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Response of Sorghum Enhanced in Monolignol Biosynthesis to Stalk
Rot Pathogens

Deanna L. Funnell-Harris,1,2,† Scott E. Sattler,1,3 Patrick M. O’Neill,1,2 Tammy Gries,1,3 Hannah M. Tetreault,1,3 and
Thomas E. Clemente3

1Wheat, Sorghum and Forage ResearchUnit, United StatesDepartment of Agriculture–Agricultural Research Service (USDA-ARS),
Lincoln, NE 68583

2 Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583
3 Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583

Abstract

To increase phenylpropanoid constituents and energy content in the ver-
satile C4 grass sorghum (Sorghum bicolor [L.] Moench), sorghum genes
for proteins related to monolignol biosynthesis were overexpressed:
SbMyb60 (transcriptional activator), SbPAL (phenylalanine ammonia
lyase), SbCCoAOMT (caffeoyl coenzyme A [CoA] 3-O-methyltransfer-
ase), Bmr2 (4-coumarate:CoA ligase), and SbC3H (coumaroyl shikimate
3-hydroxylase). Overexpression lines were evaluated for responses to
stalk pathogens under greenhouse and field conditions. Greenhouse-
grown plants were inoculated with Fusarium thapsinum (Fusarium stalk
rot) and Macrophomina phaseolina (charcoal rot), which cause yield-
reducing diseases. F. thapsinum-inoculated overexpression plants had
mean lesion lengths not significantly different than wild-type, except
for significantly smaller lesions on two of three SbMyb60 and one of

two SbCCoAOMT lines. M. phaseolina-inoculated overexpression lines
had lesions not significantly different from wild-type except one SbPAL
line (of two lines studied) with mean lesion lengths significantly larger.
Field-grown SbMyb60 and SbCCoAOMT overexpression plants were in-
oculated with F. thapsinum. Mean lesions of SbMyb60 lines were similar
to wild-type, but one SbCCoAOMT had larger lesions, whereas the other
line was not significantly different than wild-type. Because overexpres-
sion of SbMyb60, Bmr2, or SbC3H may not render sorghum more sus-
ceptible to stalk rots, these lines may provide sources for development
of sorghum with increased phenylpropanoid concentrations.

Keywords: fungi, sorghum, resistance, monolignol biosynthesis,Fusarium
thapsinum, Macrophomina phaseolina

The C4 grass sorghum (Sorghum bicolor [L.] Moench) is being
used for feed, forage, food, and feedstock for bioenergy platforms.
Grain and sweet sorghum are currently being used for grain- and
juice-based ethanol production to supplement corn or sugarcane, re-
spectively (Teixeira et al. 2017; K. Zhang et al. 2017). However, bio-
mass from forage or energy sorghums, or bagasse from sweet
sorghum, also has huge bioenergy potential (Ameen et al. 2017; Bar-
celos et al. 2016). Lignocellulosic ethanol can be effectively pro-
duced from sorghum biomass, particularly if processes reduce the
negative impacts of lignin, which can impair enzyme access to hemi-
cellulose, one of two cell wall polysaccharides (Scully et al. 2016).
However, lignin and the phenolic intermediates of the phenylpro-

panoid pathway incorporated into the cell wall have greater energy
potential than the two cell wall polysaccharides, cellulose and hemi-
cellulose (Boateng et al. 2008). Alternatives to lignocellulosic etha-
nol for energy production involve thermochemical conversion of
biomass through pyrolysis to biocrude oil, liquid and gaseous

(syngas and hydrogen) (Azadi et al. 2013), or using cofiring tech-
nologies to increase efficiency and environmental quality of fossil
fuel-generated electricity (Madanayake et al. 2017). It would be
advantageous to increase phenylpropanoid content of biomass in or-
der to increase its energy content for thermoconversion platforms.
However, there has been increasing interest recently in developing
ways to valorize lignin for a range of applications (Ragauskas et al.
2014; Wu et al. 2017; Xie et al. 2015).
The monolignol biosynthesis pathway produces three major lignin

subunits (p-coumaryl, coniferyl, and sinapyl) that yield, respectively,
three forms of lignin: p-hydroxyphenyl (H), guaiacyl (G), and
syringyl (S) (Fig. 1). Specific steps of the monolignol pathway have
been characterized in sorghum (Bout and Vermerris 2003; Eudes
et al. 2017; Saballos et al. 2012; Sattler et al. 2009; Scully et al.
2016, 2018;Walker et al. 2013). Three steps linked to the brownmid-
rib phenotype are particularly well-studied. Sorghum brown midrib
(bmr) mutants have reddish-brown leaf midribs instead of white or
green midribs of wild-type sorghum, and this mutant phenotype
has long been associated with reduced lignin content and altered lig-
nin composition (Palmer et al. 2008; Pillonel et al. 1991; Saballos
et al. 2012). Bmr6 and Bmr12 encode a cinnamyl alcohol dehydro-
genase (CAD) and a caffeic acid O-methyltransferase (COMT) that
catalyze the last step synthesizing all three monolignols, and the pen-
ultimate step synthesizing sinapyl aldehyde, respectively (Fig. 1).
Bmr2 encodes for 4-coumarate:coenzyme A [CoA] ligase (4CL),
which catalyzes the formation of 4-coumaroyl CoA, a substrate in
the synthesis of both flavonoids and monolignols (Saballos et al.
2012). Recently, sorghum overexpressing the transcription factor,
SbMyb60, or the monolignol biosynthesis pathway enzyme, caffeoyl
CoA 3-O-methyltransferase (SbCCoAOMT), were characterized
(Scully et al. 2016, 2018; Tetreault et al. 2018) (Fig. 1). The SbMyb60
transcription factor activates many of the genes encoding enzymes in
the monolignol biosynthesis pathway (Scully et al. 2016, 2018).
Overexpression of SbMyb60 also significantly increased lignin con-
tent and altered cell wall composition, and it activated genes involved
in biosynthesis of aromatic amino acids and S-adenosyl methionine
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(SAM), which are substrates and a cofactor, respectively, necessary
for monolignol biosynthesis. In addition, SbMyb60 overexpression
affected expression of genes involved in nitrogen assimilation and
carbon metabolism, presumably to redirect carbon and nitrogen to-
ward monolignol biosynthesis (Scully et al. 2018). The enzyme
SbCCoAOMT is a SAM-dependent O-methyltransferase that cata-
lyzes the formation of feruloyl-CoA required for synthesis of both
G- and S-lignin (Tetreault et al. 2018). Interestingly, overexpression
of SbCCoAOMT did not affect lignin content nor alter lignin compo-
sition; however, biomass total energy availability was significantly
increased owing to increased soluble and cell wall-bound ferulic
and sinapic acids.
Lignin and other phenylpropanoid metabolites have long been im-

plicated in plant defense (Naoumkina et al. 2010; Nicholson and
Hammerschmidt 1992; Walter 1992) as induced or extant physical
barriers within the cell walls to limit pathogen ingress (Uloth et al.
2015; Wuyts et al. 2007; Y. Zhang et al. 2017) and antimicrobial
or signaling molecules directly or indirectly inhibiting pathogen pro-
gression (Chang et al. 2015; Gunnaiah and Kushalappa 2014;
Naoumkina et al. 2010). However, the role of these plant constituents
became more complex in sorghum when bmr6, bmr12, and bmr6
bmr12 double mutant lines, significantly reduced in lignin content
(Oliver et al. 2005; Pedersen et al. 2008), were compared with
near-isogenic wild-type lines for responses to sorghum fungal stalk
pathogens. None of the bmr lines were shown to be more susceptible
to the pathogens, and in some cases the bmr lines were more resistant
to a given pathogen, under greenhouse or field conditions (Funnell
and Pedersen 2006; Funnell-Harris et al. 2010, 2014, 2017, 2018).
Analyses of cell wall-bound and soluble phenolic compounds
showed that bmr lines accumulated significantly more phenolic com-
pounds derived from monolignol biosynthesis than near-isogenic
wild-type lines (Palmer et al. 2008). These phenolic acids were
shown to be inhibitory to sorghum fungal pathogens in vitro at bio-
logical concentrations (Funnell-Harris et al. 2014). However, soluble
extracts from bmr6 stalks did not inhibit in vitro growth of the viru-
lent stalk pathogen Fusarium thapsinum Klittich, J.F. Leslie, P.E.

Nelson & Marasas 1997 (= Gibberella thapsina Klittich, J.F. Leslie,
P.E. Nelson & Marasas 1997), which suggested that cell wall-bound
phenolics or these compounds acting as signals to trigger defense-
related pathways are also involved in the increased resistance ob-
served in the bmr-pathogen interactions (Funnell-Harris et al.
2017). Therefore, overexpression of monolignol biosynthetic genes
or the pathway transcriptional activator, SbMyb60, could alter how
sorghum plants respond to stalk pathogens leading to either increased
or decreased resistance.
Sorghum stalk diseases are huge problems worldwide that cause

reduced grain, biomass, and sugar yield and quality (Bandara et al.
2017b, 2018; Rajewski and Francis 1991), and the increased propen-
sity of infected plants to lodge further reduces yield (Claflin and
Giorda 2002; Mughogho and Rosenberg 1984). Fusarium stalk rot,
which is caused by several Fusarium species (Bandara et al.
2017c; Claflin and Giorda 2002; Funnell-Harris et al. 2017; Kelly
et al. 2017; Mughogho and Rosenberg 1984) and degrades the stalk
pith, likely negatively affects translocation of water and nutrients
(Claflin and Giorda 2002; Reed et al. 1983). Charcoal rot, which is
caused by Macrophomina phaseolina (Tassi) Goid. 1947, also trig-
gers deterioration of the stalk, and the remaining vascular bundles be-
come covered in dark mycelia with small black sclerotia as it
progresses, which gives the disease its name (Kumari et al. 2015;
Mughogho and Rosenberg 1984; Rao et al. 1980). Because of the nu-
merous pathogens causing sorghum stalk rots and their multiple
hosts, classical gene-for-gene resistance is not possible (Bandara
et al. 2016; Rao et al. 1980; Tesso et al. 2010). Development of sor-
ghum with antimicrobial cell wall components or enhanced defense
signaling may be an alternative breeding approach.
For the current study, the genes encoding phenylalanine ammonia

lyase, 4CL, and coumaroyl shikimate 3-hydroxylase (SbPAL, Bmr2,
and SbC3H, respectively; Fig. 1) in sorghum were overexpressed in
the sorghum line RTx430. Phenylalanine ammonia lyase (PAL) (EC
4.3.1.24) catalyzes the reversible first step of the pathway, the non-
oxidative deamination of phenylalanine, to produce trans-cinnamic
acid (Fig. 1), which is also used for production of flavonoids and

Fig. 1. Schematic of the monolignol biosynthesis pathway, the subunits that are incorporated into the lignin polymer. In sorghum, the transcription factor SbMyb60 controls
expression of genes for the enzymes in the pathway. Sorghum (RTx430) was transformed with overexpressed SbMyb60, and SbPAL, SbCCoAOMT, Bmr2, and SbC3H,
which encode for phenylalanine ammonia lyase (PAL), caffeoyl coenzyme A (CoA) 3-O-methyltransferase, 4-coumarate:CoA ligase (4CL), and p-coumarate 3-hydrolylase
(C3H), respectively (highlighted in purple). C4H = cinnamate 4-hydroxylase; CSE = caffeoyl shikimate esterase; HCT = hydroxycinnamoyl-CoA shikimate transferase; CCR =
cinnamoyl-CoA reductase; F5H = ferulate 5-hydroxylase; COMT = caffeic acid O-methyltransferase; and CAD = cinnamyl alcohol dehydrogenase.
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other phenylpropanoids (Cui et al. 2014). The coumaroyl shikimate
3-hydroxylase enzyme (C3H) (EC 2.1.1.104) is one of three
membrane-bound cytochrome P450monolignol enzymes and central
for the formation of G- and S-lignin (Fornalé et al. 2015; Reddy et al.
2005). PAL, 4CL, and C3H have been implicated in defense re-
sponses to pathogens (Bhuiyan et al. 2009; Franke et al. 2002;
Moerschbacher et al. 1986; Reinold and Hahlbrock 1996; Steiner
et al. 2009).
Transgenic lines overexpressing SbPAL, Bmr2, SbC3H, SbMyb60,

or SbCCoAOMT, along with the wild-type line, RTx430, were
assessed for responses to the stalk rot pathogens F. thapsinum and
M. phaseolina under greenhouse conditions. Additionally, the
SbMyb60 and SbCCoAOMT overexpression lines were assessed for
response to F. thapsinum under field conditions. These assays were
conducted to test the hypothesis that transgenic sorghum lines over-
expressing genes in the monolignol biosynthesis pathway will have
increased resistance to sorghum stalk pathogens.

Materials and Methods
Fungi. The F. thapsinum isolates H03-11S-9 and M05A_1J_3b

were identified by using colony, conidia, and conidiophore morphol-
ogy (Funnell-Harris et al. 2013) and comparing the sequence of the 5¢
region of the translation elongation factor 1-a gene to the Fusarium-
ID database (http://www.fusariumdb.org/index.php) (Geiser et al.
2004) for previous studies (Funnell-Harris et al. 2010, 2018). Isolate
H03-11S-9, from a field in Lincoln, NE, was used to perform green-
house inoculations at University of Nebraska, Lincoln, whereas iso-
late M05A_1J_3b was used for field inoculations at Mead, NE, the
same location from which it was obtained. In a previous greenhouse
assessment, the two isolates had similar virulence levels (Funnell-
Harris et al. 2018). TheM. phaseolina isolate (MP01-001), a kind gift
from G. Odvody (Texas A & M AgriLife Research and Extension
Center, Corpus Christi, TX), was hyphal-tip purified before use. Me-
dium for maintenance of working stocks was one-half strength potato
dextrose agar (PDA) prepared using potato dextrose broth (Becton
Dickinson and Co., Sparks, MD) and amended with 100 mM/liter
of ampicillin (Sigma-Aldrich, St. Louis, MO). To prepare inoculum,
agar discs (5 mm in diameter) from the growing edge of 4-day-old
cultures on PDAwere inoculated into sterile full-strength potato dex-
trose broth (PDB) (one disc per 5 ml of broth) with sterile toothpicks,
previously treated to remove toxins and other inhibitors of fungal
growth (Funnell-Harris et al. 2017, 2018; Jardine and Leslie 1992).
The broth-and-toothpick cultures were incubated for 2 weeks at
25°C before inoculations.
Overexpression constructs and transgenic plant analyses.

Overexpression constructs were transformed into sorghum RTx430,
a parental line commonly used in hybrid production (http://archive.
gramene.org/db/diversity/diversity_view?action=view&object=
div_passport&id=3919&db_name=diversity_sorghum). Generation
of constructs and transgenic lines with overexpression of SbMyb60
(Sobic.004G2738000) and SbCCoAOMT (Sobic.010G052200.1) has
been previously described (Scully et al. 2016; Tetreault et al. 2018).
For SbMyb60, the coding region plus one intron was used, whereas
for SbCCoAOMT only the coding region was used. For SbPAL
(Sobic.004G220300.1) (Jun et al. 2018), SbC3H (Sobic.009G181800.1),
and Bmr2 (Sobic.004G062500.1) (Saballos et al. 2012), preparation
of constructs and Agrobacterium tumefaciens, and transformation of
sorghum, were similar to SbCCoAOMT (Tetreault et al. 2018). The
coding regions of SbPAL and SbC3H were amplified from genomic
DNA. The coding region of Bmr2 was amplified from the pET30a-
Bmr2 vector (Saballos et al. 2012). Each coding region was cloned
into a cassette between the cauliflower mosaic virus (CaMV) E35S
promoter and the 35S CaMV terminator (Scully et al. 2016). Each
cassette was incorporated into the binary vector pPZP211, which in-
cludes antibiotic resistance and selection markers streptomycin and
neomycin, respectively (Hajdukiewicz et al. 1994). Primers for am-
plification of genes and modification for insertion into overexpres-
sion cassettes and detection in genomic DNA of transgenic plants
are listed in Supplementary Table S1, along with primers used for re-
verse transcription quantitative PCR (RT-qPCR) (see below).

Two independent lead events each of SbPAL (out of nine indepen-
dent events) and Bmr2 (out of four independent events) were chosen
based on visual estimates of protein abundance on Western blots
(Supplementary Fig. S1), as previously described (Tetreault et al.
2018). To identify two lead events of expression of SbC3H (out of
eight) that encode for p-coumarate 3-hydroxylase, a membrane-
associated cytochrome P-450, RT-qPCR was conducted to measure
transcript levels of this gene, as well as for SbPAL and Bmr2 (Supple-
mentary Fig. S2). Once T2 independent lead events were identified,
each was selfed (if necessary) until homozygous lines were obtained
for each overexpression construct. For RT-qPCR, total RNA was
extracted from ground leaf samples using TRIzol reagent (Invitro-
gen, Carlsbad, CA) and purified with a Direct-zol RNA MiniPrep
Kit (Zymo Research, Irvine, CA). The Transcriptor First Strand
cDNA Synthesis Kit (Roche Diagnostics Corporation, Indianapolis,
IN) was used to produce cDNA using 500 ng of RNA from each
sample. qPCR was performed on a CFX Connect Real-Time PCR
Detection System (Bio-Rad Laboratories, Hercules, CA) using
transgene-specific primers to each cDNA and conditions as previ-
ously described (Scully et al. 2016). Primers specific to sorghum
a-tubulinwere used as standards. Relative expression was computed
using the ΔΔCt method with a-tubulin for normalization. No tem-
plate and no reverse transcription controls were included to verify
the absence of DNA contamination. Variation was estimated using
the GLM procedure and mean values compared using Tukey’s Stu-
dentized Range (HSD) test (SAS 2013). Within individual gene
and wild-type comparisons were considered significantly different
at P < 0.05.
For each lead event, available energy (Cal/g) was determined for

stalk tissues from 5- to 6-week-old greenhouse-grown plants using
bomb calorimetry as previously described (Scully et al. 2016). Acid
detergent lignin (g/kg) was determined for SbPAL and SbC3H lead
events as previously described (Vogel et al. 1999). Results are shown
in Supplementary Table S2.
Greenhouse stalk inoculations of lines overexpressing genes in

monolignol biosynthesis. Lines used in greenhouse assessments of
responses to stalk pathogens F. thapsinum and M. phaseolina in-
cluded lead events for each overexpression construct. Plants overex-
pressing SbCCoAOMT were event numbers ZG 234-1-28b and ZG
234-3-9a (Tetreault et al. 2018) and will be referred to as
SbCCoAOMT_28b and SbCCoAOMT_9a, respectively; overex-
pressing SbMyb60 were events ZG 129-4-10a, ZG 129-4-15a, and
ZG 124-1-2a (Scully et al. 2016) and will be referred to as
SbMyb_10a, SbMyb_15a, and SbMyb_2a, respectively; overex-
pressing SbPAL were events ZG 162-1-4a and ZG 136-2-3b and will
be referred to as SbPAL_3b and SbPAL_4a, respectively; overex-
pressing Bmr2 were events ZG 300-1-2a and ZG 300-1-6a and will
be referred to as Bmr2_2a and Bmr2_6a, respectively; and plants
overexpressing SbC3H were events ZG 177-2-1a and ZG 170-3-1a
and will be referred to as SbC3H_2b and SbC3H_3a, respectively.
Included in all assays was the wild-type line, RTx430. The Myb_
10a line is maintained as heterozygous for the transgene owing to
profound delays in flowering when in the homozygous state (Scully
et al. 2016); all other lines are homozygous for the transgene.
Greenhouse inoculations were conducted at the University of

Nebraska Plant Growth Facilities, throughout the years of 2016 to
2018. Each set of lead events were compared for responses to F.
thapsinum, M. phaseolina, and a broth (PDB) control with the
wild-type line RTx430. Greenhouse-produced seeds were sown into
25.4-cm-diameter pots containing pasteurized soil mix (one part
sand, one part coarse vermiculite, one part top soil, and two parts
shredded peat moss). Seedlings of SbMyb_10a were screened using
PCR to detect the presence of the transgene. All lines were culled to
one plant per pot. During head emergence (when the spikelet
emerges from the collar of the flag leaf) heads of all lines, including
nontransgenic wild-type, were covered with pollination bags to pre-
vent pollen release. Because of secondary effects of overexpression
on some of the lines, development, especially timing of flowering,
was significantly affected. In particular, SbMyb60_10a flowered
nearly 20 days later than the wild-type (Scully et al. 2016). Therefore,
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SbMyb60_10a was planted in advance of the other lines so that lines
were inoculated at the same time. Staggered planting of the lines is
described in Supplementary Table S3, along with days after planting
(DAP) for inoculations; time of year greatly affected the number of
DAP to boot stage. Within 3 weeks of boot stage (when leaves are
fully expanded and the head is near complete development but still
enclosed in the flag-leaf sheath) at the base of each stalk, the middle
of the second internode above the soil was inoculated with one of the
two fungi or the PDB control, essentially as previously described
(Funnell-Harris et al. 2014). A surface-disinfested awl was used to
make a small hole, into which a fungus-infested toothpick, or a con-
trol toothpick, was inserted. At 32 days after inoculation (DAI) the
stalk was split longitudinally, and the length of the resulting red-
to-purple discoloration resulting from wounding and pathogen in-
gress (defined as the lesion) was measured. This methodology has
been commonly used in several other studies, including with plants
of varying heights (Bandara et al. 2017a; Funnell-Harris et al.
2014; Tesso et al. 2005). In addition to measurements of lesion
lengths, plant heights after flowering and stalk diameters at site of in-
oculation (middle of second internode) were determined. A total of
six plantings were performed.
Data analysis. The experimental design was randomized complete

block (RCB). There were three (SbMyb60 lines) or two (all other con-
structs) lead events and one wild-type line and three treatments in
each of eight replicated blocks, with two (SbPAL lines) or three
(all other lines) repetitions of each experiment. Individual plants or
pots were considered the experimental unit. Replications within each
experiment were blocked by location in the greenhouse. Analyses for
mean lesion lengths, plant heights, and stalk diameters were per-
formed. Replication within a repetition was treated as a random ef-
fect. Repetition, line, and inoculum were considered fixed effects.
The data were analyzed using the PROC MIXED procedure of
SAS/STAT software (SAS 2013). Datasets were analyzed for Lev-
ene’s homogeneity of variance, and appropriate adjustments were in-
corporated using the REPEATED/GROUP option. Least squares
means (LSM) and standard errors (SE) are reported. Differences of
LSM were considered significant at P # 0.05. Pearson correlations
were generated for the response variables lesion length, height, and
stalk diameter using the PROC CORR procedure in SAS/STAT
software.

Field response of lines overexpressing SbMyb60 and
SbCCoAOMT to F. thapsinum. The SbMyb60 and SbCCoAOMT
overexpression lead events and the wild-type line were planted at
University of Nebraska Plant Biotechnology Field Facility, at Mead,
NE, during the growing seasons of 2017 and 2018; for each year
there was a repetition of the entire experiment. Seeds (160) of each
transgenic line and the wild-type were mechanically planted in 6.1-
m rows in three RCBs within a 0.05-ha plot; each of the three RCBs
is considered a replication within each year. Two-and-one-half
months before the 2017 planting, debris from alfalfa planted 3 years
before was plowed under. The field was disked and cultivated, 2 and
1 days, respectively, before planting on June 1. Atrazine (1.1 kg/ha;
2-chloro-n-ethyl-N¢-[1-methyl-ethyl]-1,3,5-triazine-2,4-diamine) was
applied at planting for weed control. Overhead irrigation was ap-
plied on June 7 (1.3 cm), 9 (3.2 cm), and 10 (0.6 cm) and on July 10
(2.5 cm), 11 (1.9 cm), and 20 (3.1 cm). Rainfall totals for June, July,
August, and September were 9.0, 8.0, 10.8, and 8.6 cm, respectively.
For the 2018 planting (June 6), the previous crops had been corn
(2017) and alfalfa (2016). The field was cultivated 2 days before
planting. Atrazine was applied at planting, and then, 1 month after
planting, the plots were fertilized with urea (90.8 kg/ha). Irrigation
was applied June 7 (1.3 cm), June 14 (2.5 cm), and August 17
(2.5 cm). Rainfall totals for June, July, August, and September were
17.8, 5.3, 6.3, and 12.9 cm, respectively.
All lines were planted at the same time. After emergence, SbMyb_

10a plants were again screened for presence of the transgene using
PCR. Because M. phaseolina was imported into Nebraska from
Texas, only F. thapsinum M05A_1J_3b, isolated from a spore trap
at Mead, NE (Funnell-Harris et al. 2017), was inoculated onto the
field-grown plants. Inoculations were conducted as previously de-
scribed (Funnell-Harris et al. 2018). In each row (or replication), five
plants were randomly chosen and marked with red loop-lock tags
(27.9 × 2.5 cm; Gempler’s, Janesville, WI) and numbered 1 through
5 for pathogen inoculations, and five plants were similarly marked
with blue tags for control inoculations. Plants with different inocula-
tions were interspersed within the row. At boot stage, plants were
covered with pollination bags to prevent pollen release to the sur-
rounding area. Staggered planting was not possible; therefore, all
lines were inoculated at the same time, and lesion lengths were mea-
sured on the same day. For inoculations, most of the randomly cho-
sen plants had flowered, with the notable exception of SbMyb_10a
plants. The second internode of each stalk was wound inoculated
as described above. At 32 DAI the stalk was split longitudinally,
and the lesion length was measured. Along with lesion length, matu-
rity and stalk diameters of individual inoculated plants were mea-
sured. Because staggered planting was not possible, plant maturity
was assessed at three positions on the head (top, middle, and bottom)
and was based on a 1 to 8 scale: 1 = vegetative; 2 = vegetative to anth-
esis; 3 = anthesis; 4 =milk; 5 =milk to soft dough; 6 = soft dough; 7 =
hard dough; and 8 = mature. Row heights of six repetitions also were
recorded.
Data analysis. Because there were three replications per year, the

number of plants per each of six lines per treatment (F. thapsinum
and control) per year was 15. The entire experiment was conducted
during two years or growing seasons (repetitions). The data were ana-
lyzed using PROC MIXED procedure of SAS/STAT software (SAS
2013). Replication (row) and repetition (year) were considered random
effects. Plant line and treatment were considered fixed effects. The
dataset was analyzed for Levene’s homogeneity of variance and appro-
priate adjustments incorporated using the REPEATED/GROUP op-
tion. The LSM and SE were reported; differences in LSM were
considered significant at P # 0.05. Pearson correlations were gener-
ated for the response variables lesion length, plant stage, and stalk di-
ameter using the PROC CORR procedure in SAS/STAT software.

Results
Stalk rot inoculations of monolignol overexpression lines in

the greenhouse. Heights and basal stalk diameters were taken of
transgenic and wild-type plants, because these dimensions could af-
fect lesion length (Table 1). It had been shown that plant heights of all

Table 1. Plant height and basal stalk diameter at maturity of greenhouse-
grown wild-type and transgenic sorghum plants overexpressing monolignol
pathway-associated genes

Transgenic linez RTx430 Plant height (cm) Stalk diameter (mm)

SbPAL_3b 106.2 ± 2.4 b 15.3 ± 0.3 a
SbPAL_4a 110.3 ± 1.5 b 14.8 ± 0.3 a
Wild-type 138.8 ± 4.7 a 15.2 ± 0.3 a

SbMyb_2a 107.6 ± 1.9 b 15.2 ± 0.2 a
SbMyb_10a 83.9 ± 1.9 c 13.9 ± 0.3 b
SbMyb_15a 79.3 ± 1.9 c 12.3 ± 0.2 c
Wild-type 126.0 ± 2.0 a 14.2 ± 0.2 b

SbCCoAOMT_9a 113.8 ± 1.9 b 15.3 ± 0.2 a
SbCCoAOMT_28b 105.8 ± 2.0 c 14.2 ± 0.2 b
Wild-type 126.0 ± 2.0 a 14.2 ± 0.2 b

Bmr2_2a 98.0 ± 1.8 b 11.9 ± 0.2 a
Bmr2_6a 82.9 ± 2.2 c 8.8 ± 0.2 b
Wild-type 102.4 ± 1.5 a 11.9 ± 0.2 a

SbC3H_2b 80.9 ± 0.9 c 12.0 ± 0.2 a
SbC3H_3a 89.6 ± 1.2 b 10.4 ± 0.2 b
Wild-type 97.6 ± 1.1 a 11.6 ± 0.2 a

z The overexpressed monolignol pathway-associated genes were SbMyb60
that encodes for the transcription factor that upregulates genes for enzymes
in the monolignol biosynthesis pathway; SbPAL for phenylalanine ammonia
lyase; SbCCoAOMT for caffeoyl coenzymeA (CoA) 3-O-methyltransferase;
Bmr2 for 4-coumarate:CoA ligase; and SbC3H for coumaroyl shikimate 3-
hydroxylase. Letters indicate comparisons between transgenic lines carrying
the same construct and the wild-type (below); values with different letters are
significantly different at P # 0.05.
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three SbMyb60 lead events were significantly less than the wild-type,
but plant heights were not significantly different for SbCCoAOMT
overexpression events (Scully et al. 2016; Tetreault et al. 2018). In
the current study, plant heights of the SbMyb60 lines at maturity also
were significantly less than the wild-type; however, the plant heights
at maturity of both SbCCoAOMT lines were significantly shorter than
the wild-type (Table 1). Plant heights for SbPAL, Bmr2, and SbC3H
overexpression lines also were significantly shorter than wild-type
(Table 1). Stalk diameters of SbPAL lead events were similar to the
wild-type line; however, the other overexpression constructs had at
least one line with a significantly different stalk diameter from the
wild-type. For SbMyb60 overexpression lines, it had been shown that
stalk diameters of SbMyb_10a and SbMyb_2a were similar to the
wild-type, but SbMyb_15a stalks had significantly smaller mean di-
ameters (Scully et al. 2018). In the current study, the mean stalk di-
ameter of SbMyb_15a was significantly less than the wild-type, but
the diameter of SbMyb_2a was greater (Table 1). SbCCoAOMT_9a
had a greater mean stalk diameter, whereas Bmr2_6a and SbC3H_3a
had smaller stalk diameters than the wild-type (Table 1). In no case
was there a significant interaction of plant height (P$ 0.17) or stalk
diameter (P $ 0.11) with inoculum (i.e., treatments were randomly
applied).
When SbPAL overexpression lines and the wild-type were com-

pared for mean lesion lengths following inoculations with stalk path-
ogens, effects of repetition, line, and inoculum were significant
(Table 2). There were no significant differences between the overex-
pression lines and wild-type when inoculated with F. thapsinum (P$
0.41) (Fig. 2A). When the SbPAL lines were inoculated withM. pha-
seolina, SbPAL_4a had significantly larger mean lesion lengths than
the wild-type and SbPAL_3b (P # 0.05). Mean lengths of discolor-
ations as a result of control inoculations were significantly less than
mean lesion lengths as a result of pathogen inoculations (P < 0.01)
(Fig. 2A). Correlations of lesion length on individual lines compared
with plant height or stalk diameter were not significant (Table 3); co-
efficients were significant when inoculating all three lines with
F. thapsinum for both measurements (P # 0.02) but not with M.
phaseolina (P $ 0.06) or the control (P $ 0.26).
Inoculations of SbMyb60 and SbCCoAOMT overexpression and

wild-type lines with stalk pathogens were conducted in the same rep-
etitions. Effects of repetition, line, and treatment were significantly
different (Table 2). For SbMyb60 overexpression lines and the
wild-type, mean lesion lengths of F. thapsinum-inoculated plants
were shorter for SbMyb_10a and SbMyb_15a (P # 0.03), but there
were no significant differences when comparing lead event, SbMyb_
2a and the wild-type (P = 0.24) (Fig. 2B). There were no significant
differences in mean lesion lengths between each overexpression line
and wild-type when inoculated with M. phaseolina (P $ 0.20). For
inoculations of SbCCoAOMT overexpression lines and wild-type
with F. thapsinum, significantly smaller mean lesion lengths resulted
for SbCCoAOMT_9a (P = 0.03) but not SbCCoAOMT_28b (P =
0.21) (Fig. 2C). After inoculation with M. phaseolina, there were

no significant differences between mean lesion length resulting on
SbCCoAOMT_9a (P = 0.21) or SbCCoAOMT_28b (P = 0.07) com-
pared with the wild-type. Mean lengths of discoloration following
control inoculations were significantly shorter than mean lesion
lengths as a result of pathogen inoculations for all lines (P < 0.01)
(Fig. 2B and C).When correlation analyses were conducted, compar-
ing lesion length with either plant height or stalk diameter in individ-
ual lines, significant coefficients were found for SbMyb_10a and for
SbCCoAOMT_28 for both measurements (Table 3). Across all
SbMyb60 and SbCCoAOMT transgenic lines and the wild-type, cor-
relation coefficients were significant for inoculations with either F.
thapsinum or M. phaseolina (P < 0.01) but not the control (P $
0.58). To indicate whether plant height may have influenced lesion
measurements for each treatment of each SbMyb60 overexpression
event, Pearson correlation coefficients were generated for individual
lines (SbMyb_2a, SbMyb_10a, SbMyb_15a, and wild-type) compar-
ing lesion lengths with plant height for each inoculum (F. thapsinum,
M. phaseolina, and control). Again, correlations were significant for
pathogen inoculations of SbMyb_10a plants, F. thapsinum (r =
0.5288; P = 0.01), and M. phaseolina (r = 0.7266; P < 0.01), but
not the control inoculation (r = 0.3050; P = 0.16). Inoculation of
wild-type plants with F. thapsinum also resulted in significant corre-
lations of height with lesion length (r = 0.4383; P = 0.04). All other
line-treatment combinations did not result in significant correlations
(P $ 0.07).
When Bmr2 overexpression lines were inoculated with stalk

pathogens, there were significant differences in repetition or treat-
ment but not line, or the interactions of line with repetition and/or
inoculum (Table 2). There were no significant differences in mean
lesion lengths between the lead events, Bmr2_2a and Bmr2_6a,
and the wild-type line when inoculated with F. thapsinum (P $
0.30) or M. phaseolina (P $ 0.49) (Fig. 2D). Mean lengths of dis-
colorations following control inoculation were significantly less
than mean lesion lengths following pathogen inoculations (P <
0.01) (Fig. 2D). There were no significant correlations of mean le-
sion length on individual lines with plant height or stalk diameter
(Table 3). Additionally, there were no significant correlations
with plant height or stalk diameter when considering each inocu-
lum (P $ 0.13).
For inoculations of SbC3H overexpression lines and the wild-type,

there was a significant effect of repetition and treatment but not of
line, and their interactions also were not significant (Table 2). There
were no significant differences between SbC3H_2 or SbC3H_3 and
the wild-type for both F. thapsinum (P$ 0.32) andM. phaseolina (P
$ 0.23) inoculations (Fig. 2E). Mean discoloration lengths as a result
of control inoculation were significantly less than mean lesion
lengths from pathogen inoculations (P < 0.01) (Fig. 2E). There were
no significant correlations of mean lesion length on individual lines
with plant height or stalk diameter (Table 3). Also, there were no
significant correlations of plant height or stalk diameter with each
inoculum (P $ 0.07).

Table 2.Analysis of variance of fixed effects (repetition [R], transgenic or wild-type line [E], and treatment [T]) and interactions for inoculation of transgenic lines
carrying an overexpressed gene from monolignol biosynthesis with Fusarium thapsinum, Macrophomina phaseolina, and control compared with wild-typez

Effect

Summary statistics from type 3 tests of fixed effects

SbPAL SbMyb60, SbCCoAOMT Bmr2 SbC3H

F value Pr > F F value Pr > F F value Pr > F F value Pr > F

R 10.69 <0.01 17.15 <0.01 3.62 0.03 9.08 <0.01
E 2.69 0.01 2.72 0.02 1.00 0.37 2.09 0.13
R × E 2.94 0.01 2.67 <0.01 1.33 0.26 1.09 0.36
T 249.97 <0.01 205.31 <0.01 61.70 <0.01 55.10 <0.01
R × T 4.69 0.01 16.68 <0.01 1.64 0.17 0.30 0.88
E × T 1.37 0.17 1.60 0.11 0.65 0.63 0.48 0.75
R × E × T 1.27 0.23 1.21 0.25 1.40 0.20 1.09 0.38

z The response variable was lesion length (mm). Overexpression was accomplished using the 35S promoter from the cauliflower mosaic virus. SbMyb60 encodes
for a transcription factor, SbPAL encodes for phenylalanine ammonia lyase, SbCCoAOMT encodes for caffeoyl coenzyme A (CoA) 3-O-methyltransferase,
Bmr2 encodes for 4-coumarate:CoA ligase, and SbC3H encodes for coumaroyl shikimate 3-hydroxylase. The SbMyb60 and SbCCoAOMT lines were assessed
together.
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Field response of lines overexpressing SbMyb60 and
SbCCoAOMT to F. thapsinum. Because all lines were planted at
the same time, plant heights, growth stages, and stalk diameters were
noted for field-grown plants. The transgenic lines overexpressing
SbMyb60 were significantly shorter than the wild-type line, whereas
the lines overexpressing SbCCoAOMT were not significantly differ-
ent in height than the wild-type (Table 4). Because plant maturity can
affect responses to stalk pathogens (Bandara et al. 2016), plant stage
was noted for individual plants, based on a 1 to 8 scale. The wild-
type lines were in the milk to soft dough stages (Table 4). Only
SbCCoAOMT_28b was at a similar stage as the wild-type, whereas
all other lines were at earlier stages, especially the SbMyb60 overex-
pression lines. Mean stalk diameter of line SbCCoAOMT_9a was not
significantly different from wild-type; however, diameters of all
other transgenic lines were either significantly larger (SbMyb_2a;

P < 0.01) or smaller (SbMyb_10a, SbMyb_15a, SbCCoAOMT_
28a; P # 0.01) than wild-type (Table 4).
When inoculated with F. thapsinum, effects of line, inoculum, and

repetition (year) were significant (Table 5). For the lead events of
SbMyb60 overexpression lines, all had mean lesion lengths not sig-
nificantly different than the wild-type (P $ 0.11) (Fig. 3). For
SbCCoAOMT overexpression lines, SbCCoAOMT_9a had a mean
lesion length significantly larger than wild-type (P = 0.02), whereas
SbCCoAOMT_28b had a larger mean lesion length but not signifi-
cantly different from wild-type (P = 0.08). Mean lesion lengths for
all F. thapsinum inoculations were significantly greater than re-
sponses of control inoculations on the same line (P < 0.01) (Fig.
3); however, the wound response of SbMyb_10a was significantly
shorter than that of wild-type (P = 0.01). Pearson correlation coeffi-
cients were generated comparing lesion length with either growth

Fig. 2. Lesion lengths (mm) resulting on transgenic sorghum lines overexpressing genes involved in the monolignol biosynthesis pathway to the stalk pathogens Fusarium
thapsinum (Fusarium stalk rot) and Macrophomina phaseolina (charcoal rot). Each gene was overexpressed using the cauliflower mosaic virus E35S promoter by
transformation into sorghum line RTx430 (wild-type). Greenhouse-grown plants of each transgenic line and the wild-type were wound inoculated within 3 weeks of boot stage
with one of the two stalk pathogens or control (potato dextrose broth). Thirty-two days after inoculation, stalks were split longitudinally, and lengths of lesions or discoloration
as a result of wounding were measured. A, Lines overexpressing the gene encoding for phenylalanine ammonia lyase (SbPAL). B, Lines overexpressing the gene encoding
the transcription factor that regulates genes in the monolignol pathway (SbMyb60). C, Lines overexpressing the gene encoding for the enzyme caffeoyl coenzyme A (CoA)
3-O-methyltransferase (SbCCoAOMT). D, Lines overexpressing the gene encoding for the enzyme 4-coumarate:CoA ligase (Bmr2). E, Lines overexpressing the
gene encoding for p-coumarate 3-hydrolylase (SbC3H). Asterisks indicate that mean lesion length is significantly different from that on wild-type plants at
P # 0.05. Control inoculations resulted in responses significantly smaller than those following fungal inoculations (P < 0.01).
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stage or stalk diameter. The only case in which lesion length was as-
sociated with maturity was with SbMyb_10a (Table 6). There were
no significant correlations of lesion length with stalk diameter.

Discussion
Sorghum genes encoding a transcription factor and four different

enzymes in the monolignol biosynthesis pathway were overex-
pressed in transgenic plants, and these overexpression lines, along
with the wild-type, were assessed for response to stalk pathogens.
Because such lines could be valuable in future efforts to develop sor-
ghum as a dedicated bioenergy crop in thermal processes (Sanna
2014) or a source for renewable biochemicals (Arevalo-Gallegos
et al. 2017; Gupta et al. 2016), it was necessary to screen these lines
for responses to stalk pathogens. In nearly every case, except for one
SbPAL line challenged with M. phaseolina (greenhouse) and one
SbCCoAOMT line challenged with F. thapsinum (field), the trans-
genic lines were not more susceptible to both stalk pathogens than
wild-type. Thus, increased expression of steps in monolignol biosyn-
thesis should not render plants more susceptible to stalk pathogens.
On the other hand, increased resistance was observed in two
SbMyb60 overexpression lines and one SbCCoAOMT overexpres-
sion line when inoculated with F. thapsinum in the greenhouse

(Fig. 2); however, the hypothesis that increasing either expression
of steps in monolignol biosynthesis or the entire pathway activity
would result in increased resistance to stalk pathogens was disproven
for the most part.
In previous research, sorghum bmr lines were as resistant as near-

isogenic wild-type or even more resistant, depending on the line and
pathogen (Funnell-Harris et al. 2014, 2017). Such observations were
attributed to accumulation of phenolic compounds (soluble and cell-
wall bound) (Palmer et al. 2008) that are potentially inhibitory to the
pathogen (Boutigny et al. 2009; Ferruz et al. 2016; Funnell-Harris
et al. 2014, 2017). This may be one explanation as to why, in the cur-
rent study, SbMyb60 overexpression lines had mean lesion lengths
similar to wild-type, or even significantly smaller than wild-type,
in both greenhouse and field assessments to stalk pathogens (Figs.
2B and 3). It had been previously shown that SbMyb60 overexpres-
sion resulted in significantly greater accumulation of lignin in cell
walls and of wall-bound metabolites derived from the monolignol
pathway, which include ferulic and caffeic acids that were previously
shown to inhibitM. phaseolina and F. thapsinum growth in vitro, re-
spectively (Funnell-Harris et al. 2014; Scully et al. 2016). Addition-
ally, genes associated with SAM metabolism, one of three cofactors
necessary for monolignol biosynthesis, were also upregulated in
these lines, which suggests SbMyb60 not only activates monolignol
synthesis but also the substrate and a cofactor required for this path-
way (Scully et al. 2018). SAM, a cofactor for many methyltrans-
ferases in animals, fungi, plants, and bacteria (Liscombe et al.
2012), also serves as a substrate for ethylene synthesis in plants
(Amir 2010; Roje 2006). The ethylene signaling pathway has been
associated with response to pathogens and is necessary for defense
against many soil-borne necrotrophic pathogens (Berrocal-Lobo

Table 4.Heights, maturity, and stalk diameters at time of lesion measurement
on field-grown plantsz

Line
Row

height (cm) Maturity
Stalk

diameter (mm)

SbMyb_2a 127.08 ± 1.50 a 3.88 ± 0.06 a 21.78 ± 0.45 a
SbMyb_10a 120.00 ± 1.50 b 1.53 ± 0.18 b 15.00 ± 0.48 d
SbMyb_15a 107.08 ± 1.50 c 3.80 ± 0.09 a 14.48 ± 0.32 d
SbCCoAOMT_9a 133.75 ± 1.50 d 5.15 ± 0.11 c 18.85 ± 0.33 bc
SbCCoAOMT_28b 134.58 ± 1.50 d 5.65 ± 0.12 d 18.25 ± 0.37 c
Wild-type 136.25 ± 1.50 d 5.81 ± 0.09 d 19.42 ± 0.27 b

z SbMyb60 and SbCCoAOMT overexpression lines with wild-type were
planted during the growing seasons of 2017 and 2018. Row heights were de-
termined in six replicate plots in each season. Maturity at time of lesion mea-
surement was assessed at three positions on the head (top, middle, and
bottom), using a 1 to 8 scale: 1 = vegetative; 2 = vegetative to anthesis; 3
= anthesis; 4 = milk; 5 = milk to soft dough; 6 = soft dough; 7 = hard dough;
and 8 = mature. Stalk diameters were also determined. Least squares means
(LSM) and standard errors are shown. LSM with different letters are signif-
icantly different at P # 0.05.

Table 3. Pearson correlation coefficients (r) and significance levels (P) for
comparisons of lesion lengths with plant heights and stalk diameters of green-
house-grown transgenic sorghum plants overexpressing genes associated with
the monolignol biosynthesis pathwayz

Construct line

Pearson correlation coefficient
significance level

Plant height Stalk diameter

SbPAL
SbPAL_3b 0.0253 0.1199

0.8657 0.4170
SbPAL_4a –0.0863 0.0963

0.5598 0.5196
Wild-type 0.0881 –0.0091

0.5606 0.9514
SbMyb and SbCCoAOMT
SbMyb_2a 0.1133 0.1840

0.3468 0.1244
SbMyb_10a 0.2483 0.4218

0.0368 0.0003
SbMyb_15a 0.1106 –0.0231

0.3621 0.8493
SbCCoAOMT_9a 0.0167 0.1566

0.8896 0.1889
SbCCoAOMT_28b 0.4082 0.2698

0.0005 0.0239
Wild-type 0.0203 0.1003

0.8665 0.4089
Bmr2
Bmr2_2a 0.1445 –0.0639

0.2258 0.5939
Bmr2_6a 0.0365 0.2114

0.7627 0.0812
Wild-type –0.0113 0.0498

0.9251 0.6780
SbC3H
SbC3H_2b –0.1742 –0.2035

0.1463 0.0887
SbC3H_3a 0.0340 0.1796

0.7783 0.1340

z SbMyb60 encodes for a transcription factor, SbPAL encodes for phenylala-
nine ammonia lyase, SbCCoAOMT encodes for caffeoyl coenzyme A
(CoA) 3-O-methyltransferase, Bmr2 encodes for 4-coumarate:CoA ligase,
and SbC3H encodes for coumaroyl shikimate 3-hydroxylase. The SbMyb60
and SbCCoAOMT lines were assessed together. Transgenic lines and wild-
type line, RTx430, were inoculated with the stalk pathogens Fusarium thap-
sinum orMacrophomina phaseolina or with a broth control. Coefficients are
considered significant when P # 0.05.

Table 5. Analysis of variance of fixed effects (year [Y], transgenic or wild-
type line [E], and treatment [T]) and interactions for inoculation of field-
grown transgenic lines overexpressing SbMyb60 or SbCCoAOMT with
Fusarium thapsinum or control compared with wild-typez

Effect

Summary statistics from type 3 tests of
fixed effects

F value Pr > F

Y 7.17 0.01
E 10.02 <0.01
Y × E 1.61 0.16
T 229.71 <0.01
Y × T 3.23 0.07
E × T 2.26 0.05
Y × E × T 1.72 0.14

z The response variable was lesion length (mm). The constructs were
SbMyb60, which encodes for a transcription factor, and SbCCoAOMT,
which encodes for caffeoyl coenzyme A 3-O-methyltransferase.
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and Antonio 2004; Geraats et al. 2003; Okubara and Paulitz 2005;
Zhang et al. 2007). Arabidopsis thaliana lines that expressed SbSAM
synthase from awild potato (Solanum brevidens) had enhanced SAM
biosynthesis along with upregulation of ethylene biosynthetic genes
(Kim et al. 2015). Overexpression of SbSAM synthase also induced
three Pathogenesis-related genes in A. thaliana, which supports its
role in plant defense. Expression of yeast spermidine synthase (ySpd-
Syn), which requires SAM as a substrate, in tomato (Solanum lyco-
persicum), resulted in increased susceptibility to the necrotrophic
fungal pathogen Botrytis cinerea but not to two other pathogens
(the necrotrophic pathogen Alternaria solani and the hemibiotrophic
bacterial pathogen Pseudomonas syringae), and larvae of a chewing
insect (Manduca sexta); resistance to B. cinerea was rescued by ex-
ogenous application of ethylene precursors that included SAM
(Nambeesan et al. 2012). In cotton (Gossypium barbadense), the
gene for the ethylene response-related factor GbERF1-like was both
downregulated and overexpressed, resulting in increased susceptibil-
ity and resistance, respectively, to the necrotrophic fungus Verticil-
lium dahliae (Guo et al. 2016). Following inoculation of both
overexpression and wild-type lines, transcripts of monolignol

biosynthetic genes that included PAL, C3H, and CCoAOMT accu-
mulated, and total lignin (as determined by the Klason method)
increased. Additionally, there was a significantly greater
accumulation of lignin in uninoculated overexpressing plants and
significantly lower accumulation in downregulated lines compared
with the wild-type, which possibly affected responses to V. dahliae.
Taken together, these previous studies indicate a connection between
SAM, ethylene, the monolignol biosynthesis pathway and responses
to pathogens (Bhuiyan et al. 2007; Jin et al. 2017).
In the current study, pleiotropic effects of overexpression of

SbMyb60 in sorghum lines previously observed (Scully et al. 2016,
2018) were reflected in differential responses of the three overexpres-
sion lines to the two stalk pathogens in greenhouse assessments, es-
pecially following inoculations with F. thapsinum (Fig. 2). Pearson
coefficients indicated there were no significant correlations between
plant height or stalk diameter and lesion length (or response from
control inoculations) for SbMyb_2a and SbMyb_15a, but for
SbMyb_10a, there were significant correlations (Table 2). SbMyb_
10a had the highest relative expression level of SbMyb60 in stalks,
highest expression levels of genes encoding for PAL, 4CL,
cinnamyl-CoA reductase (CCR), CCoAOMT, and CAD, highest lev-
els of p-coumaric acid, syringic acid, and vanillic acid, and highest
levels of all three forms of lignin, compared with SbMyb_2a,
SbMyb_15a, and the wild-type lines (Scully et al. 2016). Therefore,
multiple factors may have contributed to reduced lesion lengths in the
SbMyb_10a line, which included the anatomical changes resulting
from overexpression of SbMyb60 in these plants.
It has been previously shown that overexpression of SbCCoAOMT

increased soluble and wall-bound hydroxycinnamic acids, although
lignin and polysaccharide contents did not change (Tetreault et al.
2018). In A. thaliana, overexpression of the lipid transfer protein
gene,AZELAIC ACID INDUCED 1 (AZI1) resulted in increased tran-
scription of CCoAOMT and CCR, enzymes acting in consecutive
steps that lead to G and S lignin, but no other genes in the monolignol
pathway were induced (Gao et al. 2015). The AZI1 protein is associ-
ated with generation or transmission of the defense signal, salicylic
acid, necessary for systemic acquired resistance (Jung et al. 2009),
which implies a role for CCoAOMT and CCR and/or their products
in induced resistance. In the current study, greenhouse inocula-
tions of the SbCCoAOMT lines with F. thapsinum resulted in le-
sions not significantly different (SbCCoAOMT_28b) or smaller
(SbCCoAOMT_9a) than wild-type (Fig. 2C). However, in field inoc-
ulations using another F. thapsinum isolate, lesion lengths were sig-
nificantly greater (SbCCoAOMT_9a), and it could be argued that
lesions resulting on SbCCoAOMT_28b (P = 0.08) also were larger
than those on wild-type (Fig. 3). Additionally, greenhouse inocula-
tions withM. phaseolina resulted in mean lesion lengths that tended
to be larger than that on the wild-type, and again it could be argued
that line SbCCoAOMT_28b had increased susceptibility to M. pha-
seolina compared with the wild-type (P = 0.07). Therefore, it appears
that overexpression of SbCCoAOMT in sorghum may actually nega-
tively affect resistance responses to the two stalk diseases examined
in this study. In maize, the AvrE family type II effector and pathoge-
nicity factor, WtsE, from the bacterial pathogen Pantoea stewartii
ssp. stewartii, alone could increase flux through the phenylpropanoid
pathway, by increasing expression of PAL and 4CL, but resulted in
increased susceptibility, which the authors propose as “misregulated
induction” of the phenylpropanoid pathway (Asselin et al. 2015).
Thus, in the current study, plants with overexpression of
SbCCoAOMT grown under greenhouse conditions with increased
susceptibility to M. phaseolina and under field conditions with in-
creased susceptibility to F. thapsinum may have been owing to
changes in accumulation of intermediates and flux through the mono-
lignol synthesis pathway, which altered defense responses.
In field inoculations with F. thapsinum, SbMyb60 overexpression

lines appeared to respond similarly to the pathogen as in greenhouse
studies, but for SbCCoAOMT overexpression lines, results in the
greenhouse and the field were not consistent (Figs. 2C and 3). Differ-
ences in responses between field- and greenhouse-grown transgenic
plants have been observed with decreased fitness or increased disease

Table 6. Pearson correlation coefficients (r) and significance levels (P) for
comparisons of lesion lengths with plant maturity and stalk diameters of
field-grown plants overexpressing the genes SbMyb60 and SbCCoAOMTz

Construct line

Pearson correlation coefficient
significance level

Maturity Stalk diameter

SbMyb_2a –0.1382 –0.1311
0.2919 0.3180

SbMyb_10a 0.3925 0.1095
0.0028 0.4176

SbMyb_15a –0.0085 –0.0446
0.9489 0.7376

SbCCoAOMT_9a 0.0521 –0.0775
0.6927 0.5564

SbCCoAOMT_28b 0.0948 0.0694
0.4710 0.5983

Wild-type 0.1932 –0.1318
0.1463 0.3196

z Transgenic lines and wild-type line, RTx430, were inoculated with the stalk
pathogen Fusarium thapsinum or with a broth control. Coefficients are con-
sidered significant when P # 0.05.

Fig. 3. Mean lesion lengths (mm) of field-grown transgenic sorghum plants
overexpressing the gene for transcription factor SbMyb60 and the gene for the
enzyme caffeoyl coenzyme A 3-O-methyltransferase (SbCCoAOMT), along with the
wild-type line, RTx430, inoculated with Fusarium thapsinum. Each gene was
overexpressed using the cauliflower mosaic virus E35S promoter by transformation
into sorghum line RTx430 (wild-type). Plants of each transgenic line and the wild-
type were wound inoculated at flowering, and then 32 days after inoculation stalks
were split longitudinally, and the lengths of lesions or discolorations as a result of
wounding were measured. Field inoculations were conducted over 2 years (2017
and 2018). Asterisk indicates that mean lesion length or wound discoloration of
transgenic line is significantly different from that on wild-type plants (P # 0.02).
Responses of control inoculations were significantly less than those following fungal
inoculation (P < 0.01).
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susceptibility in field-grown transgenic switchgrass (Panicum virga-
tum) and increased accumulation of deoxynivalenol in field-grown
barley (Hordeum vulgare) engineered to detoxify the mycotoxin
compared with greenhouse-grown plants (Baxter et al. 2015, 2018;
Manoharan et al. 2006).
The lines overexpressing SbPAL, Bmr2, and SbC3H have not been

as thoroughly studied as SbMyb60 and SbCCoAOMT, because the
original project goal was to increase energy availability for bioen-
ergy, and these lines did not display increases in lignin or energy.
However, it is currently unknownwhether cell wall components have
been altered. Previously, constitutive expression of heterologous
PAL transgenes in tobacco (Nicotiana tabacum) and A. thaliana
resulted in plants resistant to multiple pathogens (Kim and Hwang
2014; Way et al. 2011). PAL is well-known to be associated with re-
sistance to pathogens (Ganapathy et al. 2016; Wojtasik et al. 2016).
4CL has also been associated with defense responses to pathogens
(Reinold and Hahlbrock 1996), whereas C3H has been shown to
be involved in responses during colonization by beneficial microor-
ganisms (Battini et al. 2016). In the current study, when plants over-
expressing each of these enzymes were inoculated with the two stalk
pathogens, there were no significant differences in mean lesion
lengths compared with the corresponding wild-type, except for one
SbPAL overexpression line, SbPAL_4a, which was significantly
more susceptible to M. phaseolina than the wild-type (Fig. 2A, D,
and E). Mean lesion lengths, used to determine the response to M.
phaseolina inoculation, compared between individual transgenic
lines from the same construct, were variable not only for SbPAL
but also for SbMyb60 (P $ 0.06) lines. Because SbMyb60 is a tran-
scriptional activator of multiple genes, this is not surprising. How-
ever, responses of the same lines to F. thapsinum inoculation
seemed to be more consistent (P $ 0.10). Differential responses be-
tween events (lines) with the same construct to multiple pathogens
have been previously reported (Ghanta et al. 2011; Goto et al. 2015).
In summary, lines overexpressing genes involved in the monoli-

gnol biosynthesis pathway, SbMyb60 (Scully et al. 2016),
SbCCoAOMT (Tetreault et al. 2018), SbPAL, Bmr2, or SbC3H (this
work), were inoculated with two pathogens under greenhouse condi-
tions, which are associated with the greatest stalk disease problems of
sorghum in the United States: F. thapsinum and M. phaseolina. Ad-
ditionally, the SbMyb60 and SbCCoAOMT transgenic lines, along
with wild-type, were assessed in the field for response to F. thapsi-
num. SbMyb60 overexpression lines responded similarly to the path-
ogens, and two of the three lines exhibited increased resistance to F.
thapsinum in greenhouse inoculations. Although SbCCoAOMT lines
exhibited smaller mean lesion lengths after inoculation with F. thap-
sinum in the greenhouse, these lines appeared to be more susceptible
in the field study; these same lines tended to exhibit increased suscep-
tibility to M. phaseolina. SbPAL, Bmr2, and SbC3H overexpression
lines were all as resistant as the wild-type lines to F. thapsinum. For
M. phaseolina, Bmr2 and SbC3H overexpression lines were as resis-
tant as the wild-type lines, but one SbPAL lead event was more sus-
ceptible than the wild-type to this pathogen. To our knowledge, this
is the first examination of response to necrotrophic pathogens from
any crop overexpressing genes in the monolignol biosynthesis. This
research provides valuable information for using sorghum lines with
increased expression of monolignol biosynthesis genes as feedstock
for thermochemical conversion of biomass (Carvalho et al. 2017;
Habyarimana et al. 2016) or production of renewable products from
the phenylpropanoid pathway in pharmaceuticals or cosmetics
(Hauck et al. 2013; Massey et al. 2014; Parveen et al. 2014).
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