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Articles

Match–Mismatch Regulation for Bluegill and Yellow
Perch Larvae and Their Prey in Sandhill Lakes
Jeffrey C. Jolley,* David W. Willis, Richard S. Holland
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Department of Wildlife and Fisheries Sciences, South Dakota State University, SNP 138, Box 2140B, Brookings,
South Dakota 57007
Present address of J.C. Jolley: U.S. Fish and Wildlife Service, Columbia River Fisheries Program Office, 1211 SE Cardinal
Court, Vancouver, Washington 98683

R.S. Holland
Nebraska Game and Parks Commission, P.O. Box 30370, Lincoln, Nebraska 68701

Abstract

Food availability may regulate fish recruitment, both directly and indirectly. The availability of zooplankton, especially to
newly hatched larvae, is thought to be crucial to their early growth and survival. We examined stomach contents of larval
bluegill Lepomis macrochirus and yellow perch Perca flavescens in Pelican Lake and Cameron Lake, Nebraska, in 2004 and
2005. We also determined zooplankton availability and calculated prey selection using Chesson’s a. In addition, we
investigated potential match–mismatch regulation of recruitment from 2004 to 2008. Bluegill positively selected
copepod nauplii and Bosmina spp., and yellow perch often selected copepods. Abundant zooplankton populations were
available for consumption. Matches of both larval bluegill and yellow perch abundance to zooplankton abundance were
detected in all years; exact matches were common. Mismatches in predator and prey production were not observed.
Predation by age-0 yellow perch on age-0 bluegill was not observed, even though yellow perch hatched 2 mo prior to
bluegill. Given that zooplankton were abundant and well-timed to larval fish relative abundance over the time span of
this study, the match–mismatch hypothesis alone may not fully account for observed recruitment variability in these
populations. Environmental conditions may also affect recruitment and warrant further investigation.
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Introduction

Recruitment dynamics of populations will ultimately
structure fish communities (Diana 1995) and several
factors are believed to regulate recruitment, both directly
and indirectly. These include abiotic factors such as
physical habitat, temperature, and weather (Beard 1982;
Jackson and Noble 2000), biotic factors such as food
availability and competition (Prout et al. 1990; Welker et
al. 1994; Ludsin and DeVries 1997; Bunnell et al. 2003),
and predation (Forney 1971; Houde 1987; Rice et al.
1987; Santucci and Wahl 2003). Critical time periods, or

bottlenecks, of high mortality may exist for some species
(Hjort 1914; May 1974) and researchers commonly
incorporate this factor when describing recruitment
processes (Marr 1956). This critical period is thought to
occur early in age-0 yellow perch Perca flavescens and
bluegill Lepomis macrochirus cohort development (Toetz
1966; Forney 1971; Clady 1976; Anderson et al. 1998).

Large annual variation in yellow perch year-class
strength is common (Hamley et al. 1983; Henderson
1985) although recruitment patterns may vary among
water bodies within a localized region (Lucchesi 1991;
Isermann et al. 2007). The early life-stages are commonly
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reported as the time when year-class strength is formed
(Clady 1976; Mills and Forney 1981). Variable recruitment
is often observed in bluegill populations. Previous
research in South Dakota indicated that bluegill recruit-
ment was asynchronous among four small impound-
ments (Edwards et al. 2007) and the authors suggested
that biotic factors likely affected bluegill recruitment.
Although bluegill recruitment is generally consistent (i.e.,
missing year-classes are rare) in Nebraska Sandhill lakes,
there appears to be a moderate level of variability in
relative year-class strength (Paukert et al. 2002a; Jolley
2009).

The availability of prey when larval fish begin
exogenous feeding has been proposed as a potential
regulator of recruitment variability (match–mismatch
hypothesis; Cushing 1975, 1990). Suitable growth and
prey conditions for larval fish are largely determined by
the physical environment (e.g., water temperature).
Water temperature may indirectly affect larval fish via
its influence on the food chain (e.g., zooplankton growth;
Sommer et al. 1986; Taylor et al. 1987) in addition to
directly mediating spawning and hatching (Beard 1982).

The match–mismatch hypothesis consists of two
assumptions: first, that fish at temperate latitudes spawn
at approximately the same time each year and, second,
that the larvae are released during the spring or autumn
peaks in plankton production (Cushing 1990). A match
occurs when production of fish larvae and their prey is
synchronous or nearly so; conversely, a mismatch occurs
when there is a large temporal difference in these two
variables (Cushing 1990).

Although the food habits of age-0 yellow perch have
been extensively studied in Midwestern waters (e.g.,
Weber and Les 1982; Wahl et al. 1993; Fisher and Willis
1997), lake-specific prey-selection patterns in the face of
variable prey densities is a topic of importance. Similarly,
age-0 bluegill food habits are well-studied (Werner 1969;
Mittelbach 1981; Werner and Hall 1988), although data
specific to Sandhill lakes have not been collected.
Furthermore, the panfish populations of Nebraska Sand-
hill lakes are high quality (i.e., relatively high abundance
of large fish; Paukert et al. 2002b) and relatively unique
to the Great Plains. Therefore, examinations of processes
that affect recruitment of these populations are of direct
interest to managers. The objectives of this study were to
1) describe prey selection for larval and juvenile yellow
perch in Cameron and Pelican lakes and bluegill in
Pelican Lake, Nebraska, to better understand the prey
utilization in these lakes, and 2) examine potential
match–mismatch regulation of yellow perch and bluegill
recruitment.

Study Area

Cameron Lake (39 ha) and Pelican Lake (322 ha) are
shallow (mean depth = 1.2 m and 1.3 m, respectively),
windswept natural lakes in the Sandhills region of north-
central Nebraska (McCarraher 1977). Submergent and
emergent vegetation coverage was low (, 17% total
coverage) in Cameron Lake and was moderate (40–52%
total coverage) in Pelican Lake in 2004 and 2005 (Jolley

2009). The fish communities of both lakes were relatively
simple. Cameron Lake contained yellow perch, green
sunfish Lepomis cyanellus, black bullhead Ameiurus melas,
common carp Cyprinus carpio, fathead minnow Pime-
phales promelas, and golden shiner Notemigonus cryso-
leucas. Pelican Lake contained bluegill, largemouth bass
Micropterus salmoides, yellow perch, northern pike Esox
lucius, black bullhead, common carp, and fathead
minnow. The watersheds for both lakes were primarily
mixed- and tall-grass prairie and were used for limited
livestock grazing (Bleed and Flowerday 1989).

Methods

We obtained larval yellow perch from Cameron and
Pelican lakes and larval bluegill from Pelican Lake using
a single 1,000-mm-mesh conical ichthyoplankton net
(mouth : net length ratio = 1:3) with a 0.76-m–diameter
circular steel frame and 500-mL collection bucket (with
500-mm mesh). Isermann et al. (2002) found no
difference in yellow perch density estimates between
a 500- and 1,000-mm-mesh trawl, although the 1,000-mm
size was less likely to become fouled with algae and
zooplankton. We sampled larvae approximately every
10 d from late April to early September in Pelican Lake,
2004–2008 and from late April to mid-June in Cameron
Lake, 2004–2005. Randomly chosen, paired locations
(i.e., nearshore and offshore) were trawled in Pelican
Lake (n = 5) and Cameron Lake (n = 4) on each
occasion. The density of recently hatched (i.e., , 8 mm)
bluegill and yellow perch larvae in the lakes was
indexed using a flowmeter (Ocean Test Equipment,
Inc.) in the mouth of the trawl, which allowed
determination of water volume towed. We collected
zooplankton at the time of each trawling sample during
the daytime as two replicates at each site using a 2-m-
long tube sampler (Rabeni 1996). Samples were filtered
through a 65-mm-mesh net. Replicate samples were
collected and processed separately. All samples were
preserved in 90% ethanol and transported to the
laboratory for identification and diet analysis.

We tracked the same cohorts by sampling juvenile
yellow perch from Cameron Lake in August and juvenile
bluegill and yellow perch from Pelican Lake in August or
September and the following April or May (age 1) using
cloverleaf traps. Each three-lobed cloverleaf trap was
constructed of galvanized 6.4-mm-bar mesh, with three
12.7-mm-wide openings between lobes to accommo-
date entrance of small yellow perch (Brown and St.
Sauver 2002). Each lobe was 50 cm in diameter with a 41-
cm height. Collected fishes were preserved in 90%
ethanol and returned to the laboratory. Autumn (age 0)
and spring (age 1) juvenile abundance was indexed as
the mean number per cloverleaf trap-night.

Year-class strength was assessed in a concurrent study
and information from the adult populations was used to
examine recruitment; methods are described by Jolley
(2009). Adult bluegill (i.e., age 2 and older) and yellow
perch (i.e., age 1 and older) were collected annually from
each lake using randomly located, overnight sets of
double-throated trap (i.e., modified fyke) nets with
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16-mm-bar measure mesh, 1.1 6 1.5-m frames, and
22-m leads. Age was estimated by two independent
readers viewing the sagittal otolith in whole view for fish
of ages 4 and younger; older fish were aged after
cracking and sanding the otoliths. Discrepancies in age
estimates were reconciled by reading the otolith in
concert. If agreement could not be achieved, the otolith
was omitted from the analysis. Mean catch per unit effort

values in May or June for age-1 yellow perch and age-2
bluegill were selected as life-stages recruited to the adult
population.

Larval fish samples were sorted and identified using
identification keys (Auer 1982; Holland-Bartels et al.
1990). Larvae were counted and up to 200 fish per
sample were measured (mm total length [TL]) from each
site. Digestive tracts were removed from up to 30

Table 1. Number (No.) and mean total length (TL; mm) of yellow perch Perca flavescens and bluegill Lepomis macrochirus
examined for food items from Cameron and Pelican lakes, Nebraska, 2004–2005.

Lake Date
No.

(with prey)
No.

examined x– TL SE Range % Empty

Cameron

Yellow perch

2004 13 May 30 30 11.5 0.2 9.9–13.1 0

18 May 30 30 12.5 0.2 9.1–14.9 0

27 May 30 30 15.7 0.5 10.0–19.6 0

7 June 30 30 25.0 0.5 19.4–30.0 0

2005 15 May 18 18 8.3 0.4 4.2–12.8 0

24 May 30 30 14.5 0.2 12.2–18.3 0

2 June 12 12 19.0 0.6 16.0–23.1 0

Pelican

Yellow perch

2004 8 May 30 35 8.8 0.2 6.8–13.8 14

17 May 30 30 12.7 0.2 10.4–14.5 0

26 May 30 30 17.1 0.4 12.7–20.6 0

6 June 23 24 23.1 0.5 18.1–26.9 4

16 June 30 31 32.2 0.7 19.5–37.3 3

26 June 17 17 28.0 1.7 18.9–39.5 0

7 July 7 7 31.8 2.5 22.0–36.8 0

17 July 3 3 41.8 3.7 34.6–46.5 0

27 July 9 9 49.3 1.0 46.0–53.0 0

6 August 14 14 57.6 2.3 40.2–69.5 0

16 August 13 13 59.8 0.9 56.2–67.1 0

26 August 9 9 59.9 2.6 44.6–74.1 0

2005 3 May 16 16 5.4 0.1 4.2–6.5 100

Pelican

Bluegill

2004 26 June 3 11 7.5 0.4 6.6–11.0 73

7 July 9 14 9.1 0.6 6.1–12.4 36

17 July 30 47 10.8 0.4 3.8–15.5 36

27 July 30 30 15.0 0.3 8.6–18.5 0

6 August 30 32 15.0 0.6 7.3–23.3 6

16 August 30 30 19.1 1.0 10.9–29.1 0

27 August 30 30 20.7 1.0 7.9–29.3 0

5 September 30 31 19.5 1.5 11.2–40.1 3

2005 30 June 30 32 8.3 0.2 7.2–12.3 6

11 July 30 31 10.7 0.4 7.8–14.7 3

21 July 30 31 10.4 0.4 7.4–14.1 3

1 August 30 35 11.4 0.4 8.0–15.6 14

11 August 30 30 11.2 0.4 7.3–15.3 0

22 August 30 30 12.9 0.4 9.8–18.4 0
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randomly selected larvae of each species per sampling
occasion during 2004 and 2005 at Cameron and Pelican
lakes. Diet items were identified using a microscope,
counted, and measured (mm TL). Zooplankton were
enumerated and identified to family for common
cladocerans (i.e., Bosminidae, Chydoridae, and Daphni-
dae), and as cyclopoid or calanoid copepods, copepod
nauplii (copepodites), ostracods, and rotifers. Each
sample was diluted with water to a volume of 30 mL.
Three subsamples were then taken with a 5-mL Hensen–
Stempel pipette and placed in a Ward counting wheel.
Up to 20 individuals of each category were measured
and all individuals were counted. The total number of
zooplankton of each taxon in a sample was calculated by
dividing the number of organisms counted by the
proportion of the sample volume processed. Density
was then calculated by dividing the number of
zooplankton of each taxon by the volume of the water
filtered with the tube sampler.

To determine prey selectivity, mean Chesson’s (1983)
coefficient of selectivity (a) was calculated for individual
larval bluegill and yellow perch from each sampling
occasion in 2004 and 2005:

a~
ri=ni

Xm

i~1

ri=ni

where ri is the number of food type i in the predator diet,
ni is the number of food type i in the environment, and
m is the number of prey types available. Mean a values
(6 95% CI) were compared with nonselective feeding
(1/m) to determine selectivity. Patterns in prey selection

in 2004 and 2005 were examined and used to select prey
items included in the match–mismatch analysis.

Temporal predator and prey density curves for yellow
perch and bluegill larvae and their prey were constructed
for each year and the mean and standard deviation of
the peak density was calculated. Prey types used in the
analyses were chosen as those showing positive
selection by fish during first-feeding (earlier in the
season). The width and overlap of the density curves
for predator and prey were calculated. Methods outlined
by Mertz and Myers (1994) and Johnson (2000) were
utilized for this analysis. The following parameters were
first calculated:

t0~timing between peaks of larval production and
food supply daysð Þ;

Dt0~annual differences in t0ð Þfrom its mean value;

d~one�half width of the density curve for larvae; and

s~one�half width of the density curve for
zooplankton:

These parameters were used to calculate 1) variability
in peak timing from the mean for individual species (s
and d), 2) variability in timing between larval abundance
and peak zooplankton production (t0), and 3) year-to-
year variability in peak spawning and production (Dt0).
When t0 = 0, the match is exact (Mertz and Myers 1994).
A mismatch occurs when one-half the width of the larval
density curve (i.e., d) does not overlap one-half the width
of the zooplankton density curve (i.e., s). Correlation

Table 2. Percent occurrence and percent by number for zooplankton prey items found in larval yellow perch Perca flavescens
stomachs in Cameron Lake, Nebraska, in 2004 and 2005.

Taxon

2004 2005

13 May 18 May 27 May 7 June 15 May 24 May 2 June

% Occurrence

Bosminidae 3.3 33.3 30.0 20.0 0 3.3 16.7

Chydoridae 6.7 20.0 26.7 66.7 0 0 16.7

Daphnidae 86.7 100.0 100.0 100.0 33.3 90.0 100.0

Sididae 0 23.3 30.0 0.0 0 0 0

Copepoda 100.0 96.7 66.7 60.0 94.4 100.0 91.7

Nauplii 0 0 0 0 0 0 0

Ostracoda 0 3.3 0 3.3 0 0 0

Rotifera 33.3 66.7 3.3 0 0 0 0

% by number

Bosminidae 0.2 2.3 2.5 0.3 0 0.2 0.3

Chydoridae 0.5 1.5 1.1 34.4 0 0 0.5

Daphnidae 26.8 37.5 81.7 60.2 24.4 28.8 38.6

Sididae 0 1.3 2.5 0 0 0 0

Copepoda 61.1 33.2 12.1 5.1 75.6 71.0 60.6

Nauplii 0 0 0 0 0 0 0

Ostracoda 0 0.2 0 0.1 0 0 0

Rotifera 11.3 24.1 0.1 0 0 0 0

Match–Mismatch of Bluegill and Yellow Perch and Their Prey J.C. Jolley et al.
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analysis was used to examine the relationship between
predator–prey overlap (t0) and indices of fish recruitment
(i.e., larval abundance, juvenile abundance, and adult
abundance) for yellow perch and bluegill in Pelican Lake
from 2004 to 2008. Yellow perch from Cameron Lake
were omitted from this analysis due to inadequate
sample size (N = 2 y).

Results

In Cameron Lake, the most abundant zooplankters were
daphnids (Supplemental Material, Table S1, http://
dx.doi.org/10.3996/062010-JFWM-018.S1). Chesson’s a .
0.125 indicated positive prey selection by yellow perch.
Stomachs from 120 yellow perch larvae in May and June of
2004 and 60 stomachs in 2005 were examined for prey
items (Table 1; Supplemental Material, Table S2, http://
dx.doi.org/10.3996/062010-JFWM-018.S2). Copepods and
daphnids were consistently the most abundant prey item
found in stomachs (Table 2). Temporal patterns of
negative, neutral, and positive prey selection (Chesson’s a
. 0.143 indicated positive prey selection) were found for
yellow perch in Cameron Lake (Figure 1) in 2004 and 2005.
In 2004, yellow perch selected copepods earliest in the

season and later shifted to cladocerans. In 2005, copepods
were exclusively positively selected (Figure 1). Empty
stomachs were not encountered in either year and
copepodites were not observed in stomachs in any year.

In Pelican Lake in 2004, the most abundant zooplank-
ters were generally daphnids, copepods, and copepod-
ites. In 2005, the most abundant zooplankters were
generally cladocerans (i.e., daphnids, chydorids, and
bosminids). In 2004, 222 yellow perch larvae were
examined from May through August for prey items
(Table 1). Seven empty stomachs were encountered
(3%). In 2005, 16 larval yellow perch were captured, all
with empty stomachs. In 2004, copepods, daphnids, and
chydorids were the most abundant prey items found in
yellow perch stomachs (Table 3). Yellow perch in Pelican
Lake selected copepods earliest, shifted to cladocerans,
and later exhibited neutral prey selection for most prey
items (Figure 2). Copepodites were not present and
rotifers were uncommon in yellow perch stomachs.

Temporal patterns of negative, neutral, and positive
prey selection (Chesson’s a . 0.143 indicated positive
prey selection) were also found for bluegill in Pelican
Lake in 2004 and 2005 (Figure 3). Bluegill larvae had 15%
and 5% empty stomachs in 2004 and 2005, respectively
(Table 1). Bluegill consumed cladocerans, copepods,
copepodites, ostracods, and rotifers. Copepodites and
Bosmina were common in first-feeding bluegill stomachs
while cladocerans and copepods became more common
later in the season (Table 4). Copepodites were initially
neutrally selected and bluegill eventually preferred
cladocerans followed by copepods as prey items. Rotifers
and ostracods were consistently neutrally or negatively
selected (Figure 3) indicating opportunistic feeding or
avoidance of these prey items.

Copepods were elected as an important (i.e., positively
selected) prey resource for first-feeding yellow perch in
both lakes. The duration of larval yellow perch (TL ,
13 mm) abundance varied from 1 d in 2005 (Pelican Lake)
to 31 d in 2008 (Pelican Lake). The duration of peak
copepod abundance varied from 9 (Cameron Lake, 2005)
to 38 d (Pelican Lake, 2004). The mean annual difference in
day of peak abundance for yellow perch larvae and their
copepod prey (t0) was 7.1 d (Table 5). Copepods peaked
after yellow perch larvae in three instances and exactly
matched in four instances (Figures 4 and 5; Table 5).

Copepodites and Bosmina were important (i.e., posi-
tively selected) prey item for first-feeding bluegill and the
timing of their combined abundance was examined. The
duration of larval bluegill abundance in Pelican Lake
ranged from 21 (2004) to 63 d (2006; Figure 6). The
duration of peak copepodites–Bosmina abundance
ranged from 42 (2006) to 72 d (2004). The mean annual
difference in peak abundance date for bluegill predators
and their prey (t0) was 14 d. Larval bluegill peaked in
abundance before their prey in most years. In 2004, there
were two peaks in larval bluegill abundance and
zooplankton prey peaked between these two dates
(Figure 6; Table 5).

Matches between larval abundance and zooplankton
prey occurred in all years (i.e., d and s overlapped;
Table 5) for both species. There were exact matches (i.e.,

Figure 1. Mean (with 95% CI) prey selection (Chesson’s a) by
yellow perch Perca flavescens in Cameron Lake, Nebraska, 2004–
2005 by prey category of zooplankton. Confidence intervals
above the random feeding (dashed) line indicate positive
selection, values below the line indicate negative selection, and
values overlapping the line indicate neutral selection.
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t0 = 0) in 4 y for yellow perch. No correlations between
predator–prey overlap (t0) and recruitment indices were
significant for yellow perch or bluegill (P . 0.05; Table 6).
For both species the highest observed abundance
occurred in a year where the predators temporally
matched their prey (Table 5).

Discussion

Larval fish predators and their zooplankton prey were
temporally well-matched in our study. Prey densities
were adequate for larval yellow perch and bluegill.
Although a low number of yellow perch were detected in

Table 3. Percent occurrence and percent by number for zooplankton prey items found in larval yellow perch Perca flavescens
stomachs in Pelican Lake, Nebraska, in 2004.

Taxon
8

May
17

May
26

May
6

June
16

June
26

June
7

July
17

July
27

July
6

August
16

August
26

August

% Occurrence

Bosminidae 0 0 0 0 0 0 14.3 33.3 37.5 57.1 100.0 77.8

Chydoridae 0 3.3 0 0 50.0 64.7 71.4 66.7 75.0 50.0 100.0 77.8

Daphnidae 0 70.0 100.0 100.0 26.7 41.2 42.9 33.3 62.5 42.9 100.0 77.8

Sididae 0 0 0 0 0 0 0 0 12.5 21.4 76.9 0

Copepoda 100.0 100.0 13.3 17.4 70.0 58.8 71.4 66.7 75.0 57.1 76.9 22.2

Nauplii 0 6.7 0 0 0 0 0 0 0 0 0 0

Ostracoda 0 0 0 0 50.0 47.1 14.3 0 62.5 57.1 38.5 11.1

Rotifera 0 0 0 0 0 0 0 0 0 0 0 0

% by number

Bosminidae 0 0 0 0 0 0 0.6 19.2 39.5 74.0 84.8 73.0

Chydoridae 0 0.8 0 0 10.3 44.5 19.5 28.3 10.2 3.3 4.5 9.5

Daphnidae 0 15.5 97.0 98.8 2.3 33.2 18.5 12.1 31.3 14.1 9.3 16.9

Sididae 0 0 0 0 0 0 0 0 0.8 1.2 0.1 0

Copepoda 100.0 83.0 3.0 1.2 50.1 15.0 60.8 40.4 16.4 6.6 1.3 0.6

Nauplii 0 0.8 0 0 0 0 0 0 0 0 0 0

Ostracoda 0 0 0 0 37.3 7.4 0.6 0 1.8 0.8 0 0

Rotifera 0 0 0 0 0 0 0 0 0 0 0 0

Figure 2. Mean (with 95% CI) prey selection (Chesson’s a) by yellow perch Perca flavescens in Pelican Lake, Nebraska, 2004 by prey
category of zooplankton. Confidence intervals above the random feeding (dashed) line indicate positive selection, values below the
line indicate negative selection, and values overlapping the line indicate neutral selection.
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both lakes in 2005, prey was seemingly available for
consumption. The observation of all larval yellow perch
collected with empty stomachs in 2005 in Pelican Lake
was notable. It is unknown if these fish were in a stressed
condition upon their collection and were unable to
adequately seek prey items or if they may not have
started first-feeding (yolk-sacs were not present). Sparse
prey resources for first-feeding fish larvae have been
commonly implicated as a cause of high mortality (May
1974; Cushing 1975, 1990; Hart and Werner 1987) and
Toetz (1966) experimentally reported mass starvation
of larval bluegill between 5 and 6 mm TL, which
corresponded to initiation of exogenous feeding. Iser-
mann and Willis (2008) suggested that factors prior to,
during, or immediately following hatching may play a
critical role in the recruitment of yellow perch under the
constraint of a narrow spawning window. Our results are
contrary to multiple experimental studies in which
survival of larval fishes is most influenced by zooplankton
biomass (Hart and Werner 1987; Welker et al. 1994).
Conversely, Houde (1994) predicted that starvation of
larval fishes in freshwater environments was less likely to

occur than in marine environments because freshwater
fish larvae are generally larger, thus conferring greater
energy reserves and resistance to starvation (Miller et al.
1988). Previous research examining the relation of
zooplankton biomass and abundance to larval growth
and survival of panfish has had mixed results (Pope and
Willis 1998; Garvey et al. 2002; Bunnell et al. 2003).

In 2005, yellow perch hatched over a very narrow time
frame in Pelican Lake (4 d) and larvae were only collected
in low numbers on one day, likely indicating a relatively
weak initial year-class. Concurrently, Pelican Lake expe-
rienced a drop in water temperature from nearly 17uC to
nearly 6uC over a period of 2 wk in late April (Jolley 2009).
This corresponded to the time period when yellow perch
eggs would have been incubating and hatching. It is
unclear whether the eggs or newly hatched larvae were
negatively affected by this cold front. Jansen et al. (2009)
simulated the effect of a cold front on yellow perch eggs
and found no decrease in egg survival, suggesting that
the newly hatched larval stage may be more susceptible
than eggs to these extreme weather events. Sandhill
lakes are shallow and windswept; they, thus, are
susceptible to erratic temperature changes and can
warm and cool quickly. Jolley (2009) examined the
relation of recruitment (i.e., year-class strength) of
bluegill and yellow perch to climatic variables in several
Sandhill lakes and found asynchronous recruitment
among the study lakes. In addition, limited support for
the concept of climatic influence on bluegill and yellow
perch was found over the years examined.

No mismatches in predator and prey abundance were
detected over the years examined in our study; thus, we
cannot determine if severe mismatches in the appear-
ance of fish larvae and their zooplankton prey would lead
to depressed survival of age-0 bluegill and yellow perch
in Nebraska Sandhill lakes. Density of larval fish and
zooplankton was variable among years but exact
matches occurred frequently for bluegill and yellow
perch. Although zooplankton density can vary spatially
(Young et al. 2009) leading to potential spatial mis-
matches (Chick and Van Den Avyle 1999), differences in
zooplankton densities between inshore and offshore
strata were not apparent (Jolley 2009). Intrastation
variability of zooplankton density was generally less than
interstation variability, and density differences were
rarely detected among regions of the lake (unpublished
data). Young et al. (2009) reported that small-scale
patchiness (i.e., , 1 m) accounted for the majority of the
variation in zooplankton abundance, which could
contribute to spatial mismatches considering the small
search volume reported for many larval fish species (,
2.5 L; Blaxter 1986; Pepin 2004). They suggested that
measures of average prey density made over larger
scales may be independent of the feeding of individuals.
Determination of the scale of zooplankton patchiness
was beyond the scope of our study but may be a topic
worth revisiting in future studies.

Although copepodites and rotifers have also been
reported (Whiteside et al. 1985; Schael et al. 1991; Wahl
et al. 1993; Fisher and Willis 1997) as a preferred prey
item of newly hatched yellow perch, we found rare

Figure 3. Mean (with 95% CI) prey selection (Chesson’s a) by
bluegill Lepomis macrochirus in Pelican Lake, Nebraska, 2004
and 2005 by prey category of zooplankton. Confidence
intervals above the random feeding (dashed) line indicate
positive selection, values below the line indicate negative
selection, and values overlapping the line indicate neutral
selection.
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consumption of these taxa despite their availability.
Increased predation on daphnids by larger (i.e., 30 mm)
yellow perch has been previously reported (Whiteside et
al. 1985; Prout et al. 1990) and positive selection for these
diet items has been shown (Mills et al. 1984; Schael et al.
1991). Our observations corroborate such findings

although daphnids were first consumed when yellow
perch were between 15 and 17 mm TL and Wahl et al.
(1993) reported consumption of daphnids by larval
yellow perch as small as 9 mm TL.

Yellow perch hatched 2 mo before bluegill and had
the potential to either prey upon or compete with

Table 4. Percent occurrence and percent by number for zooplankton prey items found in larval bluegill Lepomis macrochirus
stomachs in Pelican Lake, Nebraska, in 2004–2005.

Taxon

2004 2005

26
June

7
July

17
July

27
July

6
August

16
August

27
August

5
Sept

30
June

11
July

21
July

1
August

11
August

22
August

% Occurrence

Bosminidae 0 0 63.3 50.0 80.0 83.3 96.7 83.3 46.7 60.0 60.0 76.7 63.3 70.0

Chydoridae 0 22.2 10.0 3.3 6.7 40.0 53.3 60.0 6.7 56.7 63.3 33.3 40.0 50.0

Daphnidae 0 0 46.7 83.3 60.0 83.3 96.7 80.0 26.7 63.3 76.7 60.0 96.7 83.3

Sididae 0 0 0 3.3 3.3 13.3 10.0 43.3 0 0.0 3.3 6.7 3.3 43.3

Copepoda 33.3 11.1 30.0 96.7 76.7 83.3 86.7 90.0 60.0 33.3 36.7 20.0 23.3 63.3

Nauplii 66.7 44.4 10.0 3.3 3.3 10.0 6.7 6.7 40.0 6.7 16.7 0 3.3 0

Ostracoda 0 0 3.3 0 0 0 0 6.7 10.0 6.7 3.3 0 0 0

Rotifera 0 66.7 16.7 0 0 3.3 0 3.3 0 20.0 0 0 10.0 0

% by number

Bosminidae 0 0 46.7 15.3 42.6 46.2 47.9 34.6 21.7 28.3 32.9 51.2 44.5 32.8

Chydoridae 0 8.8 3.5 0.2 0.5 9.3 5.3 19.2 1.6 22.7 23.9 5.7 14.6 12.9

Daphnidae 0 0 38.1 21.9 22.7 12.9 18.4 23.4 10.1 34.0 31.2 39.2 33.0 28.9

Sididae 0 0 0 0.2 0.2 0.7 0.2 3.2 0 0 0.4 1.0 0.2 3.6

Copepoda 10.0 5.9 5.4 61.9 33.6 30.4 28.0 19.0 34.1 11.5 9.0 2.9 6.4 21.8

Nauplii 90.0 20.6 1.6 0.4 0.5 0.3 0.2 0.4 27.9 0.4 2.1 0 0.2 0

Ostracoda 0 0 0.4 0 0 0 0 0.2 4.7 0.7 0.4 0 0 0

Rotifera 0 64.7 4.3 0 0 0.1 0 0.1 0 2.4 0 0 1.1 0

Table 5. Mean peak larval abundance (n/100 m3), parameters used in match–mismatch examination, and result for yellow perch
Perca flavescens and copepods in Cameron and Pelican Lake, Nebraska, and for bluegill Lepomis macrochirus and combined
copepodite–Bosmina in Pelican Lake, Nebraska, 2004–2008. Parameters are t0 (timing between peaks of larval production and food
supply in days), Dt0 (annual differences in [t0] from its mean value), d (one-half width of the production period for larvae), and s
(one-half width of the production period for zooplankton).

Lake
Predator–prey
combination Year

Peak larval
abundance

Parameter

Resultt0 Dt0 d s

Cameron Yellow perch–copepods 2004 804 19 11.9 9.5 7 Match

2005 2 0 7.1 0 4.5 Exact match

Pelican Yellow perch–copepods 2004 23 0 7.1 0 19 Exact match

2005 6 0 7.1 0 10 Exact match

2006 46 21 13.9 4.5 16 Weak match

2007 89 0 7.1 4 9 Exact match

2008 238 10 2.9 15.5 26 Match

Bluegill–copepodite–Bosmina 2004a 66 20 8.0 20.5 36 Match

2004b 57 9 3.0 10.5 36 Match

2005 169 21 9.0 21 26.5 Match

2006 315 10 2.0 31.5 21 Match

2007 377 11 1.0 21 26 Match

2008 1,269 11 1.0 19 25 Match

a First peak in larval bluegill abundance in 2004.
b Second peak in larval bluegill abundance in 2004.

Match–Mismatch of Bluegill and Yellow Perch and Their Prey J.C. Jolley et al.

Journal of Fish and Wildlife Management | www.fwspubs.org November 2010 | Volume 1 | Issue 2 | 80



bluegill larvae. We did not observe any larval bluegill
consumed by juvenile yellow perch in this study (up to
74 mm TL). Although Graeb et al. (2006) demonstrated
experimentally that yellow perch begin a shift to fish
prey at 80 mm TL, most field studies do not report
consistent piscivory by yellow perch until they attain
130–150 mm TL (Clady 1974; Keast 1985; Fullhart et al.
2002), a larger size than examined in our study.

Total zooplankton densities in 2004 were low on the
first day that bluegill larvae were collected, which may
explain the lack of positive prey selection for any
particular group of zooplankton by newly hatched
bluegill larvae in 2004. Partridge and DeVries (1999)
noted a high proportion of rotifers in larval bluegill diets,
which may lead to suboptimal bluegill growth. Rotifers
were rarely consumed in our study, although they were
remarkably abundant in Pelican Lake in 2004. The
availability of energetically profitable prey (i.e., copepods
and cladocerans) likely precluded bluegill larvae from
consuming rotifers.

Although densities of yellow perch larvae varied
considerably (. 300%) among years, it appears that
recruitment of yellow perch was relatively consistent in
Pelican and Cameron lakes over the years examined and
the observed densities of larval yellow perch were
generally higher than reported values of density in six
South Dakota glacial lakes monitored for over 8 y (Jansen
2008). Many other Sandhill lakes concurrently studied
exhibited relatively consistent recruitment (Jolley 2009).

The life history and reproductive and spawning
behavior of many species have evolved in ecosystems
where environmental variability is unpredictable (Wine-
miller and Rose 1993). A combination of trophodynamic
and physical factors may interact in complex ways, over
multiple temporal and spatial scales, to affect larval fish
survival, growth, and recruitment (Fitzgerald et al. 2001;
Houde 2008). Availability of appropriate prey in time

and space is no doubt an important factor to the
survival and recruitment of age-0 fish and is likely a
component of an integrated process acting throughout
early life-stages to explain components of recruitment
variability (Houde 2008). Many studies that provide
support for the match–mismatch hypothesis involved
marine species and systems (Cushing 1990; Fortier and
Gagné 1990; Gotceitas et al. 1996; Johnson 2000); it is
lesser studied in freshwater systems, with some support
for landlocked striped bass Morone saxatilis (Chick and
Van Den Avyle 1999), threadfin shad Dorosoma pete-

Figure 4. Larval yellow perch Perca flavescens density (solid
line) and copepod density (broken line) in Cameron Lake,
Nebraska, in 2004 and 2005 (n = number).

Figure 5. Larval yellow perch Perca flavescens density (solid
line) and copepod density (broken line) in Pelican Lake,
Nebraska, 2004–2008 (n = number).
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nense (Betsill and Van Den Avyle 1997) and yellow perch
(Fitzgerald et al. 2001). Houde (1994) found that marine
larvae (compared to freshwater) may be more suscep-
tible to starvation mortality due to high metabolic
demand and small size at hatch. These traits may be
related to the applicability of the match–mismatch
hypothesis for marine fishes. Houde (1994) found that
freshwater fish larvae may be more susceptible to
episodic mortalities that affect recruitment, but that the
juvenile stage may be equally important in regulating
and controlling recruitment. In light of these complex-
ities, and given that zooplankton were abundant and
well-timed to larval fish abundance over the initial years
of this study, the match–mismatch hypothesis may not

be able to account for observed recruitment variability
in the populations that we studied.

Given the importance of copepods, copepodites,
daphnids, and bosminids as prey for larval yellow perch
and bluegill, more in-depth examination of these
relationships is warranted. Abundance indices of these
zooplankton taxa may be used as surrogates for prey
availability. In addition, the dynamic nature of zooplank-
ton populations may suggest important consequences
via timing (e.g., match–mismatch regulation; Cushing
1975, 1990), which could be further explored. Our
sampling interval of 10 d may lack the required
resolution to fully understand the relation between
zooplankton and larval bluegill and yellow perch
recruitment. If catastrophic mortality events happen in
a short time (Hjort 1914; May 1974) then more frequent
sampling may be required to pinpoint the timing and
explanation for it. Multiple life-stage abundance indices
of yellow perch and bluegill were not correlated to
zooplankton abundance indices, although those results
were based on a low number of observations (Jolley
2009). Continued stage-specific investigations of the
relationship of zooplankton to larval fish growth and
recruitment may produce important insights into the
dynamics of bluegill and yellow perch in temperate lakes.
In addition, examination of later life-stages (e.g., juve-
niles) of bluegill and yellow perch likely is also necessary.
Studies that incorporate multiple life-stages (Ludsin and
DeVries 1997; Jolley 2009) and include ecosystem
processes are especially valuable (Cury et al. 2008).
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Figure 6. Larval bluegill Lepomis macrochirus density (solid
line) and combined copepodite and Bosmina density (broken
line) in Pelican Lake, Nebraska, 2004–2008 (n = number).

Table 6. Bivariate correlations between predator–prey
overlap (t0) and fish abundance indices for yellow perch
Perca flavescens and bluegill Lepomis macrochirus. Abundance
indices are peak larval abundance (mean n/m3), autumn and
spring juvenile catch per unit effort (CPUE; mean n/cloverleaf
trap-night), and age-1 and age-2 CPUE (mean n/trap-net
night). Number of data pairs (N), correlation coefficient (r), and
P-value are given for each bivariate correlation.

Independent
variable

Yellow perch Bluegill

N r P N r P

Peak larval abundance 7 20.19 0.68 6 20.34 0.51

Autumn juvenile CPUE 7 0.13 0.77 6 0.08 0.88

Spring juvenile CPUE 7 0.32 0.48 6 20.36 0.49

Age 1 CPUE 7 20.51 0.38

Age 2 CPUE 5 20.43 0.47
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