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Rasineni K, Thomes PG, Kubik JL, Harris EN, Kharbanda
KK, Casey CA. Chronic alcohol exposure alters circulating insulin
and ghrelin levels: role of ghrelin in hepatic steatosis. Am J Physiol
Gastrointest Liver Physiol 316: G453–G461, 2019. First published
January 31, 2019; doi:10.1152/ajpgi.00334.2018.—Fatty liver is the
earliest response of the liver to excessive ethanol consumption.
Central in the development of alcoholic steatosis is increased mobi-
lization of nonesterified free fatty acids (NEFAs) to the liver from the
adipose tissue. In this study, we hypothesized that ethanol-induced
increase in ghrelin by impairing insulin secretion, could be responsi-
ble for the altered lipid metabolism observed in adipose and liver
tissue. Male Wistar rats were fed for 5–8 wk with control or ethanol
Lieber-DeCarli diet, followed by biochemical analyses in serum and
liver tissues. In addition, in vitro studies were conducted on pancreatic
islets isolated from experimental rats. We found that ethanol increased
serum ghrelin and decreased serum insulin levels in both fed and
fasting conditions. These results were corroborated by our observa-
tions of a significant accumulation of insulin in pancreatic islets of
ethanol-fed rats, indicating that its secretion was impaired. Further-
more, ethanol-induced reduction in circulating insulin was associated
with lower adipose weight and increased NEFA levels observed in
these rats. Additionally, we found that increased concentration of
serum ghrelin was due to increased synthesis and maturation in the
stomach of the ethanol-fed rats. We also report that in addition to its
effect on the pancreas, ghrelin can also directly act on hepatocytes via
the ghrelin receptors and promote fat accumulation. In conclusion,
alcohol-induced elevation of circulating ghrelin levels impairs insulin
secretion. Consequently, reduced circulating insulin levels likely con-
tribute to increased free fatty acid mobilization from adipose tissue to
liver, thereby contributing to hepatic steatosis.

NEW & NOTEWORTHY Our studies are the first to report that
ethanol-induced increases in ghrelin contribute to impaired insulin
secretion, which results in the altered lipid metabolism observed in
adipose and liver tissue in the setting of alcoholic fatty liver disease.

adipose tissue; alcoholic fatty liver; ghrelin; insulin

INTRODUCTION

Alcohol-induced liver disease is a major health problem both
in the United States and worldwide. In the United States alone,

alcohol abuse is the leading cause for deaths from cirrhosis (39,
40). Alcoholic fatty liver disease, characterized by accumula-
tion of lipids [primarily triglycerides (TGs)] in the hepatocytes
is one of the earliest pathological changes in the progression of
alcohol-induced liver disease (22). Ethanol abuse increases
hepatocyte TG accumulation, partly from increased de novo
fatty acid synthesis and increased flow of fatty acids to the liver
from adipose tissue (20, 23, 42). In addition, alcohol-impaired
fat transport out of the liver via reduced very-low-density
lipoprotein secretion and decreased fatty acid oxidation con-
tributes to the generation of fatty liver (15, 18, 24). The
accumulation of fat in hepatocytes makes the liver susceptible
to inflammatory mediators or toxic agents, leading to further
progression to hepatitis and eventually fibrosis.

Adipose tissue is an important organ for energy homeostasis
in the body. Adipose tissue serves as a storage site for the
excess energy derived from food consumption. Studies have
shown that chronic alcohol exposure reduces adipose tissue
mass and adipocyte size in mice and rats (23, 42) by enhancing
lipolysis of the adipose tissue. The free fatty acids (FFAs), thus
released in to the circulation, are taken up by the liver and
esterified to form TGs, leading to the development of fatty
liver. Clinical studies have also demonstrated a negative cor-
relation between liver fat and body fat mass, showing that
alcoholics who have fatty liver have significantly lower body
weight and lower fat mass than controls (1, 2, 30, 32). Thus,
there is clearly a link between adipose tissue lipolysis and
hepatic fat accumulation after alcohol exposure.

The adipose-liver axis is modulated by the hormone insulin,
which influences lipid metabolism by promoting the export of
lipoproteins from the liver and inhibiting lipolysis in adi-
pocytes to facilitate fat storage in adipose tissue. Chronic
ethanol exposure in rats has been shown to promote lipolysis in
adipocytes by disrupting insulin-dependent signal transduction.
In addition to increased insulin resistance, chronic ethanol
administration also decreases serum insulin levels (23, 25, 26).

Insulin secretion from pancreatic � cells is tightly regulated
by the nutrient status of the body. Although glucose, FFAs, and
amino acids serve as stimuli for insulin release, several hor-
monal factors also regulate insulin secretion. Ghrelin, a hor-
mone mainly secreted from the stomach (4), is reported to
inhibit insulin secretion from pancreatic � cells in both humans
and experimental animals (10, 11, 13, 36, 41). Interestingly,
elevated ghrelin levels are reported in alcoholic subjects (19,
29). Chronic alcohol feeding significantly decreases serum
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insulin levels, which promotes adipocyte lipolysis and contrib-
utes to fat accumulation in the liver (23, 42). Furthermore,
chronic infusion of ghrelin has been reported to increase
hepatic lipid storage (5). Since it is known that ghrelin nega-
tively regulates insulin secretion and ghrelin levels are increas-
ing in alcoholics, we hypothesized that the alcohol-induced
increase in circulating ghrelin contributes to decreased serum
insulin and impaired lipid metabolism in adipose tissue and
liver.

METHODS

Antibodies and reagents. Antibodies (Abs) and reagents were
purchased from the following companies. Ethanol was purchased
from Pharmaco-AAPER (Brookfield, CT). IRDye infrared secondary
Abs and blocking buffer were from Li-COR Biosciences (Lincoln,
NE). Ghrelin rat/mouse synthetic peptide (cat. no. 494127) was
purchased from Millipore Sigma (St. Louis, MO). Abs to ghrelin (cat.
no. H-031-31) and ghrelin O-acyltransferase (GOAT; cat. no. H-032-
12) were obtained from Phoenix Pharmaceuticals (Burlingame, CA).
Ghrelin Ab (cat. no. ab85104) was from Abcam (Cambridge, MA).
Collagenase P (cat. no. 112149002001) and histopaque (cat. nos. 1119
and 1077) were purchased from Sigma-Aldrich (St. Louis, MO). All
other chemicals were obtained from Sigma Chemical (St. Louis, MO)
unless stated otherwise.

Animal maintenance and tissue collection. All animals received
humane care in accordance with the guidelines established by the
American Association for the Accreditation of Laboratory Animal
Care. All protocols were approved by the Institutional Animal Care
and Use Committee at the Nebraska-Western Iowa Health Care
System Veterans Affairs Research Service. Male Wistar rats weighing
175–200 g purchased from Charles River (Portage, MI) were weight-
matched and pair-fed for 5–8 wk with control and ethanol-containing
Lieber-DeCarli diets (33) as described previously (9). The ethanol diet
contained 18% of total calories from protein, 35% from fat, 11% from
carbohydrate, and 36% from ethanol. In the control diet, ethanol was
replaced isocalorically with maltodextrin. Two hours before the eu-
thanization, all rats were given their respective fresh diet to ensure that
all rats were in the “fed” state. Rats were euthanized under isoflurane
anesthesia. Blood was collected from the vena cava. Liver, epididymal
adipose tissue, pancreas, and stomach tissues were excised and either
processed for histopathological studies or immediately stored at
�80°C until processed for subsequent biochemical analyses.

Liver TGs and serum nonesterified FFAs. Liver TGs were extracted
according to the Folch procedure (16) and saponified to quantify the
TGs using the diagnostic kit no. TR22421 from Thermo Fisher
Scientific (Middletown, VA). Serum nonesterified FFAs (NEFAs)
were quantified using the NEFA-HR (2) diagnostic kit from Wako
Life Sciences (Mountain View, CA).

INS-1E cell culture and insulin secretion assay. Insulinoma-de-
rived INS-1E � cells were provided by Dr. Pierre Maechler (Univer-
sity Medical Center, Geneva, Switzerland). As described previously
(35), cells were cultured in RPMI-1640 media with 10% FCS. Upon
reaching confluence, the cells were treated with 50 mM ethanol with
or without 10 nM ghrelin in FCS-containing medium for 24 h. The
ghrelin concentration used in this experiment was based on earlier
published dose-dependent in vitro and in vivo studies (14, 38). After
24 h, the medium was replaced with Krebs-Ringer bicarbonate buffer,
and the glucose-stimulated insulin secretion was measured following
30 min of exposure under the basal (2.5 mM glucose) or stimulated
(15 mM glucose) condition in the presence or absence of ghrelin, as
described previously (17, 35). The concentrations of glucose used for
this insulin secretion assay were based on earlier studies that showed
a dose-dependent increase in ATP generation, intracellular Ca2�

levels, and ultimately insulin secretion from � cells; the optimal

concentration of 15 mM was regarded as the “stimulatory” dose of
glucose that induced insulin secretion from INS-1E cells (17, 35, 37).

Pancreatic islet isolation. Pancreatic islets were isolated and cul-
tured as described previously (7, 27). Briefly, after collecting the
pancreas from euthanized rats, the pancreas was washed with PBS
solution three times and then cut into 1–2-mm pieces to maximize
surface area for enzymatic digestion. The pieces were subjected to
collagenase digestion (collagenase P at 5.5 mg/ml RIPA buffer). After
15 min, the digestion was terminated by the addition of cold RIPA
buffer containing 1% BSA, and the islets were separated by gradient
centrifugation using histopaque. After collecting the islets (from
histopaque/media interface), they were suspended into RPMI media
with 1% FBS in a petri dish and then individually picked under an
inverted microscope using a plastic transfer pipette. After overnight
culture in RPMI media, insulin secretion assay was performed on the
isolated islets as described above.

Insulin and ghrelin levels. Serum insulin was measured using the
rat insulin ELISA kit (Mercodia AB, Sweden; cat. no. 10-1250-01).
Acyl ghrelin was measured by the rat/mouse ghrelin (active) ELISA
kit (EMD Millipore, Billerica, MA; cat. no. EZRGRA-90K). Serum
levels of glucagon and glucose-dependent insulinotropic peptide
(GIP) were measured using the Multiplex MAP Magnetic Bead-based
immunoassay kits (Millipore). The assay was conducted according to
the manufacturer’s instructions using a handheld magnetic separator
block for 96-well flat bottom plates (Millipore) and analyzed using the
Luminex 200 system (Luminex, Austin, TX).

Immunohistochemistry. Paraffin-embedded tissue sections (5 �m
thick) were deparaffinized in xylene and rehydrated in ethanol. Slides
were then subjected to antigen retrieval by microwaving the sections
in 10 mM sodium citrate buffer (pH 6) for 20 min. After cooling to
room temperature, the sections were rinsed once in PBS (pH 7.4),
permeabilized with 2% Triton X-100/PBS, and blocked for 1 h in 1%
BSA/PBS. The sections were incubated overnight with Abs specific
for insulin, ghrelin, and ghrelin receptor (1:200 dilution), followed by
staining with appropriate Alexa Fluor-conjugated secondary Abs.
Images were acquired using an LSM 710 Zeiss Confocal Microscope.
Staining intensity was quantified using ImageJ software (National
Institutes of Health, Bethesda, MD).

Gene expression analysis. RNA was isolated from tissue/cell pellet
samples using the PureLink RNA Mini Kit (Invitrogen, Carlsbad, CA)
and was reverse transcribed from 1 �g of total RNA using TaqMan
Reverse Transcription Reagents (Applied Biosystems). Quantitative
PCR was performed using a rat-specific TaqMan Gene Expression
assay for ghrelin (cat. no. rn00572319, Applied Biosystems) and

Table 1. Values of selected parameters at euthanization
after 6–8 wk of alcohol feeding to the rats

Control Ethanol

Body wt, g 407.33 � 5.48 397.23 � 11.26
Liver wt, g 12.64 � 0.22 15.87 � 0.60*
Relative liver wt, g/100 g

body wt 3.11 � 0.08 3.99 � 0.09*
Relative adipose wt, g/100 g

body wt 2.77 � 0.27 2.08� 0.21*
Serum triglycerides, mg/dl 97.44 � 10.04 157.60 � 14.18*
Serum nonesterified free fatty

acids, mmol/l 0.20 � 0.02 0.34 � 0.05*
Liver triglycerides, mg/g

tissue 15.46 � 1.45 47.24 � 8.57*
Serum glucose, mg/dl 211.66 � 12.02 230.16 � 17.00
Serum insulin, ng/ml 2.8 � 0.35 1.8 � 0.28*
Serum ghrelin, pg/ml 6.56 � 1.11 11.24 � 2.56*
Glucagon, pg/ml 12.04 � 3.73 10.23 � 1.80
Glucose-dependent insulinotropic

polypeptide, pg/ml 124.91 � 33.61 137.38 � 27.96

Values are means � SE; n � 10–14 rats. *P � 0.05.
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TaqMan Fast Universal PCR Master Mix (Applied Biosystems).
SYBR Green quantitative PCR was performed using GOAT-specific
primers. (Sense 5=-CGA GGC AGT GGA ACC GAA G-3=; Antisense
5=-GGC AAA AGT GTG GAT CAG ATA GTC-3=, from Integrated
DNA Technologies) with iTaq Universal SYBR Green Supermix
(Bio-Rad). The 		Ct method was used to determine the fold change
using actin for normalization.

Hepatocyte culture and treatments. Primary hepatocytes from
chow-fed rats were isolated by collagenase (Type 1V, Sigma, cat. no.
C5138) perfusion method and cultured in Williams’ media with 5%
FBS as described previously (8). Briefly, hepatocytes were seeded on
sterile collagen-coated dishes. After 2 h, cells were washed with PBS,
followed by incubation with serum-free Williams’ media containing
oleic acid-BSA conjugate in the presence or absence of ghrelin and/or
ethanol. After overnight incubation, the cellular TG levels were
determined.

Western blot analysis. Tissue samples were homogenized in ice-
cold lysis buffer, consisting of 50 mM Tris·HCl, 150 mM NaCl, 0.1%
SDS, 0.5% sodium deoxycholate, and 1% NP-40 (pH 7.4) containing
protease inhibitor cocktail (Sigma, cat. no. P2714-1BTL). Samples
were separated by 12% SDS-PAGE and blotted on nitrocellulose, and
proteins were detected with primary Abs and their appropriate sec-
ondary Abs. Protein bands were quantified using the Odyssey Infrared
Imager and associated software.

Statistical analysis. The results were presented as means � SE.
Data were analyzed by one-way ANOVA, followed by Student’s
Newman-Keuls post hoc test. Comparison between two groups was
analyzed using the Student’s t-test. P values of �0.05 were consid-
ered significant.

RESULTS

General parameters at euthanization after 6–8 wk of alco-
hol administration. As shown in Table 1, we observed similar
body weights in the ethanol-fed rats compared with their
pair-fed controls. However, ethanol-fed rats exhibited a signif-
icant increase in liver weight and a significant decrease in
adipose weight, resulting in an increased liver/body weight
ratio and a decreased adipose/body weight ratio (P � 0.05).
Additionally, ethanol-fed rats showed increased hepatic TGs
and serum NEFA levels, indicating that there was a negative
relationship between adipose tissue weight and serum NEFA
(r � �0.817; n � 8). Chronic ethanol administration de-
creased circulating insulin levels and concurrently increased
serum levels of acyl ghrelin (hereafter referred as ghrelin)
levels significantly. The alcohol-induced decrease in serum
insulin levels has also been reported by others (23, 25, 26). The

Fig. 1. Chronic ethanol feeding is associated
with impaired glucose tolerance and altered
serum insulin and ghrelin levels after fasting.
A: glucose tolerance test (GTT) was per-
formed as described under experimental pro-
cedures. B: area under curve (AUC) from
GTT. C: serum insulin level after 6 h of
fasting. D: serum ghrelin level after 6 h of
fasting. Values are expressed as means � SE
(n � 12–14). *P � 0.05.

Fig. 2. Chronic ethanol treatment is associated with
accumulation of insulin in the pancreatic islets. A:
immunohistochemistry of insulin in pancreatic islets of
control and ethanol-fed rats, demonstrating insulin ac-
cumulation in islets of ethanol-fed rats. B: graphical
representation of the intensity of immunohistochemical
staining as a percent of control. Values are means � SE
of five individual islets from each section of three sets
of control and ethanol-fed animals. *P � 0.05.
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decrease in serum insulin level was observed in as early as 2
wk of ethanol feeding, which persisted at 4 wk and thereafter.
Note that these hormonal changes occurred despite similar
glucose levels observed in both groups of rats. Furthermore,
serum glucagon and glucose-dependent insulinotropic poly-
peptide (GIP) incretins that regulate serum insulin levels were
not significantly different in both groups of rats.

Glucose tolerance test and insulin and ghrelin during fasting.
Since circulating insulin and ghrelin levels were determined at
euthanization/under the fed conditions, we measured fasting se-
rum insulin and ghrelin levels to verify whether the ethanol-
induced hormonal imbalance persists even in the fasting condi-
tions. As shown in Fig. 1, the ethanol-induced decrease in serum
insulin and increase in ghrelin levels after 6 h of fasting was

comparable to that observed under the fed-state, as presented in
Table 1.

The analysis of a glucose tolerance test (GTT) revealed an
increased area under the curve for glucose in the ethanol-fed
rats (Fig. 1B). Increased area under the curve during GTT and
low levels of insulin clearly indicates that impaired glucose
clearance is due to decreased insulin levels.

Ghrelin hormone is known to inhibit insulin secretion from
pancreatic � cells in both in vitro and in vivo conditions (10,
36, 41). This information, combined with our observation that
serum insulin is dramatically reduced in ethanol-fed rats, led us
to investigate its level in the pancreas. We conducted quanti-
tative analysis for insulin by immunostaining the pancreata
from rats that were in the fed condition. We observed a

Fig. 3. Ghrelin significantly inhibits glucose-stimu-
lated insulin secretion from � cells. A: INS-1E cells
were cultured with or without 50 mM ethanol or 10
nM ghrelin for 24 h. After 24 h of treatment, for the
insulin secretion assay, cells were exposed to 15
mM glucose with or without 10 nM ghrelin for 30
min. Insulin secretion was determined after 30 min
by measuring insulin in the media. B: islets were
isolated from control and ethanol-fed rats and cul-
tured in RPMI media for 24 h, and then insulin
secretion was determined after 30 min of exposure
to 15 mM glucose with and without 10 nM ghrelin.
Values are means � SE (n � 4–6). Values not
sharing a common letter (i.e., a, b, c, d, or e) are
statistically different. P � 0.05.

Fig. 4. Increased serum ghrelin levels are due to
increased synthesis and maturation in ethanol-fed
rats. Control and ethanol-fed rat stomach (corpus
region) ghrelin (A) and ghrelin O-acyltransferase
(GOAT; B) gene expression. Immunoblot analysis
of stomach ghrelin (C) and GOAT (D) protein
levels. Values are means � SE (n � 6–8). *P �
0.05.
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significant accumulation of intracellular insulin in pancreatic
islets of ethanol-fed rats (Fig. 2, A and B), indicating that
insulin secretion is impaired in the ethanol-fed rats. Histogram
analysis revealed that there is ~twice more insulin retained
inside the islets of ethanol-fed rats compared with control.
These data combined with data on serum insulin levels shown
in Table 1 suggest a negative correlation between the insulin
content in the islet versus the circulating serum levels in the
ethanol-fed rats (r � �0.866; n � 3). Collectively, these data
suggested that increased serum ghrelin levels may be a key
factor in alcohol-associated impaired plasma insulin levels in
rats.

Ghrelin inhibits insulin secretion. To confirm the effects of
ghrelin on insulin secretion, we first conducted studies on
INS-1E � cells. These cells depict many important character-
istics of the pancreatic � cells and secrete physiologic levels of
insulin in response to glucose by utilizing similar trafficking
pathways as observed in vivo (38). Also, important to these
studies, these cells express ghrelin receptor, namely growth
hormone secretagogue receptor type 1a (GHS-R1a) (43). As
explained in METHODS, we first incubated the cells with 2.5 mM
glucose (45 mg/dl) and then stimulated with 15 mM glucose in
the presence or absence of ghrelin. Consistent with previous
reports (38), ghrelin had no effect on insulin release from
INS-1E � cells under basal (2.5 mM) glucose level but signif-
icantly decreased glucose-stimulated insulin release (Fig. 3A).
These data indicate that ghrelin requires a stimulatory level of
glucose for inhibiting insulin secretion. These results corrob-
orate previous studies, showing that ghrelin impairs membrane
potential and suppresses only 15 mM glucose-stimulated Ca2�

influx and insulin secretion (10, 11). Although not statistically
significant, ethanol treatment caused a 15–20% decrease in
insulin secretion compared with ghrelin alone. We also exam-
ined the effects of ghrelin on insulin secretion in an ex vivo
model of isolated pancreatic islets from experimental rats. As
explained in METHODS, islets were isolated from control and
ethanol-fed rats and cultured for 24 h before performing the
insulin secretion assay. As expected, ghrelin treatment signif-
icantly decreased the stimulated insulin secretion from islets
isolated from both control and ethanol-fed rats (Fig. 3B).
However, an additive effect on impairment in insulin secretion
was observed when we treated the islets of ethanol-fed rats
with ghrelin (Fig. 3B).

Increased serum ghrelin after alcohol administration is due
to increased synthesis and maturation. The stomach is the
main site for ghrelin production. However, lower amounts have
also been detected in the intestine, pancreas, kidney, and
hypothalamus (4). Since the stomach is the predominate site
for ghrelin synthesis, we excised different parts of the stomach
and measured ghrelin gene expression in the fundus, corpus,
and pylorus regions in control and ethanol-fed rats. Gene
expression and Western blot data indicated that the corpus part
of the stomach is the main site, whereas pylorus is the minor
site of ghrelin production. As we expected, ghrelin mRNA
expression was significantly increased in the corpus portion of
stomach from ethanol-fed rats compared with control rats (Fig.
4A). Even though the pylorus region expresses less ghrelin
levels than corpus, a similar trend in increased expression of
ghrelin was also observed in the pylorus region of the ethanol-
fed rats (data not shown). We did not observe ghrelin protein
expression in the fundus portion of the stomach in rats of either

experimental group. This gene expression data corroborated
our Western blot results (Fig. 4C). Similar to ghrelin gene
expression and protein content results, we also observed a
significant increase in the ethanol-fed rats in the gene and
protein levels of GOAT, an enzyme responsible for maturation
of ghrelin, (Fig. 4, B and D).

It is known that the 1% of pancreatic islets cell population
called epsilon cells expresses ghrelin (3). This information,
combined with our observations that alcohol administration
dramatically increases ghrelin stomach content and circulating
levels, directed us to compare ghrelin levels in pancreatic
islets. As shown in Fig. 5A, immunohistochemical staining
demonstrated that ghrelin is indeed expressed in a small frac-
tion of islet cells, mainly localized in the periphery of islets (as
indicted with arrow marks in Fig. 5A), and this expression is
significantly increased in islets of ethanol-fed rats (Fig. 5B).

Ghrelin receptor, known as growth hormone secretagogue
receptor (GHS-R), is distributed in many tissues, including the
pancreatic islets and liver. In this study, we examined whether
the increased circulating ghrelin levels affect ghrelin receptor
content in the pancreas and liver. Western blot analysis of total
liver homogenates and isolated pancreatic islets from control
and ethanol-fed rats revealed that GHS-R protein level is not
changed in these tissues after ethanol treatment (Fig. 6, A and
B). To confirm that GHS-R is present on � cells, we conducted
immunohistochemical staining of the islets with insulin and
GHS-R. We found that GHS-R colocalized with insulin, indi-
cating that GHS-R is present on � cells (Fig. 6C).

Fig. 5. Chronic ethanol treatment increased pancreatic ghrelin content. A: repre-
sentative images of control and ethanol-fed rat pancreas immunostained for insulin
(green) and ghrelin (red), depicting increased ghrelin synthesis in epsilon cells of
islets of chronic ethanol-fed rats. B: graphical representation of the intensity of
immunohistochemical staining expressed as a percent of control. Values are
means � SE of four individual islets from each section of three sets of control and
ethanol-fed animals. *P � 0.05.
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Ghrelin treatment induces TG accumulation in primary
hepatocytes. To determine whether ghrelin has any direct
effect on hepatic fat accumulation, we treated primary cultures
of rat hepatocytes overnight with 250 �M oleic acid in the
presence or absence of ghrelin and ethanol. Treatment of
hepatocytes with 10 nM ghrelin in the presence of oleic acid
significantly increased TG content (Fig. 7A). These results
indicate that in addition to inhibiting insulin secretion from the
pancreas, ghrelin directly promotes fat accumulation in hepa-
tocytes. We also observed an increased expression of fatty acid
synthase (FAS), diacylglycerol acyltransferase (DGAT2), and
fatty acid transporter CD36 in primary hepatocytes after treat-
ment with ghrelin and oleic acid (Fig. 7, B–D). Collectively,
these results indicate that the direct effect of ghrelin on hepatic
TG increase is by upregulating increased FFA uptake as well as
de novo lipogenesis. Although not statistically different, etha-
nol plus ghrelin treatment modestly increased the oleic acid-
induced TG accumulation by 10–15% compared with ghrelin
alone. Similar to TG content, FAS gene expression in the
ethanol and ghrelin combined treated group was also modestly
increased compared with ghrelin alone treatment. However, we

did not observe any additional effect of ethanol on CD36 and
DGAT2 gene expression. Note that the increased fat accumu-
lation with ghrelin or ghrelin plus ethanol treatment occurred
despite no change in hepatocyte GHS-R content.

DISCUSSION

Fatty liver is the earliest and most common response of the
liver to excessive ethanol consumption. As shown before,
chronic ethanol administration results in increased liver TG
levels, liver-to-body weight ratios, and produced a significant
decrease in adipose-to-body weight ratio (Table. 1). This de-
creased adipose tissue weight was likely due to induction of
adipose tissue lipolysis and increased FFA release (1, 2) for
delivery to the liver (42, 45). It is also generally accepted that
this is due to impaired insulin signaling that fails to inhibit
adipose lipolysis (23). However, in this study, we observed that
chronic ethanol administration to rats significantly decreased
circulating insulin levels, while at the same time it significantly
increased serum ghrelin levels. Interestingly, these hormonal
changes occurred despite similar serum glucose, glucagon, and

Fig. 6. Increased ghrelin levels do not promote ghrelin receptor [growth hormone secretagogue receptor (GHS-R)] increase. Immunoblot analysis of protein levels
of GHS-R in isolated islets (A) and liver homogenates (B). Values are means � SE (n � 4–6). Control and ethanol-fed rat pancreas (C) immunostained for insulin
(green) and GHS-R (red).
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GIP incretin levels in both groups of rats, indicating that the
alcohol-induced decreases in insulin levels are not modulated
by the incretins measured. Rather, it is the alcohol-induced
increase in ghrelin levels that regulates circulating insulin
levels. Furthermore, immunostaining also revealed an in-
creased accumulation of insulin in islets, which likely resulted
from impaired secretion, ultimately causing decreased circu-
lating levels of insulin. We saw an ~50% decrease in serum
insulin level as early as 2 wk of ethanol feeding, which
persisted at 4 wk and thereafter. The alcohol-induced decrease
in serum insulin levels has also been reported by others in both
human and animal models (23, 25, 26). Several clinical studies
have reported an increased serum ghrelin in humans who
chronically abuse alcohol (19, 29). These studies collectively
portend a negative correlation between insulin and ghrelin
levels in alcoholics.

In general, the � cells sense the changes in nutritional status
and correspondingly release insulin. � cells respond to many
nutrients in the blood circulation, but glucose is the primary
stimuli for the insulin release from the pancreas. Furthermore,
fasting or food intake, respectively, increase or decrease the
secretion of ghrelin from the stomach. Since both ghrelin and
insulin hormone secretions are primarily controlled by the
feeding status and metabolite levels, we further measured
fasting serum insulin and ghrelin levels and conducted a GTT
in experimental rats after 6 h of fasting. Consistent with initial
results at euthanization, ethanol-fed rats similarly exhibited
higher levels of ghrelin and lower levels of insulin in serum
compared with their pair-fed control rats. In addition, ethanol-
fed rats also showed impaired glucose clearance during a GTT.
This decrease in glucose clearance could be due to decreased
insulin levels, as shown in this and other studies.

Ghrelin is synthesized as preproghrelin, which is first
cleaved to proghrelin and then cleaved again to form ghrelin.
Ghrelin only becomes active when octanoic acid is linked to
serine at the three-position by the enzyme GOAT (21). Acy-
lated ghrelin binds to GHS-R, which is distributed in a variety
of tissues (28). As shown in Fig. 6, GHS-R colocalizes with
insulin on � cells, but the receptor level is not changed with
alcohol administration. Once ghrelin binds to its receptor on �
cells, it activates voltage-dependent K� channels that suppress
Ca2� influx necessary for glucose-stimulated insulin secretion
to consequently impair insulin release (13). As shown in Fig.
3A, acute treatment with ghrelin significantly inhibits insulin
release from � cells. However, acute ethanol treatment did not
significantly inhibit the insulin release from the pancreatic �
cells. Our studies are the first to report that it is the increased
circulating level of ghrelin in ethanol-fed rats that contributes
to impairing insulin secretion from the pancreas causing in-
creased islet content and decreased circulating insulin levels
(Fig. 2).

In this study, besides measuring serum ghrelin levels in both
fed and fasting conditions, we also demonstrated that increased
levels of acyl ghrelin are because of an increased ghrelin
synthesis and maturation by increasing GOAT enzyme in
stomachs of alcohol-fed rats. A very small amount of ghrelin
can also be produced in pancreatic islets, but this ghrelin might
not contribute to the circulating ghrelin levels, instead it could
serve as a local regulator of insulin release (12). In this study,
we were not able to detect ghrelin secretion from pancreatic
islet in ex vivo experimental condition. It is possible that the
ghrelin level may be below the detection limit of the commer-
cial ELISA used. However, we did observe increased content
of ghrelin in pancreatic islets of ethanol-fed rats by immuno-

Fig. 7. Ghrelin itself induces triglyceride ac-
cumulation in hepatocytes. Primary hepato-
cytes from chow-fed rats were treated over-
night with 10 nM ghrelin in the presence or
absence of 250 �M oleic acid and ethanol (50
mM) and analyzed for triglyceride (TG) levels
(A) and fatty acid transporter CD36 (B), fatty
acid synthase (FAS; C), and diacylglyceride
acyltransferase (DGAT2; D) gene expression.
Values are means � SE (n � 4–6). Values not
sharing a common letter (i.e., a, b, or c) are
statistically different. P � 0.05.
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histochemical staining of the pancreas (Fig. 5). Note, those
pancreatic tissues were from rats those were in fed condition
and showed an increased content of both insulin and ghrelin in
islets of ethanol-fed rats. This finding suggests that impaired
glucose-induced insulin secretion from islets of chronic etha-
nol-fed rats in ex vivo conditions (Fig. 3B) likely results from
an increased content of islet ghrelin that can act as a local
inhibitor for glucose-stimulated insulin release.

Because the liver expresses abundant ghrelin receptors, we
hypothesized that ghrelin may directly affect energy metabo-
lism in hepatocytes. Thus, we treated primary cultures of rat
hepatocytes with 250 �M oleic acid in the presence or absence
of acyl ghrelin. Overnight treatment of hepatocytes with ghre-
lin in the presence of oleic acid significantly increased TG
content and fatty acid transporter (CD36) and DGAT2 levels.
Consistent with our observations, Li et al. (31) also demon-
strated that genetic disruption of either ghrelin or ghrelin
receptor genes reduces the incidence of obesity and hepatic
steatosis in mice. Furthermore, they showed that the ghrelin
directly increases hepatic lipogenesis by activating the mTOR-
PPAR
 signaling pathway. Barazzoni et al. (5) also reported
that chronic infusion of ghrelin increases hepatic lipid accu-
mulation. Our results indicate that in addition to inhibiting
insulin secretion and consequently increasing adipose tissue
lipolysis and circulating NEFA level, ghrelin promotes the
liver uptake of circulating NEFAs by upregulating CD36
expression as well as by promoting de novo fatty acid synthesis
(FAS mRNA increase) and esterification (DGAT2 mRNA
increase) to ultimately increase fat accumulation. Although, it
is known that chronic ethanol treatment increases hepatic fat
accumulation by increasing FAS and other lipid-synthesizing
enzyme expression (6, 34, 44), the combination of ethanol and
ghrelin treatment did not show any significant increase in oleic
acid-induced TG accumulation and expression of lipid-synthe-
sizing enzymes compared with ghrelin alone. These results
suggest that both ghrelin and ethanol are likely using similar
mechanisms for regulating lipid metabolism in hepatocytes.

To summarize, we have presented compelling evidence that
the alcohol-induced elevation of circulating ghrelin levels im-
pairs insulin secretion. Consequently, reduced circulating in-
sulin levels likely contribute to increased fatty acid mobiliza-
tion from adipose tissue to liver, thereby contributing to he-
patic steatosis. We further show that an increase in ghrelin can
directly modulate hepatic lipid metabolism to favor fat accu-
mulation. Thus, modulating ghrelin and/or its receptor could be
a favorable therapeutic option for treating alcoholic fatty liver
disease.
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