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Abstract 

Aim.— Many hypotheses posit that species-rich tropical communities are dominated by species-

species interactions, apparent as competitive exclusion or character displacement, whereas 

species-poor temperate communities are dominated by species-environment interactions. Recent 

studies demonstrate a strong influence of macroevolutionary and biogeographic factors. We 

simultaneously test for the effects of species interactions, climate, and biotic interchange on 

Western Hemisphere mammal communities using a phylogenetic and functional diversity 

approach.  

Location.— Western Hemisphere. 

Time period.— Modern 

Major taxa studied.— Mammalia 

Methods.— Using Western Hemisphere mammal distributional and body mass data, we calculate 

body mass dispersion, phylogenetic diversity (Net Relatedness Index), and assemblage-averaged 

rates of co-occurrence (Checkerboard scores) in 100 km by 100 km grid cells under an equal area 

projection. We model body mass dispersion as a function of phylogenetic diversity, co-

occurrence rates, and species richness, as well as mean annual temperature and precipitation. We 

infer rates of dispersal among the temperate and tropical zones of the Western Hemisphere using 

phylogenetic methods.  

Results.— The dispersion of Northern Temperate mammal body masses is higher than null 

communities and shows correlated change with climate, consistent with resource competition 

and environmental filtering. Conversely, the dispersion of tropical and Southern Temperate 

mammal body masses are lower than and not differentiable from null expectations, respectively, 

suggesting a limited role of species-species and species-environment interactions at the grain of 
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our analysis. Low tropical body mass dispersion and phylogenetic evenness are best explained by 

the high rates of faunal mixing. High rates of dispersal might also explain the similarity in 

community structure between the Southern temperate and tropical zones.  

Main Conclusions.— Mammal community assembly processes differ among the temperate and 

tropical zones of the Western Hemisphere and faunal mixture during dispersal events such as the 

Great American Biotic Interchange (Pliocene ~3 Ma) may have been important in structuring 

Western Hemisphere mammal communities. 
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Introduction 

Latitudinal richness gradients (i.e. the decline in species numbers from the tropics to the 

poles) are nearly ubiquitous, having been observed for many terrestrial and marine organisms in 

both the present and the past (Brown, 1984; Currie, 1991; Willig & Lyons, 1998; Lyons & 

Willig, 1999, 2002; Hawkins et al., 2003; Rose et al., 2011; Fraser et al., 2014; Mannion et al., 

2014; Marcot et al., 2016). The numerous hypotheses proposed to explain the formation of 

latitudinal diversity gradients typically posit differences in the primary drivers of community 

assembly between the species-rich tropical and, comparatively species-poor, temperate regions 

of the world (Willig et al., 2003; Mittelbach et al., 2007; Belmaker & Jetz, 2015). Species-

environment (i.e., environmental filters or energy availability constraints) (Hawkins et al., 2003), 

species-species (i.e., competition or ecological constraints on coexistence) (Connor & 

Simberloff, 1979; Mittelbach et al., 2007; Martin & Pfennig, 2009; Lamanna et al., 2014), 

macroevolutionary (i.e., differences in speciation and extinction rates) (Jablonski et al., 2006; 

Weir & Schluter, 2007; Condamine et al., 2012; Rolland et al., 2014; Weir, 2014), and historical 

(i.e., regional differences in area and age) (Rosenzweig, 1995; Fine & Ree, 2006; Jetz & Fine, 

2012) effects on community assembly are commonly invoked to explain differences in species 

richness amongst temperate and tropical zones.  

Classical niche theory predicts that differences in the ways species share niche space 

amongst assemblages reflect differences in community assembly mechanisms (MacArthur & 

Levins, 1967). Disentangling the relative roles of environmental, ecological, and historical 

drivers on community assembly therefore requires the comparison of species niche occupation 

within and among regions that we believe impart particularly strong ecological and 
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environmental pressures or have differed markedly in the historical processes responsible for 

populating the regional species pool. Many studies of latitudinal diversity gradients rely on 

species counts as the variable of interest. Unfortunately, species counts cannot reveal the relative 

roles of species-environment and species-species interactions nor historical contingencies in 

community assembly (Safi et al., 2011; Lamanna et al., 2014). However, the advent of methods 

for quantifying the phylogenetic and functional diversity of species assemblages is enabling 

ecologists to more directly test for differences in community assembly among regions 

(Mittelbach et al., 2007; Cantalapiedra et al., 2014; Lamanna et al., 2014; Rolland et al., 2014). 

In particular, comparing and contrasting evolutionary and trait distances among species in 

different assemblages is leading to a more thorough understanding of the differences in the 

drivers of community assembly amongst latitudes (Cadotte et al., 2013).  

Environmental filtering, a classical species-environment interaction, is a process whereby 

species are sorted along abiotic gradients according to their environmental tolerances. Under a 

strong environmental filter, such as a latitudinal or altitudinal climate gradient, species may meet 

the limits of their environmental tolerances and be excluded from communities (Hawkins et al., 

2003; Soininen et al., 2007a; Soininen, 2010). Species in the same assemblage may therefore 

share environmental tolerances and show strong trait similarity (MacArthur & Levins, 1967; 

Soininen et al., 2007b; Cavender-Bares et al., 2009; Lamanna et al., 2014). Furthermore, if traits 

linked to environmental tolerance show strong phylogenetic signal (i.e., a strong correlation 

between phylogenetic distances and trait values), both phylogenetic and trait distances should be 

small for species in the same assemblage (Qian et al., 2013; Cantalapiedra et al., 2014).  

Competition involves strong inter- or intraspecific interactions, typically for access to 

resources (Schoener, 1974). Competition for resources may be most intense when closely related 
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species in an assemblage share traits (e.g. body size or diet), potentially lowering the fitness of 

populations from one or both species (Webb et al., 2002; Wiens & Graham, 2005; Ricklefs, 

2010). As a result, species may undergo either character displacement or competitive exclusion 

(via limiting similarity) to reduce the intensity of competition (Mayfield & Levine, 2010). The 

outcomes of both character displacement and competitive exclusion via limiting similarity are 

reduced niche overlap amongst co-existing species. However, the latter may also lead to the 

spatial segregation of closely related species and thus coexistence of phylogenetically distantly 

related taxa (Schoener, 1974; Connor & Simberloff, 1979; Damuth, 1981; Brown, 1984; 

Cavender-Bares et al., 2006; Cavender-Bares et al., 2009; Mayfield & Levine, 2010). 

Alternatively, if habitat preferences and competitiveness (i.e., the ability to exploit resources) 

show strong phylogenetic signal, competitive exclusion may lead to coexistence of 

phylogenetically closely related taxa (Mayfield & Levine, 2010).    

Historical processes (i.e., macroevolution and dispersal or biotic interchange) are those 

that determine how many and which types of species are present in a regional pool and available 

to colonize local communities (Weir & Schluter, 2007; Morales-Castilla et al., 2012; 

Cantalapiedra et al., 2014; Rolland et al., 2015). Incipient speciation with low rates of dispersal 

into adjacent regions can lead to high rates of dissimilarity among regional faunas and, if rates of 

species formation differ sufficiently, large differences in species richness (Ricklefs, 1987; 

Mittelbach et al., 2007; Weir & Schluter, 2007; McPeek, 2008; Buckley et al., 2010; Cardillo, 

2011; Weir, 2014; Fine, 2015; Oliveira et al., 2016). Similarly, imbalance in rates of extinction 

among clades can lead to large regional differences in richness and niche packing (Johnson, 

2002; Razafindratsima et al., 2012; Faurby & Svenning, 2015; Fraser et al., 2015; Lyons et al., 

2016). 
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Dispersal is a process by which individuals of a species colonize new areas. Rates of 

dispersal and dispersal ability are dependent on the environmental tolerances of species and 

associated with population-level characteristics such as rates of birth and death (Jocque et al., 

2010; Baselga et al., 2012; Dobrovolski et al., 2012). Biogeographic factors such as physical 

distance and regional connectivity also influence the likelihood of dispersal amongst regions 

(Bacon et al., 2015). At large spatial scales, faunal mixing as a result of interchange may 

influence the intensity of competitive interactions, filling of trait space, and, in turn, rates of 

speciation and extinction (Ricklefs, 2010; Green et al., 2011; Hunt, 2013). Such biotic 

interchange has occurred numerous times throughout the history of life (Jablonski, 1993; 

Vermeij, 2005; Jablonski et al., 2013) and is likely a major contributor to differences in 

community assembly amongst biogeographic regions globally (Baselga et al., 2012; Morales-

Castilla et al., 2012; Cantalapiedra et al., 2014).  

Herein, we use a functional and phylogenetic diversity framework to test for the 

differential influence of species-species interactions, species-environment interactions, and 

historical biotic interchange on mammal community assembly in the tropical and temperate 

zones of the Western Hemisphere. We quantify the phylogenetic and trait distances of Western 

Hemisphere mammal assemblages (defined as species whose ranges overlap with the center of 

100 km x 100 km grid cells) using body size dispersion (i.e., mean pairwise differences in ln 

transformed body mass; BMdist) (Fritz & Purvis, 2010) and phylogenetic assemblage structure 

(i.e., Net Relatedness Index, NRI or standardized mean pairwise phylogenetic distances) (Webb 

et al., 2002). High values of BMdist indicate reduced niche similarity among coexisting species 

(evenness) while low values indicate niche overlap (clustering). Similarly, high values of NRI 
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indicate the coexistence of phylogenetically distantly-related species (phylogenetic evenness) 

and low values, coexistence of phylogenetically closely-related species (phylogenetic clustering).  

Body mass dispersion has been used elsewhere as a measure of functional diversity (Fritz 

& Purvis, 2010). We use body mass as the functional trait of interest because mammalian body 

size is a determinant of many niche characteristics including inter alia geographic range size, 

population density, dispersal ability, life history, metabolism, and the thermal niche (Peters, 

1983). Furthermore, body mass is collinear with many of the additional traits (e.g., diet) included 

in the calculation of functional diversity (Pineda-Munoz et al., 2016). As a result, studies that 

include additional functional variables such as broad dietary category diet (e.g., herbivore, 

carnivore) do not yield spatial patterns of functional diversity different from those expected for 

body mass dispersion alone (e.g., functional clustering in the tropics) (Safi et al., 2011; Oliveira 

et al., 2016; Mazel et al., 2017), suggesting that body mass does capture the major axes of niche 

variation (Rowan et al., 2016). Body mass is also a highly heritable trait among mammals (Smith 

et al., 2004) and therefore shows significant phylogenetic signal (Fig. 1A).  

To infer rates of faunal mixing, we use assemblage-averaged species co-occurrence rates 

(i.e., Checkerboard Scores or C-scores) and reconstruct rates of historical dispersal among the 

tropical and temperate biogeographic zones of the Western Hemisphere (Ree et al., 2005; Ree & 

Smith, 2008; Matzke, 2013; Matzke, 2014, 2016). C-scores have previously only been tabulated 

for pairs of species in a series of assemblages (Stone & Roberts, 1990; Gotelli, 2000). Herein, we 

average the C-scores at the assemblage scale because average values should, for example, reveal 

regions of range overlap for species that otherwise do not co-occur (i.e., regions of faunal 

mixing).  
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We assess three major groups of assembly hypotheses including environmental filtering, 

competition, and historical dispersal (also referred to as biotic interchange). The following 

predictions are summarized in Table 1: 

i) Environmental filtering may increasingly constrain the ecological diversity of species 

assemblages, leading to reduced body mass dispersion and increased NRI relative to 

null assemblages, in correlation with abiotic factors such as mean annual temperature 

and precipitation. 

ii) Classical niche theory predicts that the strength of competitive interactions is 

reflected in the division of niche space. Species are driven apart in niche space by 

both competitive exclusion via limiting similarity and character displacement. Both 

scenarios predict high body mass dispersion but only limiting similarity predicts low 

values of the Net Relatedness Index relative to null communities. Conversely, we 

predict that competitive exclusion resulting from phylogenetic conservation of 

competitive abilities should lead to both low body mass dispersion and high values of 

NRI relative to null communities. In all scenarios, species richness should predict the 

intensity of competitive interactions. We assume that competitive interactions are 

detectable at the grain of our analysis (10,000 km2 grid cells). Typically, competitive 

interactions are thought to play out at relatively small spatial scales. However, 

support for competitive interactions at the grain of our analysis would provide very 

strong evidence for their operation at large spatial scales. Nonetheless, we are careful 

not to interpret a lack of support as evidence against the operation of resource 

competition (that is, failing to reject a null hypothesis cannot be interpreted as support 

for the null hypothesis). 
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iii) Dispersal events such as the Great American Biotic Interchange (~ 3 Ma; as well as 

those that occurred earlier) involved the asymmetric exchange of species amongst 

biogeographic zones in the Western Hemisphere. We therefore assume that 

reconstructed rates of interchange amongst the temperate and tropical zones reflect 

historical rates of dispersal. Furthermore, regions that have acted as either a biotic 

sink or source for dispersing species should be comprised of species that have had 

otherwise distinct evolutionary histories (i.e., they should show phylogenetic 

evenness or low values of NRI). Because C-scores are highest for spatially segregated 

species. Regions through which biotic interchange has occurred or is occurring should 

show the highest assemblage averaged C-scores.  

Materials and Methods 

 We downloaded Digital Distribution Maps of Western Hemisphere non-volant Mammals 

(Patterson et al., 2007), which represent historical mammal ranges. Such maps are preferable to 

the IUCN maps for our purposes because they reduce the extent to which our conclusions are 

contingent on human influences. These data have been used in similar recent studies of Western 

Hemisphere mammal diversity (Polly et al., 2017). We used the taxonomy of Wilson and Reeder 

(2005). The dataset included 1366 species after the exclusion of a small number of unreadable or 

corrupted files. We sampled the ranges of extant Western Hemisphere mammals using a 

Behrmann equal area projection (Faurby & Svenning, 2015) and 100 km by 100 km grid cells. 

Smaller grid cell sizes are subject to bias (Hurlbert & Jetz, 2007). We considered grid cells to be 

occupied by a species if the center of the cell intersected with its geographic range (Safi et al., 

2011; Faurby & Svenning, 2015). The result was a species by grid cell occurrence matrix, which 

we used for all further analyses.  
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Body Mass Dispersion.— 

We downloaded body size data for 1070 western hemisphere mammal species from the 

PanTHERIA database (Jones et al., 2009). Body masses were ln transformed before further 

analysis. We tested for phylogenetic signal in ln transformed body masses using the phylogeny 

of (Fritz et al., 2009) and Pagel’s lambda in the phytools R package (Revell, 2013). We used 

ancestral state reconstruction (contMap in phytools) to visualize the distribution of body masses 

on the Western Hemisphere mammal phylogenetic tree (Revell, 2013). We did not use ancestral 

state reconstruction of body mass for any purpose beyond visualization.  

Because body size is a strong determinant of many niche axes in mammals and shows strong 

phylogenetic signal (Fig. 1A) (Peters 1983, Western 1979), we assume that similarity in body 

mass is indicative of niche overlap and thus potential to compete for resources. Therefore, we 

used body size dispersion (i.e., the average of all pairwise difference in body mass among co-

occurring species) as a metric for average rates of niche overlap (Fritz & Purvis, 2010). We 

calculated body mass dispersion (BMdist) as the mean of the Euclidean distances or absolute 

differences between all pairs of species in each grid cell. BMdist is equivalent to other mean 

pairwise distance metrics.   

In the absence of niche-based community assembly processes, communities may be 

comprised of a random subset of species available to colonize a local community. We compared 

observed BMdist patterns to two null models due to reviewer concerns regarding null model 

choice. The first was a set of 100 randomizations per grid cell where species were selected from 

the sample of Western Hemisphere mammals within each region (i.e., the regional pool was 

comprised only of species in the same biogeographic zone, i.e., Tropics, Southern Temperate, or 

Northern Temperate) (Lamanna et al., 2014). Total richness was preserved in each cell but 
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species occupancy was not. For the second null model, we used the independent swap algorithm 

of (Gotelli, 2000). Swap algorithms, such as the one used here, start with the original occurrence 

matrix and involve randomly choosing submatrices with adjacent 1’s and 0’s then swapping 

them while retaining the row and column totals (Gotelli, 2000; Gotelli & Entsminger, 2001). We 

used 100,000 iterations of the independent swap algorithm per randomized occurrence matrix of 

which we generated 100. We have chosen to focus on the results of the independent swap 

because null models that maintain both grid cell richness and species occupancy yield the most 

reasonable rates of both Type I and Type II error (Kembel, 2009). Observed BMdist was 

compared to the randomized communities using standardized effect sizes calculated as SES = 

(observed – mean(random)) / sd(random).  

Because species at the same trophic level might compete most strongly for resources, we also 

calculated BMdist for all Western Hemisphere mammals and then separately for herbivores plus 

omnivores (948 species). Carnivoran diversity is too low in the Western Hemisphere for 

sufficient analysis.  

Phylogenetic Assemblage Structure.— 

Using the phylogeny of (Fritz et al., 2009), we calculated the Net Relatedness Index (NRI) 

for each grid cell in the Western Hemisphere using the picante R package (Webb, 2000; Webb et 

al., 2002; Kembel et al., 2014). The Net Relatedness Index is the standardized effect size of 

mean pairwise phylogenetic distances (MPD) among co-occurring species (Webb et al., 2002). 

We have chosen NRI from among the several available metrics for phylogenetic diversity 

because it shows less co-linearity with species richness due to explicit incorporation of a null 

model (Oliveira et al., 2016).  

The Net Relatedness Index is calculated as: 
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��� = −1 ∗
�	
�������(�	
���)

���(�	
���)
                                                                (Equation 1) 

where MPDobs is the observed mean pairwise phylogenetic distance among species in the 

observed community and MPDexp is calculated from a large sample of randomly drawn 

communities (Webb, 2000). Positive values of NRI indicate that species in an assemblage (i.e. 

species that co-occur within a specific community) are more closely related than expected by 

chance (phylogenetically clustered). Negative values of NRI indicate that species in an 

assemblage are more distantly related than expected by chance (phylogenetically even). NRI 

values of zero indicate phylogenetic randomness (Webb, 2000; Webb et al., 2002).  

As with body mass dispersion, we compared the outcome of two null models available in 

the picante R package (Kembel et al., 2014). The first involved shuffling the taxon labels across 

the species by grid cell occurrence matrix, which maintains the grid cell richness but not species 

occupancy (equivalent results to shuffling the tips of the phylogenetic tree). The second was the 

independent swap algorithm, which retains both grid cell richness and species occupancy, a 

desirable property for ecophylogenetics (Gotelli, 2000; Kembel & Hubbell, 2006; Hardy, 2008; 

Kembel, 2009). Both null models produced curves of similar shape (Fig. 2B; Fig. S1B). We have 

therefore chosen only to discuss the latter.   

Estimating Rates of Co-occurrence.— 

The Checkerboard or C-score quantifies how frequently two species co-occur at a series of 

sites (Stone & Roberts, 1990). C-scores (varying between zero and one) are highest amongst 

species with limited or non-existent range overlap and lowest for species pairs whose ranges 

overlap heavily or otherwise show no apparent disassociation (Stone & Roberts, 1990). Prior to 

this study, C-scores have been tabulated only amongst pairs of species. Herein, we average the 

C-scores across all species found in individual assemblages, an approach which to our 
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knowledge has never before been employed. We average C-scores to identify areas of faunal 

mixing because average C-scores should, for example, reveal regions of range overlap for 

species that otherwise do not co-occur. That is, regions of faunal mixing should have the highest 

average C-scores.  

For each pair of species in each grid cell, we calculated checkerboard scores or C-scores. C-

scores (���) are calculated as: 

��� =
�� �! "#��"�! "#

(� $�"�! ")
       (Equation 2) 

where ri is the number of sites in which species i occurs, rj is the number of sites in which 

species j occurs, and %�� is the number at which both species occur (Stone & Roberts, 1990).  The 

term in the denominator standardizes the C-score for differences in the number of sites, in this 

case grid cells, among occurrence matrices. A large C-score indicates that two species do not co-

occur frequently while a low C-score indicates that the distributions of two species show high 

overlap (Stone & Roberts, 1990). We then averaged the C-scores for species co-occurring in 

each grid cell to identify areas of faunal mixing.  

 We used the independent swap algorithm of (Gotelli, 2000) to generate randomized 

communities and re-calculate average C-scores for each grid cell. As with BMdist, we calculated 

standardized effect sizes for each grid cell. 

Missing Data.— 

Because there are several species for which we do not possess body size data, we 

evaluated whether their exclusion may have introduced systematic biases. We replaced missing 

body mass data with genus averages and re-calculated BMdist, NRI, and C-scores for all grid cells 

(1300 species). For BMdist and NRI, we used only the independent swap algorithm to generate 

null models. We found no major differences and thus performed all analyses using the original 
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sample of 1070 species (i.e. we did not include species with genus averaged body mass in the 

final set of analyses or in tests for phylogenetic signal as described above). 

Grid cell size.— 

 To test for the effect of our choice of 100 km by 100 km grid cells, we produced a grid 

cell by species occurrence matrix with 50 km by 50 km grid cells (although small grid cells are 

known to be biased) (Hurlbert & Jetz, 2007). We re-calculated BMdist, NRI (using the 

independent swap algorithm), and average C-scores, as above.  

Modelling Body Mass Dispersion.— 

We extracted mean annual temperature (MAT) and mean annual precipitation (MAP) data 

for each grid cell from Climate Wizard (www.climatewizard.org) for the period of 1951-2006 

(Girvetz et al., 2009). We did not fit models with Potential Evapotranspiration (PET) because 

PET is highly co-linear with mean annual temperature. 

We partitioned Western Hemispheric mammals among the categories of tropical (-23.4 to 

23.4°N), northern temperate (>23.4°N), and southern temperate (< -23.4°N). We used a cut off 

of 23.4° because it represents the known extent of the tropical belt.  

For each region, we modelled average BMdist in each grid cell as a function of NRI, MAP, 

MAT, C-scores, and species richness using a generalized least squares method with a Gaussian 

spatial correlation structure, thus accounting for spatial autocorrelation (Moran’s I for BMdist = 

0.43, p < 0.001). We chose to use BMdist as the response variable because, given classical niche 

theory and the significant phylogenetic signal of mammal body size, body mass dispersion is 

expected to change in response to changes phylogenetic relatedness and the appearance or 

disappearance of new species.  
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We used an information theoretic approach to select the best fit model based on AICc (dredge 

in the MuMIn R package, (Bartoń, 2013)) and partitioned the explained variance in BMdist using 

adjusted R-squared values (varpart function in the vegan R package; (Oksanen et al., 2012). That 

is, we selected the best fit model from all possible models (including the null model), which were 

automatically fit in R, including subsets of the independent variables NRI, MAP, MAT, C-

scores, and species richness. We also used model averaging to calculate averaged coefficients 

and the importance values of model terms, which were calculated as the sum of Akaike weights 

over all the candidate models with ∆AICc of 10 or less relative to the best fit model (Burnham & 

Anderson, 2002; Bartoń, 2013). An importance of 1.0 indicates that an independent variable is 

found in all of the candidate models with ∆AICc of 10 or less.  

Modelling Dispersal Rates.— 

We defined the geographic range of each Northern Hemisphere species as, tropical 

(occurring only within the tropics), southern temperate (occurring only in the southern temperate 

zone), northern temperate (occurring only in the northern temperate zone), or some combination 

thereof (occupying two or more of the three regions) (Fig. 1B).  

To test for differences in dispersal rates among regions the tropical and temperate zones, we 

used Biogeographical Stochastic Mapping (BSM) in the BioGeoBears R package (Ree & Smith, 

2008) (Matzke, 2013; Matzke, 2014, 2016). BSM uses a maximum likelihood approach to fit a 

model of Dispersal-Extinction Cladogenesis (DEC) including founder event speciation (DEC + 

J) (Ree & Smith, 2008). The DEC + J model allows for four types of dispersal events during 

speciation, i) both species retain the ancestral range, ii) a new species retains only part of the 

ancestral range, iii) vicariance, and iv) a new species evolves a new range separate from the 

ancestral range (Matzke, 2013; Matzke, 2014, 2016). Similar models of character evolution, such 
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as those employed in the phytools R package (Revell, 2011), typically assume no character 

change at cladogenesis. The DEC + J model differs by allowing for both change along branches 

(anagenesis) and at nodes (speciation events) (Ree et al., 2005; Ree & Smith, 2008).  

Because the DEC + J model requires a fully dichotomous phylogenetic tree, we created a 

posterior distribution of 100 phylogenetic trees by randomly resolving polytomies (100 iterations 

required ~15 hours of computation time alone) and calculated dispersal rates for each resolved 

tree using the DEC + J model employed in the BioGeoBears package. 

Results  

Western hemisphere mammal body mass shows significant phylogenetic signal (λ = 0.9; 

p < 0.001; Fig. 1A). Mammals show greatest body mass dispersion (BMdist) in grid cells at high 

northern latitudes and the lowest in the tropics and some parts of the southern temperate zone 

(Fig. 2A; Fig. S1A). Tropical mammal body mass dispersion is clustered or random depending 

on the null model (Fig. 2A, light gray are null assemblages; Fig. S1A). Northern temperate 

mammals show increasing evenness of body sizes with latitude (Fig. 2A, reduced overlap with 

null assemblages; Fig. S1A) and have the highest standardized effect sizes (Fig. S2A; Fig. 3A). 

We have not calculated p-values nor used an arbitrary cut off to judge significance. There are 

slight differences between the null models (Fig. 2A; Fig. S3A), primarily in terms of whether we 

find tropical body mass dispersion to be random or under dispersed, but we retain a focus on the 

null models from the independent swap algorithm due to its desirable statistical properties. There 

are no apparent pattern differences when BMdist is calculated using genus-averaged body masses 

(Fig. S4A), herbivores and omnivores alone (Fig. S5A), or finer grid cells (Fig. S6A).  

Tropical mammal assemblages show phylogenetic evenness (Fig. 2B; Fig. S1B) 

regardless of null model choice (Fig. S3B). In the Southern Temperate region, assemblages 
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become increasingly phylogenetically clustered toward the southern tip of South America (Fig. 

2B; Fig. S1B). Northern Temperate mammals show nearly uniform phylogenetic clustering (Fig. 

2B; Fig. S1B).  

Average C-scores are generally low at tropical latitudes, although the total range is quite 

large (Fig. 2C; Fig. S1C), reflecting mammal endemicity in the modern tropics. C-scores 

increase in the northern tropics at the transition zone between the tropics and north temperate 

regions, indicating a zone of range overlap between tropical and Northern Temperate species (a 

zone comprised of “bridge species”; Fig. 2C; Fig. S1C). In the northern temperate zone, 

assemblage-averaged C-scores decline from low latitude to high, reaching values comparable to 

the tropics at high latitudes, indicating high rates of species range overlap in the Arctic (Fig. 2C; 

Fig. S1C). In the southern temperate zone, C-scores are highly variable but particularly high in 

the west (Fig. 2C; Fig. S1C), reflecting faunal mixing in the Mountainous region of the Andes. 

Standardized effect sizes for C-score are generally large (and negative; Fig. S2B; Fig. 

3C), showing the increased range overlap of otherwise segregated species in null assemblages. 

The highest SES values (less negative) occur nearest the poles (Fig. S2B; Fig. 3C) where species 

tend to have larger geographic ranges and thus co-occur most frequently and where the standard 

deviation of the null assemblage C-scores are highest. The lowest SES values occur in areas of 

greatest faunal mixing, at the transition zones between the tropics and temperate zones (Fig. 

S2B; Fig. 3C) and where standard deviations of the null assemblage C-scores are lowest. 

Although there is a statistically significant decrease in assemblage-averaged C-scores with 

increasing geographic range size (Fig. S7), the effect size is low (R2 = 0.22). Averaged C-scores 

for cells at the tropical-temperate transition zones also lie well above the regression line (Fig. S7; 
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red points). Co-existence of otherwise segregated species in these transition zones is greater than 

predicted by the relationship between geographic range size and assemblage-averaged C-scores.  

All assemblage metrics used here show a high rate of change where the landmass is 

narrowest (between approximately 10 and 20°N) (Fig. 2A-C; Fig. S1A-C), suggesting that 

continental narrowing does act as a biodiversity filter. However, the effect is less apparent for 

BMdist than the other metrics used in this study (Fig. 2A; Fig. S1A). 

 The full model, which includes mean annual precipitation (MAP), mean annual 

temperature (MAT), C-scores, species richness, and NRI, was best fit to Northern Temperate 

mammal BMdist (Table 2; Table S1). Mean annual temperature (MAT) explains the vast amount 

of model variance (Table 2; Table S1; Fig. 4B).  

  The best fit model of Southern Temperate mammal BMdist, which includes species 

richness, MAP, MAT, and NRI, explains very little model variance (Table 2; Table S1), 

suggesting a limited role for climate filtering and species-species interactions in South America 

at the scale of our analysis. 

The best fit model of tropical mammal BMdist includes average C-scores, NRI, species 

richness, and MAP (Table 2; Table S1). Average C-scores account for the vast majority of the 

model variance (Table 2; Table S1), which is probably a result of the commonness of larger-

bodied bridge species (i.e., species that bridge the tropical and temperate zones) at the tropical-

temperate transition. Although mean annual precipitation is a significant correlate of BMdist in 

tropical mammals, it explains a relatively small amount of model variance (Table 2; Fig. 4A). 

  Overall, dispersal both into and out of the tropics is highest, suggesting that the tropics 

have acted as both a biodiversity pump and a sink. Direct exchanges between the temperate 

zones are comparatively rare because dispersal events between them necessarily involves an 
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intermediate stage range expansion across the tropics (i.e. species that occupy both tropical and 

temperate zones which are known as bridge species; Table 3). Dispersals from the tropics into 

the northern temperate zone are also comparatively rare, possibly reflecting the narrow land 

connection between them (Table 3). Dispersal between the tropical zone and southern 

temperature zone is most common (Table 3).  

Discussion 

 Differences in the primary drivers of community assembly have been proposed to explain 

disparate richness and community structure among the tropical and temperate regions of the 

world. Using body size dispersion and phylogenetic diversity, we show that in the Western 

Hemisphere, i) tropical mammal body masses are clustered, despite apparent phylogenetic 

evenness, providing no support for environmental filtering, character displacement nor 

competitive exclusion as important community assembly mechanisms at the grain of our 

analysis, ii) the high body mass dispersion and phylogenetic clustering of Northern Temperate 

mammals supports the operation of both a climate filtering and competitively-driven character 

displacement, and iii) Southern Temperate mammal body mass dispersion is not distinguishable 

from random, suggesting a limited role of climate filtering and species-species interactions at the 

grain of our analysis. We find that the tropical-temperate transition zones are characterized by 

the highest rates of faunal mixing. We also find comparatively high rates of historical dispersal 

into and out of the tropics, particularly southward, which is expected given the southward-bias of 

mammal dispersals during the Great American Biotic Interchange  (~ 3 Ma; Woodburne, 2010) 

and episodic dispersals that occurred as early as 20 Ma (Bacon et al., 2015). We therefore 

suggest an important role of dispersal and faunal mixing in Western Hemisphere mammal 

community assembly, particularly in the tropical and Southern Temperate zones.  
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The Northern Temperate Zone is characterized by relatively steep climate gradients (Fig. 

S8), which might impart strong environmental filters on mammal communities. Classical niche 

theory predicts that environmental filtering limits the range of traits expressed by co-existing 

species through exclusion of species with unsuitable niche characteristics (Hawkins et al., 2003; 

Soininen et al., 2007a; Soininen, 2010). Under an environmental filtering model, we expect 

progressively declining body mass dispersion (BMdist) and increasing phylogenetic relatedness 

among species in the same assemblage (higher Net Relatedness Index or NRI) that is correlated 

with mean annual temperature and precipitation (MAT and MAP; Table 1) (Hawkins et al., 

2003; Currie et al., 2004; Helmus et al., 2007; Peres-Neto et al., 2012). However, BMdist 

diverges from null communities in the Northern Temperate Zone but in the opposite direction as 

predicted; change in BMdist is correlated with MAT but increases rather than decreases at high 

latitudes. Two non-mutually exclusive hypotheses might explain increasing dispersion of body 

size at high northern latitudes: i) a flattening of the body mass distribution (McNab, 1971; 

Blackburn et al., 1999; Ashton et al., 2000; Freckleton et al., 2003) and ii) character 

displacement (in situ body size evolution) as a result of resource competition (Safi et al., 2011; 

Oliveira et al. 2016) (Table 1).  

High latitude mammal communities typically show flatter body size distributions than 

their low latitude counterparts (Lyons & Smith, 2013). A flat body size distribution is 

characterized by  similarity in species richness amongst body size categories (typically log10body 

mass categories) (Brown & Nicoletto, 1991) and may result from either competitive exclusion 

(via limiting similarity) or character displacement.  

High latitude environments, such as those found in the Canadian Arctic, are relatively 

unproductive environments that limit nutrient availability to individuals, thus presenting both 
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increasing intensity of resource competition and strong environmental filters (Hawkins et al., 

2003; Soininen et al., 2007a; Soininen, 2010). We suggest that flattening of the body size 

distribution explains our observation of high BMdist and that high latitude, northern hemispheric 

mammals experience resource competition at the large spatial grain we use herein (also noted by 

Safi et al., 2011). Furthermore, because we simultaneously observe phylogenetic clustering 

amongst Northern Hemisphere mammals (that is well explained by MAT), we also suggest that 

they are subject to environmental filtering (Table 1). Thus, the nutrient limiting, comparatively 

harsh conditions of the Canadian north (with its short growing season and desert conditions) 

have limited the types of species present and driven them apart in niche space.  

 The latitudinal gradient in body mass dispersion that is so apparent in the Northern 

Temperate zone is much less pronounced in the Southern Temperate region, likely due, in part, 

to shallower climate gradients (Fig. S8). We therefore find little support for environmental 

filtering and resource competition as drivers of Southern Temperate mammal community 

assembly at the grain of our analysis. Overall the dispersion of Southern Temperate mammal 

body masses bears a strong similarity to tropical assemblages. Historical extinction of large 

portions of the South American endemic faunas (e.g., Notoungulates) and invasion by placental 

mammals during the Plio-Pleistocene (Patterson & Pascual, 1968; Webb, 1978; Woodburne, 

2010) likely explain the similarity in community structure between southern and tropical 

mammal faunas.  

The remarkable richness of tropical mammal communities might suggest major 

differences in community assembly mechanisms relative to the comparatively depauperate 

temperate zones. Traditionally, tropical mammal richness is attributed to finer partitioning of 

niches (the outcome of heightened resource competition) or enhanced resource availability. At 
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the grain of our analysis, tropical communities are characterized by a combination of body size 

clustering (i.e., low BMdist), consistent with other recent studies of functional diversity (Oliveira 

et al., 2016), and phylogenetic evenness (i.e., low NRI). As such, we find no clear support for a 

finer niche partitioning nor environmental filtering (given the low explanatory power of the 

climate variables MAT and MAP) at the grain of our analysis. Note that we do not use a lack of 

support for species-species interactions at the scale of 100km by 100 km grid cells as definitive 

evidence that tropical mammals do not experience resource competition. We conclude, however, 

that resource competition amongst tropical mammals is not apparent at the coarse grain of our 

analyses. We do, however, suggest that low tropical mammal BMdist results from a peaked body 

mass distribution; small and medium species dominate tropical faunas (Lyons & Smith, 2013), 

reflecting enhanced energy and resource availability (Currie, 1991; Oliveira et al., 2016) rather 

than resource competition.   

If we find no support for species-species interactions nor climate filtering as the primary 

drivers of community assembly, what then accounts for tropical phylogenetic evenness and high 

level of similarity in BMdist between the tropical and Southern temperate zones at the scale of our 

analysis? Enhanced resource availability does not necessarily predict phylogenetic evenness. 

However, long-distance dispersals of species from the tropics outward (e.g. a tropical diversity 

pump; particularly southward thus increasing faunal similarity) and from the temperate zones 

into the tropics (e.g. a tropical diversity sink) (Leighton, 2005; Jablonski et al., 2006; Rolland et 

al., 2015) may explain tropical phylogenetic evenness.  

There have been a number of dispersal events among the tropical and temperate zones in 

the Western Hemisphere (Table 3). Historical mammalian dispersals between the Northern 

Temperate and tropical zones are, however, comparatively rare (Table 3), reflecting the relative 
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isolation of the North American and South American continents and limited exchange of species 

prior to the Oligocene-Miocene transition and the Pliocene when the Isthmus of Panama was 

definitively closed (~3 Ma) (Woodburne, 2010; Bacon et al., 2015). Similarly, direct exchanges 

of species between temperate zones are rare (Table 3), largely because the tropics must act as an 

intermediary or land bridge, a role that is apparent in the high assemblage-averaged C-scores at 

the tropical-temperate transition zones (Fig. 2C). As predicted, however, rates of historical 

dispersal from the northern to southern temperate zone are higher than the reverse, reflecting the 

higher frequency of southward than northward dispersals particularly during the Great American 

Biotic Interchange (Woodburne, 2010) but also as early as 20 Ma (Miocene; Bacon et al. 2015).  

Overall, rates of dispersal into and out of the tropics are highest (Table 3), suggesting that 

tropical mammal community structure may be a product of dispersal events and faunal mixing 

among biogeographic regions. Together, a tropical biodiversity pump and immigration of new, 

more distantly related species into the tropics may have contributed to the apparent phylogenetic 

evenness of mammal communities there. The highest of all transition rates occurs between the 

tropics and Southern Temperate zone (Table 3), suggesting that the land connection between the 

two has been important in facilitating species exchange and faunal mixing. Decreased isolation 

and increasing faunal mixing of tropical and Southern Temperate faunas might explain their 

relative similarity in BMdist and the limited power of climate to explain South American mammal 

community structure.  

Recent studies suggest that knowledge of the past is required to understand the assembly 

of modern communities (Cardillo, 2011; Fraser et al., 2014; Fraser et al., 2015; Maguire et al., 

2015; Rowan et al., 2016) and that patterns of extinction and speciation alone can lead to 

changes in phylogenetic community structure (Fraser et al., 2015). Inclusion of extinct species in 
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these types of analyses would likely illuminate the contribution of differences in historical rates 

of speciation and extinction, which cannot be accurately estimated from extant-only phylogenies, 

to differences in community structure among the tropical and temperate zones. We have shown 

that the model of competition vs. environmental filtering, which is pervasive in the 

macroecological literature, is oversimplified. Community assembly is a complex process 

dependent on both historical (e.g. dispersal and speciation/extinction) as well as contemporary 

(e.g. climate filtering, competition for resources) drivers.  
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Tables 

Table 1. Summary of predicted models of best fit for each hypothesis. BMdist refers to the 

average body size disparity between species in a community. NRI is the Net Relatedness Index. 

All predictions assume niche conservatism. MAP is mean annual precipitation and MAT is mean 

annual temperature. 

Hypothesis Predicted best fit models Predicted values of 
BMdist 

Explanation Predicted relationship 

     

Null BMdist ~ Intercept - - BMdist is not distinguishable 
from a random communities 
with the same species 
richness. 

     
Environmental filtering BMdist ~ MAP + Mean 

Annual Temperature + 
NRI 

BMdist declines from the 
tropics to the poles; High 
latitude BMdist shows 
clustering 

Classical niche theory 
predicts the climate filtering 
leads to trait clustering; it is 
traditionally assumed that 
high latitude climates impart a 
stronger filter 

↓ BMdist ~ ↓ MAT; ↓ BMdist 
~ ↓ MAP; ↓ BMdist ~ ↑ NRI 

     
Competitive exclusion 
(via limiting similarity) 

BMdist ~ NRI + SR BMdist declines from the 
tropics to the poles; Low 
latitude BMdist shows 
evenness 

Classical niche theory 
predicts the competition for 
resources may lead to 
competitive exclusion; it is 
traditionally assumed that low 
latitude faunas are more 
interactive 

↑ BMdist ~ ↓ NRI; ↑ BMdist 
~ ↑ SR 

     
Competitive exclusion 
(via differences in 
competitive ability) 

BMdist ~ NRI + SR BMdist declines from the 
tropics to the poles; Low 
latitude BMdist shows 
evenness 

Coexistence theory predicts 
the differences in competitive 
ability may lead to 
competitive exclusion; it is 
traditionally assumed that low 
latitude faunas are more 
interactive 

↓ BMdist ~ ↑ NRI; ↓ BMdist 
~ ↑ SR 

     
Character displacement  BMdist ~ NRI + SR BMdist declines from the 

tropics to the poles; Low 
latitude BMdist shows 
evenness 

Classical niche theory 
predicts the competition for 
resources may lead to limiting 
similarity; it is traditionally 
assumed that low latitude 
faunas are more interactive 

↑ BMdist ~ ↑ NRI; ↑ BMdist 
~ ↑ SR 
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Faunal Mixing Not modelled using gls NRI is lowest in the 
regions in which historical 
faunal mixing is most 
frequent; the tropics may 
have acted as both as 
source and sink for 
biodiversity over 
evolutionary time 

Mixing of species with 
divergent evolutionary 
histories (i.e., representing a 
deeper split in the phylogeny) 
occurs in regions through 
which biotic interchange 
occurs 

↓ NRI in the Tropics 

  Not modelled using gls Assemblage averaged C-
scores are highest in 
regions with bridge 
species; the subtropics are 
where the ranges of 
tropical and temperate 
species overlap 

Mixing of species that 
otherwise do not co-occur 
leads to higher assemblage 
averaged C-scores 

↑ C-scores in the Subtropics 
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Table 2. Results of best fit models of spatial change in average mammal BMdist in the tropical 

and temperate regions of the Western Hemisphere. We used generalized least squares models 

with a Gaussian spatial correlation structure. Model fit was evaluated using AICc. Importances 

and model averaged coefficients were calculated from models within 10 ∆AICc of the best fit 

model. NRI is the Net Relatedness Index. 

Region Best fit model 

Variance 
explained 
(%) Importance 

Model 
averaged 
coefficients 

t-
value p-value Supported Hypothesis 

Tropics Average C-score 28.18 1.00 1.60 13.07 < 0.001 Faunal mixing 

Mean annual precipitation 10.80 0.86 -2.30E-05 -2.33 0.020 

NRI 6.51 1.00 -0.25 -4.01 < 0.001 

Species richness 0.14 1.00 -2.83E-03 -6.05 < 0.001 

Northern 
Temperate 

Mean annual 

temperature 37.62 1.00 -0.02 -11.62 < 0.001 
Environmental 

Filtering/ Character 

Displacement 
Mean annual precipitation 19.72 1.00 -2.59E-04 -6.07 < 0.001 

Average C-score 16.32 1.00 0.75 4.15 < 0.001 

Species richness 10.97 0.98 -4.77E-03 -3.18 0.001 

NRI 0.48 1.00 -1.00 -4.73 < 0.001 

Southern 
Temperate Species richness 3.11 0.80 -4.79E-03 -2.37 0.018 Faunal mixing 

Mean annual precipitation 1.88 0.82 -2.20E-04 -2.35 0.019 

Mean annual temperature 0.74 0.72 0.01 2.30 0.022 

NRI 0.12 1.00 -0.91 -4.31 < 0.001 
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Table 3. Rates of transition (events per million years; from row to column) among the temperate 

and tropical regions of the Western Hemisphere. The highest rates (*) of transition occur 

between the tropical and southern temperate regions. The lowest rates of transition (ǂ) occur 

between the temperate zones. 

  TR NTR STR 

Tropical Range (TR)   61.98 156.05* 
Northern temperate range (NTR) 57.36   16.01ǂ 
Southern temperate range (STR) 119.40* 9.18ǂ   
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Table S1. Model averaged coefficients (< 10 ∆AICc) and importance for all independent 

variables included in the study. We used generalized least squares models with a Gaussian 

spatial correlation structure. Model fit was evaluated using AICc. NRI is the Net Relatedness 

Index. 

Region Model terms 
Model Averaged 
Coefficients Importance 

 Tropics Average C-score 1.60 1.00 

NRI -0.25 1.00 

Mean annual precipitation -2.30E-05 0.86 

Mean annual temperature 9.00E-04 0.35 

Species richness -2.83E-03 1.00 

Northern Temperate Average C-score 0.75 1.00 

NRI -1.00 1.00 

Mean annual precipitation -2.59E-04 1.00 

Mean annual temperature -0.02 1.00 

Species richness -4.77E-03 0.98 

Southern Temperate Average C-score 0.22 0.33 

Mean annual precipitation -2.20E-04 0.82 

NRI -0.91 1.00 

Species richness -4.79E-03 0.80 

Mean annual temperature 0.01 0.72 

Average C-score 0.22 0.33 
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Figure Captions 

FIGURE 1.  Phylogenetic maps of (A) ln transformed body masses of the smallest mammals in 

red and the largest in blue and (B) regions of occupancy including tropics (brown), northern 

temperate (red), and southern temperate (blue). Lighter shades of color indicate absence from a 

region. Per. and Artio. refer to the Perissodactyla and Artiodactyla, respectively. 

FIGURE 2. Latitudinal patterns of (A) ln transformed body mass dispersion, (B) phylogenetic 

community structure measured using the Net Relatedness Index (NRI), and (C) average 

checkerboard or C-scores of Western Hemisphere mammal communities across tropical and 

temperate latitudes (demarcated by dashed lines). Communities were defined as species that co-

occur in the same 100 km by 100 km grid cell laid over North, Central, and South America. 

Randomized communities are shown in gray in panel A. We used the independent swap 

algorithm of Gotelli (2000) to construct null models for the Net Relatedness Index.  

FIGURE 3. Randomizations of body mass dispersion (BMdist) and C-scores. (A) Standardized 

effects sizes for BMdist (SES BMdist) in each 100x100 km grid cell. (B) mean randomized C-

scores (+/- standard deviation) per 100km by 100km grid cell, and (C) standardize effects sizes 

for C-scores in each 100km by 100km grid cell. Standardized effect sizes were calculated as SES 

= (obs – mean(random)) / sd(random). We did not calculate p-values nor rely on an arbitrary cut 

off for significance.  

Figure 4. Relationship of mean body size differences among (A-B) tropical, (C-D), Northern 

Hemisphere, and (E-F) Southern Hemisphere mammals Western Hemisphere mammals with 

mean annual temperature (°C) and precipitation (mm), respectively. 

FIGURE S1.  of (A) ln transformed body mass dispersion, (B) phylogenetic community Maps

structure measured using the Net Relatedness Index (NRI), and (C) average checkerboard or C-
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scores of Western Hemisphere mammal communities across tropical and temperate latitudes 

(demarcated by dashed lines). Communities were defined as species that co-occur in the same 

100 km by 100 km grid cell laid over North, Central, and South America. Randomized 

communities are shown in gray in panel A. We used the independent swap algorithm of Gotelli 

(2000) to construct null models . for the Net Relatedness Index  

FIGURE S2. Maps of randomizations of body mass dispersion (BMdist) and C-scores. (A) 

Standardized effects sizes for BMdist (SES BMdist) in each 100x100 km grid cell. (B) standardize 

effects sizes for C-scores in each 100km by 100km grid cell. Standardized effect sizes were 

calculated as SES = (obs – mean(random)) / sd(random). We did not calculate p-values nor rely 

on an arbitrary cut off for significance. 

FIGURE S3. Latitudinal patterns of (A) ln transformed body mass differences, (B) phylogenetic 

community structure measured using the Net Relatedness Index (NRI), and (C) average 

checkerboard or C-scores of Western Hemisphere mammal communities across tropical and 

temperate latitudes (demarcated by dashed lines). Communities were defined as species that co-

occur in the same 100 km by 100 km grid cell laid over North, Central, and South America. 

Randomized communities are shown in gray in panel A. For body mass dispersion, we used a 

null model wherein grid cell richness was maintained but not species occupancy. The regional 

pool from which species were drawn was limited to those present in the same biogeographic 

zone. For NRI, we used a null model wherein taxon labels were shuffled on the grid cell by 

species occurrence matrix (a similar method that also maintains site richness).  

FIGURE S4. patterns of (A) ln transformed body mass differences, (B) Latitudinal phylogenetic 

 measured using the Net Relatedness Index (NRI), and (C) average community structure

checkerboard or C-scores   of Western Hemisphere mammal communities across tropical and 
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 (demarcated by dashed lines) Species without body sized data were assigned temperate latitudes . 

a genus average body mass. Communities were defined as species the co-occur in the same 100 

km by 100 km grid cell laid over North, Central, and South America. Randomized communities 

are shown in gray in panel A. We used the independent swap algorithm of Gotelli (2000) to 

construct null models for the Net Relatedness Index. 

FIGURE S5. Latitudinal patterns of (A) ln transformed body mass differences, (B) phylogenetic 

community structure measured using the Net Relatedness Index (NRI), and (C) average 

checkerboard or C-scores of Western Hemisphere mammal communities across tropical and 

temperate latitudes (demarcated by dashed lines). Carnivorous species were excluded. 

Communities were defined as species the co-occur in the same 100 km by 100 km grid cell laid 

over North, Central, and South America. Randomized communities are shown in gray in panel 

for the A. We used the independent swap algorithm of Gotelli (2000) to construct null models 

Net Relatedness Index  .

FIGURE S6. patterns of (A) ln transformed body mass differences, (B) Latitudinal phylogenetic 

 measured using the Net Relatedness Index (NRI), and (C) average community structure

checkerboard or C-scores   of Western Hemisphere mammal communities across tropical and 

 (demarcated by dashed lines) Species without body sized data were assigned temperate latitudes . 

a genus average body mass. Communities were defined as species the co-occur in the same 50 

km by 50 km grid cell laid over North, Central, and South America. Randomized communities 

are shown in gray in panel A. We used the independent swap algorithm of Gotelli (2000) to 

construct null models for the Net Relatedness Index. 

FIGURE S7. Relationship of  assemblage-averaged species Western Hemisphere mammal

occupancy with (A) latitude (˚N) ) assemblage-averaged checkerboard or C-scores and (B . 
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Communities were defined as species the co-occur in the same 100 km by 100 km grid cell laid 

over North, Central, and South America. Red points indicate grid cells that occur at the tropical-

temperate transition zones, particularly between the tropics and Southern Temperate zone. 

Figure. S8. Change in (A) mean annual temperatures (°C) and (B) mean annual precipitation 

(mm) with latitude in the Western Hemisphere. Data are from climatewizard.org. 
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FIGURE 1.  Phylogenetic maps of (A) ln transformed body masses of the smallest mammals in red and the 
largest in blue and (B) regions of occupancy including tropics (brown), northern temperate (red), and 

southern temperate (blue). Lighter shades of color indicate absence from a region. Per. and Artio. refer to 

the Perissodactyla and Artiodactyla, respectively.  
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FIGURE 2. Latitudinal patterns of (A) ln transformed body mass dispersion, (B) phylogenetic community 
structure measured using the Net Relatedness Index (NRI), and (C) average checkerboard or C-scores of 
Western Hemisphere mammal communities across tropical and temperate latitudes (demarcated by dashed 

lines). Communities were defined as species that co-occur in the same 100 km by 100 km grid cell laid over 
North, Central, and South America. Randomized communities are shown in gray in panel A. We used the 
independent swap algorithm of Gotelli (2000) to construct null models for the Net Relatedness Index.  

 
160x324mm (300 x 300 DPI)  

 

 

Page 49 of 59 Global Ecology and Biogeography

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le
  

 

 

FIGURE 3. Randomizations of body mass dispersion (BMdist) and C-scores. (A) Standardized effects sizes for 
BMdist (SES BMdist) in each 100x100 km grid cell. (B) mean randomized C-scores (+/- standard deviation) 
per 100km by 100km grid cell, and (C) standardize effects sizes for C-scores in each 100km by 100km grid 

cell. Standardized effect sizes were calculated as SES = (obs – mean(random)) / sd(random). We did not 
calculate p-values nor rely on an arbitrary cut off for significance.  
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Figure 4. Relationship of mean body size differences among (A-B) tropical, (C-D), Northern Hemisphere, and 
(E-F) Southern Hemisphere mammals Western Hemisphere mammals with mean annual temperature (°C) 

and precipitation (mm), respectively.  
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FIGURE S1. Maps of (A) ln transformed body mass dispersion, (B) phylogenetic community structure 
measured using the Net Relatedness Index (NRI), and (C) average checkerboard or C-scores of Western 
Hemisphere mammal communities across tropical and temperate latitudes (demarcated by dashed lines). 

Communities were defined as species that co-occur in the same 100 km by 100 km grid cell laid over North, 
Central, and South America. Randomized communities are shown in gray in panel A. We used the 

independent swap algorithm of Gotelli (2000) to construct null models for the Net Relatedness Index.  
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FIGURE S2. Maps of randomizations of body mass dispersion (BMdist) and C-scores. (A) Standardized 
effects sizes for BMdist (SES BMdist) in each 100x100 km grid cell. (B) standardize effects sizes for C-scores 

in each 100km by 100km grid cell. Standardized effect sizes were calculated as SES = (obs – 

mean(random)) / sd(random). We did not calculate p-values nor rely on an arbitrary cut off for significance. 
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FIGURE S3. Latitudinal patterns of (A) ln transformed body mass differences, (B) phylogenetic community 
structure measured using the Net Relatedness Index (NRI), and (C) average checkerboard or C-scores of 

Western Hemisphere mammal communities across tropical and temperate latitudes (demarcated by dashed 

lines). Communities were defined as species that co-occur in the same 100 km by 100 km grid cell laid over 
North, Central, and South America. Randomized communities are shown in gray in panel A. For body mass 
dispersion, we used a null model wherein grid cell richness was maintained but not species occupancy. The 
regional pool from which species were drawn was limited to those present in the same biogeographic zone. 

For NRI, we used a null model wherein taxon labels were shuffled on the grid cell by species occurrence 
matrix (a similar method that also maintains site richness).  
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FIGURE S4. Latitudinal patterns of (A) ln transformed body mass differences, (B) phylogenetic community 
structure measured using the Net Relatedness Index (NRI), and (C) average checkerboard or C-scores of 

Western Hemisphere mammal communities across tropical and temperate latitudes (demarcated by dashed 

lines). Species without body sized data were assigned a genus average body mass. Communities were 
defined as species the co-occur in the same 100 km by 100 km grid cell laid over North, Central, and South 
America. Randomized communities are shown in gray in panel A. We used the independent swap algorithm 

of Gotelli (2000) to construct null models for the Net Relatedness Index.  
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FIGURE S5. Latitudinal patterns of (A) ln transformed body mass differences, (B) phylogenetic community 
structure measured using the Net Relatedness Index (NRI), and (C) average checkerboard or C-scores of 

Western Hemisphere mammal communities across tropical and temperate latitudes (demarcated by dashed 

lines). Carnivorous species were excluded. Communities were defined as species the co-occur in the same 
100 km by 100 km grid cell laid over North, Central, and South America. Randomized communities are 
shown in gray in panel A. We used the independent swap algorithm of Gotelli (2000) to construct null 

models for the Net Relatedness Index.  
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FIGURE S6. Latitudinal patterns of (A) ln transformed body mass differences, (B) phylogenetic community 
structure measured using the Net Relatedness Index (NRI), and (C) average checkerboard or C-scores of 

Western Hemisphere mammal communities across tropical and temperate latitudes (demarcated by dashed 

lines). Species without body sized data were assigned a genus average body mass. Communities were 
defined as species the co-occur in the same 50 km by 50 km grid cell laid over North, Central, and South 

America. Randomized communities are shown in gray in panel A. We used the independent swap algorithm 
of Gotelli (2000) to construct null models for the Net Relatedness Index.  
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FIGURE S7. Relationship of Western Hemisphere mammal assemblage-averaged species occupancy with (A) 
latitude (˚N) and (B) assemblage-averaged checkerboard or C-scores. Communities were defined as species 

the co-occur in the same 100 km by 100 km grid cell laid over North, Central, and South America. Red 
points indicate grid cells that occur at the tropical-temperate transition zones, particularly between the 

tropics and Southern Temperate zone.  
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Figure. S8. Change in (A) mean annual temperatures (°C) and (B) mean annual precipitation (mm) with 
latitude in the Western Hemisphere. Data are from climatewizard.org.  
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