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SUMMARY

Nicotinamide adenine dinucleotide (NAD+) is an essential coenzyme required for all living organisms. In

eukaryotic cells, the final step of NAD+ biosynthesis is exclusively cytosolic. Hence, NAD+ must be imported

into organelles to support their metabolic functions. Three NAD+ transporters belonging to the mitochon-

drial carrier family (MCF) have been biochemically characterized in plants. AtNDT1 (At2g47490), focus of the

current study, AtNDT2 (At1g25380), targeted to the inner mitochondrial membrane, and AtPXN (At2g39970),

located in the peroxisomal membrane. Although AtNDT1 was presumed to reside in the chloroplast mem-

brane, subcellular localization experiments with green fluorescent protein (GFP) fusions revealed that

AtNDT1 locates exclusively in the mitochondrial membrane in stably transformed Arabidopsis plants. To

understand the biological function of AtNDT1 in Arabidopsis, three transgenic lines containing an antisense

construct of AtNDT1 under the control of the 35S promoter alongside a T-DNA insertional line were evalu-

ated. Plants with reduced AtNDT1 expression displayed lower pollen viability, silique length, and higher rate

of seed abortion. Furthermore, these plants also exhibited an increased leaf number and leaf area concomi-

tant with higher photosynthetic rates and higher levels of sucrose and starch. Therefore, lower expression

of AtNDT1 was associated with enhanced vegetative growth but severe impairment of the reproductive

stage. These results are discussed in the context of the mitochondrial localization of AtNDT1 and its impor-

tant role in the cellular NAD+ homeostasis for both metabolic and developmental processes in plants.

Keywords: Arabidopsis thaliana, nicotinamide adenine dinucleotide, transporter, pollen viability, starch

metabolism.

INTRODUCTION

Nicotinamide adenine dinucleotide (NAD+) and its phos-

phorylated derivative (NADP+) are central coenzymes impli-

cated in cellular homeostasis. Alteration in the balance of

the anabolism and catabolism of these nucleotides does

not only affect metabolism but also the redox poise of the

entire cell, thereby strongly impacting plant growth and

development (Noctor et al., 2006; Hashida et al., 2009,

2010; Gaki�ere et al., 2018). Along with its derivative forms,

NAD+ participates in several biological reactions in glycolysis,

the tricarboxylic acid (TCA) cycle, glycine decarboxylation,

the Calvin�Benson cycle, and the b-oxidation in peroxisomes

(Bernhardt et al., 2012; Geigenberger and Fernie, 2014).

NAD+ is widely used as coenzyme for reductive/oxidative

processes, playing important roles in the operation of a

range of dehydrogenase activities (Selinski et al., 2014). In

addition, an important role for NAD+ metabolism has been

demonstrated in pollen maturation and germination

(Hashida et al., 2013) and for the energy generation during

pollen germination and tube growth (C�ardenas et al., 2006;

Selinski and Scheibe, 2014). The NADPH generated in
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heterotrophic plastids by the oxidative pentose phosphate

pathway (OPPP) provides the reducing power required for

several pathways, such as fatty acid biosynthesis (Neuhaus

and Emes, 2000), as well as nitrogen assimilation (Bowsher

et al., 2007) and amino acid biosynthesis. Moreover, both

NAD+ and NADP+ play an essential role in signalling path-

ways through their interaction with reactive oxygen spe-

cies (ROS) (Hashida et al., 2010). Consequently, it is

assumed that these two coenzymes are involved in the

acclimation to environmental stresses such as UV radia-

tion, salinity, temperature, and drought (De Block et al.,

2005). Over and above this, it has been proposed that pyri-

dine nucleotide metabolism is important for seed germina-

tion (Hunt et al., 2007), stomatal movement (Hashida et al.,

2010), bolting (Liu et al., 2009), development (Hashida

et al., 2009), senescence (Schippers et al., 2008), and nitro-

gen assimilation (Takahashi et al., 2009).

NAD+ biosynthesis in plants occurs via either the de

novo or the salvage pathway (Noctor et al., 2006; Hashida

et al., 2009). The de novo pathway starts in plastids using

aspartate or tryptophan as precursors, while the salvage

pathway starts with nicotinamide (NAM) or nicotinic acid

(NA). Both metabolic fluxes converge in the formation of

nicotinic acid mononucleotide (NAMN), which in turn gives

rise to NAD+. Furthermore NAD+ kinases can synthetize

NADP+ from NAD+ and ATP in the cytosol (NADK1; Berrin

et al., 2005; Waller et al., 2010) and in the chloroplasts

(NADK2; Chai et al., 2005, 2006). In addition, peroxisomal

NADH kinase, which uses NADH rather than NAD+ as sub-

strate to produce NADPH, has been found in Arabidopsis

thaliana (NADK3; Turner et al., 2005; Waller et al., 2010).

Since the last step of NAD+ synthesis takes place in the

cytosol, NAD+ must be imported into the cell organelles to

allow proper metabolism (Noctor et al., 2006).

In yeast, two carrier proteins called ScNDT1 and ScNDT2

(NDT: NAD+ transporter), which are capable of transporting

NAD+, have been identified (Todisco et al., 2006). The charac-

terization of ScNDT1 protein revealed its location in the inner

mitochondrial membrane and its high NAD+ transport activ-

ity in exchange with ADP and AMP in vitro (Todisco et al.,

2006). The lack of both ScNDT proteins in yeast assigns a

function for supplying NAD+ to the mitochondrial matrix

(Todisco et al., 2006). Three genes encoding proteins cap-

able of NAD+ transport have been identified in Arabidopsis.

AtNDT2 is located in the inner mitochondrial membrane (Pal-

mieri et al., 2009) and AtPXN resides in the peroxisomal

membrane (Agrimi et al., 2012; Bernhardt et al., 2012). More-

over, re-evaluation of the subcellular localization of AtNDT1,

previously reported to encode a protein targeted to the inner

membrane of the chloroplast (Palmieri et al., 2009), revealed

the exclusive mitochondrial localization of this carrier (the

present work). Interestingly, the twomitochondrial NAD+ car-

rier proteins found in Arabidopsis, AtNDT1 and AtNDT2,

have similar substrate specificity, importing NAD+, but not

NADH, nicotinamide, nicotinic acid, NADP+ or NADPH,

against ADP or AMP (Palmieri et al., 2009). In contrast, the

AtPXN transporter has a versatile transport function in vitro,

also using NADH and CoA as substrates (Agrimi et al., 2012;

Bernhardt et al., 2012). Yeast complementation studies

revealed that AtPXN favours the import of NAD+ in exchange

for AMP in intact yeast cells (van Roermund et al., 2016). Fur-

thermore, expression of either AtNDT1 or AtNDT2 is able to

complement the phenotype of S. cerevisiae cells lacking

their NAD+ mitochondrial transporters and increase the mito-

chondrial NAD+ content of the double mutant strain devoid

of their two NAD+ mitochondrial transporters (Palmieri et al.,

2009). In addition, the expression of either AtNDT2 or

ScNDT1 in human cells increases the NAD+ content within

the mitochondria (VanLinden et al., 2015). Together, these

studies provide evidence that AtNDT1, like AtNDT2, catalyzes

the import of NAD+ into the mitochondria under in vivo con-

ditions.

Analysis of Atndt1- and Atndt2-promoter-GUS plants

showed that both genes are strongly expressed in developing

tissues, mainly in highly metabolically active cells, which is in

line with their mitochondrial localization. However, these

transporters have only been characterised at the biochemi-

cal and molecular level, while their physiological function

remains unclear. For this reason, we aimed to investigate

the impact of decreased AtNDT1 expression on plant

development and performance. Given the importance of

NAD+ in plant metabolism, we would expect that the defi-

ciency of AtNDT1 transport would impact the redox bal-

ance of the cells in different plant tissues. This impact on

the redox balance could influence plant growth and devel-

opment under both optimal and stress situations. In addi-

tion, evaluation of the AtNDT1 protein function is critical

for a better understanding of mitochondrial processes and

their regulation. To test this hypothesis, we analysed the

corresponding Arabidopsis mutants showing reduced

expression of AtNDT1 to understand how and at what level

changes in the mitochondrial NAD+ transport can affect

cell metabolism and plant development. We focused our

attention on the impact of reduced AtNDT1 expression in

reproductive tissues and on the importance of this carrier

in illuminated leaves.

RESULTS

AtNDT1 is highly expressed in the pollen grain

The need for NAD+ for multiple essential functions in cellu-

lar organelles is met by specialized NAD+ transport pro-

teins. We therefore expect the presence of these carrier

proteins in various tissues and at several developmental

stages in Arabidopsis. To investigate the AtNDT1 gene

expression, we determined their transcript levels in differ-

ent organs of young and mature Arabidopsis plants by

quantitative real-time PCR (qRT-PCR) analysis (Supporting
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Information Figure S1). In agreement with information in

publicly available gene expression databases (http://bar.

utoronto.ca), but slightly in contrast to that observed in

our previous promotor GUS study (Palmieri et al., 2009),

AtNDT1 was strongly expressed in the pollen grain. It also

displayed considerable expression in seeds, seedlings,

mature leaves and flowers. This suggest that AtNDT1 tran-

script is ubiquitously expressed in Arabidopsis, but mainly

found in pollen grain. This implies a role in sink and source

tissues at any phase of the plant life cycle.

Generation of Arabidopsis plants with reduced expression

of AtNDT1

To investigate the physiological role of the AtNDT1 trans-

porter in Arabidopsis, a T-DNA insertion line (GK-241G12)

was isolated and three independent antisense lines were

selected in the Col-0 ecotype (Figure 1a). The T-DNA was

inserted in the ninth exon of the AtNDT1 gene. Due to the

presence of the T-DNA insertion, the homozygous T-DNA

insertion plant ndt1�:ndt1� contained only 13% of the wild

type (WT) AtNDT1 transcript level in leaves (Figure 1b).

The AtNDT1 antisense lines were generated by ectopic

repression of the AtNDT1 transcription. The AtNDT1 mRNA

levels of the three antisense lines as-1-ndt1, as-2-ndt1 and

as-3-ndt1 were reduced to 28, 34, and 49%, respectively,

compared with those in WT leaves (Figure 1b). These inde-

pendent mutant lines were used for further analyses to

investigate the in planta function of AtNDT1.

Plants with reduced expression of AtNDT1 display

alterations in the expression of genes involved in NAD+

metabolism

To provide further insight into the physiological role of

AtNDT1, we analysed the expression levels of AtNDT1,

AtNDT2, and AtPXN in WT and ndt1�:ndt1� plants by qRT-

PCR using RNA isolated from dry seeds, leaves, flowers

and pollen grains. The analysis revealed a significant

reduction in the AtNDT2 transcripts in flowers and pollen

grains coupled with increases in the seeds of the ndt1�:
ndt1� mutant compared with their WT counterparts (Fig-

ure S2). Moreover, a strong reduction in the expression of

AtPXN was observed in the ndt1�:ndt1� pollen grains (Fig-

ure S2), while AtPXN expression levels were not signifi-

cantly altered in seeds, leaves and flowers. These data

therefore indicated that a reduced AtNDT1 expression in

the ndt1�:ndt1� is associated with changes in the expres-

sion levels of AtNDT2 and AtPXN.

To further characterize the plants with reduced AtNDT1

expression, the expression of genes encoding NAD+

biosynthetic enzymes and NAD kinases was evaluated by

qRT-PCR using RNA isolated from seeds after 48 h of imbi-

bition and leaves from 28-day-old rosette (Figure S3). The

expression of genes encoding the NAD+ biosynthetic

enzymes QPRT (quinolinate phosphoribosyltransferase)

and NMNAT (nicotinate/nicotinamide mononucleotide

adenyltransferase), as well as the genes encoding cytosolic

(NADK1) and plastidic (NADK2) isoforms of NAD kinases in

Arabidopsis was significantly higher in ndt1�:ndt1� seeds.

These results suggested that, especially in imbibed seeds,

the expression of genes related to the biosynthetic path-

way of NAD+ is upregulated presumably in an attempt to

compensate for the lower AtNDT1 expression. Conversely,

expression of the genes encoding enzymes from NAD+

metabolism was only slightly lower in ndt1�:ndt1� mutant

leaves (significantly only for the plastidic quinolinate syn-

thase, QS) (Figure S3), which might have occurred as a

consequence of different energetic requirements exhibited

by seeds and leaves.

Figure 1. Isolation and characterization of Arabidopsis thaliana genotypes deficient in the expression of the mitochondrial NAD+ transporter (NDT1). (a) Sche-

matic representation of the gene AtNDT1 (At2g47490) showing the T-DNA insertion site. The T-DNA insert, approximately 4.5 kb, is not to scale. Boxes represent

gene exons, and arrows on T-DNA denote primer positions used for population screening. The antisense construct includes the hygromycin resistance gene

(HYG), the 35S promoter, the gene NDT1 in antisense position and the 35S terminator. (b) Expression by quantitative real-time PCR analysis of NDT1 in mature

leaves of the A. thaliana mutants and wild-type plants (WT). The values were calculated relative to the WT in rosette leaves of 28-day-old plants. Values are pre-

sented as mean � SE of six individual plants per line; an asterisk indicates values that were determined by Student’s t-test to be significantly different (P < 0.05)

from the WT. (c) Phenotypic characterization of 4-week-old short-day grown Arabidopsis genotypes deficient in the expression of the plastidic NAD+ transporter

(NDT1) and WT plants.

© 2019 The Authors
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Effects of reduction in AtNDT1 expression on seed

development and seed filling

As AtNDT1 is expressed in seeds and seedlings, we investi-

gated whether AtNDT1 plays a role in seed development

or seed filling. We observed that the silique size (Fig-

ures 2a,b and S4a) and the number of seeds per silique

were lower for ndt1�:ndt1�, as-1-ndt1 and as-2-ndt1 lines

(Figure 2c). Similarly, the total number of seeds per plant

was also decreased in the mutant ndt1�:ndt1� line (Fig-

ure 2h), while seed size increased in these lines compared

with WT (Figures 2d–f, and S4b). Moreover, the weight of

one thousand seeds from these plants was also higher

(Figure 2g), although the total seed weight per plant did

not differ among the lines (Figure S4c).

To analyse the accumulation of storage compounds, we

also determined lipid, carbohydrate, and protein contents

in seeds. ndt1�:ndt1� mutant line displayed higher

amounts of lipids in mature seeds (Figure S5a) and, after

imbibition, significantly at 4 days post-imbibition (Fig-

ure S5b). The starch content was also higher in ndt1�:
ndt1� mature seeds (Figure S5c), while similar amounts of

proteins (Figure S5d) was observed when compared with

WT seeds.

Given the importance of NAD(P)H as a reducing power

source for fatty acid biosynthesis, we further analysed how

the reduction in the AtNDT1 expression impacts fatty acid

profile in mature seeds (Figure S6). We detected a 2.7-fold

increase of the 14:0 fatty acid in the mutant line compared

with WT (Figure S6a), suggesting that NAD+ import by

AtNDT1 is required for the metabolism of fatty acids in seeds.

Effects of reduction in AtNDT1 expression on seed

germination and seedling establishment

To investigate if the increased levels on the storage

reserves in the ndt1�:ndt1� mature seeds have an effect on

seed germination and seedling establishment, we evalu-

ated the percentage of seed germination and number of

abnormal seedlings. These analyses revealed that germi-

nation as well as the percentage of normal developing

seedlings were reduced in the ndt1�:ndt1� line in compar-

ison with WT (Figure S5g,h). In addition, the germination

speed index (GSI) and emergence speed index (ESI) were

significantly reduced in the ndt1�:ndt1� line (Figure S5e,f),

indicating that AtNDT1 is an important component affect-

ing seed germination and seedling development.

As NAD+ is necessary for the conversion of fatty acids

into carbohydrates during storage lipid mobilization to

drive seedling establishment (Bernhardt et al., 2012), we

further evaluated the fatty acids profile in seedlings at 2, 4,

and 6 days after imbibition. The TAG marker fatty acid in

Arabidopsis is eicosenoic acid C20:1. Interestingly, we

observed elevated C20:1 levels in 2-day-old, 4-day-old and

6-day-old mutant seedlings compared with WT, indicating

that the repression of AtNDT1 led to an impaired storage

oil mobilization during seedling establishment. Our data

also demonstrated that the mutant is able to degrade

C20:1, but the degradation rate is slowed down. The

amounts of 20:2, 24:0, and 24:1 fatty acids were increased

in 2-day-old ndt1�:ndt1� seedlings (Figure S6b). At 4 days

after stratification, the fatty acids 14:0 and 20:1a were

higher in the mutant seedlings (Figure S6c). In 6-day-old

seedlings, higher levels of 14:0, 16:2, 16:3, 18:2, 18:3, 20:2,

and 20:1a were observed for ndt1�:ndt1� line compared

with WT (Figure S6d). These results suggested that the

mobilization of the storage reserves for seed germination

rate and seedling establishment is impaired in the mutant

plants.

Effects of reduction in AtNDT1 expression in pollen

Considering the observed reduction in seed number per

silique and the higher expression of AtNDT1 in the pollen,

we evaluated if this phenotype could be a consequence of

lower pollen viability, pollen tube growth, effects of lower

expression of AtNDT1 on maternal tissues or impaired

embryo development. Comparing WT, ndt1�:ndt1�, as-1-

ndt1, and as-2-ndt1 pollen grains by stereomicroscopy

revealed lower pollen grain viability in plants with reduced

AtNDT1 expression reaching only 50, 64, and 89% of the

WT values for the ndt1�: ndt1�, as-1-ndt1, and as-2-ndt1

lines, respectively (Figures 3a and S7). Further analysis

revealed that pollen germination and tube growth were

also affected in the ndt1�: ndt1� line (Figure S8). In agree-

ment with these results, in silico analysis of the AtNDT1

gene expression pattern by using the Arabidopsis eFP

Brower (Winter et al., 2007; http://bar.utoronto.ca/efp/cgi-

bin/efpWeb.cgi), indicated that AtNDT1 is highly expressed

in the later stages of pollen development and following

germination (Figure S9a,b).

To better understand the reasons underlying the ndt1�:
ndt1� seed phenotype, we pollinated ndt1�:ndt1� mutants

using WT pollen (Figure 3b). Manual pollination of WT (fe-

male donor) with ndt1�:ndt1� pollen (male donor) gave rise

to shorter siliques (Figure 3d), while siliques developing on

plants in which WT pollen served as male donor used to

pollinate ndt1�:ndt1� (female donor) had no discernible dif-

ference in length compared with WT plants (Figure 3c).

Therefore, the complementation of ndt1�:ndt1� stigmas

with WT pollen suggested that male gametophyte and pol-

len development are sensitive to the reduced AtNDT1 trans-

port activity. Collectively, our results supported the

important contribution of AtNDT1 to pollen viability.

AtNDT1 repression enhanced growth and photosynthesis

in Arabidopsis plants

The general impact of the reduced expression of AtNDT1

on vegetative plant growth was studied in detail regarding

leaf morphology and photosynthesis. AtNDT1 T-DNA

© 2019 The Authors
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insertion and antisense lines were grown under short-day

conditions side by side with WT plants. No differences in

the visible phenotype could be identified in 4-week-old

plants with reduced AtNDT1 expression (Figure 1c). How-

ever, a detailed analysis of the growth parameters revealed

significant differences between the transgenic lines when

Figure 2. Phenotypic analysis of Arabidopsis thali-

ana genotypes deficient in the expression of the

mitochondrial NAD+ transporter (NDT1) and wild

type (WT) plants. (a) Siliques of all lines. (b) Silique

length. (c) Seed number per silique. (d) Seeds of

WT and ndt1�:ndt1� showing length differences. (e)

Detail of WT and ndt1�:ndt1� seeds. (f) Seed length.

(g) Weight 1000 seeds. (h) Seed number per plant.

(i) Nucleotide levels in mature siliques. Values are

presented as mean � SE of six individual plants per

line; an asterisk indicates values that were deter-

mined by t-test to be significantly different (P <
0.05) from the WT. FW: fresh weight. Bar in (a) rep-

resents 1 cm; and in (d, e), and represent 1 mm.

© 2019 The Authors
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd,
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compared with WT (Table 1). The ndt1�:ndt1� and as-1-

ndt1, the antisense lines with the strongest reduction in

AtNDT1 expression, displayed a higher leaf number (LN)

along with increases in the total leaf area (TLA), specific

leaf area (SLA), rosette leaf area (RLA), and root system

dry weight (RDW). For ndt1�:ndt1�, the specific rosette

area (SRA) was also significantly increased compared with

WT. For the two other genotypes, representing a lesser

reduction in AtNDT1 transcript, only LN (as-2-ndt1, as-3-

ndt1) and SLA (as-2-ndt1) were increased compared with

WT.

To investigate if the repression of AtNDT1 affects photo-

synthesis, several photosynthetic parameters were mea-

sured in the mutant plants. A reduced AtNDT1 expression

did not alter CO2 assimilation rates at 400 lmol photons

m�2 sec�1 (Figure 4a), or at 100 lmol photons m�2 sec�1

(Figure S10a,b). The parameters obtained from the light

response curves (Figure S10a) were similar to WT when

calculated as per unit of leaf area (Table S1). We further

normalised the photosynthetic rates to be expressed per

unit of mass, taking the leaf mass and thickness into

account, sas increased SLA was observed in the mutant

lines (Table 1). Interestingly, photosynthetic rates

increased significantly in the ndt1�:ndt1� and as-1-ndt1

plants (Figure 4b), whereas stomatal conductance (gs),

internal CO2 concentration (Ci), transpiration (E), photores-

piration (Ri), and stomatal density decreased in the NDT1

deficient plants (Figure 4c–f). Furthermore, non-photo-

chemical quenching (NPQ) increased in ndt1�:ndt1�, as-1-
ndt1, as-2-ndt1 and as-3-ndt1 plants relative to WT plants

under 400 lmol photons m�2 sec�1 and higher light inten-

sities (Figure 4g; Figure S11). In contrast, the electron

transport rate (ETR), maximum quantum efficiency of pho-

tosystem II (Fv/Fm), the instantaneous water use efficiency

(A/E), and intrinsic water use efficiency (A/gs) did not

change significantly compared with WT (Figure S10c–f).
These results indicated that the enhanced growth of the

ndt1 mutant plants is linked with an increased photosyn-

thetic activity.

Reduction of AtNDT1 expression affected starch and sugar

accumulation and altered cellular redox poise in leaves

To evaluate the putative metabolic changes caused by

AtNDT1 silencing in fully expanded leaves, compounds

related to carbon and nitrogen metabolism were mea-

sured throughout the diurnal cycle. Plants with reduced

AtNDT1 transcript levels accumulated more starch at the

end of the light period (Figure 5a). Accordingly, increased

starch synthesis and starch degradation rates were

observed for the mutant plants (Figure 5b,d). Glucose

and sucrose levels were higher in the ndt1�:ndt1� mutant

plants in the middle and in the end of the light period

(Figure 5c,f), while fructose levels remained unaltered

(Figure 5e). Interestingly, malate and fumarate contents

also increased throughout the day in the ndt1�:ndt1�, as-
1-ndt1, and as-2-ndt1 plants (Figure 5g,h). Protein content

was increased in the ndt1�:ndt1� line at the end of the

light period (Figure S12), whereas plants with low

AtNDT1 expression levels did not display altered chloro-

phyll levels (Figure S13).

Figure 3. Pollen viability and crossing mutants

analyses for phenotypic reestablishment of Ara-

bidopsis thaliana genotypes deficient in the expres-

sion of the mitochondrial NAD+ transporter (NDT1)

and wild type (WT) plants. (a) Pollen viability. (b)

Silique length in different crossings. (c) Crossing

with ndt1�:ndt1� female donor and WT pollen grain

donor and controls. (d) Crossing with WT female

donor and ndt1�:ndt1� pollen grain donor and con-

trols. Eight crossings were done for each combina-

tion and asterisk indicates values that were

determined by Student’s t-test to be significantly

different (P < 0.05) comparing WT female donor

and WT pollen grain donor with the others cross-

ing. Bars represents 1 cm.

© 2019 The Authors
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd,

The Plant Journal, (2019), doi: 10.1111/tpj.14452

6 Izabel de Souza Chaves et al.



A non-targeted metabolic profile analysis identified

additional effects in leaf samples harvested in the middle

of the light period (Table S2). Among the successfully

annotated metabolites, sugars and related compounds

differed markedly in the lines with low AtNDT1 expres-

sion. AtNDT1 silencing led to elevated levels of glucose

(significantly in all lines), fructose (significantly in ndt1�:
ndt1� and as-3-ndt1 lines), and galactinol (significantly in

ndt1�:ndt1�, as-2-ndt1 and as-3-ndt1 lines). Additionally,

glutamate (significantly in ndt1�:ndt1� and as-1-ndt1

lines), leucine (significantly in ndt1�:ndt1� line), sorbose

(significantly in ndt1�:ndt1� line), erythritrol (significantly

in ndt1�:ndt1� line), and myo-inositol (significantly in

ndt1�:ndt1� and as-3-ndt1 lines) levels were elevated in

the AtNDT1 silencing lines. Furthermore, the levels of

ascorbate were also increased in leaves of ndt1�:ndt1�

and as-1-ndt1 lines.

An analysis of the pyrimidine nucleotide pools in leaves

(Figure 6) revealed a significant decrease in the contents of

NAD+ in ndt1 �:ndt1�, as-1-ndt1, and as-2-ndt1 lines (Fig-

ure 6a), while the levels of NADP+, NADH and NADPH

increased in the same lines compared with WT (Figure 6b–
d). Furthermore, the sum of NAD+ and NADH decreased,

while the NADP+ plus NADPH increased significantly in

ndt1�:ndt1�, as-1-ndt1, and as-2-ndt1 (Figure 6e–f). Inter-

estingly, a higher NADH/NAD+ ratio was observed in these

lines compared with WT (Figure 6g), while the NADPH/

NADP+ ratio was not significantly altered (Figure 6h). To

confirm changes in the cellular redox state in the mutant

plants, we evaluated the activation state of NADP-depen-

dent malate dehydrogenase (NADP-MDH) (Table 2), a key

redox-regulated enzyme controlling the malate valve,

which exports reducing equivalents indirectly from chloro-

plasts. We observed an increase in the NADP-MDH activa-

tion state in mutant leaves, which was significantly

different for ndt1�:ndt1� and as-1-ndt1. The significant

increase in the maximal NADP-MDH activity corroborated

well with the increased NADPH (Figure 6d) and malate

levels (Figure 5g) found in plants with reduced expression

of AtNDT1. Altogether, these results suggested that the cel-

lular redox state is changed as a consequence of the

reduced expression of AtNDT1.

Subcellular localization of AtNDT1-GFP revealed its

mitochondrial localization

AtNDT1 was presumed to exclusively reside in the

chloroplast membrane (Palmieri et al., 2009). However,

this protein was recently found in mitochondrial mem-

branes in proteome studies (Senkler et al., 2017) and a

previous GFP-tagging and immunolocalization study was

not able to find AtNDT1 targeted to chloroplast mem-

branes (Bedhomme et al., 2005). In addition, many phe-

notypic changes (described above) caused by AtNDT1

downregulation did not directly support that AtNDT1

functions in the chloroplast but rather suggested an

increase in chloroplast import of NAD+ at the expense of

deficient mitochondria import. Considering these facts,

we decided to re-evaluate the subcellular localization of

AtNDT1. To provide experimental evidence on the subcel-

lular localization of AtNDT1 and AtNDT2, we generated

corresponding GFP fusions under the control of the ubiq-

uitin 10 promotor (Grefen et al., 2010) and expressed the

recombinant proteins in Arabidopsis seedlings. Both

AtNDT1- and AtNDT2�GFP fusion proteins were exclu-

sively localized in the mitochondria (Figure 7), indicating

their mitochondrial localization.

DISCUSSION

AtNDT1 has a mitochondrial localization in Arabidopsis

It has been previously described that AtNDT1 protein

resides in the chloroplast membrane (Palmieri et al., 2009).

Intriguingly, however, both AtNDT1 and AtNDT2 have been

found in mitochondria by a recent proteome study (Senkler

Table 1 Growth parameters of 4-week-old Arabidopsis genotypes deficient in the expression of the mitochondrial NAD+ transporter (NDT1)
and wild type (WT) plants

Parameter WT ndt1�:ndt1� as-1-ndt1 as-2-ndt1 as-3-ndt1

RDW 50.0 � 3.0 90.0 � 3.0 80.0 � 3.0 60.0 � 8.0 60.0 � 4.0
RSDW 10.0 � 3.0 20.0 � 3.0 20.0 � 4.0 10.0 � 4.0 10.0 � 3.0
RRS 0.17 � 0.02 0.18 � 0.02 0.20 � 0.01 0.17 � 0.01 0.19 � 0.01
LN 13.7 � 1.4 19.2 � 1.5 23.0 � 0.3 21.0 � 1.5 19.8 � 1.3

TLA 14.64 � 1.4 27.27 � 1.5 20.42 � 0.8 19.95 � 2.2 18.65 � 1.3
SLA 241 � 24 320 � 14 306 � 9 331 � 17 269 � 15
RLA 12.8 � 1.6 25.7 � 1.2 19.5 � 0.6 16.7 � 1.9 16.8 � 0.6
SRA 225 � 51 303 � 11 266 � 5 279 � 25 252 � 12
Stomatal density 138.4 � 4.8 117.9 � 3.3 117.9 � 2.4 121.9 � 5.2 136.6 � 10.1

RDW, rosette dry weight (mg); RSDW, root system dry weight (mg); RRS, root/shoot ratio; LN, leaf number; TLA, total leaf area (cm2); SLA,
specific leaf area (cm2 g�1); RLA, rosette leaf area (cm2); SRA, specific rosette area (cm2 g�1) and stomata density (stomatal number mm�2).
Values are presented as means � SE of determinations on six individual plants per line; bold type values were determined using Student’s
t-test to be significantly different (P < 0.05) from the WT.
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et al., 2017) and could not be localized to plastids by earlier

GFP-tagging and/or immunolocalization studies (Bed-

homme et al., 2005). Moreover, our results revealed unex-

pected physiological features exhibited by AtNDT1

downregulated lines that are not consistent with the pro-

posed chloroplastic localization of AtNDT1. For instance,

the higher photosynthetic rates (Figure 4), the increased

NADP+ and NADPH contents in leaves (Figure 6), and the

higher accumulation of sugar and starch at the end of the

light period in the mutants (Figure 5) in comparison with

their WT counterparts implicated an increase in the chloro-

plast import of NAD+. The observed increase in the activa-

tion state of the plastidic NADP-MDH (Table 2) also

contradicted the proposed chloroplastidic localization of

AtNDT1.

Given that the information on correct subcellular local-

ization is essential to deduce the effect of a protein on

metabolism (Kirchberger et al., 2008), we re-investigated

the question in which membrane AtNDT1 resides.

Considering the similarities in the biochemical properties

of AtNDT1 and AtNDT2, Arabidopsis plants were stably

transformed with C-terminal GFP fusions of either AtNDT1

or AtNDT2. Both AtNDT1- and AtNDT2-GFP fusion proteins

were found to exclusively localize in the mitochondria (Fig-

ure 7). Considering the discrepancy with some of the ear-

lier work on this protein, we can only speculate the

possible reasons why previous studies (Palmieri et al.,

2009) failed to detect NDT1 proteins in the mitochondrial

compartment. The fact that the previously published

chloroplast membrane location of AtNDT1 was deduced

from interpretation of the location of an AtNDT1-GFP

fusion protein transiently expressed in tobacco leaf proto-

plasts (Palmieri et al., 2009) and not in Arabidopsis plants

may possibly explain why previous investigations failed to

detect the mitochondrial localization of AtNDT1–GFP pro-

teins. Based on these findings, we proposed to re-evaluate

the physiological roles of AtNDT1 within plant cells and its

connection to metabolic and redox-mediated control of

Figure 4. Gas exchange and chlorophyll a fluores-

cence parameters in 4-week-old Arabidopsis thali-

ana genotypes deficient in the expression of the

mitochondrial NAD+ transporter (NDT1) and wild

type (WT) plants. (a) Assimilation rate (A) per area

unit at 400 lmol photons m2 s�1. (b) Assimilation

rate (Amass) per mass unit at 400 lmol photons m�2

sec�1. (c) Stomatal conductance (gs). (d) Internal

CO2 concentration (Ci). (e) Transpiration (E). (f) Pho-

torespiration (Ri). (g) Nonphotochemical quenching

(NPQ). (h) Dark respiration (Rd). Values are pre-

sented as mean � SE of six individual plants per

line; an asterisk indicates values that were deter-

mined by t-test to be significantly different (P <
0.05) from the WT.
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cellular processes in light of its newly found mitochondrial

localization.

AtNDT1 is involved in the cellular NAD+ homeostasis

The fact that the pyridine pools are to some extent interde-

pendent (Agledal et al., 2010) raises the question of the

very large range of possible consequences of the

decreased NAD+ import into mitochondria. Therefore, to

investigate the role of the mitochondrial NAD+ carrier

AtNDT1, we analyzed the phenotypes of corresponding

Arabidopsis mutant and antisense plants. Here, we show

that plants with lower expression of the AtNDT1 displayed

reductions in the NAD+ levels in leaves (Figure 6a) and in

siliques (Figure 2i), whereas the levels of NADH, NADP+

and NADPH were increased (Figure 6b–d, respectively).

Furthermore, the ratio NADH/NAD+ was shown to be aug-

mented in plants that carried reductions in AtNDT1

expression, leading these plants to a more reduced state

(Figure 6g). That said, the observed reduction in the levels

of NAD+ may also be associated with changes in the rate

of NAD+ biosynthesis in the plants with reduced AtNDT1

expression. In bacteria, regulation of NAD+ levels occurs at

the level of transcription (Penfound and Foster, 1999).

These organisms contain genes belonging to NAD+ biosyn-

thesis organized in operons and the content of NAD+ regu-

lates their expression (Penfound and Foster, 1999).

However, little information is known about the regulation

of NAD+ content at the level of gene expression in plants.

Therefore, to test whether altered NAD+ content in plants

with decreased expression of AtNDT1 would influence

gene expression, we quantified the expression levels of

genes that encoded enzymes belonging to NAD+ salvage

and de novo pathways (Figure S3). This analysis revealed

that ndt1�:ndt1� plants displayed differential expression of

Figure 5. Leaf metabolite levels of 4-week-old Ara-

bidopsis thaliana genotypes deficient in the expres-

sion of the mitochondrial NAD+ transporter (NDT1)

and wild type (WT) plants. (a) Starch. (b) Starch

synthesis rate. (c) Glucose. (d) Starch degradation

rate. (e) Fructose. (f) Sucrose. (g) Malate. (h) Fuma-

rate. Values are presented as mean � SE of six indi-

vidual plants per line; an asterisk indicates values

that were determined by t-test to be significantly

different (P < 0.05) from the WT. Grey areas repre-

sent the dark period. FW: fresh weight.
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genes encoding the NAD+ biosynthetic pathway; QPRT and

NMNAT showed higher expression in imbibed seeds,

while QS expression was reduced in ndt1�:ndt1� leaves.

Furthermore, higher expression of AtNDT2 in imbibed

seeds and a minor increase in leaves (Figure S2) of ndt1�:

ndt1� line, was observed. Higher AtNDT2 expression may

be acting as a compensatory mechanism for NAD+ import

into mitochondria in plants carrying reduced AtNDT1

expression; which implied that AtNDT1 and AtNDT2 may

have overlapping functions in the NAD+ transport in seeds

Figure 6. Changes in nucleotide levels in fully

expanded leaves of 4-week-old Arabidopsis thaliana

genotypes deficient in the expression of the mito-

chondrial NAD+ transporter (NDT1) and wild type

(WT) plants, collected at midday. (a) NAD+.

(b) NADP+. (c) NADPH. (d) NADPH. (e) NADH/NAD+

ratio. (f) NADPH/NADP+ ratio. Values are presented

as mean � SE of six individual plants per line; an

asterisk indicates values that were determined by

t-test to be significantly different (P < 0.05) from the

WT. FW: fresh weight.

Table 2 NADP-dependent malate dehydrogenase (NADP-MDH) of 4-week-old Arabidopsis mutants deficient in the expression of the mito-
chondrial NAD+ transporter (NDT1) and wild type (WT) plants

Enzymes WT ndt1�:ndt1� as-1-ndt1 as-2-ndt1 as-3-ndt1

NADP-MDH initiala 12.7 � 0.2 13.5 � 0.2 12.8 � 0.7 13.2 � 0.5 12.8 � 0.4
NADP-MDH totala 16.0 � 0.5 14.8 � 0.3 14.3 � 0.7 15.6 � 1.0 14.7 � 0.9
NADP-MDH activation stateb 79.7 � 2.0 91.2 � 1.4 89.6 � 3.6 85.2 � 3.2 87.6 � 2.9

Activities were determined in whole rosettes harvested at the middle of the photoperiod. Values are presented as mean � SE (n = 6); values
in bold type in mutant plants were determined by using Student’s t-test to be significantly different (P < 0.05) from the WT.
FW, fresh weight.
almol min�1 g�1 FW.
bPercentage of NADP-MDH total.
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and leaves. Moreover, these results suggested that NAD+

metabolism and transport in the mitochondrion and perox-

isome were modified in those plants. Interestingly, NADP+

and NADPH levels were increased with decrease in the

sum of NAD+ and NADH (Figure 4), indicating that NAD+

phosphorylation is likely to be promoted by AtNDT1 down-

regulation. Given that we found no changes in the expres-

sion of the NAD kinases (NADK1-3) in leaves (Figure S3b),

and considering the mild increase of AtNDT2 expression

(which was strongly expressed in NDT1 mutant seeds), it

can be presumed that the compensatory increased expres-

sion of the mitochondrial NAD+ carrier AtNDT2 is mainly

responsible for the observed rise in the NADH/NAD+ ratio

in the leaves of AtNDT1 mutants. Taken together, these

results suggested that AtNDT1 is likely to play an impor-

tant role in the cellular NAD+ homeostasis in plants by link-

ing pyridine nucleotide pools in different subcellular

compartments. Therefore, as a consequence of AtNDT1

downregulation, whole NAD+ metabolism and transport

could be re-balanced.

Reduced AtNDT1 expression impacts carbon metabolism

turnover in the light and photosynthesis

Here, we show that the reduction in AtNDT1 expression

influenced processes that take place in chloroplasts, sug-

gesting that there is a precise communication between

organelles regarding NAD+ levels in subcompartments. We

demonstrated that the downregulation of AtNDT1

increased the photosynthetic rate per unit of mass (Fig-

ure 4b), impacted leaf carbon metabolism (Figure 5), and

enhanced plant growth (Table 1). Moreover, NPQ was

increased in ndt1�:ndt1�, as-1-ndt1, as-2-ndt1 and as-3-

ndt1 plants under high light (400–1200 lmol photons

m�2 sec�1) (Figure S10), which would imply a decrease in

chloroplastic NADP+ levels under these conditions

(Takahashi et al., 2006). This finding is in line with the

observed increase in the activation state of the plastidic

NADP-MDH (Table 2), as this enzyme uses excess NADPH

to regenerate the electron acceptor NADP+ and is inhibited

by the product NADP+ (Scheibe, 2004). In support of this

hypothesis, plants with reduced AtNDT1 expression exhib-

ited a higher NADH/NAD+ ratio (Figure 6a) and increase in

NADPH in leaves (Figure 6d).

Redox regulation is the preferred strategy for plastidic

enzymes to regulate a range of metabolic processes such

as carbon fixation, starch metabolism, lipid synthesis and

amino acid synthesis (Geigenberger et al., 2005). The time

course analysis provided here clearly demonstrated a pro-

nounced accumulation of glucose, starch, fumarate, and

malate during the day, but not at night, in leaves of the

mutants with reduced AtNDT1 expression (Figure 5). Tak-

ing into account that NADP-MDH is a redox-controlled

enzyme only active in the light, these results reinforced the

hypothesis that the malate valve is being used by the

mutants to balance cellular energy supply (Scheibe, 2004).

Furthermore, the increase in the activation of NADP-MDH

and in NPQ values indicated that low AtNDT1 expression

led to a energetic reduced state of the chloroplast that

could be associated with the increase in starch biosynthe-

sis (Figure 5b) and photosynthesis per mass unit (Fig-

ure 4b).

Photosynthetic capacity may be limited either by bio-

chemical or diffusive processes. The first refers to CO2 fixa-

tion by RuBisCO and the second to stomatal and

mesophyll resistances that CO2 can encounter during its

diffusion from the atmosphere to the carboxylation sites in

the chloroplasts (Flexas et al., 2008). The reverse of stom-

atal resistance is gs and changes in this parameter may

occur in parallel with changes in stomatal density (Tanaka

et al., 2013). Despite decreases in stomatal density

NDT1-GFP

NDT2-GFP

GFP MergedMito tracker Red 
CMX ROs

NDT1-GFP

NDT2-GFP

GFP MergedMito tracker Red 
CMX ROs

Figure 7. Localization of AtNDT1 and AtNDT2 by

confocal laser scanning microscopy (CLSM). Ara-

bidopsis plants were stable transformed with C-ter-

minal GFP fusions of NDT1 (upper panel) and NDT2

(lower panel), respectively. Whole seedlings were

analyzed by CLSM. The left panel shows the GFP-

specific fluorescence signal (green) while the mid-

dle panel shows the localization of the mitochon-

drial Mito tracker Red CMX ROs (red). The right

panel represents the merged image of both chan-

nels revealing an overlay of the fluorescent signals

(yellow) indicating a mitochondrial localization of

NDT1 and NDT2.
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(Table 1) and gs (Figure 4c) in the mutant lines, the

increases in photosynthesis demonstrated that the mutant

plants maintained the synthesis of NADP+ required for

photochemical reactions that might be explained by the

indirect transfer of redox equivalents by redox shuttles

from the cytosol across the chloroplast membrane. Curi-

ously, reduced AtNDT2 expression negatively affected pho-

tosynthetic efficiency as a result of a lowered stomatal

density and conductance (unpublished work). This appar-

ent contradiction can be explained by the fact that AtNDT1

expression is much higher than AtNDT2 in leaves (Fig-

ure S2). Therefore, the entire NAD+ metabolism and trans-

port seems to be reorganized in AtNDT1 downregulated

lines in a more extended way than that in AtNDT2 mutant

lines, in a manner that enables greater transfer of redox

power for photochemical reactions, therefore compensat-

ing lower stomatal conductance and density in leaves of

AtNDT1 downregulated lines.

AtNDT1 was highly expressed in guard cells (Fig-

ure S9c); this finding is in line with the lower stomatal con-

ductance observed in ndt1�:ndt1� plants in our study

(Figure 4c). It has been shown that NAD+ levels are

reduced in response to the generation of ROS induced by

abscisic acid (ABA), which acts as a signal for stomatal clo-

sure (Hashida et al., 2010). Therefore, considering the

association of NAD+ metabolism to stomatal function, the

results presented here suggested that NAD+ is important

not only for stomatal movements, but that NAD+ transport

also acts in regulating guard cell biogenesis.

Repression of AtNDT1 affects pollen viability

It has been demonstrated that pollen maturation and tube

growth are dependent on energy produced by mitochon-

drial respiration and plastid glycolysis (Selinski and Scheibe,

2014). Recently, it has been shown that NADPH provision

via the OPPP in peroxisomes is also needed for gameto-

phytic interaction during pollen tube guidance to ovules

(H€olscher et al., 2016). Therefore, it is clear that energy

metabolism during pollen maturation and tube growth is

highly complex and involves different pathways and cell

compartments and, as NAD+ supply is essential for reduc-

tion related reactions, NAD+ transport is necessary. For

example, deficiency in the plastidic glycolytic glyceralde-

hyde-3-phosphate dehydrogenase, an enzyme that reversi-

bly converts the glyceraldehyde-3-phosphate to 1,3-

bisphosphoglycerate, with the reduction of NAD+ to NADH,

displays male sterility in Arabidopsis, due to a disorganized

tapetum cell layer (Mu~noz-Bertomeu et al., 2010). Further-

more, NAD(P)H accumulation during the growth of the pol-

len tube is directly coupled to ATP generation, which is used

to enable a variety of energy-dependent processes localized

in the pollen tube tip (C�ardenas et al., 2006).

Recent studies using mutants deficient in NAD+ biosynthe-

sis demonstrated a functional importance of NAD+ in

reproductive tissues such as pollen, floral meristem, siliques

and seeds (Hashida et al., 2007, 2013; Hunt et al., 2007; Liu

et al., 2009). Here, we demonstrated that AtNDT1 silencing

promoted a decrease in pollen viability and pollen tube

growth (Figures 3a, S7 and S8). Cumulative evidence sup-

ports the importance of NAD+ metabolism in pollen grain for-

mation and pollen tube growth (Berrin et al., 2005; Chai

et al., 2005, 2006; C�ardenas et al., 2006; Hashida et al., 2009).

In freshly harvested dry pollen, NAD+ is accumulated,

whereas it dramatically decreased immediately after water

contact (Hashida et al., 2013). Furthermore, several metabolic

pathways, which operate during maturation of pollen grains

and pollen tube growth such as the biosynthesis of lipids,

components of cell walls, and amino acids, are highly depen-

dent on NAD+ levels (Hashida et al., 2009). At the same time,

the occurrence of high NAD+ levels can maintain dormant

pollen grains by competitive inhibition of NADH-dependent

redox reactions that are essential for the formation of the pol-

len tube (Hashida et al., 2013). Accordingly, the formation of

non-viable pollen as found in our study and the strong

expression of AtNDT1 in pollen during the later stages of

development and following germination (Figure S9) con-

firmed that AtNDT1 is of fundamental importance for pollen

formation and germination.

In this study, we have shown that decreased AtNDT1

expression also resulted in reduced expression of AtPXN and

AtNDT2 in pollen grains (Figure S2). This result indicated that

reduction in NAD+ import by AtNDT1 may also impact the

NAD+ import by AtNDT2 and AtPXN and this may possibly

disturb the whole cell NAD+ balance in pollen. It deserves

special mention thatAtNDT2 expression is dramatically lower

than AtNDT1 in the pollen of WT Arabidopsis (Figure S2),

meaning that emerging phenotypes in pollen could directly

result from AtNDT1 downregulation.

Seed germination and seedling establishment are

impaired due to AtNDT1 repression

The decreased viability of pollen grains observed in plants

with low AtNDT1 expression probably contributed to the

significant reduction in the number of seeds and the result-

ing reduction in siliques filling and lower length and diam-

eter of the siliques (Figures 2 and S4). The production of

shorter siliques can be ascribed to misfunctional male

gametophytes (Hashida et al., 2013). It was recently found

that mutant plants deficient in the expression of nicoti-

namide mononucleotide adenylyltransferase (NMNAT), an

important enzyme in NAD+ biosynthesis, produced non-vi-

able pollen grains, shortened siliques, and smaller num-

bers of seeds per plant (Hashida et al., 2013). These

authors did not comment on the mechanism that led to the

shortening of siliques, although, consistent with our obser-

vations, they showed that it may be a result of pollen ger-

mination and malformation of the pollen tube, due to the

lower concentration of NAD+ found in the mutants.
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The lower number of seeds in ndt1�:ndt1� plants sug-

gested that, in addition to NAD+ metabolism, mitochon-

drial NAD+ transport is also important during embryonic

development. As the concentration of nucleotides

decreased in mature siliques (Figure 2i), we may assume

that resources allocated to the zygote were impaired. As a

result, fewer seeds were generated, however the seeds

produced received a greater amount of carbohydrates,

explaining the larger seed size in ndt1�:ndt1�, as-1-ndt1

and as-2-ndt1 plants (Figures 2 and S4b).

Interestingly, the repression of AtNDT1 expression was

associated with a higher amount of lipids per seed (Fig-

ure S5a). It is well known that Arabidopsis seeds have high

fatty acid content (~35% by weight; Baud et al., 2002),

which serve as a carbon and energy reserve. Accordingly,

the increase in lipid content per seed was followed by a

mild but non-significant increase in starch contents in

ndt1�:ndt1� seeds, without changes in the protein level

(Figure S5c,d). Taken together, these results suggested

that the remaining seeds apparently exerted a higher sink

strength and therefore accumulated a higher amount of

storage compounds when the AtNDT1 expression was

reduced. Additionally, the relative concentration of fatty

acids alongside seedling development was generally

higher in the ndt1�:ndt1� line (Figure S6). As NAD+ is

required for b-oxidation during lipid mobilization and seed-

ling development (Bernhardt et al., 2012), it is suggested

that NDT1 mutant seeds fail to mobilize lipids possibly as a

consequence of an impaired fatty acid b-oxidation. There-
fore, the delay in seed germination and impaired fatty acid

degradation (b-oxidation) may also indicate changes in the

peroxisomal NAD+ status in the ndt1�:ndt1� line. Addition-

ally, given that seed dormancy may be regulated by the

relative levels of pyridine nucleotides (Hunt and Gray,

2009), it is possible that the reduced germination rates

observed (Figure S5) are related to alterations in the levels

of NAD(P)(H) in the mutant siliques (Figure 2i).

AtNDT1 and AtNDT2 show varying degrees of redundancy

and specialization

The demonstration that both NDT1 and NDT2 are localized in

the mitochondria of Arabidopsis raises questions about their

exact roles in vivo. Therefore, to ascertain the individual con-

tributions of AtNDT1 and AtNDT2 to metabolism, it is impor-

tant to reconsider previously reported biochemical features

of the two carriers (Palmieri et al., 2009). First, AtNDT1 and

AtNDT2 genes exhibited high structural similarities and their

encoded proteins shared a number of similar transport prop-

erties, with both accepting AMP and ADP as highly efficient

counter-exchange substrates for NAD+. Second, it is assumed

that they derive from a common evolutionary ancestor; this

assumption could explain similarities in their biochemical

properties (Palmieri et al., 2009). Third, in spite of these func-

tional similarities, AtNDT1 and AtNDT2 have different kinetic

constants, with different levels of activity and affinities for

NAD+ (Palmieri et al., 2009). In addition, it should be recalled

that AtNDT1 and AtNDT2 display distinct tissue-specific

expression patterns. For instance, gene expression analysis

of AtNDT1 and AtNDT2 by qRT-PCR (Figure S2) demon-

strated much higher expression of AtNDT1 than AtNDT2 in

seeds, leaves, flowers and pollen, therefore suggesting that

AtNDT1 is the dominant NDT isoform in A. thaliana in these

tissues. In addition, gene expression analysis of AtNDT1 and

AtNDT2 (Figure S2), and depicted by the publicly available

data in Arabidopsis eFP Browser, demonstrated that the high-

est expression of AtNDT1 occurs in pollen grains in compar-

ison with its expression in seeds, leaves and flowers. Another

aspect to be pointed out is that the T-DNA insertion lines for

AtNDT1 and AtNDT2 showed reductions in pollen grain via-

bility of approximately 50% and 13%, respectively, in relation

to the corresponding WT. Altogether, these data suggested

that the formation of non-viable pollen in AtNDT1 downregu-

lated lines is mainly a result of AtNDT1 downregulation.

Moreover, given that decreased AtNDT1 expression also

resulted in lower expression of AtNDT2 in pollen grains (Fig-

ure S2), it seems that, at least in pollen, AtNDT2 does not

compensate for AtNDT1 deficiency. Notwithstanding, the

mutant plants for either AtNDT1 or AtNDT2 exhibited reduc-

tions in pollen viability, seed germination, stomatal density

and conductance, indicating that the activities of both

AtNDT1 and AtNDT2 are important for NAD+ metabolism in

these tissues (unpublished work and the current study). In

spite of these similarities, mutant plants for AtNDT1 and

AtNDT2 displayed opposite phenotypes regarding their pho-

tosynthetic performance, having higher and lower photosyn-

thetic rates, respectively, than the corresponding WT plants.

In conjunction, this information demonstrated that, even

though AtNDT1 and AtNDT2 cooperatively participate in

NAD+ import into mitochondria, both proteins have varying

degrees of specialization which probably took place along-

side their independent cellular evolution and that have

allowed the development of their individual properties such

as the different transport properties and gene expression pat-

terns.

In summary, the present study revealed that AtNDT1 is tar-

geted to the inner mitochondrial membrane and that this

transport protein appears to play an important role in cellular

NAD+ homeostasis in leaves. As a consequence of AtNDT1

downregulation, NAD+ metabolism and transport seems to

be reorganized, leading to metabolic shifts, which results in

increases in photosynthesis, starch accumulation and in the

activation state of the stromal NADP-MDH. In addition,

impaired AtNDT1 transport results in reduced pollen grain

viability, tube growth, and seed filling, demonstrating the

important role of AtNDT1 in reproductive tissues. Further-

more, we demonstrated a possible function for NAD+ trans-

port during seed germination and seedling establishment

that appears to be linked to the need of NAD+ during lipid
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metabolism and related processes. In the future, we are inter-

ested in identifying to what extent, AtNDT1 and AtNDT2 have

overlapping functions in NAD+ transport in different tissues

and conditions. It will also be interesting to determine

whether specific stress situations characterized by differential

expression patterns of AtNDT1 and AtNDT2 correlated with

the establishment or alteration of the mitochondrial pyridine

nucleotide pool. It seems reasonable to assume that the gen-

eration of multiple mutants for NAD+ transport proteins will

be needed to gain precise mechanistic insight into these phe-

notypes. Moreover, the determination of NAD+ and NADP+

levels at tissue-specific and subcellular levels in these

mutants is likely to enhance our knowledge of the specifici-

ties and redundancies of these different albeit partially com-

plementary transport proteins allowing us to truly

understand the physiological hierarchy under which they

operate.

EXPERIMENTAL PROCEDURES

Plant material

The ndt1�:ndt1� line, previously named GK-241G12, was
obtained from the GABI-KAT collection. This mutant line har-
bours a T-DNA insertion in the ninth exon of AtNDT1 (At2g47490)
(Figure 1a). The mutant line was selected on medium containing
sulfadiazine (https://www.sigmaaldrich.com) and the insertion of
T-DNA and homozygous plants were confirmed by PCR using
specific primers for the gene that confers resistance to sulfadi-
azine (forward 50-GCACGAGGTACAAACCTCTACTCT-30, reverse
50-GTCTCTCAAGTTTCAACCCATTCT-30 and T-DNA 50-ATATTGAC-
CATCATACTCATTGC-30).

In addition, transgenic plants were generated by insertion of an
antisense construct, under the control of the 35S promoter, pro-
duced using the Gateway system (Landy, 1989). For this purpose,
primers were designed (forward 50-CCACCATGTCCGCTAATTCT-
CATCCTC-30 and reverse 50-CTTAAAGTATAGAGCTTTGCTCA-
GAAGG-30) from a cDNA library, for amplification of the 939-bp
AtNDT1 cDNA fragment. The PCR product was recombined with
the vector donor pDONR207 generating an entry clone in Escheri-
chia coli (DH5a strain). A second recombination was performed in
pK2WG7 and transformed into E. coli. Subsequently, the selected
colonies were used to transform A. tumefaciens (strain GV3101),
which was then used for insertion in Arabidopsis plants, ecotype
Columbia-0, in which the transgene expression was driven by the
constitutive 35S promoter (Bechtold et al., 1993). The cassette
contained a marker gene, conferring resistance to hygromycin
(https://www.thermofisher.com) driven by the nos promoter and
nos terminator.

Growth conditions

Seeds were surface sterilized and germinated on half-strength
Murashige and Skoog (½MS) medium (Murashige and Skoog,
1962), supplemented with 1% sucrose (w/v) and the selective
agent corresponding to the genotype used. Seeds were stratified
for 4 days at 4°C in the darkness and then kept in a growth cham-
ber at 22 � 2°C, 60% relative humidity, irradiance of 150 lmol
photons m�2 sec�1 and a photoperiod of 8 h light and 16 h dark
for 10 days. After, seedlings were transferred to pots containing
0.08 dm3 of commercial substrate, Tropstrato HT�, and

maintained under the same conditions. During the 4th week after
transplanting, physiological assessments and harvesting of sam-
ples in liquid nitrogen for biochemical analyses were performed.

For the analyses involving heterotrophic tissues, plates were
kept in an air-conditioned growth room at 22 � 2°C, relative
humidity 60%, and an irradiance of 150 lmol photons m�2 sec�1,
with a photoperiod of 8 h light and 16 h dark for 10 days. Then, the
seedlings were also transferred to commercial substrate and evalu-
ated for seed production.

Subcellular localization of NDT1 and NDT2 by confocal

laser scanning microscopy (CLSM)

Arabidopsis plants were stable transformed by Agrobacterium-
mediated transformation with NDT1 or NDT2 fused to a C-terminal
GFP tag under the control of the ubiquitin 10 promotor (Grefen
et al., 2010). Five-day-old transformed seedlings were incubated
in 200 nM Mito tracker Red CMX ROs in ½MS medium for 1 h in
the dark. Afterwards, seedlings were washed with ½MS medium
to remove the Mito tracker solution and analyzed by a CLSM
(Zeiss LSM 780) and Zeiss Zen software. Excitation and emission
ranges of GFP (488 nm/490–550 nm) and Mito tracker Red CMX
ROs (561 nm/580–625 nm) were measured in two tracks. Image
processing was performed using Fiji as previously described
(Schindelin et al., 2012).

Gene expression analysis

Gene expression analysis was performed in leaves, flowers, pol-
len, and imbibed seeds using quantitative real-time PCR (qRT-
PCR). Total RNA was extracted from leaves and flowers using
TRIzol� reagent (https://www.thermofisher.com) according to the
manufacturer’s instructions. Then total RNA was treated with
DNase/RNase-free (https://www.thermofisher.com) and quantified
spectrophotometrically at 260 nm. Approximately 2 lg of isolated
RNA were used to synthesize the complementary strand of DNA
(cDNA) using an Improm-IITM Reverse Transcription System (Pro-
mega, Madison, WI, USA, https://www.promega.com) and oligo
(dT)15, following the manufacturer’s recommendations.

The pollen isolation was made using a liquid pollen collection
method as described previously (Hicks et al., 2004), with some
modifications. Briefly, 50 inflorescences were collected into cold
pollen growth medium (PGM) 17% sucrose, 2 mM CaCl2, 1.625 mM

boric acid pH adjusted to 7.5 with KOH. The pollen was released by
agitating with gloved hands. After removing all green plant mate-
rial the PGM was filtered in a nylon membrane (80 lm mesh size).
Finally, after centrifugation at 5000 g for 10 min the pellet contain-
ing the pollen was immediately frozen until RNA extraction.

Total RNA from pollen and 48 h imbided seeds were both iso-
lated using the SV Total RNA Isolation System (Promega, https://
www.promega.com) following the manufacturer’s manual. The
integrity of the RNA was checked on 1% (w/v) agarose gels, and
the concentration was measured using the QIAxpert system (QIA-
GEN, https://www.qiagen.com). Subsequently, total RNA was
reverse transcribed into cDNA using the Universal RiboClone�

cDNA Synthesis System (Promega) according the manufacturer’s
protocol.

Quantitative RT-PCRs were performed using a 7300 Real-Time
System (Applied Biosystems, Foster City, CA, USA, https://www.
thermofisher.com) and Power SYBR� Green PCR Master Mix
(https://www.thermofisher.com), following the manufacturer’s rec-
ommendations. The relative expression levels were normalized
using housekeeping genes (Table S3) and calculated using the
DDCt method. All primers used for qRT-PCR were designed using
the QuantPrime software (Messinger et al., 2006) and are listed in
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Table S3. qRT-PCR cycles were set up as follows: 94°C for 10 min,
40 cycles of 94°C for 15 sec, 58°C for 15 sec and 72°C for 15 sec.

Gas-exchange and chlorophyll a fluorescence parameters

Gas-exchange and chlorophyll a fluorescence parameters were
evaluated 1 h after the onset of the light period by an infrared gas
analyzer (IRGA) LI 6400XT (LI-COR, Lincoln, NE, USA, https://www.
licor.com/) with coupled fluorometer (6400-40 LI-LI-COR Inc.). Light
response curves of net CO2 assimilation were obtained using a
2 cm2 foliar chamber, 25°C temperature, CO2 concentration (Ca) of
400 lmol CO2 mol�1 and irradiances (PPFD) of 0, 10, 25, 50, 100,
200, 400, 800, 1000 and 1200 lmol photons m�2 sec�1. The vari-
ables derived from the curves A/PPFD, such as compensation irra-
diance (Ic), saturation irradiance (Is), light use efficiency (1/ɸ), and
CO2 assimilation rate saturated by light (ARFA) were estimated
from response curve settings to light by the non-rectangular
hyperbolic model (von Caemmerer, 2000).

Gas-exchange parameters were evaluated at saturation, i.e.
400 lmol photons m�2 sec�1 (Figure S10). Photosynthesis per
mass unit was estimated based on SLA and LN.

The photorespiration rate (Ri) was estimated as: Ri = ((1/
12) 9 (Jflu � (4 9 (A + Rd)))) where Jflu equivalent to ETR esti-
mated by fluorescence parameters (Valentini et al., 1995). The
instantaneous water use efficiency (A/E) and intrinsic water use
efficiency (A/gs), where E stands for transpiration and gs for stom-
atal conductance, were also calculated.

Dark respiration (Rd) was determined after 1 h dark acclimation
using the same IRGA system described above. The maximum
quantum efficiency of photosystem II (Fv/Fm) was evaluated. After
1 h of dark acclimation, an irradiance of 0.03 lmol photons
m�2 sec�1 was applied to determine the initial fluorescence (F0).
To obtain maximal fluorescence (Fm), a saturating pulse of
6000 lmol photons m�2 sec�1 was applied for 0.8 sec. The Fv/Fm
was then calculated as (Fm � F0)/Fm. Furthermore, NPQ and ETR
were estimated as described by DaMatta et al. (2002) and Lima
et al. (2002).

Biometric analysis

Following measurement of gas exchange and fluorescence, the
whole plant was harvested and the following growth parameters
were evaluated: rosette dry weight (RDW), RSDW, root/shoot ratio
(RRS), RLA, SRA, LN, TLA, and SLA. RLA and TLA were determined
using a digital image, in which the leaves were scanned (Hewlett
Packard Scanjet G2410, Palo Alto, CA, USA) and the obtained images
were processed with the aid of Rosette Tracker software (De Vylder
et al., 2012). SRA and SLA were estimated using the formula: SRA
(or SLA) = RLA (or TLA)/RDW.

Stomatal density

The stomatal density was determined using epidermal prints,
from the abaxial surface of fully expanded leaves according to
von Groll et al. (2002). Six plants per genotype were printed and,
for each epidermal print, 10 different regions were evaluated.

Biochemical analyses

Six whole rosettes of each line were collected from 5-week-old
plants and snap frozen in liquid nitrogen at 8, 12 or 16 h corre-
sponding to the beginning, middle and end of the light period and
24 h and 8 h representing the middle and end of the dark period,
respectively. Subsequently, samples were homogenized, and sub-
jected to ethanol extraction as described by Gibon et al. (2004).
Chlorophyll, nitrate, glucose, fructose and sucrose contents were

quantified according to Sulpice et al. (2009) and Fernie et al.
(2001), soluble amino acids as described by Gibon et al. (2004)
and malate and fumarate as detailed by Nunes-Nesi et al. (2007).
In the insoluble fraction, the levels of starch and protein were
determined according to Cross et al. (2006). The rates of starch
biosynthesis ((starch concentration at the end of the light period –
starch concentration at the beginning of the light period)/the num-
ber of hours of light) and starch degradation ((starch concentra-
tion at the end of the light period – concentration starch at the end
of the dark period)/number of dark hours) were calculated. In addi-
tion, aliquots of approximately 25 mg of leaf samples were col-
lected in the middle of the light period for the quantification of
nucleotide NAD+, NADH, NADP+ and NADPH according to the pro-
tocol described by Schippers et al. (2008).

The metabolic profile was determined by gas chromatogra-
phy time-of-flight mass spectrometry (GC-TOF MS) according to
the protocol described by Lisec et al. (2006). Metabolites were
manually identified using the reference library mass spectra
and retention indices from the Golm Metabolome Database
(http://gmd.mpimp-golm.mpg.de; Kopka et al., 2005). Metabo-
lite profiling data are reported following recommendations
(Fernie et al., 2011).

Fatty acids of mature dried seeds and seedlings at 2, 4 or
6 days old were extracted and derivatized as described by
Browse et al. (1986), and analyzed as methyl esters (FAMEs). The
fatty acid profile was analyzed by GC-TOF MS. Before derivatisa-
tion, fatty acid 17:0 was added as an internal standard to enable
quantification. The identification of compounds was based on
retention time and comparison of the mass spectra with refer-
ence spectra available on the NIST 08 and NIST 08s library data-
base (National Institute of Standards and Technology, Babushok
et al., 2007). The quantification was performed automatically by
integrating the chromatographic peaks obtained (Bernhardt
et al., 2012). The amounts of the 17:0 standard was used for the
correction of inter-sample variation and absolute quantification
of fatty acids according to Hielscher et al. (2017). The percentage
of each fatty acid was calculated relative to the total of all fatty
acids for each line per time point.

Morphological analysis

The viability of pollen grain was evaluated as described by Loren-
zon and Almeida (1996). For this, dehisced anthers of different
genotypes were gently dipped onto the surface of the microscope
slide and the pollen grains released were transferred to the dye
and evaluated under a light microscope. Six flowers from six
plants from each line were analyzed, with unstained or deformed
pollen grains being considered non-viable. We additionally deter-
mined the length and diameter of siliques using a stereomicro-
scope. Six siliques from six plants of each line were
photographed and measured and the length, diameter and num-
ber of seeds in each silique were determined. In addition, the
1000-seed weight was also determined.

Seed germination and seedling development

Seeds of ndt1�:ndt1� and WT plants were surface sterilized and
germinated as described above. After 48 h in the light, the per-
centage of germination, GSI, percentage of normal and abnormal
seedlings (including albino seedlings) and the ESI was deter-
mined. GSI and ESI were calculated by the sum of the number of
germinated seeds (or normal seedlings) each day, divided by the
number of days between sowing and germination, according to
Maguire (1962). Six replicates of 50 seeds each were used for this
evaluation.
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Statistical analysis

All the data are expressed as the mean � standard error. Data
were tested for significant differences (P ≤ 0.05) using Student0s t
test. All the statistical analyses were performed using the algo-
rithm embedded into Microsoft Excel� (Microsoft, Seattle).

ACCESSION NUMBERS

AtNDT1 (At2g47490); AtNDT2 (At1g25380); AtPXN

(At2g39970); COBL11 (At4g27110); F-box family protein

(At5g15710); AtNADK1 (At3g21070); AtNADK2 (At1G21640);

AtNADK3 (At1G78590); AtACTIN (At2g37620); AtPARP1

(At2g31320); AtPARP2 (At4g02390); AtNUDIX7 (At4g12720);

AtNIC1 (At2G22570); AtNIC4 (At3g16190); AtNAPRT1

(At4g36940); AtNAPRT2 (At2g23420); AtNADS (At1g55090);

AtNMNAT (At5g55810); AtQPT (At2g01350); AtQS

(At5g50210); AtAO (At5g14760).
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All data used for the analyses are available upon request

or as Supporting Information and may be found in the

online version of this article.
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Figure S4. Phenotypic analysis of Arabidopsis thaliana lines defi-
cient in the expression of the mitochondrial NAD+ transporter
(NDT1) and wild type (WT) plants.

Figure S5. Seed, seedling, germination and seedling establish-
ment characterization of Arabidopsis thaliana mutant line deficient
in the expression of the mitochondrial NAD+ transporter (NDT1)
and wild type (WT) plants.

Figure S6. Fatty acid composition in seeds and seedling of Ara-
bidopsis thaliana mutants deficient in the expression of the mito-
chondrial NAD+ transporter (NDT1) and wild type (WT) plants.

Figure S7. Phenotypic analysis of pollen grains stained with acetic
carmine from Arabidopsis thaliana genotypes deficient in the
expression of the mitochondrial NAD+ transporter (NDT1) and wild
type plants.

Figure S8. Germination rate and tube growth of pollen grains from
Arabidopsis thaliana genotype deficient in the expression of the
mitochondrial NAD+ transporter (NDT1) and wild type (WT) plants.

Figure S9. eFP display of transcript accumulation patterns across
a variety of Arabidopsis organs and treatments.

Figure S10. Gas-exchange and chlorophyll a fluorescence parame-
ters in leaves of 4-week-old Arabidopsis thaliana genotypes defi-
cient in the expression of the mitochondrial NAD+ transporter
(NDT1) and wild type (WT) plants.

Figure S11. Non-photochemical quenching (NPQ) of 4-week-old
Arabidopsis thaliana genotypes deficient in the expression of the
mitochondrial NAD+ transporter (NDT1) and wild type (WT) plants
under various light intensities.

Figure S12. Changes in the main nitrogen metabolites in leaves of
4-week-old Arabidopsis thaliana genotypes deficient in the expres-
sion of the mitochondrial NAD+ transporter (NDT1) and wild type
(WT) plants.

Figure S13. Changes in chlorophyll content in leaves of 4-week-old
Arabidopsis thaliana genotypes deficient in the expression of the
mitochondrial NAD+ transporter (NDT1) and wild type (WT) plants.

Table S1. Parameters derived from photosynthetic light curve
response (Figure S4a) of 4-week-old, short-day grown Arabidopsis
thaliana genotypes deficient in the expression of the mitochon-
drial NAD+ transporter (NDT1).

Table S2. Relative metabolite levels in leaves of 4-week-old, short-
day grown, Arabidopsis thaliana genotypes deficient in the
expression of the mitochondrial NAD+ transporter (NDT1) and wild
type (WT) plants.

Table S3. List of primers used in this work to perform qPCR analysis.
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