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Abstract—We consider DNA codes based on the concept of a
weighted �-stem similarity measure which reflects the ”hybridiza-
tion potential” of two DNA sequences. A random coding bound on
the rate of DNA codes with respect to a thermodynamic motivated
similarity measure is proved. Ensembles of DNA strands whose
sequence composition is restricted in a manner similar to the
restrictions in binary Fibonacci sequences are introduced to
obtain the bound.

I. INTRODUCTION
Single strands of DNA are represented by {������ �} –

sequences that are oriented. The reverse-complement (Watson-
Crick transformation) of a DNA strand is defined by first
reversing the order of the letters and then substituting each
letter � for its complement ��, namely: � for �� � for � and
vice-versa. For example, the reverse complement of AACG is
CGTT. For strand � � ���� ��� � � � � ��� ∈ {������ �}�, let

�̃ � ����� ���−�� � � � � ���� ���� ∈ {������ �}� (1)

denote its reverse complement. If � � �̃, then � � �̃ for
any � ∈ {������ �}�. If � � �̃, then � is called a self
reverse complementary sequence. If � �� �̃, then a pair �� � �̃�
is called a pair of mutually reverse complementary sequences.
A (perfect) Watson-Crick duplex is the joining of � and �̃ so
that every letter of one strand is paired with its complementary
letter on the other strand in the double helix structure, i.e., �
and �̃ are ”perfectly compatible.” However, when two, not
necessarily complementary, oppositely directed DNA strands
are ”sufficiently compatible,” they too are capable of coa-
lescing into a double stranded DNA duplex. The process of
forming DNA duplexes from single strands is referred to
as DNA hybridization. Crosshybridization occurs when two
oppositely directed and non-complementary DNA strands form
a duplex. Crosshybridization doesn’t always occur, but there
is a potential for it to happen. In general, crosshybridization
is undesirable as it usually leads to experimental error. To
increase the accuracy and throughput of the applications listed
in [1]-[7], there is a desire to have collections of DNA strands,
as large and as mutually incompatible as possible, so that no
crosshybridization can take place. It is straightforward to view
this problem as one in coding theory.
0The work was supported by AFOSR – FA8750-07-C-0089

DNA nanotechnology often requires collections of DNA
strands called free energy gap codes [8] that will correctly
”self-assemble” into Watson-Crick duplexes and do not pro-
duce erroneous crosshybridizations. When these collections
consist entirely of pairs of mutually reverse complementary
DNA strands they are called DNA tag-antitag systems [1] and
DNA codes [9], [10].
Statistical thermodynamics is applied [5]-[7] to model com-

petitive multiplexing hybridization. In paper [8], a weighted �-
stem similarity function (see, below Definition 4) is introduced
which provides a more accurate estimation of the hybridization
energy than other similarity functions current in use, e.g.,
Hamming, insertion-deletion or edit [2]-[4]. The model in [8]
argues that the probability that a DNA code correctly assem-
bles (called the fidelity of DNA codes) is a function of the
corresponding distance measure (see, below Definition 5).
In the given paper, the techniques of [9], [10] are extended

to obtain a random coding bound on the rate of DNA codes
defined in [8]. For applications [5], the bound shows that,
asymptotically, dramatically improved DNA codes exist and
yields an asymptotic behavior for the fidelity of DNA codes.

II. STATEMENT OF PROBLEM
A. Notations and Auxiliary Definitions
The symbol � denotes definitional equalities and the symbol

��� � {�� �� � � � � �} denotes the set of integers from 1 to �.
Let � � ���� ��� � � � � ��� and � � �	�� 	�� � � � � 	��, where
��� ∈ {������ �}�, be two arbitrary DNA �-sequences.
By symbol � � �
�� 
�� � � � � 
�� ∈ {������ �}�, � ∈ ���, we
will denote a common subsequence [11] of length |�| � �

between � and �. The empty subsequence � of length |�| � 	
is a common subsequence between any sequences � and �.
Definition 1. Let � ≤ � ≤ � be an arbitrary integer. A

fixed DNA �-sequence � � �
�� 
�� � � � � 
�� ∈ {������ �}�,
is called a common block for sequences � and � (briefly,
common �����-block) of length � if sequences � and �

(simultaneously) contain � as a subsequence consisting of �
consecutive elements of � and �. We will say that a com-
mon �����-block � yields � − � common �-stems 
�� 
��� ,
� ∈ �� − ��, containing � adjacent symbols of the given
common �����-block.
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Definition 2. Let � ≤ � ≤ � be an integer. A sequence
� � ���� ��� � � � � ��� ∈ {������ 	}� is called a common block
subsequence of length |�| � � between � and � if � is
an ordered collection of non-overlapping (separated) common
�����-blocks and the length of each common �����-block in
this collection is ≥ �. Let Z����� be the set of all common
block subsequences between � and �. For any � ∈ Z�����,
we denote by 
�������, � ≤ 
������� ≤ |�|�� , the minimal
number of common �����–blocks which constitute the given
subsequence �.
Note that the difference |�| − 
�������, � ∈ Z�����, is a

total number of common �-stems containing adjacent symbols
in common �����-blocks constituting � ∈ Z�����.
Definition 3. [8] For sequences ��� ∈ {������ 	}�, the

number

������ � ���
�∈Z�����

{|�| − 
�������} � ������ ≥ 	� (2)

is called an �-stem similarity between � and �. Obviously,
������ � ������ ≤ ������ � �− �.
Example. Let � � �	 and

� � ��� 	� 	����︸ ︷︷ ︸� ���� 	� 	��︸ ︷︷ ︸��
� � �̃ � �	����︸ ︷︷ ︸� 	� 	� 	� 	��︸ ︷︷ ︸� �� 	 ��

A common block subsequence � between � and � � �̃ is

� � �
︷ ︸︸ ︷
	�����

︷ ︸︸ ︷
	� 	��� � �̃ � �
�� 
�� 
�� 
�� 
	� 
�
� �

� ���� ��� ��� ��� ��� ��� ∈ Z������

The value 
������� � � and the corresponding �–stem
similarity is

������ � ���
�∈Z�����

{|�| − 
�������} � 
− � � ��

The maximal value is achieved for the above self reverse
complementary sequence � ∈ Z�����.

B. Weighted Stem Similarity and Distance
Let � � ���� �� ≥ 	, �� � ∈ {������ 	}, be a weight

function such that

���� �� � ����� ���� �� � ∈ {������ 	}� (3)

Condition (3) means that ���� �� is an invariant function under
Watson-Crick transformation.

Definition 4. [8] Let � ∈ Z����� have the form

� �
(
�
�� ��� � � � � ���������

)
�

|�| �
��������∑
�
�

|��| �
��������∑
�
�

��

where

�
� �

(
��� � �

�
� � � � � � �

�
��

)
∈ {������ 	}�� �

� � �� �� � � � � 
��������

is an ordered collection of common �����-blocks constitut-
ing � and �� � |��| ≥ � is the length of block ��. For DNA
sequences ��� ∈ {������ 	}�, the number

S�������� � ���
�∈Z�����

⎧⎨⎩
��������∑
�
�

��−�∑
�
�

�
(
��� � �����

)⎫⎬⎭ (4)

is called a weighted �-stem similarity between � and �. We
will say that S�������� � 	 iff the set Z����� � ∅.
Function S������ �̃� is used to model [8]-[10] a ther-

modynamic similarity (hybridization energy) between DNA
sequences � and �.
Proposition 1. For any ��� ∈ {������ 	}�, the function

S�������� � S�������� ≤ S�������� (5)

In addition,

S������ �̃� � S������ �̃�� ��� ∈ {������ 	}�� (6)

The symmetry property and inequality (5) are evident.
Equality (6) follows from definitions (1),(4) and condition (3).
Identity (6) means the symmetry property of hybridization
energy between DNA sequences � and � [8]-[10].
One can easily check that �-stem similarity ������ from

Definition 3 corresponds to the uniform weight function:
���� �� ≡ � for any �� � ∈ {������ 	}. Table 1 shows an
example of values for ���� �� which satisfy (3) and have a
significant biological motivation:

���� �� � � � � � � � � � � � 	

� � � 1.02 1.46 1.29 0.88
� � � 1.46 1.83 2.17 1.29
� � � 1.32 2.24 1.83 1.46
� � 	 0.60 1.32 1.46 1.02

Table 1.
These values come from [5] and are the nearest neighbor
”thermodynamic weights” (e.g., free energy of formation)
associated to stacked pairs that occurred in DNA secondary
structures. See [7] for an introduction to the nearest neighbor
model.
Definition 5. [8] The number

D�������� � S�������� − S�������� (7)

is called a weighted �-stem distance between � and �.
Typically, D�������� �� D��������, i.e., function (7) is

not symmetric. Proposition 1 gives:

D�������� ≥ D�������� � 	� (8)

C. DNA Codes based on Stem Similarity
Let ���� � �
����� 
����� � � � � 
����� ∈ {������ 	}�,

� ∈ � , be codewords of a code � � {���������� � � � �����}
of length � and size � , where � � �� �� � � � is an even integer.
Let �, 	 � � ≤ ���

�

S��������, be an arbitrary positive
number. Taking into account (7) and (8), we give

Definition 6. A code � is called a DNA �������-
code based on weighted �-stem similarity S�������� (briefly,
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�������-code) if the following two conditions are fulfilled.
���. For any number � ∈ �� � there exists �′ ∈ �� �, �′ �� �,
such that ���′� � �̃��� �� ����. In other words, � is a
collection of ��� pairs of mutually reverse complementary
sequences. ����. For any �� �′ ∈ �� �, where � �� �′, the
distance D������������′�� ≥ �.
The following statement is obvious.
Proposition 2. Let (3) be the uniform weight function, i.e.,

��	� 
� ≡ �� 	� 
 ∈ {����
� �}�

The corresponding symmetric distance function D�≡�������,
��� ∈ {����
� �}� has the form

D�≡������� � D�≡������� � ��− ��− ������� (9)

where �-stem similarity ������ is defined by (2), and the
definition of DNA �����≡ ��-code, � � � ≤ � − �, is
identified by inequality

����������′�� ≤ ��− ��−�� �� �′ ∈ �� �� � �� �′� (10)

One reason for a considering �������-code � of size �
can be found by noting that the statistical thermodynamic
model for DNA code self assembly given in [8] indicates that:
given two identical copies of � the probability F (called the
fidelity of DNA code�) that only Watson-Crick duplexes form
and no crosshybridization duplexes exist is

F ≥
(

�

� 	� 
���{−� · K}

)�
� K � 
��� �

RT � (11)

where R is the universal gas constant, T is the Kelvin
temperature and � � ������� is the base of natural logarithm.
Definition 7. Let � �������� be the maximal size of

DNA �������-codes based on weighted �-stem similarity. If
� � � is a fixed number, then

������� � 
��
�→∞


����
������ ���

�
(12)

is called a rate of DNA ��� �����-codes for a distance
fraction �.

D. DNA Codes for Fibonacci Ensembles

Let � be a collection of �-strings of DNA letters, closed
under reverse complement transformation. For instance,

� � ∅� � � {��}� � � {�����}

� � {��������� ��}� (13)

Denote by �������� (briefly, �����) the set (ensemble) of
all DNA sequences which do not contain �-stems from �. We
will say that ����� is the Fibonacci �-ensemble1. Denote by
����� � |��������| � |�����| the cardinality of �����.

1Binary �� �-sequences which do not contain �-stems of the form ��� ��
are known as the Fibonacci sequences [12].

Definition 8. Let ������� be the maximal size of DNA
�����≡ ��-codes � ⊆ ��������. If the distance fraction
� � � is a fixed number, then

����� � 
��
�→∞


�������� ���

�
(14)

is called a rate of DNA codes for the Fibonacci �-ensemble.
For a weight function (3), introduce numbers

�� � ���
������∈�

��	� 
�� (15)

For instance, if the values of � � ��	� 
� are given by Table 1,
then

�� �

⎧⎪⎨⎪⎩
���� if � � ∅,
���� if � � {��},
���� if � � {�����},
���� if � � {��������� ��}.

(16)

One can easily check [8] that the distance

D�������� ≥ �� · D�≡������� if ��� ∈ ���������

In virtue of (9) and (10), this gives
Proposition 3. Let �� be a number defined by ���� and a

code � ⊂ ��������. If � is a DNA �����≡ ��-code, then
� is a DNA ����� · ����-code. Hence, rate ���� satisfies
inequality

������� ≥ ���
�

��

(
�

��

)
� (17)

where ����� is defined by ����.
In the rest part of paper, we obtain a random coding bound

on ����� for � defined by ����. Then applying (17), we get a
random coding bound on the rate ������� of DNA ��� �����-
codes based on weighted �-stem similarity.

III. RANDOM CODING BOUNDS
A. On Cardinalities of Fibonacci � -Ensembles

If � � ∅, then ����� � ��. If � �� ∅, then cardinalities
����� � � and ����� � �� − |�| are given. For sets �
defined by (13), we calculate cardinalities �����, � � �� � � � �,
using the following well known result [12] from the theory of
recurrent sequences.

Proposition 4. Let �� �� � and �� �� � be arbitrary fixed
numbers. If sequence �����, � � �� �� � � �, satisfies recurrent
equation

����� � �� ����− �� 	 �� ����− ��� (18)

then
����� � �� �

�
� 	 �� �

�
� � � � �� �� � � � � (19)

where �� � ����� and �� � ����� are roots of the characteris-
tic equation ��−�� �−�� � � and �� � �����, �� � �����
are calculated from initial conditions: � � �� �� 	 �� ��,
��− |�| � �� �

�
� 	 �� �

�
� .

Formula (19), obviously, leads to
Proposition 5. If ��� �� are real numbers, �� � � and

�� � |��|, then �����, � � �� �� � � �, satisfies inequalities

� �� �� − � ��� ≤ ����� ≤ � �� �� 	 � ��� � (20)

ISIT 2008, Toronto, Canada, July 6 - 11, 2008

2294



where
� � �� � ���{��� ��}� � � ���

� �
∣∣∣∣����
∣∣∣∣ � �� � �

∣∣∣∣��

��

∣∣∣∣ � (21)

Remark. For the case � � ∅, bounds (20) will be true as
well (with the sign of equality) if we formally define �� � �,
�� � � and �� � �� � �, i.e., � � �, � � � and � � � � �.
Lemma 1. If � � {	
}, then ����	 satisfies (18), where


� � �� 
� � −�. Hence, parameters (21) of bounds (20) are:

� � 
 �
√
� � ��
�� � �

� � 

√
�

�
� �����

� � � � 
− �
√
� � ��
��� (22)

Lemma 2. If � � {�����}, then ����� satisfies (18),
where �� � �� �� � �. Hence, parameters (21) of bounds (20)
are:

� �
� �

√
��

�
� �		
� 
 �

�� � 	
√
��

��
� �	���

� �
��− �

√
��

�
� 	�	�� � �

��− 	
√
��

�
� 	
�
�	 (23)

Lemma 3. If � � {��������� ��}, then ����� satis-
fies (18), where �� � �� �� � �. Hence parameters (21) of
bounds (20) are:

� � � �
√
	 � �	��� 
 �

	 � �
√
	

�

� �	���

� �
�−

√
	

�
� 	���� � �

�− �
√
	

�
� 	��
	 (24)

Proof of Lemmas 1-3. Let 
� � ∈ {��
��� �} denote
arbitrary letters of DNA alphabet and

������ � {� � � ∈ ����� and �� � 
} �

�������� � {� � � ∈ ����� and ��−� � 
� �� � �} �

denote the corresponding subsets of ensemble �����. If a pair
�
� �� ∈ �, then subset �������� � ∅. Note that ������ and
����� can be written as sums of non-intersecting subsets:

������ � �������� � �������� � �������� � ��������

����� � ������ � ������ � ������ � ������ 	 (25)

In addition, one can easily see the following two properties.
1) If for any � ∈ {��
��� �}, pair ��� 
� �∈ �, then the
cardinality

|������| � |��− �� ��| � �	��− ��	 (26)

2) For any pair �
� �� �∈ �, the cardinality

|��������| � |��− �� ���| 	 (27)

Applying (25)-(27), one can check all recurrent equations
formulated in Lemmas 1–3.

B. Random Coding Bound for Fibonacci �-Ensemble
Let

�	 � ���� �� �′	 � ����
�


��� � ������ � ����
	

where � � ����, 
 � 
���, � � ���� and � � ���� are
introduced in Propositions 4 and 5 and given by formulas (21).
For sets � defined by (13), parameters (21) are calculated
by formulas (22)-(24). In Sect. IV, using a random coding
method [10], we present a brief proof of
Theorem 1. For any distance fraction � � 
, the rate ����

satisfies inequality

�	��� ≥ �	��� � ���
�≤
≤�

{��− ���	 − �	���}�

where
�	��� � ���

�≤�≤���{
� �−
}
�	��� ���

�	��� �� � −�′	 · � � ��−����

(
�

�− �

)
� ����

( �
�

)
�

���� � −� ���� �− ��− �� ������− ��	

Let a number �	, 
 � �	 � �, be the unique root of
equation �	��� � 
 or �� − ���	 � �	���. Obviously, if

 � � � �	, then �	��� � 
 and the following lower bound

�	��� ≥ �	��� � ��− ���	 − �	���� 
 � � � �	�

holds. Function �	��� is called a random coding bound on the
rate �	���. We will say that the number �	, 
 � �	 � �, is a
critical distance fraction of the random coding bound �	���
for ��������-ensemble.
For sets (13), our calculations based on Lemmas 1-3 give

the following numerical values for critical distance fractions:

�	 �

⎧⎪⎨⎪⎩

	���� if � � ∅,

	���
 if � � {��},

	�
	� if � � {�����},

	���� if � � {��������� ��}.

(28)

C. Random Coding Bound for DNA ��� �����-Codes
Let �	

���, � � 
, be the rate (12) of DNA ��� �����-

codes and �	, 
 � �	 � �, is the critical distance fraction
of random coding bound �	��� for Fibonacci �-ensemble.
Proposition 3 and Theorem 1 lead to

Theorem 2. If 
 � � � �	

 � ���
	

{�	 · �	}, then the
rate �	

��� � 
 and lower bound

�	

��� ≥ �	

��� � ���
	

{
�	

(
�

�	

)}
holds.
Function �	

��� is called a random coding bound for DNA

��� �����-codes. The number �	

 � 
 is called a critical
distance fraction of the random coding bound �	

���.
Obviously, inequality (11) and Theorem 2 yield the asymp-

totic (� → ∞) existence of DNA ��� �����-codes of size
� ≥ ����{��	

���} and fidelity

F ≥ �− ����

{
−�
[
K�− ��	

���

]}
� �	

 ≤ � ≤ �	

�
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where number ����, � � ���� � ����, is the unique root of
equation K � � ��������. Note that K � − �������� � �
if ���� � � � ����.

IV. PROOF OF THEOREM 1

Let ������ be �-stem similarity (2) for the uniform weight
function. For an arbitrary integer � ∈ �� − ��, define the set
P���� �� � {����� ∈ ���	�× ���	� 	 ������ � �}.
Lemma 4. The size

|P���� ��| ≤
���{���−�}∑

���

����
(
�− �

� − �

) [
� �� � � ���

]� ×

×
{
��−�−� �� �� � � ���

���

(
�− �

�

)}�

� (29)

where � � ��	�, � � ��	�, � � ��	� and � � ��	� were
introduced in the formulation of Theorem 1.
The random coding method [10], Lemma 4 and an asymp-

totic analysis of the right-hand side ��	� yield Theorem 1. To
complete the proof of Theorem 1, we give
Proof of Lemma 4. Consider a pair ����� ∈ 
�×
� for

which ������ � �. Then there exists � ∈ Z�����, |�| ≤ �,
and the integer � � �������� ≤ |�|
� for which equalities

� � |�| − � ⇐⇒ |�| � �� � ⇐⇒ �− |�| � �− �− �

take place. It follows that for any � ∈ Z�����, the number
� � �������� satisfies inequalities � ≤ � ≤ 
�� {� 
 �− �} �
Obviously, the number of all ways to distribute |�| indistin-

guishable marbles in � boxes provided that each of � boxes
contains ≥ � marbles is

(
�−�
�−�

)
� In addition, the number of all

ways to distribute � − |�| indistinguishable marbles in � � �
boxes if empty boxes are accepted is

(
�−�
�

)
�

Let � ≤ � ≤ � ≤ � be fixed integers and

{��} � ���� ��� � � � � ��� � � � � ���� �� ≥ ��

is an ordered collection of integers. For � � �� �, introduce
two sets

�{��}�� �
{
{��} �

�∑
���

�� � �� �� ≥ �

}
(30)

and define numbers

�̃�� ��� �� � 
��
�{��}	�

{
�∏

���

������

}
� (31)

Applying above formulas and notations, one can see that
for any � ∈ ��− ��, the cardinality

|P���� ��| ≤
���{� 
�−�}∑

���

�̃�� �� � �� �� ·
(
�− �

� − �

)
×

×
[
�̃�� �� � � � �− �− ��

(
�− �

�

)]�
� (32)

From definition (30)-(31) and upper bound (20) it follows that
for � � �� �,

�̃�� ��� �� ≤ 
��
�{��}	�

{
�∏

���

[
� ���

(
� � � ���

)]}
�

� �� �� 
��
�{��}	�

{
�∏

���

[
� � ����

]}
≤ �� ���� � �����

�
�

These inequalities and (32) lead to (29).
Lemma 4 is proved.

V. CONCLUSION
Let weight function � � ���� �� be defined [5] by Table 1.

Then for sets (13), numbers (16) and (28) give:

�� · �� �

⎧⎪⎨⎪⎩
���	 if 	 � ∅,
���� if 	 � {�
},
���� if 	 � {�
�
�},
���� if 	 � {�
�
��

� ��}.

Therefore, the corresponding critical distance fraction is
��		 � 
��

�
{�� · ��} � ����. In other words, for the given

weight function, we have shown that by restricting the allowed
sequence composition in DNA strands to avoid occurrences
of 	 � {�
�
��

� ��} the thermodynamically weighted
critical distance fraction of the random coding bound for DNA
��� �����-codes can be improved from ���	 to ����.
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