 plants with a needleless syringe. Plant responses were documented 18 hours postinoculation. 15

The AvrRpt2 translocation assay was used to test whether the DC3000 ORF that is similar to AvrRps4 (Hinsch & Staskawicz, Mol. Plant-Microbe Interact. 9:55-61 (1996), which is hereby incorporated by reference in its entirety) was translocated into Arabidopsis plant cells (Mudgett et al., 20 Proc. Natl. Acad. Sci. USA 97:13324-13329 (2000);Guttman & Greenberg, Mol. Plant-Microbe Interact. 14:145-155) (2001), each of which is hereby incorporated by reference in its entirety). P. s. phaseolicola carrying a broad-host-range plasmid expressing the AvrRps4 homolog 25 fused to the Avr domain of AvrRpt2 (but lacking the secretion signals of AvrRpt2) elicited an RPS2-dependent HR on A. thaliana Col-0 (FIG. 2B), indicating that the amino terminus of the AvrRps4 homolog supplied sufficient information to direct translocation of the fusion protein into plant 30 cells. Consequently, the AvrRps4 homolog was renamed HopPtoK. P. s. phaseolicola expressing HopPtoK did not elicit an HR, indicating that although translocated into host cells, HopPtoK is probably not recognized by the RPS4 protein present in A. thaliana Col-0, in contrast to its P. s. 35 pisi 151 homolog (Hinsch & Staskawicz, Mol. Plant-Microbe Interact. 9:55-61 (1996), which is hereby incorporated by reference in its entirety).

#### Example 4

#### Determining Cytotoxicity of Effector in Yeast

Effector proteins of the present invention will be cloned into pFLAG-CTC (Kodak) to generate an in-frame fusion 45 with the FLAG epitope, which will permit monitoring of protein production with anti-FLAG monoclonal antibodies. The FLAG-tagged genes will then be cloned under the control of the GAL1 promoter in the yeast shuttle vector p415GAL1 (Mumberg et al., 1994). These regulatable pro- 50 moters of Saccharomyces cerevisiae will allow comparison of transcriptional activity and heterologous expression. The recombinant plasmids will be transformed into uracil auxotrophic yeast strains FY833/4, then selected for growth on SC-Ura (synthetic complete medium lacking uracil) based 55 on the presence of the URA3 gene on the plasmid. The transformants will then be streaked onto SC-Ura medium plates containing either 2% galactose (which will induce expression of the effector proteins) or 2% glucose. The presence or absence of growth on the plates supplemented 60 with 2% galactose will be observed. If no growth is observed on 2% galactose (but growth is observed in the 2% glucose control), this result will suggest that the effector protein is having a cytotoxic effect on the transformed yeast. Empty vector controls will also be used. FLAG-tagged nontoxic 65 Avr proteins will be used to confirm that the recombinant effector genes were differentially expressed, as expected, on

plates containing galactose. To further confirm the results, albeit at lower expression levels, the recombinant effector gene will be recloned into p416GALS, which expresses foreign genes at a substantially lower level than p415GAL1.

#### Example 5

#### Determining Cytotoxicity of Effector in Plants

To determine whether effector proteins induce cell death on tobacco leaves, a transformation system that delivers the effector gene on T-DNA of Agrobacterium tumefaciens will be used (Rossi et al., Plant Mol. Biol. Reporter 11:220-229 (1993); van den Ackerveken et al., Cell 87:1307-1316 (1996), each of which is hereby incorporated by reference in its entirety). This delivery system works better than biolistics for transiently transforming whole plant leaves. For these experiments, vector pTA7002, kindly provided by Nam-Hai Chua and his colleagues at Rockefeller University, will be used. The unique property of this vector is that it contains an inducible expression system that uses the regulatory mechanism of the glucocorticoid receptor (Picard et al., Cell 54:1073-1080 (1988); Aoyama and Chua, Plant J. 11(3):605-612 (1997); McNellis et al., Plant J. 14(2): 247-257 (1998), each of which is hereby incorporated by reference in its entirety). pTA7002 encodes a chimeric transcription factor consisting of the DNA-binding domain of GAL4, the transactivating domain of the herpes viral protein VP16, and the receptor domain of the rat glucocorticoid receptor. Also contained on this vector is a promoter containing GAL4 upstream activating sequences (UAS) upstream of a multiple cloning site. Thus, any gene cloned downstream of the promoter containing the GAL4-UAS can be induced by glucocorticoids, of which a synthetic glucocorticoid, dexamethasone (DEX), is available commercially. Effector proteins of the present invention will be PCRcloned downstream of the GAL4-UAS. Thereafter, plant leaves from several different test plants will be infiltrated with Argrobacterium carrying recombinant pTA7002 carrying the effector ORF and after 48 hours these plants will be sprayed with DEX to induce expression of the effectors.

Tobacco (Nicotiana tabacum) and tomato (Lycopersicon esculentum) will be grown under greenhouse conditions and then maintained at 25° C. with daylight and supplemental halide illumination for HR and virulence assays. Bacteria will be grown overnight on King's medium B agar supplemented with appropriate antibiotics, suspended in 5 mM MES pH 5.6, and then infiltrated with a needleless syringe into the leaves of test plants at 108 cfu/ml for HR assays and  $10^4$  cfu/ml for pathogenicity assays (Charkowski et al., J. Bacteriol. 180:5211-5217 (1998), which is hereby incorporated by reference in its entirety). All assays will be repeated at least four times on leaves from different plants. Bacterial growth in tomato leaves will be assayed by excising disks from infiltrated areas with a cork borer, comminuting the tissue in 0.5 ml of 5 mM MES, pH 5.6, with an appropriate pestle, and then dilution plating the homogenate on King's medium B agar with 50 µg/ml rifampicin and 2 µg/ml cycloheximide to determine bacterial populations. The mean and SD from three leaf samples will be determined for each time point.

Plant leaves will be examined to determine the response of plant tissue to the expression of the effector proteins. In particular, plant tissues will be examined for tissue necrosis indicative of a hypersensitive response. Although the invention has been described in detail for the purposes of illustration, it is understood that such detail is solely for that purpose, and variations can be made therein by those skilled in the art without departing from the spirit and scope of the invention which is defined by the following claims.

62

```
SEQUENCE LISTING
```

<160> NUMBER OF SEQ ID NOS: 36

- <210> SEQ ID NO 1
- <211> LENGTH: 1155 <212> TYPE: DNA

<213> ORGANISM: Pseudomonas syringae

<400> SEQUENCE: 1

| atgaaaatac                                                            | ataacgctgg                                             | cctaacccca       | cctttgccgg        | gcatttcgaa        | tggaaacgtt      | 60   |
|-----------------------------------------------------------------------|--------------------------------------------------------|------------------|-------------------|-------------------|-----------------|------|
| ggaaaggcgg                                                            | cgcaatcatc                                             | aataactcaa       | ccgcagagcc        | agcaaggctc        | ttatggcttg      | 120  |
| ccaccagaaa                                                            | gctctgagac                                             | tcgccctgat       | agggcgcgtg        | cgaactatcc        | atattcatca      | 180  |
| gtacaaacac                                                            | ggttgccgcc                                             | cgttgcgtct       | gctgggaaac        | cgctgcctga        | tacaccatct      | 240  |
| tctttgcccg                                                            | gctacttact                                             | gttgcgaagg       | ctggaccatc        | gccctgtgga        | tcaggaaggt      | 300  |
| accaaaagtc                                                            | tgatcccggc                                             | agacaaggct       | gtggctgaag        | cgcgccgtgc        | attgcccttt      | 360  |
| ggaagaggca                                                            | atattgatgt                                             | ggatgcgcaa       | ctttccaatc        | tggaaagtgg        | agcccgcacc      | 420  |
| cttgcagcaa                                                            | ggtgcttgag                                             | aaaagatgcc       | gaggccgccg        | gtcatgagcc        | tatgcctgcg      | 480  |
| aatgagccga                                                            | tgaactggca                                             | tgttcttgtt       | gcgatgtcag        | gccaggtgtt        | cddcdcdddc      | 540  |
| aactgtggcg                                                            | aacatgctcg                                             | tatagcgagc       | ttcgcctatg        | gagctttggc        | ccaggaaaac      | 600  |
| ggacgatctg                                                            | aatatgaaaa                                             | catctacttg       | gctgcatcga        | ctgaggaaga        | tcatgtgtgg      | 660  |
| gctgaaaccg                                                            | acgaatccca                                             | gtctggcacc       | tcaacgattg        | tcatggatcc        | gtggtcaaat      | 720  |
| ggttcagcca                                                            | tatttgcgga                                             | ggacagtagg       | tttgcgaaaa        | atcgaaatgc        | tgtagagcgt      | 780  |
| acggatacgt                                                            | ttaatctttc                                             | aaccgcagcc       | gaagcgggca        | aaattacgcg        | tgagacagcc      | 840  |
| gagaaggctt                                                            | tgacgcaggt                                             | cacaacccga       | ttgcagaaac        | gcctggcgga        | tcagcaggag      | 900  |
| caagtctcgc                                                            | ccatcaaaag                                             | tggtcgctat       | cgaccagaaa        | aatcggtact        | tgatgatgca      | 960  |
| tttgtccgca                                                            | gagtgagcga                                             | caagttgacc       | tcccctgatt        | tgcggcgtgc        | actacaggta      | 1020 |
| gatattgaag                                                            | cggtcggagt                                             | cgcaatgtcg       | ctcggcacca        | agggcgtcaa        | ggacgctact      | 1080 |
| cgacaagccc                                                            | gacctttggt                                             | tgagcttgca       | gtgaaggtcg        | cctctcctca        | aggcttggcg      | 1140 |
| agacgagatg                                                            | tctga                                                  |                  |                   |                   |                 | 1155 |
| <210> SEQ :<br><211> LENG<br><212> TYPE:<br><213> ORGAN<br><400> SEQU | ID NO 2<br>TH: 384<br>: PRT<br>NISM: Pseudo<br>ENCE: 2 | omonas syri      | ngae              |                   |                 |      |
| Met Lys Ile                                                           | e His Asn A                                            | la Gly Leu       | Thr Pro Pro       | Leu Pro Gly       | / Ile Ser       |      |
| 1                                                                     | 5                                                      | -                | 10                | -                 | 15              |      |
| Asn Gly Ası                                                           | n Val Gly L<br>20                                      | ys Ala Ala       | Gln Ser Ser<br>25 | Ile Thr Glr<br>30 | n Pro Gln<br>)  |      |
| Ser Gln Glı<br>3                                                      | n Gly Ser T                                            | yr Gly Leu<br>40 | Pro Pro Glu       | Ser Ser Glu<br>45 | ı Thr Arg       |      |
| Pro Asp Are<br>50                                                     | g Ala Arg A                                            | la Asn Tyr<br>55 | Pro Tyr Ser       | Ser Val Glr<br>60 | n Thr Arg       |      |
| Leu Pro Pro<br>65                                                     | o Val Ala S                                            | er Ala Gly<br>70 | Lys Pro Leu<br>75 | Pro Asp Thr       | r Pro Ser<br>80 |      |

#### -continued

Ser Leu Pro Gly Tyr Leu Leu Leu Arg Arg Leu Asp His Arg Pro Val Asp Gln Glu Gly Thr Lys Ser Leu Ile Pro Ala Asp Lys Ala Val Ala Glu Ala Arg Arg Ala Leu Pro Phe Gly Arg Gly Asn Ile Asp Val Asp Ala Gln Leu Ser Asn Leu Glu Ser Gly Ala Arg Thr Leu Ala Ala Arg Cys Leu Arg Lys Asp Ala Glu Ala Ala Gly His Glu Pro Met Pro Ala Asn Glu Pro Met Asn Trp His Val Leu Val Ala Met Ser Gly Gln Val Phe Gly Ala Gly Asn Cys Gly Glu His Ala Arg Ile Ala Ser Phe Ala Tyr Gly Ala Leu Ala Gln Glu Asn Gly Arg Ser Glu Tyr Glu Asn Ile Tyr Leu Ala Ala Ser Thr Glu Glu Asp His Val Trp Ala Glu Thr Asp Glu Ser Gln Ser Gly Thr Ser Thr Ile Val Met Asp Pro Trp Ser Asn Gly Ser Ala Ile Phe Ala Glu Asp Ser Arg Phe Ala Lys Asn Arg Asn Ala Val Glu Arg Thr Asp Thr Phe Asn Leu Ser Thr Ala Ala Glu Ala Gly Lys Ile Thr Arg Glu Thr Ala Glu Lys Ala Leu Thr Gln Val Thr Thr Arg Leu Gln Lys Arg Leu Ala Asp Gln Gln Glu Gln Val Ser Pro Ile Lys Ser Gly Arg Tyr Arg Pro Glu Lys Ser Val Leu Asp Asp Ala Phe Val Arg Arg Val Ser Asp Lys Leu Thr Ser Pro Asp Leu Arg Arg Ala Leu Gln Val Asp Ile Glu Ala Val Gly Val Ala Met Ser Leu Gly Thr Lys Gly Val Lys Asp Ala Thr Arg Gln Ala Arg Pro Leu Val Glu Leu Ala Val Lys Val Ala Ser Pro Gln Gly Leu Ala Arg Arg Asp Val <210> SEQ ID NO 3 <211> LENGTH: 1017 <212> TYPE: DNA <213> ORGANISM: Pseudomonas syringae <400> SEOUENCE: 3 atgaatcgca tttcaaccag ctcagtaaat tccagcttca attacacggc ccctacggag gaagegcaaa accgettege etcagegeee gacaatteee etctagttgt caccacaaca tctatcgccc aagcgtcgga agggctacaa aggccggggg caacgctaag catgcaggcc cagcgactgc gccaattgat ggggagcccg tctgagcagt gccggaggga cacaatgtta gctaaagctt ttgatgctca acgcctaaac attaacactc aagcaggctc ttccaacagc ccacacttga acgeteteaa cacgeteeaa caacgacact teaaacetge ggetggtggg ctagaaatcc cagttacatc caactcctta ttgggcggtg gcaggcaagt ctatcaaatt

# -continued

| ggc                          | tcato                            | cgt d                          | cacgo                        | cgag            | ct aa      | agcca      | accga              | a cco               | ggtca      | aatg       | atca       | agga       | ccg        | cgcgo             | ccette     | 480  |
|------------------------------|----------------------------------|--------------------------------|------------------------------|-----------------|------------|------------|--------------------|---------------------|------------|------------|------------|------------|------------|-------------------|------------|------|
| agg                          | geget                            | tg a                           | agego                        | gctg            | ca co      | geega      | agtto              | g tt                | agag       | ggtg       | ggco       | gati       | tga        | gttt              | gtgcct     | 540  |
| aga                          | ggcao                            | gca a                          | acgto                        | gttg            | gc ct      | tcaaa      | acgto              | g ago               | ggato      | gtcg       | acat       | tggad      | cga        | gttco             | gatgtc     | 600  |
| atca                         | aacto                            | cta a                          | aagao                        | cddc.           | tg co      | caago      | gcatt              | t ggo               | cacca      | actg       | gcct       | tggga      | acc        | ctgca             | attgca     | 660  |
| gtg                          | tgtgo                            | caa q                          | gaggo                        | catgo           | ga ta      | agaga      | aaggo              | g cti               | cccg       | gtgc       | tgg        | gtgto      | cta ·      | tcaco             | cacagt     | 720  |
| ggta                         | atogo                            | gct d                          | cacca                        | agago           | ga ta      | accat      | cggct              | t act               | cctto      | gatc       | aago       | cgato      | gcg        | cgata             | aaaggt     | 780  |
| gcti                         | tgca                             | aaa †                          | tcaaa                        | atac            | tc co      | ctggi      | aggo               | c ggo               | catga      | atca       | tgco       | ctaaa      | aga        | ggaaq             | gaggct     | 840  |
| ggca                         | agcta                            | atg a                          | acga                         | cgag            | ca aa      | agcti      | ttt                | g gca               | attga      | aaag       | gca        | gtta       | ttc        | aatco             | gaaggg     | 900  |
| gcg                          | cgcti                            | -gc a                          | atgta                        | atcc            | ga ag      | ggcga      | aagaq              | g gao               | cgtgo      | cata       | ccg        | gegag      | gga -      | caaca             | agtgtc     | 960  |
| aat                          | gttci                            | ∶gc †                          | tgate                        | gaat            | ga co      | cgcgi      | tcto               | g tao               | cggto      | cdcd       | acad       | cgcto      | cta        | ctgc              | tga        | 1017 |
| <210<br><211<br><211<br><211 | )> SE<br>L> LE<br>2> TY<br>3> OF | EQ II<br>ENGTH<br>PE:<br>RGANI | D NO<br>H: 33<br>PRT<br>ISM: | 4<br>38<br>Psei | ıdomo      | onas       | syri               | Ingae               | 9          |            |            |            |            |                   |            |      |
| <400                         | )> SE                            | QUEN                           | ICE :                        | 4               |            |            |                    |                     |            |            |            |            |            |                   |            |      |
| Met<br>1                     | Asn                              | Arg                            | Ile                          | Ser<br>5        | Thr        | Ser        | Ser                | Val                 | Asn<br>10  | Ser        | Ser        | Phe        | Asn        | <b>Ty</b> r<br>15 | Thr        |      |
| Ala                          | Pro                              | Thr                            | Glu<br>20                    | Glu             | Ala        | Gln        | Asn                | Arg<br>25           | Phe        | Ala        | Ser        | Ala        | Pro<br>30  | Asp               | Asn        |      |
| Ser                          | Pro                              | Leu<br>35                      | Val                          | Val             | Thr        | Thr        | Thr<br>40          | Ser                 | Ile        | Ala        | Gln        | Ala<br>45  | Ser        | Glu               | Gly        |      |
| Leu                          | Gln<br>50                        | Arg                            | Pro                          | Gly             | Ala        | Thr<br>55  | Leu                | Ser                 | Met        | Gln        | Ala<br>60  | Gln        | Arg        | Leu               | Arg        |      |
| Gln<br>65                    | Leu                              | Met                            | Gly                          | Ser             | Pro<br>70  | Ser        | Glu                | Gln                 | Сув        | Arg<br>75  | Arg        | Asp        | Thr        | Met               | Leu<br>80  |      |
| Ala                          | Lys                              | Ala                            | Phe                          | Asp<br>85       | Ala        | Gln        | Arg                | Leu                 | Asn<br>90  | Ile        | Asn        | Thr        | Gln        | Ala<br>95         | Gly        |      |
| Ser                          | Ser                              | Asn                            | Ser<br>100                   | Pro             | His        | Leu        | Asn                | Ala<br>105          | Leu        | Asn        | Thr        | Leu        | Gln<br>110 | Gln               | Arg        |      |
| His                          | Phe                              | L <b>y</b> s<br>115            | Pro                          | Ala             | Ala        | Gly        | Gl <b>y</b><br>120 | Leu                 | Glu        | Ile        | Pro        | Val<br>125 | Thr        | Ser               | Asn        |      |
| Ser                          | Leu<br>130                       | Leu                            | Gly                          | Gly             | Gly        | Arg<br>135 | Gln                | Val                 | Tyr        | Gln        | Ile<br>140 | Gly        | Ser        | Ser               | Ser        |      |
| Arg<br>145                   | Glu                              | Leu                            | Ser                          | His             | Arg<br>150 | Pro        | Val                | Asn                 | Asp        | Gln<br>155 | Asp        | Arg        | Ala        | Pro               | Phe<br>160 |      |
| Arg                          | Ala                              | Leu                            | Glu                          | Arg<br>165      | Leu        | His        | Ala                | Glu                 | Leu<br>170 | Phe        | Arg        | Gly        | Gly        | Pro<br>175        | Ile        |      |
| Glu                          | Phe                              | Val                            | Pro<br>180                   | Arg             | Gly        | Ser        | Asn                | Val<br>185          | Leu        | Ala        | Ser        | Asn        | Val<br>190 | Arg               | Asp        |      |
| Val                          | Asp                              | Met<br>195                     | Asp                          | Glu             | Phe        | Asp        | Val<br>200         | Ile                 | Asn        | Ser        | Lys        | Asp<br>205 | Gly        | Сув               | Gln        |      |
| Gly                          | Ile<br>210                       | Gly                            | Thr                          | Thr             | Gly        | Leu<br>215 | Gly                | Pro                 | Сув        | Ile        | Ala<br>220 | Val        | Cys        | Ala               | Arg        |      |
| Gly<br>225                   | Met                              | Asp                            | Arg                          | Glu             | Gly<br>230 | Leu        | Pro                | Val                 | Leu        | Gly<br>235 | Val        | Tyr        | His        | His               | Ser<br>240 |      |
| Gly                          | Ile                              | Gly                            | Ser                          | Pro<br>245      | Glu        | Asp        | Thr                | Met                 | Ala<br>250 | Thr        | Leu        | Asp        | Gln        | Ala<br>255        | Met        |      |
| Arg                          | Asp                              | Lys                            | Gly<br>260                   | Ala             | Leu        | Gln        | Ile                | L <b>y</b> s<br>265 | Tyr        | Ser        | Leu        | Val        | Gly<br>270 | Gly               | Met        |      |

-continued

Ile Met Pro Lys Glu Glu Glu Ala Gly Ser Tyr Asp Asp Glu Gln Ser 275 280 285 Phe Leu Ala Leu Lys Gly Ser Tyr Ser Ile Glu Gly Ala Arg Leu His 295 290 300 Val Ser Glu Gly Glu Glu Asp Val His Thr Gly Glu Asp Asn Ser Val 305 310 315 320 Asn Val Leu Leu Met Pro Asp Arg Val Leu Tyr Gly Arg Asp Thr Leu 325 330 335 Tyr Cys <210> SEQ ID NO 5 <211> LENGTH: 396 <212> TYPE: DNA <213> ORGANISM: Pseudomonas syringae <400> SEQUENCE: 5 atgaaaaacg catttgacct gcttgtggaa gggctggcta aggactacaa catgccgccc ttgcctgaca agaaacatat cgatgaagtc tattgctttg agtttcaaag tggtatgaac 120 gtaaaagtat accaagacga atttcgctgg gtatatttca ccgctgacgt tgggacattt 180 caagatagca gtattgacac attaaactac gcgctccagc tgaacaactt tagccttaga 240 aaacctttcc tgaccttcgg aatgacgaag gagaaaaatg gtgtattgca tacacgcacc 300 cccttgattg aggtagacaa cgtgcaaatg cgcaggatat ttgaggagct tataggcgtg 360 gcaggtgaaa tcagaaaaac actaaaactc aaatag 396 <210> SEQ ID NO 6 <211> LENGTH: 131 <212> TYPE: PRT <213> ORGANISM: Pseudomonas syringae <400> SEQUENCE: 6 Met Lys Asn Ala Phe Asp Leu Leu Val Glu Gly Leu Ala Lys Asp Tyr 1 5 10 15 Asn Met Pro Pro Leu Pro Asp Lys Lys His Ile Asp Glu Val Tyr Cys 20 25 30 Phe Glu Phe Gln Ser Gly Met Asn Val Lys Val Tyr Gln Asp Glu Phe 40 35 45 Arg Trp Val Tyr Phe Thr Ala Asp Val Gly Thr Phe Gln Asp Ser Ser 50 55 60 Ile Asp Thr Leu Asn Tyr Ala Leu Gln Leu Asn Asn Phe Ser Leu Arg 65 70 75 80 Lys Pro Phe Leu Thr Phe Gly Met Thr Lys Glu Lys Asn Gly Val Leu 85 90 95 His Thr Arg Thr Pro Leu Ile Glu Val Asp Asn Val Gln Met Arg Arg 100 105 110 Ile Phe Glu Glu Leu Ile Gly Val Ala Gly Glu Ile Arg Lys Thr Leu 115 120 125 Lys Leu Lys 130 <210> SEQ ID NO 7 <211> LENGTH: 579 <212> TYPE: DNA <213> ORGANISM: Pseudomonas syringae

<400> SEQUENCE: 7

# -continued

| gtgt                         | tataq                            | gcc -                          | catco                        | ccat             | ac ac      | caac       | gaata      | act        | tcaç       | gctc       | ccto       | ctaca      | atc          | cacto      | atgtt      | 60  |
|------------------------------|----------------------------------|--------------------------------|------------------------------|------------------|------------|------------|------------|------------|------------|------------|------------|------------|--------------|------------|------------|-----|
| ggto                         | ggaga                            | ata                            | cacto                        | gaca             | tc ca      | attea      | atcag      | r ctt      | tcgo       | ata        | gtca       | agaga      | aga          | gcagt      | ttctg      | 120 |
| aaca                         | atgca                            | atg                            | atcca                        | aatga            | ag ag      | gtaa       | tggga      | ctt        | cgaco      | atg        | atad       | ccgao      | gct          | tttca      | agaacg     | 180 |
| acgo                         | gataq                            | gtc                            | gctat                        | tata             | aa aa      | aacga      | ataaa      | cto        | cdcdd      | jgca       | atco       | cacaa      | atc          | catgo      | gcgagt     | 240 |
| atco                         | tta                              | -gc                            | atgaa                        | agaa             | ct go      | cgcco      | ccaat      | . cgt      | tttç       | jcca       | gcca       | ataca      | agg          | tgcco      | caacca     | 300 |
| caco                         | gaago                            | caa                            | gggcg                        | gtac             | gt to      | ccga       | aaaga      | ata        | aaaaq      | gcca       | ccga       | atcta      | agg          | agtto      | ccatca     | 360 |
| ctga                         | aacgi                            | caa ·                          | tgact                        | tggc             | tc go      | ctago      | cgcga      | gad        | eggaa      | atta       | gago       | cttai      | tga          | tcaca      | atgagt     | 420 |
| gata                         | aatca                            | agg                            | tctct                        | tgtca            | aa aa      | atge       | gactg      | gga        | agatt      | ttc        | tcga       | aaago      | 1 <b>d</b> d | tggca      | aaggtc     | 480 |
| tato                         | geega                            | acg                            | cttco                        | gtct             | gt aq      | gctga      | acgat      | ggg        | ggaaa      | acat       | caca       | agci       | tct          | gatto      | gtcaca     | 540 |
| ttgo                         | cccaa                            | aag                            | gacaç                        | gaaa             | gt go      | ccdd       | tcgaa      | ago        | ggtct      | :ga        |            |            |              |            |            | 579 |
| <210<br><211<br><212<br><213 | )> SE<br>L> LE<br>2> TY<br>3> OF | EQ II<br>ENGTI<br>PE:<br>RGAN: | D NO<br>H: 19<br>PRT<br>ISM: | 8<br>92<br>Psei  | ıdomo      | onas       | syri       | ngae       | e          |            |            |            |              |            |            |     |
| <400                         | )> SE                            | QUEI                           | NCE:                         | 8                |            |            |            |            |            |            |            |            |              |            |            |     |
| Val<br>1                     | Tyr                              | Ser                            | Pro                          | Ser<br>5         | His        | Thr        | Gln        | Arg        | Ile<br>10  | Thr        | Ser        | Ala        | Pro          | Ser<br>15  | Thr        |     |
| Ser                          | Thr                              | His                            | Val<br>20                    | Gly              | Gly        | Asp        | Thr        | Leu<br>25  | Thr        | Ser        | Ile        | His        | Gln<br>30    | Leu        | Ser        |     |
| His                          | Ser                              | Gln<br>35                      | Arg                          | Glu              | Gln        | Phe        | Leu<br>40  | Asn        | Met        | His        | Asp        | Pro<br>45  | Met          | Arg        | Val        |     |
| Met                          | Gly<br>50                        | Leu                            | Asp                          | His              | Asp        | Thr<br>55  | Glu        | Leu        | Phe        | Arg        | Thr<br>60  | Thr        | Asp          | Ser        | Arg        |     |
| <b>Ty</b> r<br>65            | Ile                              | Lys                            | Asn                          | Asp              | Lys<br>70  | Leu        | Ala        | Gly        | Asn        | Pro<br>75  | Gln        | Ser        | Met          | Ala        | Ser<br>80  |     |
| Ile                          | Leu                              | Met                            | His                          | Glu<br>85        | Glu        | Leu        | Arg        | Pro        | Asn<br>90  | Arg        | Phe        | Ala        | Ser          | His<br>95  | Thr        |     |
| Gly                          | Ala                              | Gln                            | Pro<br>100                   | His              | Glu        | Ala        | Arg        | Ala<br>105 | Tyr        | Val        | Pro        | Lys        | Arg<br>110   | Ile        | Lys        |     |
| Ala                          | Thr                              | <b>A</b> sp<br>115             | Leu                          | Gly              | Val        | Pro        | Ser<br>120 | Leu        | Asn        | Val        | Met        | Thr<br>125 | Gly          | Ser        | Leu        |     |
| Ala                          | Arg<br>130                       | Asp                            | Gly                          | Ile              | Arg        | Ala<br>135 | Tyr        | Asp        | His        | Met        | Ser<br>140 | Asp        | Asn          | Gln        | Val        |     |
| Ser<br>145                   | Val                              | Lys                            | Met                          | Arg              | Leu<br>150 | Gly        | Asp        | Phe        | Leu        | Glu<br>155 | Arg        | Gly        | Gly          | Lys        | Val<br>160 |     |
| Tyr                          | Ala                              | Asp                            | Ala                          | Ser<br>165       | Ser        | Val        | Ala        | Asp        | Asp<br>170 | Gly        | Glu        | Thr        | Ser          | Gln<br>175 | Ala        |     |
| Leu                          | Ile                              | Val                            | Thr<br>180                   | Leu              | Pro        | Lys        | Gly        | Gln<br>185 | Lys        | Val        | Pro        | Val        | Glu<br>190   | Arg        | Val        |     |
| <210<br><211<br><212<br><213 | )> SF<br>L> LF<br>2> TY<br>3> OF | EQ II<br>ENGTI<br>PE:<br>RGAN: | D NO<br>H: 21<br>DNA<br>ISM: | 9<br>118<br>Psei | ıdomo      | onas       | syri       | ngae       | e          |            |            |            |              |            |            |     |
| <400                         | J> SE                            | QUEI                           | NCE :                        | 9                |            |            |            |            |            |            |            |            |              |            |            |     |
| atga                         | aatco                            | ctc ·                          | tacga                        | atcta            | at to      | caaca      | acaac      | att        | rgcaa      | actc       | ccco       | caato      | cag          | tggco      | ggtcag     | 60  |
| ccat                         | ttaga                            | acg                            | cggto                        | gggc             | cc to      | caggo      | cccag      | caa        | atcco      | catc       | ctaa       | aaago      | gat          | ttcad      | cttct      | 120 |
| caat                         | ttgag                            | gcc -                          | aaago                        | gct              | ca co      | caggo      | ctcta      | gaa        | acgco      | ttt        | cago       | ctaat      | tgc          | cgaad      | caccaa     | 180 |

# -continued

| cgccttgcat                                               | cactggtacg                                   | caacgctctg   | caggatggca        | catttcaatt        | tcaatccagt      | 240  |
|----------------------------------------------------------|----------------------------------------------|--------------|-------------------|-------------------|-----------------|------|
| aaccacacgc                                               | aagtaaccta                                   | taaagcgtca   | atctgtctgc        | cagctgacac        | cgataccgtg      | 300  |
| agaaccgacc                                               | acttgattaa                                   | taacgagctg   | acggttcagg        | cccgattaaa        | tgatcaatcg      | 360  |
| gagtacgaca                                               | tcgtcagcgc                                   | acatttgcat   | ggctcttcga        | aagccatatc        | cttcgacgta      | 420  |
| cccagccccc                                               | cgcccgcaca                                   | tggttcagca   | tcttctgtct        | tgagtgaacg        | gacccatcta      | 480  |
| ggtatgagtc                                               | gcgttctctc                                   | acaagatgca   | gtagacagca        | gtagcctgga        | aactccgtta      | 540  |
| ctgagctcgc                                               | cagaccattc                                   | tcgtccgcca   | tcacagccaa        | agcccgtgca        | tatcgggtcg      | 600  |
| gtccgcaggg                                               | actctggtag                                   | ccttgtttcc   | gataacccgg        | tagtgcaggc        | cctgctatcg      | 660  |
| tttgcgcagg                                               | ccgaccaggc                                   | atttccacca   | caggccgcga        | gcattgccgg        | ggtccagctg      | 720  |
| gaaatgcggc                                               | cacgtcggga                                   | tattgagaaa   | gcacttgagg        | aattcaaagg        | cgccttcacg      | 780  |
| gtggtgaagg                                               | cgcaactgat                                   | gtccggtgcc   | aactcgtcgg        | agcgtgtaga        | tgaggatgtc      | 840  |
| aacgcagaca                                               | tccatatccc                                   | cttattgctc   | aaggccatcg        | agcgggggggc       | tgcggcattt      | 900  |
| ggtccaaacg                                               | catcaatcgg                                   | ccagaatagc   | gcgaaagcgt        | ttctcgcctc        | atgtgctccc      | 960  |
| aagatcacgt                                               | ccaatgacga                                   | tgtcctctcc   | gagttcatca        | accagaaact        | caaggggggac     | 1020 |
| gacgatcttc                                               | aggttcgcct                                   | gggcgcacag   | gaattgttgc        | atgtagccac        | caagaaggaa      | 1080 |
| ttccagctcg                                               | gcggtctagc                                   | cggcagcatc   | ggggtcagca        | gcatactcgg        | ctcggcatgg      | 1140 |
| gagcttggcg                                               | cttctgagct                                   | gttgaaaaat   | gccatcttcg        | gcaaaaattt        | ctcaccgagc      | 1200 |
| caatatgccc                                               | tgcaattggc                                   | tggaatcgat   | tcagtgcctc        | ctttgattat        | cgagtccatg      | 1260 |
| gacaccatgt                                               | gcgtacttgc                                   | catcatcaag   | ggcatgaagg        | gtgaggagtg        | gtccatgagc      | 1320 |
| gatctacttc                                               | ccaaggcgtt                                   | gaaggccggt   | gctatttcct        | cggtggtgtc        | attccccaat      | 1380 |
| aatgttttgc                                               | agtatgcagg                                   | tttcaaatcc   | agagtcggcg        | atcttgcggc        | aaactcagtg      | 1440 |
| acaactgaag                                               | cggccatctt                                   | tggcgccgcc   | tccggtattc        | cacccgaggt        | caaggaaagt      | 1500 |
| gaagagctga                                               | tgcgtgctgg                                   | cttattccag   | agcatgaagg        | acggcgtgat        | ggctcattca      | 1560 |
| ggcgaggggg                                               | tggacaccaa                                   | aaaaacgatt   | gagcggatga        | cgcgccatgc        | gctggatatc      | 1620 |
| gctccgggcg                                               | aaagcaccgc                                   | tgtcaagtcc   | atggggctgg        | catcgattgt        | cgggatgatt      | 1680 |
| ccactgattg                                               | ccagcaacaa                                   | ggcaaccggg   | ctgctgtcgg        | aacaggtact        | gcgtattttc      | 1740 |
| cggagcgccg                                               | tcttcaatcc                                   | aatcgaagcc   | atcgctctga        | acgcgttggc        | gcttggcggg      | 1800 |
| cgtgtcaacg                                               | ttcccgggct                                   | atttgattcc   | gacaatgcca        | agcatgcacg        | cgtggtacaa      | 1860 |
| accatccttg                                               | cgcgggccag                                   | ccagcacatg   | gaagctggag        | accgtgacat        | ttccgcagag      | 1920 |
| gagctacatc                                               | aaatgctggc                                   | tccccggagc   | gagttcctgc        | gccatgtggg        | atctgcgatt      | 1980 |
| gtcaacggca                                               | tgaatgccag                                   | ctttgaggca   | attcccgccc        | tggttcggaa        | gcttggatat      | 2040 |
| ggtgaggctc                                               | cattggccga                                   | acgtattccg   | tatcaagacc        | tggctgtgcc        | cgacacgtcg      | 2100 |
| cggcagcccg                                               | caccctga                                     |              |                   |                   |                 | 2118 |
| <210> SEQ 1<br><211> LENGT<br><212> TYPE:<br><213> ORGAN | ID NO 10<br>TH: 705<br>: PRT<br>NISM: Pseudo | omonas syrir | ıgae              |                   |                 |      |
| <400> SEQUE                                              | ENCE: 10                                     |              |                   |                   |                 |      |
| Met Asn Pro<br>1                                         | b Leu Arg Se<br>5                            | er Ile Gln H | His Asn Ile<br>10 | Ala Thr Pro       | o Pro Ile<br>15 |      |
| Ser Gly Gly                                              | y Gln Pro Le<br>20                           | eu Asp Ala V | /al Gly Pro<br>25 | Gln Ala Gln<br>30 | n Gln Ser<br>)  |      |

| His        | Pro        | Lys<br>35  | Arg        | Ile        | Ser        | Pro        | Ser<br>40  | Gln        | Leu                 | Ser                 | Gln        | Ser<br>45           | Ala        | His        | Gln        |
|------------|------------|------------|------------|------------|------------|------------|------------|------------|---------------------|---------------------|------------|---------------------|------------|------------|------------|
| Ala        | Leu<br>50  | Glu        | Arg        | Leu        | Ser        | Ala<br>55  | Asn        | Ala        | Glu                 | His                 | Gln<br>60  | Arg                 | Leu        | Ala        | Ser        |
| Leu<br>65  | Val        | Arg        | Asn        | Ala        | Leu<br>70  | Gln        | Asp        | Gly        | Thr                 | Phe<br>75           | Gln        | Phe                 | Gln        | Ser        | Ser<br>80  |
| Asn        | His        | Thr        | Gln        | Val<br>85  | Thr        | Tyr        | Lys        | Ala        | Ser<br>90           | Ile                 | Cys        | Leu                 | Pro        | Ala<br>95  | Asp        |
| Thr        | Asp        | Thr        | Val<br>100 | Arg        | Thr        | Asp        | His        | Leu<br>105 | Ile                 | Asn                 | Asn        | Glu                 | Leu<br>110 | Thr        | Val        |
| Gln        | Ala        | Arg<br>115 | Leu        | Asn        | Asp        | Gln        | Ser<br>120 | Glu        | Tyr                 | Asp                 | Ile        | Val<br>125          | Ser        | Ala        | His        |
| Leu        | His<br>130 | Gly        | Ser        | Ser        | Lys        | Ala<br>135 | Ile        | Ser        | Phe                 | Asp                 | Val<br>140 | Pro                 | Ser        | Pro        | Pro        |
| Pro<br>145 | Ala        | His        | Gly        | Ser        | Ala<br>150 | Ser        | Ser        | Val        | Leu                 | Ser<br>155          | Glu        | Arg                 | Thr        | His        | Leu<br>160 |
| Gly        | Met        | Ser        | Arg        | Val<br>165 | Leu        | Ser        | Gln        | Asp        | Ala<br>170          | Val                 | Asp        | Ser                 | Ser        | Ser<br>175 | Leu        |
| Glu        | Thr        | Pro        | Leu<br>180 | Leu        | Ser        | Ser        | Pro        | Asp<br>185 | His                 | Ser                 | Arg        | Pro                 | Pro<br>190 | Ser        | Gln        |
| Pro        | Lys        | Pro<br>195 | Val        | His        | Ile        | Gly        | Ser<br>200 | Val        | Arg                 | Arg                 | Asp        | Ser<br>205          | Gly        | Ser        | Leu        |
| Val        | Ser<br>210 | Asp        | Asn        | Pro        | Val        | Val<br>215 | Gln        | Ala        | Leu                 | Leu                 | Ser<br>220 | Phe                 | Ala        | Gln        | Ala        |
| Asp<br>225 | Gln        | Ala        | Phe        | Pro        | Pro<br>230 | Gln        | Ala        | Ala        | Ser                 | Ile<br>235          | Ala        | Gly                 | Val        | Gln        | Leu<br>240 |
| Glu        | Met        | Arg        | Pro        | Arg<br>245 | Arg        | Asp        | Ile        | Glu        | L <b>y</b> s<br>250 | Ala                 | Leu        | Glu                 | Glu        | Phe<br>255 | Lys        |
| Gly        | Ala        | Phe        | Thr<br>260 | Val        | Val        | Lys        | Ala        | Gln<br>265 | Leu                 | Met                 | Ser        | Gly                 | Ala<br>270 | Asn        | Ser        |
| Ser        | Glu        | Arg<br>275 | Val        | Asp        | Glu        | Asp        | Val<br>280 | Asn        | Ala                 | Asp                 | Ile        | His<br>285          | Ile        | Pro        | Leu        |
| Leu        | Leu<br>290 | Lys        | Ala        | Ile        | Glu        | Arg<br>295 | Gly        | Ala        | Ala                 | Ala                 | Phe<br>300 | Gly                 | Pro        | Asn        | Ala        |
| Ser<br>305 | Ile        | Gly        | Gln        | Asn        | Ser<br>310 | Ala        | Lys        | Ala        | Phe                 | Leu<br>315          | Ala        | Ser                 | Cys        | Ala        | Pro<br>320 |
| Lys        | Ile        | Thr        | Ser        | Asn<br>325 | Asp        | Asp        | Val        | Leu        | Ser<br>330          | Glu                 | Phe        | Ile                 | Asn        | Gln<br>335 | Lys        |
| Leu        | Lys        | Gly        | Asp<br>340 | Asp        | Asp        | Leu        | Gln        | Val<br>345 | Arg                 | Leu                 | Gly        | Ala                 | Gln<br>350 | Glu        | Leu        |
| Leu        | His        | Val<br>355 | Ala        | Thr        | Lys        | Lys        | Glu<br>360 | Phe        | Gln                 | Leu                 | Gly        | Gly<br>365          | Leu        | Ala        | Gly        |
| Ser        | Ile<br>370 | Gly        | Val        | Ser        | Ser        | Ile<br>375 | Leu        | Gly        | Ser                 | Ala                 | Trp<br>380 | Glu                 | Leu        | Gly        | Ala        |
| Ser<br>385 | Glu        | Leu        | Leu        | Lys        | Asn<br>390 | Ala        | Ile        | Phe        | Gly                 | L <b>y</b> s<br>395 | Asn        | Phe                 | Ser        | Pro        | Ser<br>400 |
| Gln        | Tyr        | Ala        | Leu        | Gln<br>405 | Leu        | Ala        | Gly        | Ile        | Asp<br>410          | Ser                 | Val        | Pro                 | Pro        | Leu<br>415 | Ile        |
| Ile        | Glu        | Ser        | Met<br>420 | Asp        | Thr        | Met        | Cys        | Val<br>425 | Leu                 | Ala                 | Ile        | Ile                 | Lys<br>430 | Gly        | Met        |
| Lys        | Gly        | Glu<br>435 | Glu        | Trp        | Ser        | Met        | Ser<br>440 | Asp        | Leu                 | Leu                 | Pro        | L <b>y</b> s<br>445 | Ala        | Leu        | Lys        |

# -continued

| Ala Gly Ala Ile Ser Ser Val Val Ser Phe Pro Asn Asn Val Leu Gl<br>450 455 460                       | n      |
|-----------------------------------------------------------------------------------------------------|--------|
| Tyr Ala Gly Phe Lys Ser Arg Val Gly Asp Leu Ala Ala Asn Ser Val465470475486                         | 1<br>D |
| Thr Thr Glu Ala Ala Ile Phe Gly Ala Ala Ser Gly Ile Pro Pro Glu<br>485 490 495                      | L      |
| Val Lys Glu Ser Glu Glu Leu Met Arg Ala Gly Leu Phe Gln Ser Met<br>500 505 510                      | t      |
| Lys Asp Gly Val Met Ala His Ser Gly Glu Gly Val Asp Thr Lys Ly<br>515 520 525                       | 5      |
| Thr Ile Glu Arg Met Thr Arg His Ala Leu Asp Ile Ala Pro Gly Glu<br>530 535 540                      | L      |
| Ser Thr Ala Val LysSer Met Gly Leu Ala Ser Ile Val Gly Met Ile545550555560                          | e<br>) |
| Pro Leu Ile Ala Ser Asn Lys Ala Thr Gly Leu Leu Ser Glu Gln Va<br>565 570 575                       | 1      |
| Leu Arg Ile Phe Arg Ser Ala Val Phe Asn Pro Ile Glu Ala Ile Ala<br>580 585 590                      | a      |
| Leu Asn Ala Leu Ala Leu Gly Gly Arg Val Asn Val Pro Gly Leu Pho<br>595 600 605                      | 9      |
| Asp Ser Asp Asn Ala Lys His Ala Arg Val Val Gln Thr Ile Leu Ala<br>610 615 620                      | a      |
| Arg Ala Ser Gln His Met Glu Ala Gly Asp Arg Asp Ile Ser Ala Glu625630635640                         | ц<br>С |
| Glu Leu His Gln Met Leu Ala Pro Arg Ser Glu Phe Leu Arg His Va<br>645 650 655                       | 1      |
| Gly Ser Ala Ile Val Asn Gly Met Asn Ala Ser Phe Glu Ala Ile Pro<br>660 665 670                      | C      |
| Ala Leu Val Arg Lys Leu Gly Tyr Gly Glu Ala Pro Leu Ala Glu Arg<br>675 680 685                      | а      |
| Ile Pro Tyr Gln Asp Leu Ala Val Pro Asp Thr Ser Arg Gln Pro Ala<br>690 695 700                      | a      |
| Pro<br>705                                                                                          |        |
| <210> SEQ ID NO 11<br><211> LENGTH: 1407<br><212> TYPE: DNA<br><213> ORGANISM: Pseudomonas syringae |        |
| <400> SEQUENCE: 11                                                                                  |        |
| atgaatcccc tgcaacctat tcagcacagc attacaaatt cccaaatgag tggtggt                                      | cag    |
| caattagagg cggagggctc tcaggcccac aattcctatt cccatcctga caggatt                                      | tcg    |
| ctttcccaat tgagccaaag cgctcaccta gctctagatc acctttcaac tcagccta                                     | aat    |
| accgatcacc aacgcgttgc atcactggta cgcaacgctg tgcaggacgg taagttc                                      | caa    |
| cttcaatcca gtaacgacac gcaagtaacc tataaaactt cagtctgtcc gccagct                                      | aac    |
| gccgacacca tgggggccgc ccacttaatt aataacgagc tgacggttca ggcccga                                      | tta    |
| aatgatcaac ttgagtacga catcgtcagc gctcatttgt atggcccttc ggaagcc                                      | ata    |
| tccatcgatg catccagtcc tccctcggcc aacgatctag cgtcctctgg cttgagc                                      | gaa    |
| cgtacgcatc taggtatgaa tcgtgtcctc ttacgctacg cggtgccccc tcgggaa                                      | acc    |
| gaagaccaat gtgttatggt gatcgacaaa atgccccccc ccaaacacgg caaaatg                                      | tct    |

# -continued

| ttcttccgta                                                            | ccactaatga                                              | cttgagcaaa        | a ctgcctttgg              | gaatggagac gggcgggtt       | g 660   |
|-----------------------------------------------------------------------|---------------------------------------------------------|-------------------|---------------------------|----------------------------|---------|
| tccgacctga                                                            | aattggctgg                                              | ttgtgaacgt        | atttcttccg                | tcgagcaggt gaagagtat       | c 720   |
| cgcgcagcgc                                                            | ttggaggcgg                                              | gccgctcacc        | gtactagatc                | tgcgcgaaga atctcatgc       | g 780   |
| attgtcaacg                                                            | gtttgcctat                                              | caccttacgt        | ggcccgatgg                | attgggccaa cgccggcct       | a 840   |
| tcccaggttg                                                            | acggagcggc                                              | acgtgaaagt        | gccatgatta                | cagaactgaa gcgcactaa       | ig 900  |
| tctttaacgt                                                            | tggtcgatgc                                              | caattatgta        | a aaaggtaaaa              | aaagtaatcc tcaaacgac       | a 960   |
| gaactgaaaa                                                            | atttgaatgt                                              | ccggagcgag        | g cgagaagtcg              | ttacagaggc cggcgcgac       | c 1020  |
| tatcgccgcg                                                            | tggccattac                                              | cgaccataac        | aggcctagtc                | cggaagcgac cgacgagct       | a 1080  |
| gtagacatca                                                            | tgcgccactg                                              | cctgcaggca        | a aatgagtcgc              | tagttgtgca ctgtaacgg       | rc 1140 |
| ggtcggggcc                                                            | gtactaccac                                              | ggctatgata        | a atggtcgaca              | tgcttaagaa cgctcgtaa       | ic 1200 |
| cattccgcag                                                            | aaaccctcat                                              | cacgcgtate        | g gccaagctaa              | gctatgacta caacatgac       | g 1260  |
| gatctaggca                                                            | gcatttctgc                                              | actcaagcgg        | g ccattcctag              | aggacagact aaaatttct       | g 1320  |
| caggcctttc                                                            | acgactatgc                                              | ccgcaacaac        | ccaagcggat                | tatctcttaa ttggacaca       | ig 1380 |
| tggcgcgcaa                                                            | aaatagcgtt                                              | agaatga           |                           |                            | 1407    |
| <210> SEQ 3<br><211> LENG<br><212> TYPE<br><213> ORGAN<br><400> SEQU: | ID NO 12<br>TH: 468<br>: PRT<br>NISM: Pseud<br>ENCE: 12 | omonas syri       | ngae                      |                            |         |
| Met Asn Pr<br>1                                                       | o Leu Gln P<br>5                                        | ro Ile Gln        | His Ser Ile<br>10         | Thr Asn Ser Gln Met<br>15  |         |
| Ser Gly Gl                                                            | y Gln Gln L<br>20                                       | eu Glu Ala        | Glu Gl <b>y</b> Ser<br>25 | Gln Ala His Asn Ser<br>30  |         |
| Tyr Ser Hi<br>3                                                       | s Pro Asp A<br>5                                        | rg Ile Ser<br>40  | Leu Ser Gln               | Leu Ser Gln Ser Ala<br>45  |         |
| His Leu Al<br>50                                                      | a Leu Asp H                                             | is Leu Ser<br>55  | Thr Gln Pro               | Asn Thr Asp His Gln<br>60  |         |
| Arg Val Al<br>65                                                      | a Ser Leu V                                             | al Arg Asn<br>70  | Ala Val Gln<br>75         | Asp Gly Lys Phe Gln<br>80  |         |
| Leu Gln Se                                                            | r Ser Asn A<br>85                                       | sp Thr Gln        | Val Thr Tyr<br>90         | Lys Thr Ser Val Cys<br>95  |         |
| Pro Pro Al                                                            | a Asn Ala A<br>100                                      | sp Thr Met        | Gly Ala Ala<br>105        | His Leu Ile Asn Asn<br>110 |         |
| Glu Leu Th<br>11                                                      | r Val Gln A<br>5                                        | la Arg Leu<br>120 | Asn Asp Gln               | Leu Glu Tyr Asp Ile<br>125 |         |
| Val Ser Al<br>130                                                     | a His Leu T                                             | yr Gly Pro<br>135 | Ser Glu Ala               | Ile Ser Ile Asp Ala<br>140 |         |
| Ser Ser Pr<br>145                                                     | o Pro Ser A<br>1                                        | la Asn Asp<br>50  | Leu Ala Ser<br>155        | Ser Gly Leu Ser Glu<br>160 |         |
| Arg Thr Hi                                                            | s Leu Gly M<br>165                                      | et Asn Arg        | Val Leu Leu<br>170        | Arg Tyr Ala Val Pro<br>175 |         |
| Pro Arg Gl                                                            | u Thr Glu A<br>180                                      | sp Gln Cys        | Val Met Val<br>185        | Ile Asp Lys Met Pro<br>190 |         |
| Pro Pro Ly<br>19                                                      | s His Gl <b>y</b> L<br>5                                | ys Met Ser<br>200 | Phe Phe Arg               | Thr Thr Asn Asp Leu<br>205 |         |
| Ser Lys Le<br>210                                                     | u Pro Leu G                                             | ly Met Glu<br>215 | Thr Gly Gly               | Leu Ser Asp Leu Lys<br>220 |         |
| Leu Ala Gl                                                            | y Cys Glu A                                             | rg Ile Ser        | Ser Val Glu               | Gln Val Lys Ser Ile        |         |

-continued

| 225                                                                 | 230                               |                |                  | 235          |                |                | 240        |
|---------------------------------------------------------------------|-----------------------------------|----------------|------------------|--------------|----------------|----------------|------------|
| Arg Ala Ala Le                                                      | eu Gly Gly<br>245                 | Gly Pro        | Leu Thr<br>250   | Val L        | .eu Asp        | Leu Arg<br>255 | Glu        |
| Glu Ser His Al<br>20                                                | la Ile Val<br>50                  | Asn Gly        | Leu Pro<br>265   | Ile T        | hr Leu!        | Arg Gly<br>270 | Pro        |
| Met Asp Trp Al<br>275                                               | la Asn Ala                        | Gly Leu<br>280 | Ser Gln          | Val A        | Asp Gly<br>285 | Ala Ala        | Arg        |
| Glu Ser Ala Me<br>290                                               | et Ile Thr                        | Glu Leu<br>295 | L <b>y</b> s Arg | Thr L<br>3   | ys Ser         | Leu Thr        | Leu        |
| Val Asp Ala As<br>305                                               | sn <b>Ty</b> r Val<br>310         | Lys Gly        | Lys Lys          | Ser A<br>315 | Asn Pro        | Gln Thr        | Thr<br>320 |
| Glu Leu Lys As                                                      | sn Leu Asn<br>325                 | Val Arg        | Ser Glu<br>330   | Arg G        | lu Val         | Val Thr<br>335 | Glu        |
| Ala Gly Ala Th<br>34                                                | nr <b>Ty</b> r Arg<br>40          | Arg Val        | Ala Ile<br>345   | Thr A        | Asp His        | Asn Arg<br>350 | Pro        |
| Ser Pro Glu Al<br>355                                               | la Thr Asp                        | Glu Leu<br>360 | Val Asp          | Ile M        | let Arg<br>365 | His Cys        | Leu        |
| Gln Ala Asn Gl<br>370                                               | lu Ser Leu                        | Val Val<br>375 | His Cys          | Asn G<br>3   | Gly Gly        | Arg Gly        | Arg        |
| Thr Thr Thr Al<br>385                                               | la Met Ile<br>390                 | Met Val        | Asp Met          | Leu L<br>395 | ys Asn         | Ala Arg        | Asn<br>400 |
| His Ser Ala G                                                       | lu Thr Leu<br>405                 | Ile Thr        | Arg Met<br>410   | Ala L        | ys Leu         | Ser Tyr<br>415 | Asp        |
| Tyr Asn Met Th<br>42                                                | nr Asp Leu<br>20                  | Gly Ser        | Ile Ser<br>425   | Ala L        | leu Lys        | Arg Pro<br>430 | Phe        |
| Leu Glu Asp An<br>435                                               | rg Leu Lys                        | Phe Leu<br>440 | Gln Ala          | Phe H        | lis Asp<br>445 | Tyr Ala        | Arg        |
| Asn Asn Pro Se                                                      | er Gly Leu                        | Ser Leu        | Asn Trp          | Thr G        | ln Trp         | Arg Ala        | Lys        |
| 450<br>Ile Ala Leu Gl<br>465                                        | lu                                | 455            |                  | 4            | 160            |                |            |
| <210> SEQ ID N<br><211> LENGTH:<br><212> TYPE: DN<br><213> ORGANISM | 10 13<br>810<br>JA<br>1: Pseudomo | onas syri      | ingae            |              |                |                |            |
| <400> SEQUENCE                                                      | E: 13                             |                |                  |              |                |                |            |
| atgacaatcg tgt                                                      | tctggaca c                        | atcggaaaa      | a caccca         | agcc t       | aaccact        | gt tcaa        | gctggg 60  |
| tottoggott ogg                                                      | gtcgagaa t                        | caaatgcc       | t gatcct         | gcac a       | igttcagt       | ga tgga        | cggtgg 120 |
| aaaaagcttc cga                                                      | acccaatt g                        | tcgtcaat       | t acattg         | gcga g       | jattogat       | ca ggat        | atttgc 180 |
| acgaataatc ato                                                      | ggcatcag t                        | cagegtge       | a atgtgc         | tttg g       | geetttea       | itt gagc       | tggatt 240 |
| aacatgattc ato                                                      | gccgggaa a                        | gatcatgt       | t acgccc         | tatg c       | atcggca        | iga aaga       | atgagg 300 |
| tttctgggtt cct                                                      | tttgaagg g                        | gtggtgca       | t gctcgt         | actg t       | tcataac        | tt ctat        | cggact 360 |
| gagcacaaat tto                                                      | ctgatgga g                        | caagcttco      | c gcaaac         | cccg g       | gagtatca       | ag tggc        | gcgatg 420 |
| gctggcacag aaa                                                      | agtttatt g                        | caagctgc       | t gagttg         | aagg g       | gttaaag        | ct tcaa        | cctgtt 480 |
| ctagaggaca agt                                                      | tcgaactc a                        | ggcctacc       | c ttccta         | attg c       | gtgtaag        | ica gtca       | gggcgg 540 |
| caggtgagca cag                                                      | gatgaagc t                        | gcgctaag       | c tcctta         | tgtg a       | itgcaatt       | gt agaa        | aataag 600 |
| agaggggtaa tgo                                                      | gtgatata c                        | agccaaga       | a attgcc         | cacg c       | tttgggc        | tt ttct        | gtatca 660 |
| tcagatggca aaa                                                      | agagcgac c                        | ttatttga       | t cccaat         | ctcg g       | gagagttt       | ca taca        | cactcg 720 |
| aaagcgttgg cto                                                      | gatactat c                        | gaaaacata      | a tcatcg         | gcag a       | tgggctg        | cc ttta        | atcggc 780 |

| gttcaagtat tcgcttcaaa aatacactga                                                                   |                                           |                          |              |            |                     |                    |            |            |            |            |            |            |            |
|----------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------|--------------|------------|---------------------|--------------------|------------|------------|------------|------------|------------|------------|------------|
| <210> SEQ ID NO 14<br><211> LENGTH: 269<br><212> TYPE: PRT<br><213> ORGANISM: Pseudomonas syringae |                                           |                          |              |            |                     |                    |            |            |            |            |            |            |            |
| <400> SE                                                                                           | QUENCE :                                  | 14                       |              |            |                     |                    |            |            |            |            |            |            |            |
| Met Thr<br>1                                                                                       | Ile Va                                    | L Ser<br>5               | Gly H        | His        | Ile                 | Gly                | Lys<br>10  | His        | Pro        | Ser        | Leu        | Thr<br>15  | Thr        |
| Val Gln                                                                                            | Ala Gl<br>20                              | y Ser<br>)               | Ser A        | Ala        | Ser                 | Val<br>25          | Glu        | Asn        | Gln        | Met        | Pro<br>30  | Asp        | Pro        |
| Ala Gln                                                                                            | Phe Sei<br>35                             | r Asp                    | Gly A        | Arg        | Trp<br>40           | Lys                | Lys        | Leu        | Pro        | Thr<br>45  | Gln        | Leu        | Ser        |
| Ser Ile<br>50                                                                                      | Thr Let                                   | ı Ala                    | Arg I        | Phe<br>55  | Asp                 | Gln                | Asp        | Ile        | Суз<br>60  | Thr        | Asn        | Asn        | His        |
| Gly Ile<br>65                                                                                      | Ser Glı                                   | n Arg                    | Ala M<br>70  | Met        | Cys                 | Phe                | Gly        | Leu<br>75  | Ser        | Leu        | Ser        | Trp        | Ile<br>80  |
| Asn Met                                                                                            | Ile His                                   | s Ala<br>85              | Gly I        | Lys        | Asp                 | His                | Val<br>90  | Thr        | Pro        | Tyr        | Ala        | Ser<br>95  | Ala        |
| Glu Arg                                                                                            | Met Are<br>100                            | g Phe<br>)               | Leu (        | Gly        | Ser                 | Phe<br>105         | Glu        | Gly        | Val        | Val        | His<br>110 | Ala        | Arg        |
| Thr Val                                                                                            | His Ası<br>115                            | n Phe                    | Tyr A        | Arg        | Thr<br>120          | Glu                | His        | Lys        | Phe        | Leu<br>125 | Met        | Glu        | Gln        |
| Ala Ser<br>130                                                                                     | Ala Ası                                   | n Pro                    | Gly V        | Val<br>135 | Ser                 | Ser                | Gly        | Ala        | Met<br>140 | Ala        | Gly        | Thr        | Glu        |
| Ser Leu<br>145                                                                                     | Leu Gli                                   | n Ala                    | Ala (<br>150 | Glu        | Leu                 | Lys                | Gly        | Leu<br>155 | Lys        | Leu        | Gln        | Pro        | Val<br>160 |
| Leu Glu                                                                                            | Asp Ly:                                   | s Ser<br>165             | Asn S        | Ser        | Gly                 | Leu                | Pro<br>170 | Phe        | Leu        | Ile        | Ala        | Cys<br>175 | Lys        |
| Gln Ser                                                                                            | Gly Are<br>180                            | g Gln<br>)               | Val S        | Ser        | Thr                 | <b>A</b> sp<br>185 | Glu        | Ala        | Ala        | Leu        | Ser<br>190 | Ser        | Leu        |
| Cys Asp                                                                                            | Ala Ile<br>195                            | e Val                    | Glu A        | Asn        | L <b>y</b> s<br>200 | Arg                | Gly        | Val        | Met        | Val<br>205 | Ile        | Tyr        | Ser        |
| Gln Glu<br>210                                                                                     | Ile Ala                                   | a His                    | Ala I<br>2   | Leu<br>215 | Gly                 | Phe                | Ser        | Val        | Ser<br>220 | Ser        | Asp        | Gly        | Lys        |
| Arg Ala<br>225                                                                                     | Thr Let                                   | ı Phe                    | Asp 1<br>230 | Pro        | Asn                 | Leu                | Gly        | Glu<br>235 | Phe        | His        | Thr        | His        | Ser<br>240 |
| Lys Ala                                                                                            | Leu Ala                                   | a Asp<br>245             | Thr 1        | Ile        | Glu                 | Asn                | Ile<br>250 | Ser        | Ser        | Ala        | Asp        | Gly<br>255 | Leu        |
| Pro Leu                                                                                            | Ile Gly<br>260                            | y Val<br>)               | Gln V        | Val        | Phe                 | Ala<br>265         | Ser        | Lys        | Ile        | His        |            |            |            |
| <210> SE<br><211> LE<br><212> TY<br><213> OF                                                       | Q ID NO<br>NGTH: 8<br>PE: DNA<br>RGANISM: | ) 15<br>331<br>A<br>Pseu | ıdomor       | ıas        | syri                | .ngae              | 1          |            |            |            |            |            |            |
| <400> SE                                                                                           | QUENCE :                                  | 15                       |              |            |                     |                    |            |            |            |            |            |            |            |
| atgcacgo                                                                                           | caa atco                                  | cttta                    | ag cto       | cttt       | caad                | : aga              | igcto      | caac       | atg        | gcaat      | tat g      | gacta      | aatgta     |
| gaggccag                                                                                           | gcc aag                                   | taaa                     | tc ggo       | cago       | jaaco               | tct                | tcca       | acca       | ctaa       | atata      | aga d      | cagta      | aaaac      |
| attgaaga                                                                                           | aac atg                                   | tgca                     | ga cag       | gact       | cagt                | : gat              | ttag       | ggca       | gaco       | ctga       | tgg t      | ggat       | tggttt     |
| ttcgagaa                                                                                           | agt cact                                  | tggc                     | ac ctt       | tgaa       | aaat                | tta                | aato       | cttg       | agca       | agtta      | agc d      | cggaa      | atccat     |
| gatgtact                                                                                           | taa aati                                  | caaca                    | ga tgo       | gcgt       | aaaq                | g aac              | atto       | gtct       | ctt        | tgga       | agc t      | cggg       | gaagga     |

# -continued

| ggctto                                                                                             | cgagt           | tggc       | aatgo               | ca gi      | tttc       | gtcat      | t gai             | ttat       | caca       | gato                | ctcaa      | aca H      | taag       | gatgaa     | L | 360 |
|----------------------------------------------------------------------------------------------------|-----------------|------------|---------------------|------------|------------|------------|-------------------|------------|------------|---------------------|------------|------------|------------|------------|---|-----|
| aactco                                                                                             | gccgc           | acga       | tgccq               | gc aa      | actca      | atta       | t cti             | gate       | gcaa       | tca                 | geete      | gca a      | atcaa      | acaaa      | L | 420 |
| tttaca                                                                                             | aaaac           | ttga       | aaaa                | ct ad      | caaca      | atgta      | a gat             | gtat       | tta        | aaat                | tgcaa      | aaa d      | cccgi      | tttgg      | r | 480 |
| gatgto                                                                                             | cgggt           | acaa       | aaaco               | gg aa      | attgo      | cgcad      | c gca             | aaaa       | aaaa       | tgg                 | catto      | ett (      | cataa      | acgcca     | L | 540 |
| gagtg                                                                                              | gctgg           | gttc       | tgati               | tt ci      | tgtaa      | aacaq      | g gaa             | attco      | cagt       | ggci                | ttago      | cga a      | aacaa      | aaaac      | : | 600 |
| aaaga                                                                                              | cataa           | aatc       | tgcat               | tt to      | gtgai      | tctt       | t aaa             | agato      | gtag       | acti                | taaaa      | aag d      | caaaa      | aatatg     | r | 660 |
| acaag                                                                                              | tatct           | tcaa       | tttt                | ge ag      | gacti      | tccat      | t aaa             | atcad      | cgcg       | tcat                | tgato      | ggc a      | aagca      | acacct     | : | 720 |
| cccgaa                                                                                             | atcgg           | gatte      | gaata               | aa to      | gtaaa      | aaato      | c gaa             | aaata      | agcg       | ttga                | accto      | gaa t      | tttca      | aagagg     | r | 780 |
| ttatta                                                                                             | aactg           | accg       | tgagi               | tc af      | tggga      | aacta      | a aat             | caati      | tcc        | tage                | gega       | cta a      | a          |            |   | 831 |
| <210> SEQ ID NO 16<br><211> LENGTH: 276<br><212> TYPE: PRT<br><213> ORGANISM: Pseudomonas syringae |                 |            |                     |            |            |            |                   |            |            |                     |            |            |            |            |   |     |
| Met H                                                                                              | is Ala          | Asn        | Pro                 | Leu        | Ser        | Ser        | Phe               | Asn        | Ara        | Ala                 | Gln        | His        | Glv        | Asn        |   |     |
| 1                                                                                                  | IS AIU          | ABII       | 5                   | цец        | Der        | Der        | FIIG              | 10         | лгу        | лıu                 | GIII       | 111.0      | 15         | ABII       |   |     |
| Leu Th                                                                                             | hr Asn          | Val<br>20  | Glu                 | Ala        | Ser        | Gln        | Val<br>25         | Lys        | Ser        | Ala                 | Gly        | Thr<br>30  | Ser        | Ser        |   |     |
| Thr Th                                                                                             | hr Asn<br>35    | Ile        | Asp                 | Ser        | Lys        | Asn<br>40  | Ile               | Glu        | Glu        | His                 | Val<br>45  | Ala        | Asp        | Arg        |   |     |
| Leu Se                                                                                             | er Asp<br>50    | Leu        | Gly                 | Arg        | Pro<br>55  | Asp        | Gly               | Gly        | Trp        | Phe<br>60           | Phe        | Glu        | Lys        | Ser        |   |     |
| Leu G.<br>65                                                                                       | ly Thr          | Leu        | Lys                 | Asn<br>70  | Leu        | Asn        | Leu               | Glu        | Gln<br>75  | Leu                 | Ala        | Gly        | Ile        | His<br>80  |   |     |
| Asp Va                                                                                             | al Leu          | Lys        | Leu<br>85           | Thr        | Asp        | Gly        | Val               | Lys<br>90  | Asn        | Ile                 | Val        | Ser        | Phe<br>95  | Gly        |   |     |
| Ala A                                                                                              | rg Glu          | Gly<br>100 | Gly                 | Phe        | Glu        | Leu        | <b>Ala</b><br>105 | Met        | Gln        | Phe                 | Arg        | His<br>110 | Asp        | Leu        |   |     |
| Tyr A                                                                                              | rg Ser<br>115   | Gln        | His                 | Pro        | Asp        | Glu<br>120 | Asn               | Ser        | Pro        | His                 | Asp<br>125 | Ala        | Ala        | Thr        |   |     |
| His Ty<br>13                                                                                       | yr Leu<br>30    | Asp        | Ala                 | Ile        | Ser<br>135 | Leu        | Gln               | Ser        | Asn        | L <b>y</b> s<br>140 | Phe        | Thr        | Lys        | Leu        |   |     |
| Glu Ly<br>145                                                                                      | ys Leu          | Gln        | His                 | Val<br>150 | Asp        | Val        | Phe               | Lys        | Met<br>155 | Gln                 | Asn        | Pro        | Phe        | Trp<br>160 |   |     |
| Asp Va                                                                                             | al Gly          | Tyr        | L <b>y</b> s<br>165 | Asn        | Gly        | Ile        | Ala               | His<br>170 | Ala        | Lys                 | Lys        | Met        | Ala<br>175 | Phe        |   |     |
| Phe I                                                                                              | le Thr          | Pro<br>180 | Glu                 | Trp        | Leu        | Gly        | Ser<br>185        | Asp        | Phe        | Суз                 | Lys        | Gln<br>190 | Glu        | Phe        |   |     |
| Gln T                                                                                              | rp Leu<br>195   | Ser        | Glu                 | Thr        | Lys        | Asn<br>200 | Lys               | Asp        | Ile        | Lys                 | Ser<br>205 | Ala        | Phe        | Val        |   |     |
| Ile Pl<br>23                                                                                       | he Lys<br>10    | Asp        | Val                 | Asp        | Leu<br>215 | Lys        | Ser               | Lys        | Asn        | Met<br>220          | Thr        | Ser        | Ile        | Phe        |   |     |
| Asn Pl<br>225                                                                                      | he Ala          | Asp        | Phe                 | His<br>230 | Lys        | Ser        | Arg               | Val        | Met<br>235 | Met                 | Ala        | Ser        | Thr        | Pro<br>240 |   |     |
| Pro G                                                                                              | lu Ser          | Gly        | Leu<br>245          | Asn        | Asn        | Val        | Lys               | Ile<br>250 | Glu        | Asn                 | Ser        | Val        | Asp<br>255 | Leu        |   |     |
| Asn Pl                                                                                             | he L <b>y</b> s | Arg<br>260 | Leu                 | Leu        | Thr        | Asp        | Arg<br>265        | Glu        | Ser        | Trp                 | Glu        | Leu<br>270 | Asn        | Asn        |   |     |
|                                                                                                    |                 |            |                     |            |            |            |                   |            |            |                     |            |            |            |            |   |     |

-continued

275

<210> SEQ ID NO 17 <211> LENGTH: 855 <212> TYPE: DNA <213> ORGANISM: Pseudomonas syringae <400> SEOUENCE: 17 atggggctat gtatttcaaa acactctggt agcagttaca gctacagtga tagcgaccgc 60 tggcaagtgc ctgcatgccc tccaaacgcc aggtctgtat ccagtcatca aacagcatct 120 gcgagtgaca tcgcatcagg cgatgtggat gaacgtcctg caacgttttc tcattttcaa 180 cttgcgcggt gcggtggaga gtacacgctt agcatggttt ctgcagcggc ttatcaagca 240 gaaagacggc atcgcggtaa tttaataaaa gatcgtagtc aatccatact cccatgggtc 300 caggtatatc attctaaaaa aggtttggat tacagcttcc agatcgacag aactacgact 360 gttaaagtgg ctggattcaa ctgctctatc cccaataaca gagggactcg gcatttatac 420 agcgctggta cgagtcagac aaacatgcct gtcatcgcag acaacatgag cgcatgcatt 480 gctgtcgcgt gtgcggcgga aaacgtggat gctggcacgg gtgaacgtag gccggggggg 540 aaagttcgcg tattccatct actccctttt cgacgcgaag accttgtgcc agaagaagtt 600 ttagcttctg tgcgcgatta tctgcgaacg accaaagaac aggggctaac aatgcgcgta 660 gctatgcatg gagggaatac agagggtgat ttctcagtca gcactgcgca ggcattgaaa 720 780 ggcctgtttg ctaatgaagg gatcccgctt gaatttgacg agacctgtgc aaaccgaacg 840 tctqaaacac tqcttqqtqc cqttatctta qatqacaact cqactcattt cataaaacat 855 ctggtcgcac aataa <210> SEO ID NO 18 <211> LENGTH: 284 <212> TYPE: PRT <213> ORGANISM: Pseudomonas svringae <400> SEOUENCE: 18 Met Gly Leu Cys Ile Ser Lys His Ser Gly Ser Ser Tyr Ser Tyr Ser 5 10 1 Asp Ser Asp Arg Trp Gln Val Pro Ala Cys Pro Pro Asn Ala Arg Ser 20 25 30 Val Ser Ser His Gln Thr Ala Ser Ala Ser Asp Ile Ala Ser Gly Asp 35 40 45 Val Asp Glu Arg Pro Ala Thr Phe Ser His Phe Gln Leu Ala Arg Cys 55 50 60 Gly Gly Glu Tyr Thr Leu Ser Met Val Ser Ala Ala Ala Tyr Gln Ala 70 75 80 Glu Arg Arg His Arg Gly Asn Leu Ile Lys Asp Arg Ser Gln Ser Ile 85 90 95 Leu Pro Trp Val Gln Val Tyr His Ser Lys Lys Gly Leu Asp Tyr Ser 105 100 110 Phe Gln Ile Asp Arg Thr Thr Thr Val Lys Val Ala Gly Phe Asn Cys 115 120 125 Ser Ile Pro Asn Asn Arg Gly Thr Arg His Leu Tyr Ser Ala Gly Thr 130 135 Ser Gln Thr Asn Met Pro Val Ile Ala Asp Asn Met Ser Ala Cys Ile 145 150 155 160 Ala Val Ala Cys Ala Ala Glu Asn Val Asp Ala Gly Thr Gly Glu Arg

-continued

| 165 170 175                                                                                         |     |
|-----------------------------------------------------------------------------------------------------|-----|
| Arg Pro Gly Ala Lys Val Arg Val Phe His Leu Leu Pro Phe Arg Arg<br>180 185 190                      |     |
| Glu Asp Leu Val Pro Glu Glu Val Leu Ala Ser Val Arg Asp Tyr Leu<br>195 200 205                      |     |
| Arg Thr Thr Lys Glu Gln Gly Leu Thr Met Arg Val Ala Met His Gly<br>210 215 220                      |     |
| Gly Asn Thr Glu Gly Asp Phe Ser Val Ser Thr Ala Gln Ala Leu Lys<br>225 230 235 240                  |     |
| Gly Leu Phe Ala Asn Glu Gly Ile Pro Leu Glu Phe Asp Glu Thr Cys                                     |     |
| Ala Asn Arg Thr Ser Glu Thr Leu Leu Gly Ala Val Ile Leu Asp Asp                                     |     |
| Asn Ser Thr His Phe Ile Lys His Leu Val Ala Gln<br>275 280                                          |     |
| <210> SEQ ID NO 19<br><211> LENGTH: 291<br><212> TYPE: DNA<br><213> ORGANISM: Pseudomonas syringae  |     |
| <400> SEQUENCE: 19                                                                                  |     |
| atgatcatcg acaatacgtt cgcgctgaca ctgtcatgcg attacgcgcg tgagcgcctg                                   | 60  |
| ctgttgatcg gcttgcttga gccgcacaag gacatacctc agcagtgcct tttggctggc                                   | 120 |
| gctctcaatc cgctcctcaa tgcaggccca ggccttggcc tggatgagaa aagcggcctg                                   | 180 |
| tatcacgcgt atcaaagcat ccctcgagaa aaactcagcg tgccgacgct caaacgcgaa                                   | 240 |
| atggcaggtc tgctggagtg gatgaggggc tggcgcgaag caagccaata g                                            | 291 |
| <210> SEQ ID NO 20<br><211> LENGTH: 96<br><212> TYPE: PRT<br><213> ORGANISM: Pseudomonas syringae   |     |
| <400> SEQUENCE: 20                                                                                  |     |
| Met Ile Ile Asp Asn Thr Phe Ala Leu Thr Leu Ser Cys Asp Tyr Ala<br>1 5 10 15                        |     |
| Arg Glu Arg Leu Leu Leu Ile Gly Leu Leu Glu Pro His Lys Asp Ile<br>20 25 30                         |     |
| Pro Gln Gln Cys Leu Leu Ala Gly Ala Leu Asn Pro Leu Leu Asn Ala<br>35 40 45                         |     |
| Gly Pro Gly Leu Gly Leu Asp Glu Lys Ser Gly Leu Tyr His Ala Tyr<br>50 55 60                         |     |
| Gln Ser Ile Pro Arg Glu Lys Leu Ser Val Pro Thr Leu Lys Arg Glu<br>65 70 75 80                      |     |
| Met Ala Gly Leu Leu Glu Trp Met Arg Gly Trp Arg Glu Ala Ser Gln<br>85 90 95                         |     |
| <210> SEQ ID NO 21<br><211> LENGTH: 1143<br><212> TYPE: DNA<br><213> ORGANISM: Pseudomonas syringae |     |
| <400> SEQUENCE: 21                                                                                  |     |
| atgaacccca ttcagtcacg cttctccagt gtgcaagagc tcagacgatc caacgttgat                                   | 60  |
| attccggcgc tcaaagccaa tggccaactg gaggtcgacg gcaagaggta cgagattcgt                                   | 120 |

# -continued

|                                                                                                                                                                                                                                                                                                                                                                                                                                             | t tteggteett                                                                                                                                                                          | cgaccggagc                                                                                                                                                                                         | aacaatccaa                                                                                                                                                                    | agcgaaaagt 180                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| tttttcaagg gcgcttccca                                                                                                                                                                                                                                                                                                                                                                                                                       | a gttgataggt                                                                                                                                                                          | ggcagcagcc                                                                                                                                                                                         | agcgcgcgca                                                                                                                                                                    | gattgcccag 240                                                                                                                      |
| gcgctcaacg agaaggtcg                                                                                                                                                                                                                                                                                                                                                                                                                        | c atcggcacgc                                                                                                                                                                          | actgtcttgc                                                                                                                                                                                         | accagagege                                                                                                                                                                    | tatgacgggc 300                                                                                                                      |
| ggacgcttgg acacccttga                                                                                                                                                                                                                                                                                                                                                                                                                       | a gcgggggggaa                                                                                                                                                                         | agcagctcag                                                                                                                                                                                         | ccacaacagc                                                                                                                                                                    | catcaaaccc 360                                                                                                                      |
| actgccaaac aggctgcgca                                                                                                                                                                                                                                                                                                                                                                                                                       | a aagtactttt                                                                                                                                                                          | aacagctttc                                                                                                                                                                                         | atgagtgggc                                                                                                                                                                    | caaacaggca 420                                                                                                                      |
| gaggcgatgc gaaacccgt                                                                                                                                                                                                                                                                                                                                                                                                                        | c tcgaatggat                                                                                                                                                                          | atctacaaga                                                                                                                                                                                         | tctataaaca                                                                                                                                                                    | agatgcacct 480                                                                                                                      |
| cactcacacc ccatgageg                                                                                                                                                                                                                                                                                                                                                                                                                        | a cgagcagcaa                                                                                                                                                                          | gaagagttcc                                                                                                                                                                                         | tgcacacgct                                                                                                                                                                    | aaaggcattg 540                                                                                                                      |
| aatggcaaaa acggcattg                                                                                                                                                                                                                                                                                                                                                                                                                        | a ggtgcgcact                                                                                                                                                                          | caggaccacg                                                                                                                                                                                         | acagcgtcag                                                                                                                                                                    | aaataaaaa 600                                                                                                                       |
| gaccgcaacc tggacaagta                                                                                                                                                                                                                                                                                                                                                                                                                       | a catcgcagag                                                                                                                                                                          | agcccggatg                                                                                                                                                                                         | caaagaggtt                                                                                                                                                                    | tttctatcga 660                                                                                                                      |
| attatcccca aacatgagc                                                                                                                                                                                                                                                                                                                                                                                                                        | g ccgagaagat                                                                                                                                                                          | aagaatcaag                                                                                                                                                                                         | ggcgattgac                                                                                                                                                                    | cattggcgtg 720                                                                                                                      |
| caaccccaat atgcaacaca                                                                                                                                                                                                                                                                                                                                                                                                                       | a gttgacccgc                                                                                                                                                                          | gccatggcaa                                                                                                                                                                                         | ccctgatagg                                                                                                                                                                    | gaaggaaagt 780                                                                                                                      |
| gcaatcacgc atggcaaag                                                                                                                                                                                                                                                                                                                                                                                                                        | t aataggcccc                                                                                                                                                                          | gcctgccacg                                                                                                                                                                                         | gccaaatgac                                                                                                                                                                    | cgattcggca 840                                                                                                                      |
| gttttgtata tcaacggtga                                                                                                                                                                                                                                                                                                                                                                                                                       | a tgttgcaaag                                                                                                                                                                          | gcagaaaagc                                                                                                                                                                                         | tgggcgagaa                                                                                                                                                                    | actgaaacag 900                                                                                                                      |
| atgagcggca ttcctctgg                                                                                                                                                                                                                                                                                                                                                                                                                        | a tgcgttcgtt                                                                                                                                                                          | gagcacaccc                                                                                                                                                                                         | ctttgagcat                                                                                                                                                                    | gcaatccctg 960                                                                                                                      |
| agtaaaggtc tgtcctatg                                                                                                                                                                                                                                                                                                                                                                                                                        | c agaaagcatc                                                                                                                                                                          | ctgggcgaca                                                                                                                                                                                         | ccagaggcca                                                                                                                                                                    | tgggatgtcg 1020                                                                                                                     |
| cgagcggaag tgatcagcga                                                                                                                                                                                                                                                                                                                                                                                                                       | a tgccttgagg                                                                                                                                                                          | atggacggga                                                                                                                                                                                         | tgccatttct                                                                                                                                                                    | ggccagattg 1080                                                                                                                     |
| aagctatcac tgtctgccaa                                                                                                                                                                                                                                                                                                                                                                                                                       | a tggctatgac                                                                                                                                                                          | ccggacaacc                                                                                                                                                                                         | cggcccttcg                                                                                                                                                                    | aaacacgaaa 1140                                                                                                                     |
| tga                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                       |                                                                                                                                                                                                    |                                                                                                                                                                               | 1143                                                                                                                                |
| <210> SEQ 1D NO 22<br><211> LENGTH: 380                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                       |                                                                                                                                                                                                    |                                                                                                                                                                               |                                                                                                                                     |
| <212> TYPE: PRT<br><213> ORGANISM: Pseud<br><400> SEQUENCE: 22                                                                                                                                                                                                                                                                                                                                                                              | lomonas syri:                                                                                                                                                                         | ngae                                                                                                                                                                                               |                                                                                                                                                                               |                                                                                                                                     |
| <212> TYPE: PRT<br><213> ORGANISM: Pseud<br><400> SEQUENCE: 22<br>Met Asn Pro Ile Gln :<br>1 5                                                                                                                                                                                                                                                                                                                                              | domonas syri:<br>Ser Arg Phe                                                                                                                                                          | ngae<br>Ser Ser Val<br>10                                                                                                                                                                          | Gln Glu Leu                                                                                                                                                                   | Arg Arg<br>15                                                                                                                       |
| <212> TYPE: PRT<br><213> ORGANISM: Pseud<br><400> SEQUENCE: 22<br>Met Asn Pro Ile Gln 3<br>1 5<br>Ser Asn Val Asp Ile 1<br>20                                                                                                                                                                                                                                                                                                               | lomonas syri:<br>Ser Arg Phe<br>Pro Ala Leu                                                                                                                                           | ngae<br>Ser Ser Val<br>10<br>Lys Ala Asn<br>25                                                                                                                                                     | Gln Glu Leu<br>Gly Gln Leu<br>30                                                                                                                                              | Arg Arg<br>15<br>Glu Val                                                                                                            |
| <212> TYPE: PRT<br><213> ORGANISM: Pseud<br><400> SEQUENCE: 22<br>Met Asn Pro Ile Gln a<br>1 5<br>Ser Asn Val Asp Ile 1<br>20<br>Asp Gly Lys Arg Tyr 0<br>35                                                                                                                                                                                                                                                                                | lomonas syri:<br>Ser Arg Phe<br>Pro Ala Leu<br>Glu Ile Arg<br>40                                                                                                                      | ngae<br>Ser Ser Val<br>10<br>Lys Ala Asn<br>25<br>Ala Ala Asp                                                                                                                                      | Gln Glu Leu<br>Gly Gln Leu<br>30<br>Asp Gly Thr<br>45                                                                                                                         | Arg Arg<br>15<br>Glu Val<br>Ile Ser                                                                                                 |
| <212> TYPE: PRT<br><213> ORGANISM: Pseud<br><400> SEQUENCE: 22<br>Met Asn Pro Ile Gln 3<br>1 5<br>Ser Asn Val Asp Ile 1<br>20<br>Asp Gly Lys Arg Tyr 0<br>35<br>Val Leu Arg Pro Glu 0<br>50                                                                                                                                                                                                                                                 | lomonas syri:<br>Ser Arg Phe<br>Pro Ala Leu<br>Glu Ile Arg<br>40<br>Gln Gln Ser<br>55                                                                                                 | ngae<br>Ser Ser Val<br>10<br>Lys Ala Asn<br>25<br>Ala Ala Asp<br>Lys Ala Lys                                                                                                                       | Gln Glu Leu<br>Gly Gln Leu<br>30<br>Asp Gly Thr<br>45<br>Ser Phe Phe<br>60                                                                                                    | Arg Arg<br>15<br>Glu Val<br>Ile Ser<br>Lys Gly                                                                                      |
| <pre>&lt;212&gt; TYPE: PRT &lt;213&gt; ORGANISM: Pseud &lt;400&gt; SEQUENCE: 22 Met Asn Pro Ile Gln 3 1 5 Ser Asn Val Asp Ile 1 20 Asp Gly Lys Arg Tyr 0 35 Val Leu Arg Pro Glu 0 50 Ala Ser Gln Leu Ile 0 65</pre>                                                                                                                                                                                                                         | domonas syri:<br>Ser Arg Phe<br>Pro Ala Leu<br>Slu Ile Arg<br>40<br>Sln Gln Ser<br>55<br>Sly Gly Ser<br>70                                                                            | ngae<br>Ser Ser Val<br>10<br>Lys Ala Asn<br>25<br>Ala Ala Asp<br>Lys Ala Lys<br>Ser Gln Arg<br>75                                                                                                  | Gln Glu Leu<br>Gly Gln Leu<br>30<br>Asp Gly Thr<br>45<br>Ser Phe Phe<br>60<br>Ala Gln Ile                                                                                     | Arg Arg<br>15<br>Glu Val<br>Ile Ser<br>Lys Gly<br>Ala Gln<br>80                                                                     |
| <pre>&lt;212&gt; TYPE: PRT &lt;213&gt; ORGANISM: Pseud &lt;400&gt; SEQUENCE: 22 Met Asn Pro Ile Gln a 1 5 Ser Asn Val Asp Ile 1 20 Asp Gly Lys Arg Tyr 0 35 Val Leu Arg Pro Glu 0 Ala Ser Gln Leu Ile 0 65 Ala Leu Asn Glu Lys  85</pre>                                                                                                                                                                                                    | lomonas syri:<br>Ser Arg Phe<br>Pro Ala Leu<br>Glu Ile Arg<br>40<br>Gln Gln Ser<br>55<br>Sly Gly Ser<br>70<br>Val Ala Ser                                                             | ngae<br>Ser Ser Val<br>10<br>Lys Ala Asn<br>Ala Ala Asp<br>Lys Ala Lys<br>Ser Gln Arg<br>75<br>Ala Arg Thr<br>90                                                                                   | Gln Glu Leu<br>Gly Gln Leu<br>30<br>Asp Gly Thr<br>45<br>Ser Phe Phe<br>60<br>Ala Gln Ile<br>Val Leu His                                                                      | Arg Arg<br>15<br>Glu Val<br>Ile Ser<br>Lys Gly<br>Ala Gln<br>80<br>Gln Ser<br>95                                                    |
| <pre>&lt;212&gt; TYPE: PRT &lt;213&gt; ORGANISM: Pseud &lt;400&gt; SEQUENCE: 22 Met Asn Pro Ile Gln a 1 5 Ser Asn Val Asp Ile I 20 Asp Gly Lys Arg Tyr 0 Asp Gly Lys Arg Tyr 0 Ala Ser Gln Leu Ile 0 Ala Ser Gln Leu Ile 0 Ala Leu Asn Glu Lys 8 S Ala Met Thr Gly Gly 2 </pre>                                                                                                                                                             | domonas syri:<br>Ser Arg Phe<br>Pro Ala Leu<br>Glu Ile Arg<br>40<br>Gln Gln Ser<br>55<br>Gly Gly Ser<br>70<br>Val Ala Ser<br>Arg Leu Asp                                              | ngae<br>Ser Ser Val<br>10<br>Lys Ala Asn<br>25<br>Ala Ala Asp<br>Lys Ala Lys<br>Ser Gln Arg<br>75<br>Ala Arg Thr<br>90<br>Thr Leu Glu                                                              | Gln Glu Leu<br>Gly Gln Leu<br>30<br>Asp Gly Thr<br>45<br>Ser Phe Phe<br>60<br>Ala Gln Ile<br>Val Leu His<br>Arg Gly Glu<br>110                                                | Arg Arg<br>15<br>Glu Val<br>Ile Ser<br>Lys Gly<br>Ala Gln<br>80<br>Gln Ser<br>95<br>Ser Ser                                         |
| <pre>&lt;212&gt; TYPE: PRT &lt;213&gt; ORGANISM: Pseud &lt;400&gt; SEQUENCE: 22 Met Asn Pro Ile Gln 3 1 5 Ser Asn Val Asp Ile 1 20 Asp Gly Lys Arg Tyr 0 35 Val Leu Arg Pro Glu 0 Ala Ser Gln Leu Ile 0 65 Ala Leu Asn Glu Lys  85 Ala Met Thr Gly Gly 2 Ser Ala Thr Thr Ala 3 115 </pre>                                                                                                                                                   | Adomonas syri:<br>Ser Arg Phe<br>Pro Ala Leu<br>Glu Ile Arg<br>40<br>Gln Gln Ser<br>55<br>Gly Gly Ser<br>70<br>Val Ala Ser<br>Arg Leu Asp<br>Ile Lys Pro<br>120                       | ngae<br>Ser Ser Val<br>10<br>Lys Ala Asn<br>Ala Ala Asp<br>Lys Ala Lys<br>Ser Gln Arg<br>75<br>Ala Arg Thr<br>90<br>Thr Leu Glu<br>105 Lys                                                         | Gln Glu Leu<br>Gly Gln Leu<br>30<br>Asp Gly Thr<br>45<br>Ser Phe Phe<br>60<br>Ala Gln Ile<br>Val Leu His<br>Arg Gly Glu<br>110<br>Gln Ala Ala                                 | Arg Arg<br>Glu Val<br>Ile Ser<br>Lys Gly<br>Ala Gln<br>80<br>Gln Ser<br>Ser Ser<br>Gln Ser                                          |
| <pre>&lt;212&gt; TYPE: PRT &lt;213&gt; ORGANISM: Pseud &lt;400&gt; SEQUENCE: 22 Met Asn Pro Ile Gln a 1 5 Ser Asn Val Asp Ile 1 20 Asp Gly Lys Arg Tyr 0 Asp Gly Lys Arg Tyr 0 Val Leu Arg Pro Glu 0 Ala Ser Gln Leu Ile 0 Ala Leu Asn Glu Lys 3 Ala Met Thr Gly Gly 2 Ser Ala Thr Thr Ala 3 Thr Phe Asn Ser Phe 1 130</pre>                                                                                                                | Adomonas syri:<br>Ser Arg Phe<br>Pro Ala Leu<br>Glu Ile Arg<br>40<br>Gln Gln Ser<br>55<br>Gly Gly Ser<br>70<br>Val Ala Ser<br>Arg Leu Asp<br>Ile Lys Pro<br>120<br>His Glu Trp<br>135 | ngae<br>Ser Ser Val<br>10<br>Lys Ala Asn<br>25<br>Ala Ala Asp<br>Lys Ala Lys<br>Ser Gln Arg<br>75<br>Ala Arg Thr<br>105 Leu Glu<br>Thr Ala Lys<br>Ala Lys Gln                                      | Gln Glu Leu<br>Gly Gln Leu<br>30<br>Asp Gly Thr<br>45<br>Ser Phe Phe<br>60 Phe<br>Ala Gln Ile<br>Val Leu His<br>Arg Gly Glu<br>110<br>Gln Ala Ala<br>125                      | Arg Arg<br>15<br>Glu Val<br>Ile Ser<br>Lys Gly<br>Ala Gln<br>80<br>Gln Ser<br>Ser Ser<br>Gln Ser<br>Met Arg                         |
| <pre>&lt;212&gt; TYPE: PRT &lt;213&gt; ORGANISM: Pseud &lt;400&gt; SEQUENCE: 22 Met Asn Pro Ile Gln a 1 5 Ser Asn Val Asp Ile I 20 Asp Gly Lys Arg Tyr 0 Asp Gly Lys Arg Tyr 0 Ala Ser Gln Leu Ile 0 Ala Ser Gln Leu Ile 0 Ala Leu Asn Glu Lys 8 5 Ala Met Thr Gly Gly 2 Ser Ala Thr Thr Ala 3 Thr Phe Asn Ser Phe I 130 Asn Pro Ser Arg Met 3 145</pre>                                                                                    | Alomonas syri:<br>Ser Arg Phe<br>Pro Ala Leu<br>Glu Ile Arg<br>40<br>Gln Gln Ser<br>55<br>Gly Gly Ser<br>70<br>Val Ala Ser<br>Arg Leu Asp<br>Ile Lys Pro<br>120<br>His Glu Trp<br>135 | ngae<br>Ser Ser Val<br>10<br>Lys Ala Asn<br>25<br>Ala Ala Asp<br>Lys Ala Lys<br>Ser Gln Arg<br>75<br>Ala Arg Thr<br>90<br>Thr Leu Glu<br>105<br>Thr Ala Lys<br>Ala Lys Gln<br>Lys Ile Tyr          | Gln Glu Leu<br>Gly Gln Leu<br>30<br>Asp Gly Thr<br>45<br>Phe Phe<br>60 Phe Phe<br>Ala Gln Ile<br>Val Leu His<br>Arg Gly Glu<br>110<br>Gln Ala Ala<br>140 Glu Ala              | Arg Arg<br>15<br>Glu Val<br>Ile Ser<br>Lys Gly<br>Ala Gln<br>80<br>Gln Ser<br>95<br>Ser Ser<br>Gln Ser<br>Met Arg<br>Ala Pro<br>160 |
| <pre>&lt;212&gt; TYPE: PRT<br/>&lt;213&gt; ORGANISM: Pseud<br/>&lt;400&gt; SEQUENCE: 22<br/>Met Asn Pro Ile Gln a<br/>1 5<br/>Ser Asn Val Asp Ile 1<br/>20<br/>Asp Gly Lys Arg Tyr 0<br/>35<br/>Val Leu Arg Pro Glu 0<br/>50<br/>Ala Ser Gln Leu Ile 0<br/>65<br/>Ala Leu Asn Glu Lys 8<br/>50<br/>Ala Met Thr Gly Gly 2<br/>50<br/>Ser Ala Thr Thr Ala 3<br/>115<br/>Thr Phe Asn Ser Phe 1<br/>130<br/>Asn Pro Ser Arg Met 2<br/>145</pre> | IdomonassyrinSerArgPheProAlaLeuSluIleArg<br>40GluIleArg<br>55SerGlyGlySer70GlySer70GlySer71AlaSerArgLeuAspIleLysPro<br>120HisGluTrp<br>135AspIleTyrSerAspGlu                          | ngae<br>Ser Ser Val<br>10<br>Lys Ala Asn<br>Ala Ala Asp<br>Lys Ala Lys<br>Ser Gln Arg<br>75<br>Ala Arg Thr<br>90<br>Thr Leu Glu<br>Thr Ala Lys<br>Ala Lys Gln<br>Lys Ile Tyr<br>155<br>Gln Gln Glu | Gln Glu Leu<br>Gly Gln Leu<br>30<br>Asp Gly Thr<br>5er Phe Phe<br>60 Phe Phe<br>Val Leu His<br>Arg Gly Glu<br>110<br>Gln Ala Ala<br>140 Glu Ala<br>Lys Gln Asp<br>Glu Phe Leu | Arg<br>15ArgGluValIleSerLysGlyAlaGln<br>80GlnSerSerSerGlnSerMetArgAlaPro<br>160HisThr                                               |

His Asp Ser Val Arg Asn Lys Lys Asp Arg Asn Leu Asp Lys Tyr Ile 200 195 Ala Glu Ser Pro Asp Ala Lys Arg Phe Phe Tyr Arg Ile Ile Pro Lys 215 210 220 His Glu Arg Arg Glu Asp Lys Asn Gln Gly Arg Leu Thr Ile Gly Val 225 230 235 240 Gln Pro Gln Tyr Ala Thr Gln Leu Thr Arg Ala Met Ala Thr Leu Ile 245 250 255 Gly Lys Glu Ser Ala Ile Thr His Gly Lys Val Ile Gly Pro Ala Cys 260 265 270 His Gly Gln Met Thr Asp Ser Ala Val Leu Tyr Ile Asn Gly Asp Val 275 280 285 Ala Lys Ala Glu Lys Leu Gly Glu Lys Leu Lys Gln Met Ser Gly Ile 290 295 300 Pro Leu Asp Ala Phe Val Glu His Thr Pro Leu Ser Met Gln Ser Leu 310 305 315 320 Ser Lys Gly Leu Ser Tyr Ala Glu Ser Ile Leu Gly Asp Thr Arg Gly 325 330 335 His Gly Met Ser Arg Ala Glu Val Ile Ser Asp Ala Leu Arg Met Asp 340 345 Gly Met Pro Phe Leu Ala Arg Leu Lys Leu Ser Leu Ser Ala Asn Gly 355 360 Tyr Asp Pro Asp Asn Pro Ala Leu Arg Asn Thr Lys 370 375 380 <210> SEQ ID NO 23 <211> LENGTH: 2598 <212> TYPE: DNA <213> ORGANISM: Pseudomonas syringae <400> SEOUENCE: 23 gtgccgcgta tcgtcgccgg ccatgcagaa ggcgtgtgcg tggtcaacgg ccggcactat gtcgagctgt ccggtagaac ctttcaagtc cattacgaca cacatctgcg cggctggcag attgtcgatc cagaaaaccc gttcgccttt tttggccagc agccggtgcg cctagatgaa caggggcaat ggcagcttgt cgcccgtcga cgtctgcgtg gcggtggcgt aggtgactcc agccatgccc acctgcccga agaaacaccg ggctccagca caggctcgat tccgagcgac tacgaaatgc cggccgccat gcaggcaggc cttgatgtcg tgttgagcaa caagccctac gacccgaccg ggattggcat ggagtcttac tttgagagct atttcgtgga tctgcgtcag agttttgtgg cgcgcaggga aaagctttat gaggatgccc ggacattttt cgccggtttt tctccgccgc caaagccgca attgcctccg ctggcgccac ctgttgccat cgacaccctg attgaacacg tcttcgcgca gggtaacggc ctggttttga gtgaagcacc gaagtcggtc gccagcaaac ggctgctgtt actcaacatg ccgctgctgg ccgaacagcg tgtcaagatt ctgtatatcg agcacctgct gaccgacaag cacctgtcta aactggccag gtatcgtcaa ctgggcaaaa agagccgctc aggctcgcac gaactcaagc attacctgca cgatctcaac cgcgggacgc tgaacaattc cagcaccgac tacgactatt accacctcat caaggcagcg catcgctatg gtatcgaggt gcgaccgttc agctcgtcga tcagctaccc gtttctggac catccggtat tgagcgcagc caacgacacg actgcagtac aaaaaatgag caattttttc ggccatacgc tcatcagcag cgatgtcgca tccgcgccga caaaacgctg ggttgccttg 1020

60

120

180

240

300

360

420

480

540

600 660

720

780

840

900

# -continued

| ctcgaccaga                 | agctggccac        | gacccacgac           | ggggtattag        | gcattgccga aatgcagggc             | 1080 |
|----------------------------|-------------------|----------------------|-------------------|-----------------------------------|------|
| gtggtcagtg                 | tgcatgtccg        | cgacatcccg           | gcaggccggc        | cgacgcgcat cactaaaggc             | 1140 |
| acaggcgaac                 | tgccacgcga        | gggcacgcag           | gcccgctgcg        | acttcacgat tgcgttttcc             | 1200 |
| gatccgacgc                 | tgattgtgcc        | ccaggcgcct           | cacccgcacg        | gtaccaaact ggacgacatg             | 1260 |
| ctgctcagag                 | aactgagggg        | ccaatctgcc           | ggtgccgggg        | gcgaacgctg ggccggccag             | 1320 |
| tacggattca                 | tccgtgacga        | ggacggtgcc           | tggcggtgga        | tcgcgcctga ggactggccc             | 1380 |
| gcagacagcc                 | cgatgacggc        | aatccagcaa           | tccctgaccg        | accctgtcta tgagatgcca             | 1440 |
| ctggacactc                 | gaacaacgct        | tcatacgctg           | gcgaacttcg        | aaagaagggg gctcgacatg             | 1500 |
| gagtatttct                 | ttgaagaaag        | ccagtacgaa           | actgttcgca        | acgtattcgc cctgcaccgc             | 1560 |
| aaaaagctgc                 | aacaggatgc        | ggccttgatc           | agcgctgtac        | agttgccgcc tcgtccgacg             | 1620 |
| atgccggccg                 | tcaaccctcg        | gacgaccacg           | gcgcagctgt        | ttgaaacgct gtaccagcac             | 1680 |
| accgatggca                 | tcgtgatcgg        | cgagtcgcat           | ttttcggtcg        | ccagcaagaa aatgatcatc             | 1740 |
| gacaacctgc                 | cgttgctgtc        | gcagcaaaac           | gtacgaacgc        | tgtacatgga gcacttgctc             | 1800 |
| accgacttgc                 | atcaggcgga        | tctggatcgc           | ttttcgaaa         | cagggcaaat gagcaaaacc             | 1860 |
| ctgcttcacg                 | acctgaaagt        | gctggatcgg           | ggccatcgca        | ccgacccgga caaggtttac             | 1920 |
| acctttgagc                 | aactggtcat        | caaggcgcag           | cagcacggca        | tggaagtccg cgccatcgac             | 1980 |
| tgcgcagcca                 | gctaccacct        | tagtggcctt           | gacaacgatg        | gttcaatcac ccgtcagcaa             | 2040 |
| atgatgaact                 | actttgcgtc        | gcgcaccctg           | cgcaggcatc        | aggacgtcat gggctcacac             | 2100 |
| aagtggatcg                 | cgctggtcgg        | caacagccat           | tccaatgtct        | atcaaggcgt cgtgcctggt             | 2160 |
| atcgccgagc                 | tggaaggcgg        | catcggcctg           | cgggttatcg        | acgtggcacc ggggcagtcg             | 2220 |
| aagggtgtca                 | tgcacgacct        | ggggggagctg          | gtctcggcag        | acatctcgag aaccaaagta             | 2280 |
| cacatcaaag                 | gcgattatcg        | agtggagata           | gaaataccgc        | gtgcgaagga tgccattcgg             | 2340 |
| ccaccccagc                 | ctgttaccct        | cgaacagcga           | ctggccagac        | cgggattgtt tctggtggaa             | 2400 |
| gagagtgagg                 | gcaatctgct        | gaccattgtc           | caccgcgctc        | gcgacacctg gattcaccgc             | 2460 |
| acgccggtgc                 | tggtcaatgc        | cgagggcaag           | ctgtacctgg        | agcgcgtgcg ctggccgcgc             | 2520 |
| atccacctca                 | aaccctttga        | tgacatggac           | gcgctggtag        | cggcgctgga ggagatgaac             | 2580 |
| ctgacgcggg                 | taggctga          |                      |                   |                                   | 2598 |
| 210 000                    | D NO 04           |                      |                   |                                   |      |
| <210> SEQ                  | CH: 865           |                      |                   |                                   |      |
| <212> TYPE:<br><213> ORGAN | NISM: Pseudo      | omonas s <b>y</b> ri | ngae              |                                   |      |
| <400> SEQUI                | ENCE: 24          |                      |                   |                                   |      |
| Val Pro Aro<br>1           | g Ile Val A<br>5  | la Gly His .         | Ala Glu Gly<br>10 | Val Cys Val Val Asn<br>15         |      |
| Gly Arg Hi                 | s Tyr Val G<br>20 | lu Leu Ser           | Gly Arg Thr<br>25 | Phe Gln Val His <b>Ty</b> r<br>30 |      |
| Asp Thr His<br>3           | s Leu Arg G<br>5  | ly Trp Gln<br>40     | Ile Val Asp       | Pro Glu Asn Pro Phe<br>45         |      |
| Ala Phe Pho<br>50          | e Gly Gln G       | ln Pro Val .<br>55   | Arg Leu Asp       | Glu Gln Gly Gln Trp<br>60         |      |
| Gln Leu Va<br>65           | l Ala Arg A       | rg Arg Leu .<br>70   | Arg Gly Gly<br>75 | Gly Val Gly Asp Ser<br>80         |      |
| Ser His Al                 | a His Leu P<br>85 | ro Glu Glu           | Thr Pro Gly<br>90 | Ser Ser Thr Gly Ser<br>95         |      |

-continued

| Ile        | Pro                | Ser        | Asp<br>100 | Tyr        | Glu                 | Met        | Pro                | Ala<br>105 | Ala        | Met                 | Gln        | Ala        | Gly<br>110 | Leu                 | Asp        |
|------------|--------------------|------------|------------|------------|---------------------|------------|--------------------|------------|------------|---------------------|------------|------------|------------|---------------------|------------|
| Val        | Val                | Leu<br>115 | Ser        | Asn        | Lys                 | Pro        | <b>Ty</b> r<br>120 | Asp        | Pro        | Thr                 | Gly        | Ile<br>125 | Gly        | Met                 | Glu        |
| Ser        | <b>Ty</b> r<br>130 | Phe        | Glu        | Ser        | Tyr                 | Phe<br>135 | Val                | Asp        | Leu        | Arg                 | Gln<br>140 | Ser        | Phe        | Val                 | Ala        |
| Arg<br>145 | Arg                | Glu        | Lys        | Leu        | <b>Ty</b> r<br>150  | Glu        | Asp                | Ala        | Arg        | Thr<br>155          | Phe        | Phe        | Ala        | Gly                 | Phe<br>160 |
| Ser        | Pro                | Pro        | Pro        | Lys<br>165 | Pro                 | Gln        | Leu                | Pro        | Pro<br>170 | Leu                 | Ala        | Pro        | Pro        | Val<br>175          | Ala        |
| Ile        | Asp                | Thr        | Leu<br>180 | Ile        | Glu                 | His        | Val                | Phe<br>185 | Ala        | Gln                 | Gly        | Asn        | Gly<br>190 | Leu                 | Val        |
| Leu        | Ser                | Glu<br>195 | Ala        | Pro        | Lys                 | Ser        | Val<br>200         | Ala        | Ser        | Lys                 | Arg        | Leu<br>205 | Leu        | Leu                 | Leu        |
| Asn        | Met<br>210         | Pro        | Leu        | Leu        | Ala                 | Glu<br>215 | Gln                | Arg        | Val        | Lys                 | Ile<br>220 | Leu        | Tyr        | Ile                 | Glu        |
| His<br>225 | Leu                | Leu        | Thr        | Asp        | L <b>y</b> s<br>230 | His        | Leu                | Ser        | Lys        | Leu<br>235          | Ala        | Arg        | Tyr        | Arg                 | Gln<br>240 |
| Leu        | Gly                | Lys        | Lys        | Ser<br>245 | Arg                 | Ser        | Gly                | Ser        | His<br>250 | Glu                 | Leu        | Lys        | His        | <b>Ty</b> r<br>255  | Leu        |
| His        | Asp                | Leu        | Asn<br>260 | Arg        | Gly                 | Thr        | Leu                | Asn<br>265 | Asn        | Ser                 | Ser        | Thr        | Asp<br>270 | Tyr                 | Asp        |
| Tyr        | Tyr                | His<br>275 | Leu        | Ile        | Lys                 | Ala        | Ala<br>280         | His        | Arg        | Tyr                 | Gly        | Ile<br>285 | Glu        | Val                 | Arg        |
| Pro        | Phe<br>290         | Ser        | Ser        | Ser        | Ile                 | Ser<br>295 | Tyr                | Pro        | Phe        | Leu                 | Asp<br>300 | His        | Pro        | Val                 | Leu        |
| Ser<br>305 | Ala                | Ala        | Asn        | Asp        | Thr<br>310          | Thr        | Ala                | Val        | Gln        | L <b>y</b> s<br>315 | Met        | Ser        | Asn        | Phe                 | Phe<br>320 |
| Gly        | His                | Thr        | Leu        | Ile<br>325 | Ser                 | Ser        | Asp                | Val        | Ala<br>330 | Ser                 | Ala        | Pro        | Thr        | L <b>y</b> s<br>335 | Arg        |
| Trp        | Val                | Ala        | Leu<br>340 | Leu        | Asp                 | Gln        | Lys                | Leu<br>345 | Ala        | Thr                 | Thr        | His        | Asp<br>350 | Gly                 | Val        |
| Leu        | Gly                | Ile<br>355 | Ala        | Glu        | Met                 | Gln        | Gl <b>y</b><br>360 | Val        | Val        | Ser                 | Val        | His<br>365 | Val        | Arg                 | Asp        |
| Ile        | Pro<br>370         | Ala        | Gly        | Arg        | Pro                 | Thr<br>375 | Arg                | Ile        | Thr        | Lys                 | Gly<br>380 | Thr        | Gly        | Glu                 | Leu        |
| Pro<br>385 | Arg                | Glu        | Gly        | Thr        | Gln<br>390          | Ala        | Arg                | Cys        | Asp        | Phe<br>395          | Thr        | Ile        | Ala        | Phe                 | Ser<br>400 |
| Asp        | Pro                | Thr        | Leu        | Ile<br>405 | Val                 | Pro        | Gln                | Ala        | Pro<br>410 | His                 | Pro        | His        | Gly        | Thr<br>415          | Lys        |
| Leu        | Asp                | Asp        | Met<br>420 | Leu        | Leu                 | Arg        | Glu                | Leu<br>425 | Arg        | Gly                 | Gln        | Ser        | Ala<br>430 | Gly                 | Ala        |
| Gly        | Gly                | Glu<br>435 | Arg        | Trp        | Ala                 | Gly        | Gln<br>440         | Tyr        | Gly        | Phe                 | Ile        | Arg<br>445 | Asp        | Glu                 | Asp        |
| Gly        | Ala<br>450         | Trp        | Arg        | Trp        | Ile                 | Ala<br>455 | Pro                | Glu        | Asp        | Trp                 | Pro<br>460 | Ala        | Asp        | Ser                 | Pro        |
| Met<br>465 | Thr                | Ala        | Ile        | Gln        | Gln<br>470          | Ser        | Leu                | Thr        | Asp        | Pro<br>475          | Val        | Tyr        | Glu        | Met                 | Pro<br>480 |
| Leu        | Asp                | Thr        | Arg        | Thr<br>485 | Thr                 | Leu        | His                | Thr        | Leu<br>490 | Ala                 | Asn        | Phe        | Glu        | Arg<br>495          | Arg        |
| Gly        | Leu                | Asp        | Met<br>500 | Glu        | Tyr                 | Phe        | Phe                | Glu<br>505 | Glu        | Ser                 | Gln        | Tyr        | Glu<br>510 | Thr                 | Val        |

-continued

| Arg                | Asn                                                   | Val<br>515         | Phe        | Ala        | Leu        | His        | Arg<br>520 | Lys                | Lys        | Leu        | Gln        | Gln<br>525 | Asp                 | Ala                | Ala                |
|--------------------|-------------------------------------------------------|--------------------|------------|------------|------------|------------|------------|--------------------|------------|------------|------------|------------|---------------------|--------------------|--------------------|
| Leu                | Ile<br>530                                            | Ser                | Ala        | Val        | Gln        | Leu<br>535 | Pro        | Pro                | Arg        | Pro        | Thr<br>540 | Met        | Pro                 | Ala                | Val                |
| Asn<br>545         | Pro                                                   | Arg                | Thr        | Thr        | Thr<br>550 | Ala        | Gln        | Leu                | Phe        | Glu<br>555 | Thr        | Leu        | Tyr                 | Gln                | His<br>560         |
| Thr                | Asp                                                   | Gly                | Ile        | Val<br>565 | Ile        | Gly        | Glu        | Ser                | His<br>570 | Phe        | Ser        | Val        | Ala                 | Ser<br>575         | Lys                |
| Lys                | Met                                                   | Ile                | Ile<br>580 | Asp        | Asn        | Leu        | Pro        | Leu<br>585         | Leu        | Ser        | Gln        | Gln        | Asn<br>590          | Val                | Arg                |
| Thr                | Leu                                                   | <b>Ty</b> r<br>595 | Met        | Glu        | His        | Leu        | Leu<br>600 | Thr                | Азр        | Leu        | His        | Gln<br>605 | Ala                 | Asp                | Leu                |
| Asp                | Arg<br>610                                            | Phe                | Phe        | Glu        | Thr        | Gly<br>615 | Gln        | Met                | Ser        | Lys        | Thr<br>620 | Leu        | Leu                 | His                | Asp                |
| Leu<br>625         | Lys                                                   | Val                | Leu        | Asp        | Arg<br>630 | Gly        | His        | Arg                | Thr        | Asp<br>635 | Pro        | Asp        | Lys                 | Val                | <b>Ty</b> r<br>640 |
| Thr                | Phe                                                   | Glu                | Gln        | Leu<br>645 | Val        | Ile        | Lys        | Ala                | Gln<br>650 | Gln        | His        | Gly        | Met                 | Glu<br>655         | Val                |
| Arg                | Ala                                                   | Ile                | Asp<br>660 | Cys        | Ala        | Ala        | Ser        | <b>Ty</b> r<br>665 | His        | Leu        | Ser        | Gly        | Leu<br>670          | Asp                | Asn                |
| Asp                | Gly                                                   | Ser<br>675         | Ile        | Thr        | Arg        | Gln        | Gln<br>680 | Met                | Met        | Asn        | Tyr        | Phe<br>685 | Ala                 | Ser                | Arg                |
| Thr                | Leu<br>690                                            | Arg                | Arg        | His        | Gln        | Asp<br>695 | Val        | Met                | Gly        | Ser        | His<br>700 | Lys        | Trp                 | Ile                | Ala                |
| Leu<br>705         | Val                                                   | Gly                | Asn        | Ser        | His<br>710 | Ser        | Asn        | Val                | Tyr        | Gln<br>715 | Gly        | Val        | Val                 | Pro                | Gl <b>y</b><br>720 |
| Ile                | Ala                                                   | Glu                | Leu        | Glu<br>725 | Gly        | Gly        | Ile        | Gly                | Leu<br>730 | Arg        | Val        | Ile        | Asp                 | Val<br>735         | Ala                |
| Pro                | Gly                                                   | Gln                | Ser<br>740 | Lys        | Gly        | Val        | Met        | His<br>745         | Asp        | Leu        | Gly        | Glu        | Leu<br>750          | Val                | Ser                |
| Ala                | Asp                                                   | Ile<br>755         | Ser        | Arg        | Thr        | Lys        | Val<br>760 | His                | Ile        | Lys        | Gly        | Asp<br>765 | Tyr                 | Arg                | Val                |
| Glu                | Ile<br>770                                            | Glu                | Ile        | Pro        | Arg        | Ala<br>775 | Lys        | Asp                | Ala        | Ile        | Arg<br>780 | Pro        | Pro                 | Gln                | Pro                |
| Val<br>785         | Thr                                                   | Leu                | Glu        | Gln        | Arg<br>790 | Leu        | Ala        | Arg                | Pro        | Gly<br>795 | Leu        | Phe        | Leu                 | Val                | Glu<br>800         |
| Glu                | Ser                                                   | Glu                | Gly        | Asn<br>805 | Leu        | Leu        | Thr        | Ile                | Val<br>810 | His        | Arg        | Ala        | Arg                 | <b>A</b> sp<br>815 | Thr                |
| Trp                | Ile                                                   | His                | Arg<br>820 | Thr        | Pro        | Val        | Leu        | Val<br>825         | Asn        | Ala        | Glu        | Gly        | L <b>y</b> s<br>830 | Leu                | Tyr                |
| Leu                | Glu                                                   | Arg<br>835         | Val        | Arg        | Trp        | Pro        | Arg<br>840 | Ile                | His        | Leu        | Lys        | Pro<br>845 | Phe                 | Asp                | Asp                |
| Met                | Asp<br>850                                            | Ala                | Leu        | Val        | Ala        | Ala<br>855 | Leu        | Glu                | Glu        | Met        | Asn<br>860 | Leu        | Thr                 | Arg                | Val                |
| Gl <b>y</b><br>865 |                                                       |                    |            |            |            |            |            |                    |            |            |            |            |                     |                    |                    |
| <210               | )> SE<br>L> T.F                                       | Q II<br>NGTH       | NO         | 25         |            |            |            |                    |            |            |            |            |                     |                    |                    |
| <212               | 2> TY                                                 | PE:                | PRT        | <b>.</b>   | £          | <u> </u>   |            |                    |            |            |            |            |                     |                    |                    |
| <213               | <213> ORGANISM: Artificial Sequence<br><220> FEATURE: |                    |            |            |            |            |            |                    |            |            |            |            |                     |                    |                    |

<223> OTHER INFORMATION: Description of Artificial Sequence: human immunodeficiency virus, TAT protein transduction domain

-continued

100

<400> SEQUENCE: 25 Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg 5 10 1 <210> SEQ ID NO 26 <211> LENGTH: 42 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: hopPtoC primer <400> SEQUENCE: 26 agtcggatcc gaatagggcg ctgaaaatat gacaatcgtg tc 42 <210> SEQ ID NO 27 <211> LENGTH: 55 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: hopPtoC primer <400> SEQUENCE: 27 agtcctcgag tcacttgtca tcgtcgtcct tgtagtcgtg tatttttgaa gcgaa 55 <210> SEQ ID NO 28 <211> LENGTH: 45 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: hopPtoD1 primer <400> SEQUENCE: 28 ccacacattg gatccgatta cttcatccgg gacagctgat agcgc 45 <210> SEQ ID NO 29 <211> LENGTH: 55 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: hopPtoD1 primer <400> SEQUENCE: 29 attctcgagt catttatcat catcatcttt ataatcgggt gcgggctgcc gcgac 55 <210> SEQ ID NO 30 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: hopPtoD2 primer <400> SEQUENCE: 30 atgcaagett atccaatgcc tttcgtca 28 <210> SEQ ID NO 31 <211> LENGTH: 58 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: hopPtoD2 primer

-continued

101

<400> SEQUENCE: 31 atgcctcgag tcaagcgtaa tctggaacat cgtatgggta ttctaacgct attttgc 58 <210> SEQ ID NO 32 <211> LENGTH: 28 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: hopPtoJ primer <400> SEQUENCE: 32 agtaaagctt gagctgcacg catgcgag 28 <210> SEQ ID NO 33 <211> LENGTH: 55 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: hopPtoJ primer <400> SEQUENCE: 33 55 agtatctaga tcacttgtca tcgtcgtcct tgtagtcttg tgcgaccaga tgttt <210> SEQ ID NO 34 <211> LENGTH: 29 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: hopPtoK primer <400> SEQUENCE: 34 29 gcgaattcat cggtttaatc acgcaaggc <210> SEQ ID NO 35 <211> LENGTH: 25 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: hopPtoK primer <400> SEQUENCE: 35 ttggtacctc agcagtagag cgtgt 25 <210> SEQ ID NO 36 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Description of Artificial Sequence: hopPtoK primer <400> SEQUENCE: 36 aaggateege agagegtgte gegaee 26 What is claimed:

**1**. An isolated nucleic acid molecule comprising a nucleotide sequence which

encodes a protein or polypeptide comprising SEQ ID No: 12.

**2**. The nucleic acid molecule according to claim **1**, wherein the nucleic acid molecule comprises the nucleotide sequence according to SEQ ID No: 11.

3. The nucleic acid molecule according to claim 1,  $_{10}$  wherein the nucleic acid molecule is DNA.

4. An expression system comprising a vector into which is inserted the nucleic acid molecule according to claim 3.

5. The expression system according to claim 4, wherein the nucleic acid molecule is inserted in sense orientation relative to a promoter.

6. A host cell comprising the nucleic acid molecule according to claim 3.

7. The host cell according to claim 6, wherein the host cell is a bacterial cell or a plant cell.

**8**. The host cell according to claim **7**, wherein the bacterial cell is *Agrobacterium*.

9. A transgenic plant comprising the nucleic acid molecule according to claim 3. **10**. A method of making a transgenic plant cell comprising:

providing nucleic acid molecule according to claim **3**, and transforming a plant cell with the nucleic acid molecule, whereby the nucleic acid molecule is expressed by the transformed plant cell.

**11**. A method of making a transgenic plant comprising:

transforming a plant cell with the nucleic acid molecule according to claim **3**, whereby the nucleic acid molecule is expressed by the transformed plant cell, and

regenerating a transgenic plant from the transformed plant cell.

**12.** A method of making a plant hypersusceptible to colonization by nonpathogenic bacteria, said method com-15 prising:

transforming a plant cell with the nucleic acid molecule of claim **3**, and

regenerating a transgenic plant from the transformed plant cell,

wherein a transgenic plant expresses a protein or polopeptide encoded by a nucleic acid molecule, thereby rendering the transgenic plant hypersusceptible to colonization by nonpathogenic bacteria.

\* \* \* \* \*