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Abstract 
Affinity capillary electrophoresis (ACE) is a separation technique that combines a bi-
ologically-related binding agent with the separating power and efficiency of capil-
lary electrophoresis. This review will examine several classes of binding agents that 
have been used in ACE and applications that have been described for the resulting 
methods in clinical or pharmaceutical analysis. Binding agents that will be consid-
ered are antibodies, aptamers, lectins, serum proteins, carbohydrates, and enzymes. 
This review will also describe the various formats in which each type of binding 
agent has been used in CE, including both homogeneous and heterogeneous meth-
ods. Specific areas of applications that will be considered are CE-based immunoas-
says, glycoprotein/glycan separations, chiral separations, and biointeraction stud-
ies. The general principles and formats of ACE for each of these applications will 
be examined, along with the potential advantages or limitations of these methods.
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1. Introduction 

Capillary electrophoresis (CE) is a separation technique in which a po-
tential is applied across a capillary and used to separate chemicals 
based on their different rates of migration within the resulting elec-
trical field [1–4]. CE is known to have several advantages when com-
pared to traditional paper or gel-based electrophoresis. These ad-
vantages include the ability of CE to provide separations with high 
efficiencies, short analysis times, and small sample requirements [1–
7]. These properties have made CE popular for several decades as an 
analytical tool for the separation and measurement of many types of 
compounds in biological, pharmaceutical, and clinical samples [2–8]. 

One way in which CE can be used is in combination with a bio-
logically-related agent, or affinity ligand, that can bind and alter the 
migration of analytes within the CE system. The resulting technique 
is known as affinity capillary electrophoresis (ACE) [2,4–6,9–13]. This 
method has seen significant development and use since it was first 
described in the early 1990s. As is illustrated in Fig. 1, between 100 
and 150 new papers per year have appeared on ACE over the last 15 
years. An estimated 2650 papers or reviews have discussed this topic 
over the last 27 years. 

Applications of ACE can be divided into two main categories: ho-
mogenous methods and heterogeneous methods [4,14]. In a homog-
enous method, the binding agent and analyte interact within a so-
lution, as may occur within a sample or within a CE running buffer 
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[4,9,12]. In a heterogeneous method, the binding agent is immobi-
lized onto the inner surface of the CE system or onto a support that 
is used to aid in the capture or isolation of the analyte [9,13,14]. This 
second approach may also be viewed as a type of affinity chromatog-
raphy that is combined with CE or that uses a binding agent in elec-
trokinetic chromatography [4,14–17]. 

This review will examine the types of binding agents that have 
been used in ACE and will discuss their applications in clinical and 
pharmaceutical analysis. These binding agents will include antibod-
ies, aptamers, lectins, serum proteins, carbohydrates, and enzymes. 
Both homogeneous and heterogeneous ACE methods will be con-
sidered. This review will also describe the various formats in which 
each type of binding agent has been used in ACE. Areas that will be 
discussed will include CE-based immunoassays, glycoprotein/glycan 
separations, chiral separations, and biointeraction studies. The gen-
eral principles of ACE, its various formats, and each of these applica-
tions will be presented, along with the potential advantages and lim-
itations of each approach. 

Fig. 1. Number of publications discussing affinity capillary electrophoresis that ap-
peared per year between 1991 and 2018. This graph is based on a search that was 
conducted on the Web of Science in July 2019 for articles covering the topic “affin-
ity capillary electrophoresis”.  
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2. Antibodies 

An antibody is one type of binding agent that has been used in many 
types of CE methods [2,4,15–17]. An antibody, which is also known 
as an immunoglobulin, is a glycoprotein that is produced by the im-
mune system in response to a foreign agent, or antigen. The struc-
ture of a typical antibody (e.g., immunoglobulin G, or IgG) consists of 
two identical heavy chains and two identical light chains that are tied 
together by disulfide bonds. The lower stem area of an antibody is 
known as the Fc region and is highly conserved from one type of anti-
body to the next in the same class. The two upper arms of an antibody 
are known as Fab regions and contain the binding regions that can in-
teract with an antigen. The amino acid sequence in these binding re-
gions can be highly variable between antibodies and is what makes 
it possible for a given antibody to bind specifically and strongly to a 
particular foreign agent [15,16]. 

The use of antibodies as binding agents in CE gives a method that 
is often referred to as a CE immunoassay [13,17–19]. There are several 
types of formats available for these assays, with a competitive bind-
ing format being the most common [17,19]. This type of CE immu-
noassay is typically performed in a homogeneous mode, as is illus-
trated in Fig. 2(a) [17]. In this mode, the analyte, a fixed amount of a 
labeled analog of the analyte, and a limited amount of antibodies are 
mixed and allowed to incubate in solution. This mixture is then sepa-
rated by CE and the amount of bound or non-bound labeled analog 
is detected. Due to competition between the analyte and labeled an-
alog for the antibodies, the amount of analyte in the original sample 
will be related to both the amount of labeled analog that is bound 
to the antibodies and that remains free in solution [17,19]. An advan-
tage of this approach is it can be used with either small or large tar-
gets and requires only small amounts of antibodies. Limitations of this 
method are that its limit of detection is often not as low as those of 
other CE immunoassays, and it cannot distinguish between multiple 
compounds that bind the same antibody [19]. 

Competitive CE immunoassays have been used with a variety of 
labels and to measure a large range of analytes [17–19]. Labels that 
have been used in this method have included fluorescent, chemilumi-
nescent, and enzymatic tags [17,19]. Analytes that have been exam-
ined with competitive CE immunoassays have ranged from hormones 
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and drugs to proteins and peptides [19]. Early examples of this as-
say used fluorescein as a label and laser-induced fluorescence detec-
tion to measure insulin [20] and to determine the binding constants 
of insulin with antibodies [21]. Other applications have used Cyanine 
5, green fluorescent protein, and horseradish peroxidase as labels to 
measure such targets as glucagon, thyroxine, alpha-fetoprotein, and 
insulin-like growth factor [19,22–24]. 

Non-competitive CE immunoassays can also be carried out in a ho-
mogeneous mode [17–19]. In this method, an excess of labeled an-
tibodies, or a related binding agent, is mixed with the target analyte 
and allowed to form a labeled binding agent-analyte complex. CE is 
then used to separate the non-bound labeled binding agent from the 
binding agent-analyte complex, with the latter giving a signal that is 
related to the amount of analyte that was in the original sample [25]. 
This type of assay has been employed with many types of labels and 
analytes. For instance, non-competitive CE immunoassays have been 
utilized with tags such as fluorescein, horseradish peroxidase, and 
gold nanoparticles [19]. Analytes that have been examined with these 

Fig. 2. General schemes for (a) a competitive CE immunoassay and (b) a non-com-
petitive CE immunoassay [19].  
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methods have included hormones, immunoglobulins, tumor mark-
ers, and peptides [19,25–27]. A noncompetitive immunoassay with 
chemiluminescence detection has been used to measure the tumor 
marker CA15-3 in serum [25], and gold nanoparticles have been used 
with CE and amplified chemiluminescent detection to measure car-
cinoembryonic antigen and IgG [26,27]. Some advantages of these 
methods are they tend to give lower detection limits and broader 
dynamic ranges than competitive CE assays. Potential limitations are 
the need for greater care in preparing the labeled agent in these as-
says, such as to avoid having a heterogeneous set of these labeled 
agents that may have a broad range of electrophoretic mobilities 
for their peaks in CE [19]. 

An alternative way in which a CE immunoassay can be carried out 
is in a heterogeneous format [17,19,28]. This approach is a variation 
on immunoaffinity chromatography, in which the antibodies or anti-
body-related binding agents are immobilized in a capillary to extract 
a target analyte or a group of related compounds from the sample, 
followed by their release and separation by CE [19,28]. Antibodies and 
antibody fragments have been immobilized within capillaries for the 
capture and analysis of compounds such as neurotrophins, cytokines, 
chemokines, and cyclosporine A [28–30]. Magnetic beads with immo-
bilized antibodies against immunoglobulin E (IgE) have been used 
with CE and fluorescent labels to measure IgE in serum [31]. Magnetic 
beads have also been used in an immunoaffinity CE method with ab-
sorbance detection to examine AGP isoforms [32]. In addition, immo-
bilized antibodies have been employed as stereoselective selectors in 
CE for chiral separations [33]. 

3. Aptamers 

Aptamers have also been used in CE for the analysis of biological sys-
tems [13]. An aptamer is a binding agent consisting of single-stranded 
DNA or RNA (typical size, 10-100 nucleotides) or an oligopeptide that 
is used to selectively bind to a specific target [34,35]. These targets 
may be proteins, peptides, carbohydrates, or small molecules [34]. 
Aptamers based on oligonucleotides can be produced by a method 
known as the systematic evolution of ligands by exponential enrich-
ment, or SELEX, as shown in Fig. 3 [35,36]. SELEX typically consists of a 
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four-step process. The first step involves the generation of a large ran-
dom library of DNA or RNA oligonucleotides. Next, the target analyte 
is incubated with this library to allow for oligonucleotide-target bind-
ing. Once binding has occurred, the bound aptamers are isolated from 
the mixture. The non-bound aptamers are discarded while those that 
are bound to the target are amplified by using the polymerase chain 
reaction (PCR). The cycle is then repeated, as needed, with the am-
plified aptamers and with an increase in the stringency of conditions 
(e.g., by adjusting the temperature or pH) to eventually obtain the 
sequence with the strongest or most ideal binding to the target [36]. 

Aptamers have several advantages when they are used as alterna-
tives to antibodies in binding assays. Two advantages are the ability 
to prepare and screen aptamers, through methods such as SELEX, and 
the possibility of then preparing a given aptamer sequence through 
synthetic techniques. The smaller size of aptamers compared to 

Fig. 3. General scheme for the systematic evolution of ligands by exponential en-
richment (SELEX) method of producing aptamers. This figure is based on informa-
tion provided in Refs. [35,36]. 



Zhang et  al .  in  J .  Pharm.  &  B iomed .  Analys i s  177  (2020 )        8

antibodies can also be an advantage in some applications, along with 
the ability to use aptamers in solutions and under conditions in which 
antibodies may not be stable [37–39]. Possible limitations include the 
difficulty of generating an aptamer when no purified target is available 
and the rapid degradation that can occur for some types of aptam-
ers (i.e., as is commonly seen when using RNA oligonucleotides) [36]. 

As was shown in the previous section for antibodies, aptamers 
can also be employed in CE in competitive or non-competitive bind-
ing assays [37,39]. Competitive binding assays in CE that employ ap-
tamers are based on the competition between an analyte and fixed 
amount of a labeled analyte analog for sites on a limited amount of 
aptamers. CE is then used to separate the components of this mix-
ture and to determine the amount of bound or non-bound labeled 
analog that is present, thus giving an indirect measure of the analyte 
that was present in the original sample. Fluorescent tags are often 
used for these assays due the ease with which aptamers can be mod-
ified with such labels. An example is an assay that was used to exam-
ine the competition and binding site of labeled vs unlabeled aptam-
ers for IgE as their target [37]. 

Non-competitive binding assays in CE have also made use of ap-
tamers. The scheme for such an assay is the same as shown in Fig. 
2(b) but now uses labeled aptamers instead of antibodies [37,39]. 
For instance, a fluorescent-labeled DNA aptamer was used with this 
method to measure IgE and thrombin in standard samples or serum 
[37]. Aptamers conjugated to gold nanoparticles were employed in a 
CE-based chemiluminescence immunoassay for the analysis of throm-
bin in serum [40]. In addition, a CE assay with laser-induced fluores-
cence detection used aptamers to measure the protease human neu-
trophil elastase in serum [41]. 

A potential issue when using aptamers in CE is that an aptamer-
target complex may be only moderately strong and dissociate dur-
ing the separation process. A possible solution to this problem is to 
use a method known as nonequilibrium capillary electrophoresis of 
equilibrium mixtures (NECEEM) [42]. This method allows for the use of 
low affinity aptamers as probes for binding assays and analyte mea-
surement. In this technique, a small plug of an equilibrium mixture 
(e.g., an aptamer and the target analyte) is injected into a capillary 
and a CE separation is carried out during which the aptamer-analyte 
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complex is allowed to dissociate [42,43]. The resulting peaks or elu-
tion profiles for the free aptamer, the intact aptamer-target complex, 
and released target from the complex can be used to determine the 
amount of target that was present. This method has been used to 
measure thrombin based on a low-affinity, fluorescein-labeled ap-
tamer for this protein [42].  

4. Lectins 

Lectins are a third group of binding agents that have been used in CE 
[44–55]. These are carbohydrate-binding proteins that are not pro-
duced by the immune system and that can be used to interact with 
compounds that contain glycans, such as glycopeptides, glycopro-
teins, and glycolipids [45]. The combined use of lectins with CE can 
produce an analytical method that is selective for a given type of gly-
can-containing target, as may be used to characterize the binding be-
tween carbohydrates and lectins, to identify glycans in a mixture, or 
to resolve some glycoforms of the target [45–55]. 

Lectins have been used in ACE with mobility shift assays to study 
the interactions of these binding agents with carbohydrates [46–48]. 
This type of assay is illustrated in Fig. 4. In this method, the lectin (or 
some other binding agent) is added at a known concentration to the 
running buffer. The analyte (e.g., a carbohydrate) is then injected into 
the buffer and CE system in the presence of various concentrations 
of the ligand, creating a shift in the observed mobility as the ana-
lyte binds to the lectin. The reverse process can also be performed in 
which the carbohydrate is instead added to the running buffer and the 
mobility of an injected lectin is monitored [9]. The equilibrium con-
stant for the interaction of the lectin with the carbohydrate can be ob-
tained by plotting the change in mobility or migration time as a func-
tion of the concentration of the lectin or carbohydrate in the mobile 
phase [9]. A number of studies have used this approach with fluores-
cence detection and derivatized carbohydrates to study the binding 
of these agents with lectins such as Ricinus communis agglutinin, Lens 
culinaris agglutinin, concanavalin A (Con A), wheat germ agglutinin, 
Tulipa gesneriana agglutinin, and Phaseolus vulgaris agglutinin [46–
49]. In one study, Ricinus communis agglutinin, peanut agglutinin, and 
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soy bean agglutinin were injected into a capillary filled with various 
concentrations of lactobionic acid to study the association between 
this agent and the given lectins [55]. 

Mobility shift assays have also been used with lectins to identify gly-
cans in a mixture [49,50]. When there is a high level of binding pres-
ent to a lectin, the peak of a target glycan can completely disappear. If 
the result is compared with an electropherogram with no lectins pres-
ent, this information can be used to determine which peaks repre-
sent glycans with an affinity towards a particular lectin. In one study, 
six lectins were used as additives in a running buffer to identify termi-
nal non-reducing monosaccharides and to differentiate galactose or 
fucose-linked isomers in a mixture of 24 milk oligosaccharides [49]. A 
partial filling technique has been used along with glycosidases to char-
acterize N-glycans of the therapeutic antibody rituximab [50]. Other 
work has used thermally-reversible nanogels with ACE to trap and im-
mobilize a lectin within a plug of the nanogel [51,52]. This method has 
been used to profile the N-glycan composition of IgG [52]. 

Fig. 4. General scheme for a mobility shift assay, showing the migration of an an-
alyte in (a) the absence of any binding agent in the running buffer and (b) in the 
presence of the binding agent [14].  
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Lectins have been used in ACE for the characterization of glycopro-
teins other than antibodies. For instance, a capillary that was partially 
filled with Con A has been used with ACE and absorbance detection 
to separate alpha1-acid glycoprotein (AGP) into fractions that differed 
in their content of bi-antennary glycans [53]. Fluorescent detection 
using a tagged form of AGP has also been used with CE and Con A or 
Aleuria Aurantia lectin to examine the glycoforms of AGP [54]. 

5. Serum proteins and related binding agents 

Serum proteins have been used in a number of ways in ACE, includ-
ing their use as chiral binding agents [56]. Two examples of these 
proteins are human serum albumin (HSA) and bovine serum albumin 
(BSA), which have been studied extensively due to their ability to bind 
to many drugs [56–58]. Another example is alpha1- acid glycoprotein 
(AGP). AGP has a lower pI than HSA or BSA, also binds to a number 
of drugs, and has been often used as a stereoselective binding agent 
in ACE [56,57]. Another protein that has been used as a chiral bind-
ing agent in CE is the enzyme cellulase [59]. 

Many of these proteins can be added to the running buffer in ACE 
as binding agents or chiral recognition elements [60–63]. The result is 
essentially a mobility shift assay in which drugs or enantiomers that 
bind to these proteins will have a change in their apparent mobility 
and a separation from other solutes or chiral forms that have a dif-
ferent extent of interaction with the same protein [60–63]. The use of 
these proteins may be done either by filing the entire capillary with 
a buffer that contains these agents or by using a partial filling tech-
nique. A potential problem with the use of a protein in the entire buf-
fer is that this may generate a large background signal at the detector 
[56,57,62–64]. The partial filling technique can overcome this disad-
vantage by creating conditions in which the protein solution is not 
present as the analyte enters the detection window; however, this ap-
proach can also be more complex to perform and optimize than the 
use of a protein solution throughout the CE system [56,57,62,63]. 

Both AGP and albumins have been used in homogeneous methods 
for binding studies and chiral separations in ACE [64–67]. For instance, 
ACE has been used to estimate the binding constants between the en-
antiomers of disopyramide and remoxipride with AGP [64]. The use of 
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BSA as a buffer additive for the separation of chiral drugs like ephedrine 
has been examined, including the effects of varying the pH, buffer con-
centration, and BSA concentration on the resolution of such methods 
[65]. ACE has further been used to study the conformational change of 
soluble HSA as it binds with the drug mexiletine [66] and the use of HSA 
as a buffer additive to separate omeprazole enantiomers [67]. In addi-
tion, BSA, HSA, and AGP have been used in ACE for the enantiomeric 
separation of drugs and solutes such as tryptophan, warfarin, leucovo-
rin, temazepam, oxazepam, benzoin, cyclophosphamide, pentobarbital, 
hexobarbital, ifosfamide, metoprolol, oxprenolol, and alprenolol [68]. 

Heterogeneous methods using immobilized serum proteins in CE 
have been reported in some studies [69–76]. Immobilization has been 
carried out by placing proteins within a gel, coupling the proteins onto 
a support that is packed into a capillary, and or coating the proteins 
onto the capillary wall [70–76]. For instance, BSA has been immobi-
lized in a gel for the chiral separation of D- and L-tryptophan [70]. BSA 
attached to silica monoliths has been used in CE to separate D- and 
L-tryptophan [73], and a mixture of HSA and cellulase has been im-
mobilized in an organic monolith and used in CE to expand the range 
of chiral agents that can be resolved over that which can be obtained 
by either protein alone [74]. BSA coated on polystyrene nanoparti-
cles has been used to separate D- and L-tryptophan [75], and a dy-
namic coating of HSA in CE has been employed for the separation of 
R- and S-warfarin [76]. 

Another application of ACE with serum proteins is in studies that 
examine the binding of drugs and other solutes with these agents, as 
can be used to aid in the characterization of drug pharmacokinetics 
and pharmacodynamics [14]. Many methods have been developed 
that can examine solute-protein interactions that are relatively fast 
compared to the time scale of a CE separation. These methods include 
mobility shift assays, as discussed in the previous section, and vacancy 
techniques [14,63,77–79]. Mobility shift assays can be conducted in 
a similar manner to that described in Section 4 and are based on the 
observed change in migration time for a drug or solute in the pres-
ence of buffers that contain known concentrations of a binding agent 
[62]. For instance, the competitive binding of ibuprofen and salicylic 
acid with HSA was investigated by a mobility shift assay [80], and ACE 
was used to examine the binding of retinol and retinoic acid with HSA 
and BSA as buffer additives [81]. 
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In a vacancy technique known as the equilibrium saturation 
method, the capillary is filled with a buffer that contains both the an-
alyte and binding agent (e.g., a protein) at equilibrium, as shown in 
Fig. 5(a) [14]. The concentration of one of these agents is fixed while 
the other is varied while injections are made of only buffer onto the 

Fig. 5. General schemes for the (a) equilibrium saturation method, (b) Hummel-
Dreyer method and (c) frontal analysis method for conducting binding studies by 
ACE [14].  
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CE system. Under suitable detection conditions, this situation can lead 
to two vacancy peaks in the electropherogram that are produced by a 
local change in analyte and binding agent content of the running buf-
fer as the injected plug passes through the capillary. The results can 
be used to determine the amount of analyte that is present in the run-
ning buffer in a free vs bound form [14,63,82]. This method has been 
compared with other ACE methods when used to examine the bind-
ing of warfarin with BSA [82]. This approach has also been employed 
in examining the competition of warfarin with furosemide and phen-
ylbutazone in the presence of BSA [83]. 

The Hummel-Dreyer method is a second type of vacancy tech-
nique that can be used in ACE for binding studies. This method is il-
lustrated in Fig. 5(b). The analyte is first placed at various known con-
centrations into the running buffer, resulting in a background signal 
that is proportional to the level of analyte that is present [14,84,85]. 
A small amount of binding agent is then injected into the capillary. 
Under appropriate detection conditions, a negative peak can be pro-
duced from the reduced local concentration of the analyte as it forms 
a complex with the injected binding agent. The area of this negative 
peak can be used to estimate the concentration of the bound form 
of the analyte. This method has been used in ACE to characterize the 
binding of BSA with salicylic acid [84]. Binding by the platinum-con-
taining drugs cisplatin and oxaliplatin with HSA and transferrin has 
also been characterized by this approach [85]. 

Frontal analysis is a method that can be used in ACE binding stud-
ies when a system has slow kinetics compared to the time needed 
for a CE separation [14,86–88]. This approach is shown in Fig. 5(c). In 
frontal analysis by CE, a relatively large volume of an analyte/bind-
ing agent mixture that is at equilibrium is injected into the CE system 
[56,57,62,63,78,86]. If the analyte and binding agent/complex have a 
measurable difference in their mobilities, the injected plug will pro-
duce a series of zones by the time it reaches the detector. The free 
form of the analyte and the analyte-ligand complex will correspond 
to two of the zones in the electropherogram (Note: the zone for the 
non-bound ligand may overlap with that of the complex, as can oc-
cur in drug-protein binding studies). The response over the free an-
alyte zone can be used with an external calibration curve to deter-
mine the concentration of the analyte in this form. This technique 
has been employed in a number of reports to examine the binding 
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by drugs with serum proteins [89–91]. For instance, this method has 
been used with mass spectrometry to investigate the interactions of 
propranolol, pindolol, warfarin, oxprenolol, alprenolol, salicylic acid, 
carbamazepine, and diclofenac with AGP and BSA [89], as well as the 
binding of loureirin B with HSA [90] and the interactions of sulfonyl-
urea drugs with normal and glycated HSA [91]. One advantage of this 
method is it is less sensitive to variations in the applied voltage than 
methods that measure changes in mobility or migration rates. How-
ever, this method does tend to require the presence of stronger inter-
actions than other common techniques that are used in ACE for bind-
ing studies [14,86–88]. 

6. Carbohydrates 

Carbohydrates are yet another class of binding agents that can be 
used in ACE [92]. The use and analysis of glycans in ACE was discussed 
earlier in Section 4. Another common group of carbohydrates that 
have been used in ACE are the cyclodextrins (CDs). CDs are cyclic poly-
mers of glucose, in which each subunit of glucose is joined to the next 
through an alpha-1,4-glycosidic bond [92,93]. CDs come in various 
sizes; these include alpha-, beta-, and gamma-CD, which contain five, 
six and seven subunits, respectively [92]. These polymers have a toroid 
shape with hydroxyl groups arranged on both the ends. This structure 
and arrangement of groups allows CDs to bind non-polar compounds 
while still remaining soluble in water [92]. These properties have made 
CDs useful in the pharmaceutical industry as agents that can be used 
to solubilize and deliver drugs [94,95]. The chiral arrangement of the 
hydroxyl groups on CDs and the ability of these agents to undergo 
multiple simultaneous interactions with a solute have also made CDs 
valuable as chiral recognition elements for CE [96]. 

Many applications of CDs in CE have involved their use as buffer 
additives [92]. In this mode, the CD in the running buffer is used to 
bind an injected analyte and to alter its apparent mobility vs other 
sample components [92]. This approach has been used to separate 
and analyze the antihistamine loratadine and one of its major me-
tabolites, desloratadine, in urine samples [97]. The same format can 
be used for chiral separations [98]. A recent report based on this ap-
proach used it to separate a mixture of eleven psychoactive chiral 
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amines [99]. Other applications have included the chiral analysis of 
pharmaceuticals such as levornidazole [100] or verapamil [101]. This 
method has also been utilized to measure various L-amino acids in 
biological matrices [102]. In addition, CE has been used to determine 
the binding constants of CDs with solutes such as drugs targeting 
neurodegenerative diseases or pharmaceuticals that are used to treat 
obesity [103,104]. 

7. Enzymes 

Enzymes are another set of biological agents that have been used in 
CE [105–114]. Enzymes are biological molecules that act as catalysts 
for chemical reactions in living systems. One application in CE that 
has already been mentioned in Section 5 is use of the enzyme cellu-
lase as a stereoselective binding agent for chiral separations [59,74]. 
However, CE has also been used in a number of studies to characterize 
enzyme-substrate interactions and kinetics [105–112]. This has been 
done by using pre-capillary assays, in-capillary enzyme assays or im-
mobilized enzyme reactors (IMERs) [105]. 

In a pre-capillary assay, the enzyme and substrate are mixed and 
incubated with the co-factors and other reaction components for a 
given period of time [105]. The reaction is then quenched by freez-
ing or by adding perchloric acid or hydrochloric acid [106–109]. The 
mixture is injected onto a CE system to separate the reaction prod-
uct( s) and substrates. Advantages of pre-capillary enzyme assays in 
CE are their high sensitivity, good reproducibility, and ease of con-
trol. However, an enzymatic reaction must be fast to be used in this 
method. Even though only a small volume of the reaction Fig. 6. 
General scheme for an in-capillary enzyme assay conducted by CE 
[105,112]. mixture is injected, this format for an enzyme assay requires 
much more reagent and sample than an in-capillary method because 
the reaction components are combined and incubated before they are 
used in CE [110,113,114]. 

Several applications of pre-capillary enzyme assays have been re-
ported [109–114]. This method has been used to examine the activ-
ity of carbonic anhydrase and its inhibition in the presence of furose-
mide [109]. A pre-capillary assay was used to determine and compare 
the affinities and turnover rates of camel and bovine chymosin with 
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regards to the hydrolysis of bovine kappa-casein [110] and to exam-
ine the action of myrosinase on natural and synthetic glucosinolate 
substrates [111]. Pre-capillary enzyme assays have also been used to 
screen neuraminidase inhibitors from Phascolosma esculenta [112], 
polyoxometalates as alpha-glucosidase inhibitors [114], and furose-
mide as a carbonic anhydrase inhibitor [109]. 

The use of an in-capillary enzyme assay involves a system in which 
enzyme/substrate mixing occurs in the capillary, as shown in Fig. 6 
[105]. This means the capillary is used for both separation and as a 
micro-reactor for the enzymatic reaction [112]. The advantages of this 
format are that all major steps (including the enzyme reaction, mixing, 
separation, and detection) occur within the capillary. This makes this 

Fig. 6. General scheme for an in-capillary enzyme assay conducted by CE [105,112]. 
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approach easy to automate and to use in miniaturized devices. Fur-
thermore, only small volumes of the enzymes, substrates and chem-
icals are used and no quenching is required [112]. 

One way in-capillary enzyme assays can be conducted is by us-
ing electrophoretically mediated microanalysis (EMMA) [115–122]. 
In EMMA, the reactants are mixed and the enzymatic reaction is trig-
gered by utilizing the difference in electrophoretic mobilities of the re-
actants when an electric field is applied [112,115–119]. In the contin-
uous engagement (or long contact) mode of this method, the entire 
capillary is filled with one of the reactants; either the enzyme or the 
substrate is then introduced as a small zone or as a moving bound-
ary [116]. Moving boundary EMMA has been used to study the en-
zyme kinetics of microsomal leucine aminopeptidase during the hy-
drolysis of L-leucine-p-nitroanilide [116]. The zonal mode of EMMA 
has been utilized to examine the catalytic action of glucose-6-phos-
phate dehydrogenase on glucose- 6-phosphate [115]. A partial filling 
mode of EMMA has been used to determine the enzyme kinetics for 
conversion of S- and R-fluoxetine by cytochrome 2D6 [118] and has 
been combined with a separation using highly sulfated beta-CD to 
examine the action of cytochrome p450 enzymes on R- and S-vera-
pamil [119]. EMMA has further been employed as a tool to examine 
potential aromatase inhibitors in traditional Chinese medicine [120], to 
examine the action of cytochrome p450 enzymes on ketamine [121], 
and to screen protein kinase inhibitors [123]. 

It is also possible to mix the reactants in a CE-based enzyme as-
say by using alternative approaches. Examples are the use of longitu-
dinal diffusion or transverse diffusion at the capillary inlet [124,125]. 
This type of approach has been utilized to examine the hydrolysis of 
potential fluorogenic substrates by human neutrophil elastase [126]. 
Mixing based on diffusion in a nanoliter-capillary reactor has been 
employed to examine the stereoselective metabolism of ketamine by 
cytochrome p450 [127]. 

An IMER is another tool that can be employed in CE to study en-
zyme reactions [128–139]. The use of an immobilized enzyme has 
the advantage of allowing the same enzyme preparation to be used 
for many studies, thus reducing the overall cost and improving re-
producibility. However, care must be taken so that the immobiliza-
tion process does not significantly alter the enzyme’s activity. Immo-
bilization may be based on physical adsorption, covalent attachment, 
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or encapsulation [129]. The use of CE with an IMER has been used to 
study the hydrolytic action of beta-glucosidase on p-nitrophenyl beta-
D-glucopyranoside to form nitroaniline [130] and the action of beta-
secretase on an amyloid β/A4 protein precursor [131]. An IMER was 
used to study the enzyme kinetics of trypsin and to screen for its in-
hibitors in natural products [137]. An IMER for CE that was produced 
through layer-by-layer electrostatic assembly was used to characterize 
glucose-6-phosphate dehydrogenase inhibitors [138] and to screen 
tyrosinase inhibitors [139]. 

8. Conclusion 

This review examined several general types of binding agents that 
have been used in ACE and related methods for clinical and phar-
maceutical applications. It was shown how a broad range of biolog-
ical binding agents have already been used in such methods. These 
have ranged from specific agents, such as antibodies and aptamers, 
to more general ones, such as lectins, serum proteins, and cyclodex-
trins. Enzymes and their interactions with substrates or inhibitors have 
also been employed in CE. Areas in which these binding agents have 
been used include CE immunoassays, the analysis of glycoproteins or 
glycans, chiral separations, and biointeraction studies. 

It was shown how these binding agents can be utilized with CE in 
a variety of formats and in both homogeneous and heterogeneous 
methods. Examples of formats that were discussed were competitive 
and non-competitive binding assays, as have been used with anti-
bodies or aptamers, and mobility shift assays, as have been employed 
with agents such as lectins, serum proteins, and cyclodextrins. The use 
of immobilized binding agents in CE was also discussed. In addition, 
a variety of techniques by which ACE can be used to study biologi-
cal interactions were examined. These included mobility shift assays, 
vacancy techniques, frontal analysis, and pre-capillary or in-capillary 
enzyme assays. 

Given the range of formats and binding agents that can be used 
in CE, it is expected that applications for this method will continue to 
grow. Further developments are also expected in the types of binding 
agents that can be used in this method, the formats by which they can 
be employed, and coupling of these techniques with other methods, 



Zhang et  al .  in  J .  Pharm.  &  B iomed .  Analys i s  177  (2020 )        20

such as mass spectrometry, affinity supports, or IMERs. These devel-
opments should result in even more uses for ACE and related meth-
ods in the future in biomedical fields such as clinical testing, pharma-
ceutical analysis, glycomics, and the study of biological interactions.   
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