
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

USGS Staff -- Published Research US Geological Survey 

1-23-2018 

Origin of last-glacial loess in the western Yukon-Tanana Upland, Origin of last-glacial loess in the western Yukon-Tanana Upland, 

central Alaska, USA central Alaska, USA 

Daniel R. Muhs 

Jeffrey S. Pigati 

James R. Budahn 

Gary L. Skipp 

E Arthur Bettis III 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub 

 Part of the Geology Commons, Oceanography and Atmospheric Sciences and Meteorology Commons, 

Other Earth Sciences Commons, and the Other Environmental Sciences Commons 

This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University 
of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized 
administrator of DigitalCommons@University of Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/usgsstaffpub
https://digitalcommons.unl.edu/usgs
https://digitalcommons.unl.edu/usgsstaffpub?utm_source=digitalcommons.unl.edu%2Fusgsstaffpub%2F1101&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/156?utm_source=digitalcommons.unl.edu%2Fusgsstaffpub%2F1101&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/186?utm_source=digitalcommons.unl.edu%2Fusgsstaffpub%2F1101&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/166?utm_source=digitalcommons.unl.edu%2Fusgsstaffpub%2F1101&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/173?utm_source=digitalcommons.unl.edu%2Fusgsstaffpub%2F1101&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors Authors 
Daniel R. Muhs, Jeffrey S. Pigati, James R. Budahn, Gary L. Skipp, E Arthur Bettis III, and Britta Jensen 



Quaternary Research (2018), 89, 797–819.
Copyright © University of Washington. Published by Cambridge University Press, 2018.
doi:10.1017/qua.2018.11

Origin of last-glacial loess in the western Yukon-Tanana Upland,
central Alaska, USA

Daniel R. Muhsa,*, Jeffrey S. Pigatia, James R. Budahna, Gary L. Skippa, E. Arthur Bettis, IIIb, Britta Jensenc
aU.S. Geological Survey, MS 980, Box 25046, Federal Center, Denver, Colorado 80225, USA
bDepartment of Earth and Environmental Sciences, University of Iowa, Iowa City, Iowa 5224, USA
cDepartment of Earth Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
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Abstract

Loess is widespread over Alaska, and its accumulation has traditionally been associated with glacial periods. Surprisingly,
loess deposits securely dated to the last glacial period are rare in Alaska, and paleowind reconstructions for this time
period are limited to inferences from dune orientations. We report a rare occurrence of loess deposits dating to the last
glacial period, ~19 ka to ~12 ka, in the Yukon-Tanana Upland. Loess in this area is very coarse grained (abundant coarse
silt), with decreases in particle size moving south of the Yukon River, implying that the drainage basin of this river was
the main source. Geochemical data show, however, that the Tanana River valley to the south is also a likely distal source.
The occurrence of last-glacial loess with sources to both the south and north is explained by both regional, synoptic-scale
winds from the northeast and opposing katabatic winds that could have developed from expanded glaciers in both the
Brooks Range to the north and the Alaska Range to the south. Based on a comparison with recent climate modeling for
the last glacial period, seasonality of dust transport may also have played a role in bringing about contributions from both
northern and southern sources.

Keywords: Loess; Alaska; Last glacial period; Mineralogy; Geochemistry; Provenance; Paleowinds

INTRODUCTION

Loess is one of the most widespread Quaternary deposits of
North America (Fig. 1a). It is commonly the uppermost sur-
ficial deposit in much of the central part of North America,
particularly in the Great Plains and greater Mississippi River
valley regions. In addition, loess is extensive over much of
Alaska and adjacent parts of Yukon Territory in Canada
(Fig. 1b). In some parts of central Alaska, loess can be several
tens of meters thick and, based on a combined volcanic ash
and paleomagnetic record, may date back as far as ~3Ma
(Westgate et al., 1990).
In the glaciated portion of central North America, by far

the most extensive and thickest loess unit of the Quaternary is
Peoria Silt, dating to the last glacial period, here considered to
be ~30 ka to ~15 ka (all ages herein are in thousands of
calibrated years), based on loess chronologies in Grimley
et al. (1998), Bettis et al. (2003), Muhs et al. (2013a), and
Pigati et al. (2015). This age range of loess accumulation

correlates with the latest portion of Marine Oxygen Isotope
Stage (MIS) 3 and most of MIS 2, based on the time scale
given in Martinson et al. (1987). Peoria Silt ranges in thick-
ness from less than a meter to up to a few tens of meters.
Along the eastern side of the Missouri River in western Iowa,
for example, glaciogenic Peoria Silt is ~40m thick (Muhs
and Bettis, 2000). Farther west, and south of the Platte River
system in Nebraska, (mostly) nonglaciogenic Peoria Silt is as
much as ~47m thick (Muhs et al., 2008b). At almost every
locality where it is found, Peoria Silt is significantly thicker
than the next-oldest loesses (Roxana Silt or Gilman
Canyon Formation, ~70–60 ka [MIS 4]; and Loveland Silt,
~160–140 ka [MIS 6]). Based on thickness and particle-size
trends, paleowinds in the North American midcontinent
during the time of Peoria Silt accumulation were dominantly
from the west and/or northwest (Muhs and Bettis, 2000).
In Alaska, much less is known about the possible occur-

rence of last-glacial loess accumulation and paleowinds
during this time period. These are the two primary questions
that are addressed in the present study. Péwé (1975a, p. 37)
stated that most loess in Alaska was deposited during the past
two glacial periods, interpreted to mean those time periods
that would correlate toMIS 6 (penultimate glacial period) and
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MIS 4, 3, and 2 (last glacial period, sensu lato), respectively.
In contrast to central North America, however, loess deposits
in Alaska that have been securely dated to the last glacial
period are rare. Those that have been identified are only thin
accumulations, for the most part. For example, on the Seward
Peninsula (Fig. 1b), loess blankets a land surface with fossil
tundra vegetation that is well dated to the last glacial period
(Höfle and Ping, 1996; Höfle et al., 2000), but the deposit is
less than a meter thick. South of this locality, along Norton
Sound (Fig. 1b), eolian silt dating to the last glacial period is
found in a maar lake deposit (Muhs et al., 2003a), but loess
adjacent to this lake is thin. In the Fox Permafrost Tunnel
near Fairbanks, silt that could be reworked loess is 6–7m
thick and is bracketed by radiocarbon ages of ~9.5 ka (above)
and ~34 ka (below) and therefore could date to the last glacial
period (Hamilton et al., 1988). However, there are
radiocarbon age inconsistencies in the section, and whether
the silt is truly eolian is not certain. Not far from the Fox
Permafrost Tunnel, at an upland site, loess is dated to
between ~36 ka and ~12 ka but is less than a meter thick
(Muhs et al., 2003b). Elsewhere near Fairbanks, attempts to
date loess have been frustrated by uncertain luminescence

geochronology or a lack of materials suitable for radiocarbon
analyses (Oches et al., 1998; Berger, 2003; Muhs et al.,
2003b). Recent identification of Dawson tephra deposits
(~30 ka) in the upper part of loess deposits near Fairbanks
permits an inference of as much as ~3m of loess accumula-
tion since the time of ash deposition (Jensen et al., 2016).
It is not known, however, howmuch of this sediment is of last
glacial age and how much is of Holocene age. In the Delta
Junction area of central Alaska, loess has been dated only to
the Holocene (Péwé, 1975a; Muhs et al., 2003b). On the
Kenai Peninsula of southern Alaska, Lethe tephra deposits
dating to ~19 ka to ~15 ka are found below or in the lower
part of loess, but as on the Seward Peninsula, this eolian silt is
less than a meter thick (Reger et al., 1996). Elsewhere in
southern Alaska, near Anchorage, loess of the Matanuska
Valley all dates to the Holocene (Muhs et al., 2004, 2016a),
as does loess in Wrangell–St. Elias National Park, to the
east (Muhs et al., 2013a). Many of the youngest loess
deposits in northern Alaska (north of the Brooks Range),
in southwestern Alaska, and along much of the Yukon
River (Fig. 1b), however, are either poorly dated or not
dated at all.
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Figure 1. (a) Map showing the distribution of loess (brown) in North America, from Bettis et al. (2003) and sources therein; extent of last-
glacial-aged ice (purple) is from Kaufman et al. (2004) for Alaska and Dyke et al. (2002) for all other areas. (b) Map showing the
distribution of loess deposits (brown) in Alaska, compiled from Hopkins (1963) and Sainsbury (1972) for the Seward Peninsula; Williams
(1962), Foster et al. (1983), and Weber et al. (1997) for areas along the Yukon River; and Péwé (1975a) for all other parts of the region.
Most mapping from these sources has been field checked by the authors. Also shown is the present extent of glaciers (blue) in the region,
taken from Péwé (1975a) and Brown et al. (1997). The red box in panel b outlines the study area. Abbreviations for other localities: A,
Anchorage; DJ, Delta Junction; K, Kotzebue; M, Matanuska Valley area; TB, Togiak Bay; W, Wrangell–St. Elias National Park. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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In contrasting the thick last-glacial Peoria Silt deposits of
the midcontinent with the meager record of last-glacial loess
in Alaska, Muhs et al. (2003b) offered the hypothesis that the
role of vegetation in trapping dust could be a significant
factor in loess accumulation. Tsoar and Pye (1987) note that
deposition of suspended dust (i.e., loess accumulation)
occurs when (1) there is a reduction in wind velocity, (2) dust
particles are washed out in rain, or (3) particles in suspension
are trapped by roughness elements. Regarding mechanism 3,
Tsoar and Pye (1987) point out that surface roughness
heights increase dramatically with increasing vegetation
height. Thus, roughness heights increase from bare sand to
grassland (steppe or tundra vegetation) to forest. Indeed,
roughness heights are more than an order of magnitude
greater for forest compared with grass, and by analogy, herb
tundra.
Set in this context, the lack of last-glacial loess in the

stratigraphic record of central Alaska might be explained by a
sparse, herb tundra vegetation with low dust-trapping cap-
ability at that time. The presence of a last-glacial-aged, herb
tundra community is well documented for interior Alaska
from many pollen and macrofossil studies (Ager and Bruba-
ker, 1985; Edwards and Brubaker, 1986; Anderson et al.,
1988; Anderson and Brubaker, 1994; Edwards and Barker,
1994; Edwards et al., 2000, 2001, 2016; Bigelow and
Edwards, 2001; Ager, 2003; Bigelow et al., 2003; Carlson
and Finney, 2004; Tinner et al., 2006). In adjacent Yukon
Territory, evidence from plant macrofossils and pollen indi-
cates that well-drained sites hosted a steppe-tundra vegeta-
tion at ~30 ka (Zazula et al., 2005) and a xeric steppe and/or
steppe-tundra during the last glacial period (Zazula et al.,
2006). In contrast, in central North America, the presence of
last-glacial-aged boreal forest (see reviews in Baker and
Waln, 1985; Wells and Stewart, 1987; Roberts et al., 2003)
likely enhanced the potential for loess accumulation and may
offer part of the explanation for the extraordinary Peoria Silt
thicknesses in the Great Plains and Mississippi River valley
regions.
In a recent study, Jensen et al. (2016) evaluated the

hypothesis of vegetation control on the degree of loess
accumulation outlined by Muhs et al. (2003b). Jensen et al.
(2016) point out that there is evidence for significant loess
accumulation in central Alaska during earlier glacial periods
(MIS 4 and MIS 6), presumably when an herb tundra vege-
tation also existed across Alaska. Furthermore, these inves-
tigators noted that in the middle Pleistocene and early
Pleistocene, glaciations were much more extensive in Alaska
than during the last glacial period (Kaufman et al., 2004),
which could have enhanced the supply of glaciogenic silt
available for loess accumulation. The data in Jensen et al.
(2016) confirm that the geologic record of last-glacial loess
accumulation at a well-studied site (Halfway House) in cen-
tral Alaska is modest.
In the present study, we report new data on a loess body,

south of the Yukon River in central Alaska (Figs. 1b and 2),
that has not received much attention. Extensive loess has
been mapped previously in this area (Williams, 1962; Péwé,

1975a; Foster et al., 1983; Weber et al., 1997), but not studied
in detail. In this area, the Yukon River valley bottom (Fig. 2a)
is referred to as “Yukon Flats.” The loess body studied here
(Fig. 2b) is situated along the lowermost slopes of the Yukon-
Tanana Upland that borders Yukon Flats, which we refer to
as “Yukon-Tanana Upland loess.” We note, however, that
this loess body is part of a larger, nearly contiguous loess
body that continues across the Yukon Flats area (Fig. 2a).
Along the Yukon River in central Alaska, the older part of

the loess record has been studied in detail at only a couple of
localities (Begét et al., 1991; McDowell and Edwards, 2001;
Matheus et al., 2003; Reyes et al., 2010a, 2010b, 2011; Jen-
sen et al., 2013). These studies focused on the early and
middle Pleistocene record, and the question of last-glacial-
aged loess was not addressed. Nevertheless, along the middle
reaches of the Yukon River in Alaska, Froese et al. (2005)
reported a number of localities where maximum-limiting
ages of ~14–12 ka were obtained below several meters of
eolian sand, and one locality yielded ages of ~11.2–10.5 ka in
the middle of a section that exposes ~14m of loess. Thus, the
study of Froese et al. (2005) indicates that last-glacial-aged
loess may exist in the region. Here, we report new strati-
graphic, geochronological, mineralogical, sedimentologic,
and geochemical data from loess exposed in the Yukon-
Tanana Upland and Yukon Flats areas.
Investigation of the loess deposits in the Yukon-Tanana

Upland and Yukon Flats areas allows us to test two hypoth-
eses. One is that significant amounts of last-glacial-aged
(MIS 2) loess may exist in central Alaska, which has impli-
cations for the proposal of Muhs et al. (2003b) that the type of
dominant vegetation exerts a strong control on the amount of
loess accumulation in this region. If this hypothesis is con-
firmed, then a second hypothesis to test is the reconstruction
of last-glacial paleowinds from the northeast for interior
Alaska, proposed by Hopkins (1982) and Lea and Waytho-
mas (1990), based on locations of dune fields and orientations
of dunes within those sand bodies. Testing of this hypothesis
requires identification of the source or sources of loess in the
study area.

METHODS

Soils, paleosols, and loess sediments were measured and
described in the field using standard terminology as practiced
in the United States (Birkeland, 1999; Schoeneberger et al.,
2012). Materials collected for radiocarbon dating include
land snails and plant macrofossils from peaty deposits within
the loess. Land snails used for dating are all in the Succinei-
dae family, which Pigati et al. (2010, 2013) have demon-
strated yields reliable radiocarbon ages. Plant remains from
peats found in loess were pretreated according to methods
described by McGeehin et al. (2001). All radiocarbon ages
were calibrated to calendar ages using the IntCal13 data set
and CALIB 7.1 program (Stuiver and Reimer, 1993; Reimer
et al., 2013). Ages from this study are presented in thousands
of calibrated years before present (yr BP; 0 yr BP=AD 1950;
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ka= thousands of calibrated 14C yr BP), and uncertainties are
given at the 95% (2σ) confidence level (Table 1).
Tephra layers are sometimes found in Alaskan loess

deposits, and two were found in an exposure in the present
study. For tephra analyses, samples were sieved into multiple
size fractions, and those with the most abundant glass were
utilized for analysis. For the samples collected in this study,
the size fraction used was 45–75 µm. Details on preparation
methods can be found in Jensen et al. (2008, 2011). Major-
element geochemistry was determined on single glass shards
with a JEOL 8900 superprobe at the University of Alberta
microprobe laboratory using a 15KeV voltage, 10 µm beam
diameter, and 6 nA current. A sample of Lipari obsidian (ID
3506) and a sample of the Old Crow ash were run con-
currently with all unknown samples to ensure proper cali-
bration and allow accurate comparison between samples run
at different times.
For particle-size analyses of loess, soils, and paleosols,

samples were pretreated with hydrogen peroxide (30%) to
remove organic matter, acetic acid to remove carbonates, and
sodium hexametaphosphate to enhance dispersion. Sands
(particles with diameters >53 μm) were separated from silts
and clays by wet sieving; abundances of coarse silts
(53–20 μm), fine silts (20–2 μm), and clays (<2 μm) were
determined by settling and pipette analysis. Laboratory
precision for pipette analysis was routinely monitored with
each suite of sample runs by analysis of a well-characterized,
internal loess standard.
For bulk mineralogy, samples were pulverized and ana-

lyzed as random mounts by X-ray diffractometry (XRD). For
clay mineralogy, samples were first pretreated by removal of
organic matter with hydrogen peroxide and removal of car-
bonates with acetic acid, followed by addition of a sodium
hexametaphosphate dispersant. Clays were isolated by set-
tling and suspension and then mounted on glass slides by
suction, using the Millipore filter method. Clay slides were
X-rayed three times: air dry, after glycolation, and after
heating at 550°C for 1 hour. Methods for clay mineral iden-
tification follow Moore and Reynolds (1989).
Assessment of the abundance of dominant minerals and

determination of the degree of chemical weathering in loess
sections were conducted using both bulk mineralogy (semi-
quantitative, from XRD analyses described previously) and
quantitatively using major element concentrations that proxy
for the dominant minerals. These chemical proxies include
CaO for calcite and dolomite, Na2O for plagioclase, and K2O
for K-feldspar and mica. Assessment of the degree of che-
mical weathering was conducted by calculation of chemical
weathering ratios, normalizing the major oxides in primary
minerals to an insoluble element (Zr) in a resistant mineral
(zircon). The resultant calculations are indexes of the degree
of depletion of calcite and dolomite (CaO/ZrO2), plagioclase
(Na2O/ZrO2), and mica and K-feldspar (K2O/ZrO2). For
selected samples, estimates of calcite content using CaO
abundances and XRD results were compared with measure-
ments of CaCO3 content following gas evolution after dis-
solution with HCl (Dreimanis, 1962).

For assessment of possible loess sources, we use ratios of
certain trace elements that were identified by Muhs and
Budahn (2006) as distinctive for silts in the major river sys-
tems of the region. These include the following ratios, all of
which utilize trace elements with a minimum degree of
mobility in near-surface environments (Taylor and McLen-
nan, 1985; McLennan, 1989): Cr/Sc, Th/Ta, As/Sb, and Zr/
Hf. We also use two sensitive indicators of rare earth element
(REE) composition, Eu/Eu* and LaN/YbN, where the “N”
subscript indicates the element is normalized, by convention,
to chondrite values (see Muhs and Budahn [2006] for
examples of how these values are used in provenance deter-
minations). Finally, major and trace element ratios in the
K-bearing minerals, mica and K-feldspar, also provide useful
provenance indicators, at least in unaltered loess (Muhs et al.,
2016b). For these, we recognize that K and the trace elements
that follow it (Ba, Rb, and Cs) can potentially be mobile in
near-surface environments, but for deep loess, well below the
land surface, there is likely very limited leaching of these
elements from K-bearing minerals. For both loess and
possible sources from river silts, abundances of major and
trace elements were determined by instrumental neutron
activation analysis, following methods in Budahn and
Wandless (2002).

RESULTS

Stratigraphy and chronology

Loess was examined in natural exposures and road cuts along
or near the Dalton Highway over a 60-km-long transect, from
north of the Yukon River to the southeast (Fig. 2b). Along the
Dalton Highway, loess is as much as 10m or more thick
immediately to the south of the Yukon River (locality
AK-600B in Fig. 2b) and could be at least that thick several
kilometers to the southeast, where bedrock was not reached in
sections that expose ~9m of loess. These minimum thicknesses
are best exposed in our “Main Trench” and “South Trench,”
excavations (Fig. 3) at localities AK-601A and AK-650A,
respectively (Fig. 2b). To the southeast, at localities AK-600E
and AK-DHB, bedrock is exposed within a few meters of the
surface. Still farther southeast, we did not observe loess on the
higher elevations of the Yukon-Tanana Upland (Fig. 2a). In
reconnaissance field studies southwest of Circle (Fig. 2a), we
observed as much as ~7m of loess exposed in road cuts, but
exposures typically show ~3m of loess.
Loess in the Yukon-Tanana Upland usually exhibits little

or no bedding and is a massive silt loam (Figs. 3 and 4).
When dry, loess from this area is gray (2.5Y 5/1 or 2.5Y 6/1),
light brownish gray (2.5Y 6/2), or light olive brown
(2.5Y 5/3). Horizontal to subhorizontal oxidation streaks
with brighter, redder colors, probably attributable to sec-
ondary Fe-oxides, are common, particularly in the upper
parts of most sections. In some sections, wood fragments or
charcoal, along with slightly darker sediment matrix colors
(2.5Y 5/2 or 2.5Y 4/1), indicate the likely presence of
paleosols, with higher organic matter content. This is
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particularly evident in the upper part of the South Trench. In
this section, what we interpret to be soliflucted paleosols are
present, along with horizontal to subhorizontal wood-rich
zones 1–3 cm thick (Fig. 4a). Both above and below the
paleosols and wood-rich zones in the South Trench excava-
tion, there are land snails, commonly in clusters (Fig. 4b).
The snails are all in the Succineidae family, and they may be
Succinea strigata, based on a hypothesized identification of
this species in loess of the region by Williams (1962). These
land snails were found at almost all the sections studied and
form an important basis for the chronology. Thin loess occurs
above the snail clusters, and modern soils cap the sections.
Peaty zones can are found deeper in both the Main Trench
and South Trench exposures (Fig. 4c). Although tephra
deposits are often observed in many Alaskan loess sections
(see examples in Jensen et al., 2013, 2016), we observed only

one section that contains them, locality AK-855 (Fig. 4d and
e). Here, tephra deposits are found at a depth of 175–178 cm
(as a layer) and at 220–225 cm (as a pod).
Radiocarbon dating of land snails forms the primary basis

for our chronology of loess deposition, augmented by
radiocarbon ages of plant remains from peaty zones in deeper
parts of the loess, and tephrochronology at one section.
Radiocarbon analyses of plant fragments within the Main
Trench (locality AK-601A) gave calibrated ages of ~18.6 ka
(AK-689A at 745 cm depth) and ~17.2 ka (AK-691A at
632 cm depth; Fig. 5a). Nearby, at the South Trench (locality
AK-650A), peaty material at a depth of 350–375 cm gave a
calibrated radiocarbon age of ~18.2 ka (Fig. 5a, Table 1). All
three of these ages are in good stratigraphic agreement with
younger ages derived from higher in the sections, discussed
subsequently.

66°00’

65°45’

150°00’ 149°30’ 149°00’

65°30’

Yukon

R
iv

er

Hess Creek

West
Fork

Hess

Creek

Rogers Creek

Fish Cree
k

Isom
Creek

Troublesom
e

C
reek

0 20

KILOMETERS

AK-650A
Loess and/or
colluvium

Loess
sample
locality

DALTON

HIGHWAY

(a) (b)

0 100

KM

Nenana

Fairbanks

64o

Tanana

Yukon
River

RANGE

Loess
Last-glacial 
ice extent

River

ALASKA

Fort Yukon

BROOKS

River

Yukon

Circle

RANGE

YUKON-

UPLAND

YUKON

FLATS

Alluvial 
sample

TANANA

Chandalar

River

Porcupine
River

N
en

an
a

R
iv

er

66o

68o

150o 145o

Area in (b)

Loess
sample

AK-625X

AK-626Y

AK-626W

AK-601A

AK-
600E

AK-
600A

AK-600B
AK-
855

AK-840

AK-650A

AK-626X

AK-DHB

AK-
626Z

AK-600DAK-
600C

AK-643

AK-644

AK-645

AK-646
(~8 km to NW)
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Yukon River crossing (see general location in panel a). Filled red dots show loess sections studied. Distribution of loess and colluvium
slightly modified from Weber et al. (1997) with minor new mapping by the authors. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Origin of last-glacial loess in the western Yukon-Tanana Upland, central Alaska, USA 801

https://www.cambridge.org/core/terms
https://doi.org/10.1017/qua.2018.11
https://www.cambridge.org/core


In loess sections at 12 localities (Figs. 2b and 5a, Table 1),
snails were collected from the upper parts of the sections, but
below the modern boreal forest soils. The modern soils in the
sections have O or A/E/Bw/C profiles, similar to the Fair-
banks silt loam series mapped in the Fairbanks area (White
et al., 2000). The Fairbanks silt loam is a Typic Cryochrept, a
common soil type found in upland loess localities under
boreal forest in central Alaska. The observation of the snail
occurrences below these modern soils is critical, because it
means that the snails were living on land surfaces that existed
while loess accretion was still taking place. Nevertheless, in
no case were snails found at depths below ~2m, and in most
cases, snails were found only within the upper meter of the
loess section. Calibrated ages of these snails span a very short
interval of time, from ~13.7 ka to ~12.1 ka (Fig. 5a, Table 1).
Because analytical uncertainties of calibrated ages of the
snails are mostly on the order of ~100 to ~200 yr (Table 1),
many of these ages could, in principle, be interpreted as
significantly different from one another. As pointed out by
Pigati et al. (2010), however, although many land snails
(including Succineidae) are suitable for radiocarbon dating,
some of them do incorporate small amounts of inherited,

“dead” carbon, a process often referred to as the “limestone
effect.” Based on Pigati et al.’s (2010) studies of modern
shells of the Succineidae family, the limestone effect with
these taxa ranges from <300 yr to ~600 yr. Thus, although
the strictly analytical uncertainties would permit an
interpretation that certain of the snails in loess in this area are
younger than others, the much greater possible uncertainty
with the limestone effect—though not fatal to dating the
deposits—would permit a simpler interpretation that all
these snails are of approximately the same age, about 13 ka to
12 ka. This may explain the apparent reversals in some snail
ages at the South Trench site, where several clusters of snails
from different depths and over an approximately 300 cm
horizontal distance were analyzed (Fig. 5b). We interpret the
apparent snail age differences from place to place in this
trench to be attributable to small but varying amounts of dead
carbon uptake by snails in this carbonate-rich loess.
Locality AK-855, situated only about a kilometer south of

the Yukon River, is one of our thinner exposures but appar-
ently has one of the oldest records. Tephra deposits were
exposed at depths of ~175 cm (as a bed) and at ~225 cm
(as a pod; see Fig. 4d and e). Considerable effort has been
undertaken in the past couple of decades to characterize the
Quaternary tephra deposits found in loess and other sedi-
ments of Alaska and Yukon Territory (see Preece et al., 1992,
1999, 2011; Froese et al., 2002, 2006; Matheus et al., 2003;
Muhs et al., 2003b; Jensen et al., 2008, 2013, 2016). The
primary means of correlation is major element geochemistry
of glass shards, an approach that is followed here. The upper
layer (AK-873 in Fig. 4e) has a mean SiO2 content of
75.32± 0.17%, and the lower pod (AK-878 in Fig. 4e) has a
mean SiO2 content of 75.36± 0.17%. When these values are
plotted against other major element abundances (Al2O3,
CaO, FeOt, and K2O), the glass shards from this section
overlap those of the Old Crow tephra deposits, based on the
geochemistry of this ash (Fig. 6) from a key locality at Togiak
Bay, in southwestern Alaska (Fig. 1b). Thus, the volcanic ash
layer and ash pod at the AK-855 section are likely another
occurrence of the Old Crow tephra deposits that are found
over much of Alaska and Yukon Territory.
The age of the Old Crow volcanic ash is not known with

certainty, but estimates have been made from a variety of
techniques and localities, yielding roughly similar ranges.
Early isothermal plateau fission track ages range from
156± 26 ka to 118± 23 ka (Westgate, 1988; errors are 1σ).
Preece et al. (2011) recalculated these ages to range from
148± 43 ka to 113± 22 ka. Berger (2003) reported bracket-
ing, partial-bleach thermoluminescence ages of loess of
147± 12 ka (below the Old Crow ash) and 128± 22 ka
(above the Old Crow ash). Auclair et al. (2007) reported
bracketing infrared stimulated luminescence (IRSL) ages of
135 ka (+21/ −13 ka, below the ash) and 131 ka (+21/ −13 ka,
above the ash). Roberts (2012) also conducted IRSL analyses
of bracketing loesses around the Old Crow ash and reported
that calculated ages are conditioned significantly by preheat
temperatures in the laboratory. She therefore generated a
suite of possible ages for the Old Crow ash, ranging from

“Main” trench
(AK-601A) “South” trench

(AK-650A)

(a)

(b)

Section shown in (b)
Dalton Highway elevation: ~490 m

Boreal forest

Treeline: 
~564 m to ~594 m 

NORTH

NORTH

DALTON
HIGHWAY

Tundra

Figure 3. (color online) Photographs of road-cut exposure of loess
along the Dalton Highway as it appeared in summer of 2006. (a)
Distant view looking east, showing road cut exposure at ~490m
elevation and its relation to modern treeline. (b) Close-up view of
road cut shown in panel a with locations of trenches excavated:
“Main Trench” (AK-601A in Fig. 2b) and “South Trench”
(AK-650A in Fig. 2b). Note that as of at least 2011, riprap has
been placed over the road cut, and very little of the section is still
exposed. Photographs by D.R. Muhs.

802 D. R. Muhs et al.

https://www.cambridge.org/core/terms
https://doi.org/10.1017/qua.2018.11
https://www.cambridge.org/core


~150 ka to ~100 ka, using different options for preheat tem-
peratures. Considering all the attempts to date this ash, it is
reasonable to say that the Old Crow ash is between ~150 ka
and ~100 ka and is likely around ~130 ka. If so, then the
section at AK-855 contains loess that is much older than at
the other sections examined. This older loess, hosting the
Old Crow tephra deposits, was likely deposited during
the penultimate glacial period, equivalent to MIS 6. Never-
theless, snail ages near the top of the section (Fig. 5a)
indicate that the latest episode of loess deposition was similar
in timing to that of the latest deposition at the other sections.
Tephra deposits were not found at the other sections
(except possibly at section AK-600B, Fig. 5a), and the Old
Crow ash, if present at other sections, is presumably
stratigraphically below what is exposed. The presence of this
ash near the surface at AK-855 implies erosional removal
of much of the later (but not latest) part of the loess record at
this locality.

Sedimentology

Loess from the western Yukon-Tanana Upland is dominated
by silt-sized particles, consistent with loess deposits world-
wide (see examples in Muhs, 2013). In unaltered parts of the
sections studied here (i.e., where paleosols are not present),
loess has coarse-silt (53–20 µm) contents of 55% to 80%,
with loess at many depths having coarse-silt contents of 70%
to 80% (Fig. 7). Despite the high coarse-silt content, sand
(>53 µm) content is surprisingly low, usually less than 10%.
Coarse-silt/fine-silt values are always greater than 2, usually
greater than 5, and are sometimes higher than 10 (Fig. 7).
These values are unusually high for loess deposits, and we
discuss the significance of this later.
Both clay-sized particles (<2 µm) and fine-silt-sized

particles (20–2 µm) are enriched in modern soils and paleo-
sols (Fig. 7) similar to loess found in the Fairbanks area
(Muhs et al., 2003b). Modern soils have clay contents as high

Modern
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Soliflucted
paleosols

Loess

Loess

South Trench, upper part:

Loess snails, South Trench

Soliflucted
paleosols

Peaty zone in deeper loess

Modern boreal

forest soil

Section 

shown

in (e)

Tephra bed

(AK-873)

Tephra pod

(AK-878)

Loess

Loess

(d)

(e)

50
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m

Loess

AK-855
section

35
0 

cm

Snails

(~50 cm)

Loess

(a) 

(b) (c) 

Figure 4. (color online) Photographs showing loess and features within exposures. (a) Loess and paleosols, South Trench; silver circle in
the middle of the exposure is a U.S. 25-cent piece with a diameter of 2.3 cm. (b) Land snail cluster, South Trench. (c) Typical peat-rich
zone found in deeper parts of loess sections found in Main Trench and South Trench. (d) Long view of AK-855 section showing loess and
modern soil; tephra deposits are barely visible in box at right. (e) Close-up view of loess, ash layer, and ash pod in panel d. Photographs
by D.R. Muhs.
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Table 1. Summary of sample information and ages for Succineidae shells and plant remains at all sites.

Sample ID Lab # AMS #
Material
dated

Depth
(cm)a

δ13C
(VPDB)b

14C age
(14C ka BP)

Age
(cal ka BP)c Pd

AK-840, Dalton Highway Milepost 60 (north of the Yukon River), 65.92068°N, 149.82870°W
AK-847 – Aeon-2440 Succineidae 88 – 10.97± 0.16 12.88± 0.26 1.00
AK-849 – Aeon-2441 Succineidae 95 – 11.57± 0.16 13.42± 0.31 1.00
AK-850 – Aeon-2442 Succineidae 98 – 11.23± 0.16 13.06± 0.31 1.00

AK-600A, Dalton Highway Milepost 56.4, 65.89005°N, 149.74361°W
AK-600A-2 WW-9217 CAMS-159984 Succineidae 60 −7.8 11.37± 0.03 13.21± 0.08 1.00

AK-600B, Dalton Highway Milepost 55.5, 65.87622°N, 149.72618°W
YRB-1 WW-8836 CAMS-155315 Succineidae 20 −7.9 10.66± 0.03 12.63± 0.07 1.00
YRB-5a WW-8913 CAMS-156093 Succineidae 55 −8.0 11.10± 0.03 12.96± 0.11 1.00
YRB-5b WW-8914 CAMS-156094 Succineidae 61 −7.9 10.99± 0.03 12.85± 0.12 1.00
YRB-5c WW-8915 CAMS-156095 Succineidae 63 −8.2 11.05± 0.03 12.91± 0.11 1.00
YRB-5e WW-8916 CAMS-156096 Succineidae 68 −8.5 11.19± 0.03 13.06± 0.05 1.00
YRB-5f WW-8917 CAMS-156097 Succineidae 69 −8.1 11.23± 0.03 13.09± 0.04 1.00
YRB-5g WW-8918 CAMS-156098 Succineidae 72 −8.2 11.41± 0.03 13.24± 0.08 1.00
YRB-4 WW-8837 CAMS-155316 Succineidae 80 −7.9 11.49± 0.04 13.34± 0.08 1.00

AK-855, Dalton Highway Milepost 54.7, 65.86615°N, 149.73662°W
AK-859A WW-8512 CAMS-151957 Succineidae 47 −7.1 10.94± 0.04 12.81± 0.10 1.00
AK-859 WW-7285 CAMS-143294 Succineidae 47 −7.3 11.25± 0.05 13.13± 0.08 1.00

AK-600C, Dalton Highway Milepost 48.6, 65.82093°N, 149.57460°W
AK-600C-1 WW-9218 CAMS-159985 Succineidae 100 −7.5 10.63± 0.03 12.62± 0.07 1.00
AK-600C-3 WW-9219 CAMS-159986 Succineidae 140 −7.3 11.02± 0.03 12.89± 0.11 1.00

AK-601A, Dalton Highway Milepost 45.9, Main Trench, 65.65.83115°N, 149.49323°W
AK-604A WW-8504 CAMS-151948 Succineidae 25 −7.4 10.59± 0.04 12.46± 0.03 0.11

12.60± 0.07 0.89
AK-604A WW-7263 CAMS-143272 Succineidae 25 −5.6 11.10± 0.04 12.95± 0.12 1.00
AK-605A WW-8505 CAMS-151949 Succineidae 34 −7.3 10.95± 0.03 12.79± 0.07 1.00
AK-605A WW-7264 CAMS-143273 Succineidae 34 −6.5 11.32± 0.04 13.17± 0.09 1.00
AK-691A WW-7286 CAMS-143295 Plant macros 632 −28.5 14.11± 0.05 17.18± 0.22 1.00
AK-689A WW-7283 CAMS-143292 Plant macros 745 −26.3 15.28± 0.05 18.55± 0.15 1.00
AK-689A – Aeon-2435 Humic acids 745 – 14.50± 0.19 17.62± 0.48 1.00
AK-689A – Aeon-2434 Bulk

organics
745 – 16.02± 0.11 19.31± 0.29 1.00

AK-650A, Dalton Highway Milepost 45.9, South Trench, 65.65.83115°N, 149.49323°W
AK-640A WW-7267 CAMS-143276 Succineidae 50 −6.5 11.60± 0.03 13.41± 0.09 0.99
AK-641A WW-8506 CAMS-151950 Succineidae 145 −7.7 10.73± 0.03 12.68± 0.05 1.00
AK-641A WW-7268 CAMS-143277 Succineidae 145 −8 11.29± 0.04 13.15± 0.08 1.00
AK-642A WW-8507 CAMS-151951 Succineidae 150 −7.7 10.80± 0.03 12.71± 0.03 1.00
AK-644A WW-8509 CAMS-151953 Succineidae 150 −6.8 11.09± 0.03 12.94± 0.12 1.00
AK-644A WW-7271 CAMS-143280 Succineidae 150 −6.6 11.12± 0.04 12.97± 0.12 1.00
AK-642A WW-7277 CAMS-143286 Succineidae 150 −6.3 11.22± 0.03 13.09± 0.05 1.00
AK-644AR-3 WW-9225 CAMS-159992 Succineidae 150 −6.7 11.27± 0.03 13.13± 0.06 1.00
AK-644AR-1 WW-9222 CAMS-159989 Succineidae 150 −7.1 11.51± 0.03 13.36± 0.08 1.00
AK-645A WW-7275 CAMS-143284 Succineidae 155 −6.9 11.23± 0.04 13.10± 0.07 1.00
AK-645A WW-8510 CAMS-151954 Succineidae 155 −7.2 11.32± 0.03 13.17± 0.09 1.00
AK-646A WW-8511 CAMS-151956 Succineidae 180 −7.4 10.70± 0.03 12.65± 0.06 1.00
AK-646A WW-7276 CAMS-143285 Succineidae 180 −6.5 10.75± 0.04 12.69± 0.05 1.00
AK-643A WW-7270 CAMS-143279 Succineidae 180 −6.7 11.01± 0.03 12.87± 0.12 1.00
AK-643A WW-8508 CAMS-151952 Succineidae 180 −6.0 11.10± 0.03 12.96± 0.11 1.00
AK-643R-1 WW-9224 CAMS-159991 Succineidae 180 −6.6 11.24± 0.04 13.10± 0.06 1.00
AK-670A WW-8513 CAMS-151958 Succineidae 200 −6.9 10.30± 0.03 12.06± 0.12 0.94
AK-670A WW-7284 CAMS-143293 Succineidae 200 −6.9 11.00± 0.04 12.86± 0.13 1.00
AK-681B WW-7282 CAMS-143291 Plant macros 370 −25.8 15.98± 0.06 19.29± 0.22 1.00
AK-681B – Aeon-2427 Bulk

organics
370 – 13.33± 0.08 16.02± 0.24 1.00

AK-681B – Aeon-2433 Humic acids 370 – 14.99± 0.15 18.23± 0.35 1.00
AK-681B – Aeon-2432 Wood 370 – 15.00± 0.14 18.24± 0.33 1.00
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as 14–16% and in paleosols, clay content is as high as
9–13%. In contrast, in unaltered loess, clay contents are less
than 10%. Clay enrichment in soils can be attributable either
to mechanical infiltration (illuviation) of fine particles from
upper soil horizons to lower soil horizons or clay production

by chemical weathering of primary silt-sized minerals. The
enrichment of fine silt and clay in the same soil and paleosol
horizons, as seen in our sections, can also be explained by
slow eolian accretion of fine particles during pedogenesis
(Muhs et al., 2003b).

Table 1. (Continued )

Sample ID Lab # AMS #
Material
dated

Depth
(cm)a

δ13C
(VPDB)b

14C age
(14C ka BP)

Age
(cal ka BP)c Pd

AK-600D, Dalton Highway Milepost 45.8, 65.82934°N, 149.48894°W
YRC-2 WW-8832 CAMS-155311 Succineidae 38-48 −7.7 11.27± 0.04 13.13± 0.07 1.00
YRC-6 WW-8838 CAMS-155317 Succineidae 61 −7.1 11.54± 0.04 13.37± 0.08 1.00

AK-600E, Dalton Highway Milepost 44.8, 65.81827°N, 149.46484°W
AK-600E-1 WW-9220 CAMS-159987 Succineidae 20 −7.5 11.36± 0.03 13.20± 0.08 1.00

AK-DHB, Dalton Highway Milepost 43.5, 65.79782°N, 149.44867°W
DHB-1 WW-8834 CAMS-155313 Succineidae 15 −7.1 11.88± 0.04 13.67± 0.10 1.00
DHB-2 WW-8835 CAMS-155314 Succineidae 30 −7.5 11.86± 0.04 13.66± 0.09 1.00

AK-626W, Dalton Highway Milepost 38.4, 65.76788°N, 149.38687°W
AK-626W-1 WW-9221 CAMS-159988 Succineidae 70 −7.4 11.01± 0.03 12.87± 0.12 1.00

AK-626Z, Dalton Highway Milepost 33.5, 65.72968°N, 149.29367°W
AK-626Z-2 WW-9223 CAMS-159990 Succineidae 80 −7.8 11.81± 0.03 13.65± 0.09 1.00

Note: AMS, accelerator mass spectrometry; VPDB, Vienna Pee Dee belemnite.
aDepth from top of exposure.
bSome of the shell aliquots processed at the U.S. Geological Survey (denoted by the prefixes WW- and CAMS-) did not contain enough material for stable
isotope analyses and were assigned δ13C values of −8‰ (shown in italics). δ13C values were not obtained for samples processed at Aeon Laboratories LLC
(denoted by the prefix Aeon-).
cCalibrated ages were calculated using CALIB v. 7.1html, IntCal13.14C data set; limit 50.0 calendar ka BP. Calibrated ages are reported as the midpoint of the
calibrated range. Uncertainties are reported as the difference between the midpoint and either the upper or lower limit of the calibrated age range, whichever is
greater. Multiple ages are reported when the probability of a calibrated age range exceeds 0.05.
dP is the probability of the calibrated age falling within the reported range as calculated by CALIB.
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From approximately the same depths as our radiocarbon-
dated snails, and below the modern soil zone, we sampled
loess in a transect south of the Yukon River (Fig. 2b) for
particle-size analyses. With the exception of the two south-
ernmost localities, coarse silt in this 13–12 ka loess decreases,
and fine silt increases as a function of distance south of the
Yukon River in a linear fashion (Fig. 8), with high coeffi-
cients of determination (r2= 0.81 and 0.85, respectively).
Similar distance-from-source trends have been well docu-
mented for loess in other localities (e.g., Muhs and Bettis,
2000; Muhs et al., 2013a) and are typically explained as a
winnowing of coarse particles away from an alluvial source.
It is noteworthy that the two southernmost localities, which
do not fit these linear trends, are both south of Hess Creek
(Fig. 2b), a major drainage south of the Yukon River. It is
possible that Hess Creek served as a secondary source of
loess, but this hypothesis requires more testing.

Mineralogy

The bulk mineralogy of Yukon-Tanana Upland loess was
studied at four sections (AK-840, AK-855, the Main Trench
[AK-601A], and the South Trench [AK-650A]). Mineralogy
is similar in both the section north of the Yukon River
(AK-840) and the three sections south of the river. Of the
silicate minerals, quartz, plagioclase, K-feldspar, mica,
chlorite, and amphibole are found at all depths in unaltered
loess (i.e., above or below soils or paleosols). Mica, which

appears to be mostly muscovite, is abundant and is easily
visible under magnification or even to the naked eye in hand
samples. Although the loess contains both K-feldspar and
plagioclase, plagioclase is the more abundant of these two
minerals based on XRD peak heights. Plagioclase and
amphibole are represented in Na2O contents in unaltered
loess of 1.5–2.7%; K-feldspar and mica contents are reflected
in K2O contents of 1.1–2.0%. Chlorite and amphibole are
seen in Fe2O3 concentrations of 3.9–5.0% (see Supplemen-
tary Table 1 for complete geochemical data).
A major difference between loess studied here and loess

along the Tanana River near Fairbanks is that Yukon-Tanana
Upland loess has a much higher abundance of carbonate
minerals, both calcite and dolomite. In both the Main Trench
and South Trench, XRD peak-height ratios of calcite to
quartz (29.4°2θ/20.9°2θ) and CaO/ZrO2 vary sympatheti-
cally with depth (Fig. 9). From both calcite/quartz and CaO/
ZrO2 values, it is apparent that calcite is largely depleted in
the modern soil in the upper parts of both sections and in the
paleosols found in the South Trench. Values of Na2O/ZrO2

K2O/ZrO2 show that plagioclase and mica/K-feldspar,
respectively, may have experienced some depletion in the
modern soils and paleosols, but not to the degree that
carbonate minerals have experienced.
The clay mineralogy of loess along the Yukon-Tanana

Upland loess is very similar to the clay mineralogy of loess
near Fairbanks, reported by Muhs et al. (2008a). In the
Main Trench section, relatively unaltered loess at depths of
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600–800 cm contains smectite, chlorite, mica, kaolinite, and
possibly clay-sized quartz (Fig. 10). For chlorite, the (001)
and (003) peaks are less intense than the (002) and (004)
peaks on glycolated scans, which could indicate that the
chlorite is Fe-rich. It is difficult to be certain about this,
however, as kaolinite has (001) and (002) peaks that coincide
with the chlorite (002) and (004) peaks. After heating to 550°
C, the (002) and (004) peaks for chlorite are greatly dimin-
ished or disappear, meaning that peaks in these positions
could be attributable at least partially to kaolinite. Mica in the
modern soil shows some depletion compared with unaltered
loess, based on peak heights (Fig. 10). This is consistent
with the lower K2O/ZrO2 values also seen in the modern soil
(Fig. 9). In the South Trench, relatively unaltered loess at
depths of ~80 cm to ~140 cm has a clay mineralogy similar to
that of deeper loess in the Main Trench.

Geochemistry and loess provenance

In order to determine the primary source or sources of loess in
the Yukon-Tanana Upland, we calculated key element ratios
that can differentiate alluvial silts from different river systems
in the region. Given the generally east–west orientation of the
major loess bodies in central Alaska, including the Yukon-
Tanana Upland and Yukon Flats areas (Fig. 2a), we consider

that east–west trending valleys of the Yukon and Tanana
Rivers are the most likely sources. Muhs and Budahn (2006)
reported that Cr/Sc, Th/Ta, As/Sb, and Zr/Hf, as well as
Eu/Eu* and LaN/YbN, define distinct compositional fields for
silt-sized (53–2 µm) particles in these two river systems.
Some of these element ratios were also used to distinguish
different alluvial sources for loess in the Matanuska Valley
and in Wrangell–St. Elias National Park areas (Fig. 1b) of
southern Alaska (Muhs et al., 2013b, 2016a).
In addition to the trace elements used byMuhs and Budahn

(2006), we investigated the use of K/Rb, K/Ba, and K/Cs as
provenance indicators. The trace elements Rb, Ba, and Cs all
substitute for K in K-bearing minerals such as mica and
K-feldspar, both of which are present in Yukon-Tanana
Upland loess. Muhs et al. (2008b, 2013b) found that K/Rb
and Ba/Rb values have the ability to discriminate loess bodies
derived from different sources in both midcontinental North
America and Alaska. In a recent study, Muhs et al. (2016b)
used K/Rb and K/Ba to distinguish competing source sedi-
ments for dune sand in southern California. Because K, Rb,
Ba, and Cs can all be mobile in near-surface environments
and in soils, we restrict our use of these elements to deep,
unaltered loess, well below modern soils and paleosols, and
modern, unweathered alluvium.
In the present study, we determined K, Rb, Ba, and Cs

concentrations of the same alluvial samples studied by Muhs
and Budahn (2006), from sample localities shown in
Figure 2a. Results indicate that in K/Rb versus K/Ba and
K/Rb versus K/Cs plots, Yukon River valley silts and Tanana
River valley silts define distinctive fields (Fig. 11a and b).
Yukon-Tanana Upland loess samples, from sections south of
the Yukon River (localities AK-601A, AK-650A, and
AK-855 in Fig. 2b), fall largely within the Yukon River
valley silts field for K/Rb versus K/Ba and mostly within that
field for K/Rb versus K/Cs (Fig. 11a and b). Loess from
Yukon Flats, north of the Yukon River (locality AK-840 in
Fig. 2b), also falls mostly within the Yukon River valley silts
field. For Yukon-Tanana Upland loess collected southwest of
Circle (Fig. 2a; specific localities are given in Muhs et al.,
2003b), we have data on K/Rb and K/Ba derived from
energy-dispersive X-ray fluorescence. All but two of these
samples also fall within the Yukon River valley silts field.
Because all these elements reflect compositions of K-feldspar
and muscovite, they represent a substantial portion of the
light, silicate mineral fraction in loess.
Cr/Sc and Th/Ta values represent trace element composi-

tions of a broad suite of minerals, including micas, amphi-
boles, and clay minerals, whereas As/Sb and Zr/Hf represent
compositions of specific heavy minerals, magnetite (Onishi
and Sandell, 1955) and zircon, respectively. These four ele-
ment ratios show distinct fields for Yukon River valley silts
and Tanana River valley silts (Fig. 12a and b). Both Yukon-
Tanana Upland loess (south of the Yukon River) and Yukon
Flats loess (north of the Yukon River) plot between the two
alluvial fields for Th/Ta versus Cr/Sc (Fig. 12a). For Zr/Hf
versus As/Sb, most loess samples plot within or near the
Yukon River valley silts field (Fig. 12b).
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The REEs represent compositions of a broad range of
minerals including micas, chlorite, clay minerals, amphiboles,
zircon, feldspars (in small amounts), and apatite. LaN/YbN is a
measure of the ratio of light REEs to heavy REEs. The Eu/Eu*
value is a measure of the magnitude of the Eu anomaly
(see Taylor and McLennan, 1985). These REE ratios show
distinctive compositional fields for Yukon River valley and
Tanana River valley silts for LaN/YbN versus Eu/Eu* (Fig. 12c).
Both Yukon-Tanana Upland loess (south of the Yukon River)
and Yukon Flats loess (north of the Yukon River) samples fall
mostly between the two alluvial compositional fields for
LaN/YbN versus Eu/Eu*, with a number of samples falling
clearly within the Yukon River valley silts field.

DISCUSSION

Timing of loess deposition along the Yukon River

As discussed previously, in contrast to the midcontinent of
North America, reports of last-glacial-aged loess in Alaska
are rare, and the deposits are thin, poorly dated, or simply

interpreted to exist from deposits in a favorable stratigraphic
position without direct dating. Results presented here docu-
ment one of the first dated records of loess accumulation
during the last glacial period in central Alaska. It is not
certain when loess accumulation began during the last glacial
period on the western Yukon-Tanana Upland. If the radio-
carbon ages of plant remains from peat deposits within the
sections exposed at AK-601A and AK-650A are accurate,
these data indicate that loess accumulation certainly was in
progress by ~19–18 ka. By this time, glaciers in both the
Brooks Range and Alaska Range had already reached their
maximum downvalley positions of the last glacial period and
had begun retreating (Fig. 13). However, ice was still much
more extensive than present in both mountain ranges until
~11 ka. Consistent with the glacial record, loess accumula-
tion continued until at least ~13–12 ka or shortly thereafter,
based on radiocarbon ages of snails from the same two sec-
tions where the older ages are found, as well as a number of
other sections examined both to the north and south of the
Yukon River (Fig. 5a). Based on measurements made in the
Main Trench, ~7m of loess accumulated between ~19 ka and
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~13 ka (Fig. 5), demonstrating significant eolian silt deposi-
tion during this ~6 ka period. A lack of paleosols in this
section indicates that loess sedimentation was more or less
continuous over the period between ~19 ka and ~13 ka,
supported by the fact that calcite and dolomite are present at
all depths, indicating that there was no hiatus long enough to
bring about complete leaching. At the South Trench, an age
of ~19.2 ka also indicates that loess accumulation was in
progress during the last glacial period and continued until 13–
12 ka. The presence of numerous paleosols between ~70 cm
and ~160 cm in the South Trench is interpreted to indicate
episodic slope instability during the latest phases of loess
accumulation. The cessation of loess accumulation shortly
after ~13–12 ka may be in part attributable to a reduction in
glacial silt supplies as ice receded in both the Brooks Range
and Alaska Range, mountains that are drained by the Yukon
and Tanana Rivers.
At other localities, not enough chronological data are

available to ascertain the amount of loess that accumulated
solely during the last glacial period. Nevertheless, similar
radiocarbon ages near the tops of all sections studied show
that loess sedimentation continued until approximately the

same time (~13 ka to ~12 ka) during the very latest part of the
last glacial period. Based on the identification of the Old
Crow tephra deposits at locality AK-855 (Figs. 4 and 6), loess
also accumulated in this area during the penultimate glacial
period (MIS 6), based on estimated ages of this widespread
stratigraphic marker.

Role of vegetation in loess accumulation

As mentioned earlier, Muhs et al. (2003b), following Tsoar
and Pye (1987), proposed that vegetation plays a key role in
loess accumulation, with forest being a more efficient dust trap
than grassland or tundra. Understanding Alaska’s vegetation
history from fossil pollen studies is critical to assessing this
hypothesis. Reconstruction of past vegetation from pollen data
for interior Alaska indicates that the dominant vegetation at
~21–17ka was graminoid and forb tundra (Anderson and
Brubaker, 1994; Edwards et al., 2000; Bigelow et al., 2003).
Specifically for the Yukon Flats area, pollen data from a lake
record (Sands of Time Lake [66.030°N, 147.548°W],
an informal name) indicate that during full-glacial time
(~21–17ka), vegetation was characterized by abundant
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Poaceae (grasses), Cyperaceae (sedges), Chenopodiaceae
(chenopods), and other herbaceous taxa (Edwards and Barker,
1994). Furthermore, Edwards and Barker (1994) note that at
this time, pollen accumulation rates were very low, which they
interpret to mean a landscape that was very sparsely vegetated.
By ~13 ka, however, herb tundra had diminished and birch
(Betula) had arrived in the area, with poplar (Populus)
becoming abundant by ~12ka to ~10ka, and finally spruce
(Picea) and alder (Alnus) arriving at ~10 ka and ~9ka,
respectively (Edwards and Barker, 1994; Edwards et al.,
2016). It is important to note here that an apparent rise in
Betula pollen earlier in the record (starting at ~20ka, with up
to 50% Betula pollen between ~18ka and ~14ka) at Sands of
Time Lake, previously reported by Lamb and Edwards (1988)
and Edwards and Barker (1994), is now interpreted to be
attributable to reworking of older grains (Edwards et al., 2016).
If the radiocarbon ages from deep within the Main Trench

(~18.6 ka and ~17.2 ka) are accurate, these data imply that
loess accumulation was in progress during the last glacial
period, likely under an herb tundra vegetation until ~13 ka,
when birch arrived in the Yukon Flats area. The radiocarbon
ages of ~13 ka to ~12 ka for land snails at shallow depths in
our sections indicate that loess accumulation was nearing its
end at about the time of birch arrival in the Yukon Flats area.

The accumulation of loess under an herb tundra vegetation
(with its low roughness height) and its termination with the
arrival of birch (with a higher roughness height) is com-
pletely contrary to the hypothesis proposed by Muhs et al.
(2003b). Thus, although it is based on sound aerodynamic
considerations presented by Tsoar and Pye (1987), the
hypothesis of vegetation control on loess accumulation pro-
posed byMuhs et al. (2003b) may need revision. On the other
hand, it is possible that the arrival of birch in the region at
~13 ka may have stabilized river floodplains, such that sedi-
ment availability in the source valleys was diminished, which
would explain the termination of loess accumulation.
The presence of snails in significant concentrations in only

the upper part of the Yukon-Tanana Upland loess differs
from loess of midcontinental North America, where snails are
found throughout the depths of last-glacial-aged Peoria Silt
(see examples in Pigati et al., 2013, 2015). Previously, we
noted that the snails in the Yukon-Tanana Upland and Yukon
Flats loess could be Succinea strigata, as identified by Wil-
liams (1962) in loess elsewhere in the area. Based on local-
ities given in Pilsbry (1948), this species has a modern
distribution that spans a range of high-latitude climate and
vegetation zones, including coastal forest in southeastern
Alaska, boreal forest in interior Alaska and Yukon Territory,
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cottonsedge tundra and watersedge tundra in western Alaska,
and Aleutian heath in the Aleutian Islands. Over this suite of
biomes, mean July temperatures range from ~8°C to ~16°C.
Thus, it does not seem likely that a change in summer tem-
peratures was a likely cause for the arrival of S. strigata in the
Yukon-Tanana Upland. It is possible that at the close of the
last glacial period, when herb tundra gave way to birch forest
and boreal forest (Edwards and Barker, 1994), increased
moisture played a role in providing a more favorable envir-
onment for the presence of S. strigata.
Although most fossil snails examined were found close to

the modern land surface, there is a small but measurable
amount of loess above most of them and below the modern
soil profile. The modern soil profiles appear to have devel-
oped within this thin loess, which was apparently deposited
after ~13–12 ka. Modern soils at all localities examined have
O/E/Bw/C or A/E/Bw/C profiles and are classified as Typic
Cryochrepts. The presence of an E horizon in these soils is
significant, as it indicates that the soils likely developed
primarily under boreal forest. Holocene soils that develop
under either coastal forest or boreal forest in Alaska have E
horizons, whereas those developed under shrub tundra or
herb tundra typically do not (see examples in Muhs et al.,
2000; an exception is the development of E horizons under
acidic tundra in the Talkeetna Mountains of southern
Alaska). Thus, given the time of arrival of Picea and other
boreal forest taxa in the area (Anderson and Brubaker, 1994;
Edwards et al., 2016), the modern soils likely developed their
present morphologies no earlier than ~10 ka.

Differences in loess stratigraphic records of central
Alaska

A major stratigraphic difference between the loess sections
observed along the Yukon River and those in the Fairbanks
area is the lack of evidence for significant Holocene loess in
the Yukon-Tanana Upland. In the Fairbanks area, radiocarbon
dating has established that 1–4m of loess accumulated at a
number of sites in the area during the Holocene (Péwé, 1975b;
Hamilton et al., 1988; Begét, 1990; Muhs et al., 2003b).
Because only very thin loess is found above the snails dated
~13 ka to ~12 ka in the Yukon-Tanana Upland, it could be
argued that no Holocene loess was deposited at all in the area
(although see locality Q of Froese et al., 2005). It is possible
that this difference is related to glacial supplies. Although they
were much larger and extended farther downvalley during the
last glacial period, there are still extensive glaciers in the
Alaska Range (Fig. 1b). Many of the rivers and streams that
drain the north side of this mountain range are tributaries to the
Tanana River (Fig. 2a), whose valley is the primary source of
loess in the Fairbanks area (Muhs and Budahn, 2006). Thus,
glaciogenic silt is still available from the Tanana River valley
and its tributaries that drain the Alaska Range. In contrast,
although glaciers were extensive on the south side of the
Brooks Range during the last glacial period (Hamilton, 1982;
Kaufman et al., 2004; Briner and Kaufman, 2008), those that
still exist in these mountains are much smaller and mostly

limited to the northeastern part of the range. Thus, although
glaciogenic silt supplies are still delivered in abundance to the
Tanana River, such supplies are far more limited in the Yukon
River drainage basin.

Sources of loess in the western Yukon-Tanana
Upland

Given the proximity of Yukon-Tanana Upland loess to the
Yukon River, it might seem obvious that the valley of this
river must be the major source of the loess. Nevertheless,
previous studies have shown that elsewhere in Alaska, loess
sources are complex and not always so easily identified. For
example, in the Fairbanks area, although the nearby Tanana
River valley was a major source of Pleistocene loess, the
Yukon River valley was also a contributor and even the
Nenana River valley made contributions (Muhs and Budahn,
2006). In southern Alaska, it would be easy to assume that
both the Matanuska River valley and Knik River valley are
sources for loess in the Matanuska Valley, as both river
systems are upwind of the major loess body in this valley.
Yet, geochemical data show that the Knik River valley
actually makes only minor contributions, if any, to the loess
(Muhs et al., 2016a).
Recognizing that a complex origin is possible, particle-size

data do support an interpretation that Yukon River valley
sediments were important to the accumulation of loess in the
Yukon-Tanana Upland. Ratios of coarse silt to fine silt have
been commonly employed as a measure of wind strength,
with applications to loess history in Europe, Asia, and North
America (e.g., Rousseau et al., 2007; Machalett et al., 2008;
Antoine et al., 2009; Muhs et al., 2013b). Such measures are
referred to as “grain size indexes” (GSI) or “U-ratios,” and
although the specific size cutoffs vary somewhat from study
to study, all of them are basically measures of the coarse-silt
fraction to the fine-silt fraction. In these studies, such ratios
are almost always less than 5 and usually less than 3. Below
the modern soil and shallow paleosols in both the Main
Trench and South Trench, coarse-silt/fine-silt values (Fig. 7)
are much higher than those reported in last-glacial loess
sequences in Germany, Serbia, and Kazakhstan (Rousseau
et al., 2007; Machalett et al., 2008; Antoine et al., 2009). The
Alaskan coarse-silt/fine-silt values are as high as 13 (Main
Trench) and 22 (South Trench) and in general are closer to
those found in loess at Loveland, Iowa, where a thick
(~40m), last-glacial loess accumulation is situated within a
kilometer of its Missouri River valley source (Muhs and
Bettis, 2000; Muhs et al., 2013a). From this, we infer that the
primary loess source for the Yukon-Tanana Upland was
likely nearby and/or that winds were strong in this region
during the time of eolian silt transport. Further, particle-size
data acquired along a transect to the south of the Yukon River
show a distinct decrease in coarse silt and increase in fine silt
in a southward direction (Fig. 8), at least until one reaches
Hess Creek, a possible local source of loess (Fig. 2b). This
again implies a source to the north, the most obvious of which
is the Yukon River valley.
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Mineralogy also provides an assessment of possible sour-
ces of Yukon-Tanana Upland loess. Based on bulk silicate
mineralogy (quartz, plagioclase, K-feldspar, mica, amphi-
bole, and chlorite), either the Yukon River valley, the Tanana
River valley, or both valleys could be sources of loess.
Similarly, clay mineralogy of alluvium from the two river
valleys does not differ significantly (see fig. 9 of Muhs et al.,
2008a) and the clay mineralogy of Yukon-Tanana Upland
loess (Fig. 10) would permit an interpretation of contribu-
tions from either river valley. Carbonate minerals, both cal-
cite and dolomite, are present in loess on the Yukon-Tanana
Upland, unlike most Fairbanks area loess (Fig. 9). Muhs et al.
(2008a) interpreted the lack of carbonates in Fairbanks area
loess to be attributable to syndepositional leaching. Although
modern alluvial silts in both the Tanana River valley and
Yukon River valley both contain calcite and dolomite, over-
all, the abundance of carbonate minerals is higher in modern
Yukon River valley sediments (~10%) compared with
Tanana River valley sediments (~3%), based on analyses by
Eberl (2004). Values of CaO content and CaO/ZrO2 in allu-
vial silts from these river valleys reported by Muhs and
Budahn (2006) and Muhs et al. (2008a) are consistent with
Eberl’s (2004) findings. Concentrations of CaO in Tanana
River valley silts range from 3.3 to 6.0, whereas in the Yukon
River valley, alluvial silts have CaO concentrations that
range from 6.4 to 10.1 (see Supplementary Table 2). Values
of CaO/ZrO2 in Tanana River valley silts range from 47 to
127 (mean of 93), whereas these values in Yukon River
valley silts range from 91 to 354 (mean of 185). In Yukon-
Tanana Upland loess, below the modern soil, CaO/ZrO2

values in the Main Trench range from 132 to 192 (Fig. 9). In
the South Trench, CaO/ZrO2 values (excluding the modern
soil and paleosols) range from 106 to 206 and below a depth
of ~2m, values are no lower than 114. These observations
imply that even if some syndepositional leaching had occur-
red, the higher carbonate contents and higher CaO/ZrO2

values in Yukon-Tanana Upland loess require a significant
Yukon River valley contribution.
Finally, geochemical methods also provide a means of

distinguishing loess sources. Values of K/Rb, K/Ba, and
K/Cs, representing K-feldspar and mica, define nonoverlap-
ping geochemical fields for Yukon River valley silts and
Tanana River valley silts (Fig. 11). Loess from the Yukon-
Tanana Upland falls almost wholly within the Yukon River
valley fields for these ratios, indicating that this fluvial system
is a significant loess source. Geochemical indicators of the
heavy mineral fraction, Zr/Hf (zircon) and As/Sb (magnetite),
also support a Yukon River valley source, although there is
more variability. Other geochemical indicators, however,
such as Th/Ta and Cr/Sc, permit an interpretation of some
Tanana River valley contributions as well as Yukon River
valley contributions (Fig. 12). Furthermore, although LaN/
YbN versus Eu/Eu* values show clearly defined fields for the
two river sources, Yukon-Tanana Upland loesses fall
between the two geochemical fields for the river valleys. We
conclude from all the geochemical data that although the
Yukon River valley is likely the most important source for

Yukon-Tanana Upland loess, it cannot be the only source.
Geochemical data permit an interpretation of at least some
eolian input of Tanana River valley–derived sediments to the
Yukon-Tanana Upland. Particle transport from the Tanana
River valley to the Yukon-Tanana Upland would occur over
a significantly greater distance than transport from the Yukon
River valley (Fig. 2a). Because of this greater transport dis-
tance, we suspect that the component of Yukon-Tanana
Upland loess derived from the Tanana River is largely in the
fine-silt (20–2 µm) and clay (<2 µm) fractions. This hypoth-
esis could be tested easily with geochemical analyses of dif-
ferent particle-size classes.

Paleoclimatic considerations

Identification of the Yukon River valley as the primary
source of last-glacial loess to the Yukon-Tanana Upland
supports the inference of northeasterly paleowinds in interior
Alaska by Hopkins (1982) and Lea and Waythomas (1990),
based on eolian sand records. If, however, as the geochemical
data indicate, the Tanana River valley was an additional
contributing source to loess on the Yukon-Tanana Upland,
then it is necessary to consider the paleoclimatic conditions
that would bring about dual loess sources. Because the wes-
tern Yukon-Tanana Upland is situated between the two river
valleys, the implications of our findings are that winds that
transported silt came at times from the north and at other
times came from the south.
Muhs and Budahn (2006), in interpreting multiple sources

of loess in the Fairbanks area, proposed that katabatic winds
in Alaska’s mountain ranges could have brought about
opposing paleowinds in the past. Katabatic winds are strong,
gravity-driven, downslope winds caused by nocturnal surface
cooling (Barry, 1992). They are best known from the large
ice sheets of Greenland and Antarctica but can occur in much
more local environments as well (see examples in Barry,
1992). Schaetzl and Attig (2013) provide evidence that last-
glacial-aged loess accumulation in some parts of the North
American midcontinent was influenced by katabatic winds
coming off the Laurentide Ice Sheet. Thorson and Bender
(1985), Guthrie (1990), Muhs et al. (2003b), and DiPietro
et al. (2017) have all inferred that such winds could have
played a role in silt particle entrainment during the last glacial
period in Alaska. In both the Brooks Range and the Alaska
Range, glaciers advanced to downvalley positions, compared
with where they are now, during the last glacial period (Figs.
2a and 13). During the last glacial period, because glaciers
flowed both south out of the southern Brooks Range and
north out of the northern Alaska Range, the potential existed
for the development of katabatic winds with opposing
directions. It is proposed here that these opposing katabatic
winds played a role in the generation of loess in the Yukon-
Tanana Upland area.
Seasonality could also have played a role in the timing of

eolian silt entrainment during the last glacial period. A recent
global climate simulation by Alder and Hostetler (2015)
presents surface paleowinds at 3 ka intervals over the past
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21 ka. In winter (December, January, and February), surface
winds in interior Alaska at 21 ka and 18 ka are simulated to be
much stronger than present and dominantly from the east or
northeast. In summer (June, July, and August), winds at 21 ka
and 18 ka are also simulated to be stronger than present
(though weaker than during winter), but from the south. If
this reconstruction is correct, Yukon-Tanana Upland loess
that was derived from the Yukon River valley could have
been entrained largely during the colder months of the year,
whereas Yukon-Tanana Upland loess that was derived from
the Tanana River valley could have been entrained during the
warmer months of the year.

CONCLUSIONS

Loess in Alaska has traditionally been associated with glacial
periods, but loess deposits confidently dated to the last glacial
period are scarce. We report here a rare occurrence of loess
dating to this period on the lower slopes of the western
Yukon-Tanana Upland of central Alaska. In the thickest
sections, radiocarbon ages of plant materials from buried
peats (deep in the sections) and land snails (near the surface)
indicate that loess deposition was in progress by ~19 ka and
terminated sometime shortly after ~13 ka to ~12 ka. Loess
near the Yukon River is as much as ~10m thick and thins, in
an irregular fashion, to the south. Within a few kilometers of
the river, the loess has abundant coarse particles, with high
coarse-silt/fine-silt values, implying strong winds and/or a
nearby source. However, coarse-silt contents decrease to the
south, with a concomitant increase in fine-silt contents. All
these observations imply that the Yukon River valley was a
major loess source during the last glacial period.
The presence of abundant carbonate minerals (calcite and

dolomite) in Yukon-Tanana Upland loess contrasts with
loess of the Fairbanks area, and also implicates the Yukon
River valley as a source, because sediments in this river
system are high in carbonate minerals. Nevertheless, geo-
chemical data indicate that Yukon River valley silts cannot be
the only source, and Tanana River valley silts appear to be a
contributing source. If so, this implies that southerly winds
must have been present during the last glacial period, because
the Tanana River is situated to the south of the western
Yukon-Tanana Upland. Reconciliation of both a dominantly
northerly loess source (Yukon River valley) and a secondary
southerly loess source (Tanana River valley) is possible with
consideration of the role of opposing katabatic winds.
Because glaciers expanded in both the southern Brooks
Range (to the north) and the northern Alaska Range (to the
south) during the last glacial period, the Yukon-Tanana
Upland, between these two mountain ranges, was in a posi-
tion to receive sediment from both directions because of
strong katabatic winds over these ice bodies. An alternative
interpretation comes from a recent climate model for the last
glacial period in Alaska. This model simulates southerly
winds during last-glacial summers in Alaska and northerly
winds during last-glacial winters, suggesting seasonality
could play a role in changing loess sources. With either

interpretation, the observations made here indicate that loess
accumulation in central Alaska during the last glacial period
likely had a complex origin.
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Table S1—Character of seismic-stratigraphic units 

 

 Seismic Unit A 

 

Reflection 

Character 

 

Amplitude 

Generally high with higher amplitudes at the margins of the  basin and 

lower in the middle. Signal tends to diminish rapidly with depth below 

the upper boundary. 

 

Continuity 

High to moderate though occasional discontinuities exist.  Reflections 

are obscured by shallow gas or noise in Buffalo and Sabaskong Bays. 

 

Reflection 

Configuration 

Occasionally stratified sub-parallel or uneven parallel where penetration 

occurs beneath upper boundary. Upper boundary itself is very irregular 

in shape, displaying relatively high topographic relief in the middle part 

of the basin and smoothed surfaces at the margins of the basin. No 

stratification occurs where the configuration is smooth. 

 

External 

Geometry 

The upper surface of this unit forms the acoustic basement in most areas 

and the unit is observed everywhere within the survey area with the 

exception of gassy regions. It is deepest in the middle of Big Traverse 

Bay and shallowest near Garden Island marking the separation of Big 

Traverse Bay and Little Traverse Bay. Local variations in depth are 

observed across the survey area with some occurring abruptly. 

 
 

 Seismic Unit B 

 

Reflection 

Character 

 

Amplitude 

Low to moderate amplitudes. 

 

Continuity 

Internal reflections are mostly discontinuous but occasionally are 

laterally continuous for several kilometers near the margins of the 

basin. Much of this unit is obscured by shallow gas or background noise 

outside of Big Traverse Bay.   

 

Reflection 

Configuration 

Nearly reflection-free but weakly stratified wavy parallel in some areas. 

The upper part of the unit is concordant with Unconformity 1 in the 

middle of the basin but is truncated by Unconformities 1, 2, or 3 near or 

at the margins of the basin. 

 

External 

Geometry 

Seismic Unit B is observed mostly in the central part of Big Traverse 

Bay where it is not obscured by noise or gas. It displays a sheet drape 

geometry over Unit A and is spatially uniform in thickness where not 

truncated by Unconformities 1, 2, or 3. It is thinnest near Long Point 

and in the northwest part of Big Traverse Bay.   

 
 

 Seismic Unit C 

 

Reflection 

Character 

 

Amplitude 

High to moderate, though, some low-amplitude reflectors are visible in 

the  center of the seismic unit. A few high-amplitude reflections are 

sandwiched between low-amplitude and reflection free zones. 

 

Continuity 

Moderate to highly continuous. Some reflections are discontinuous in 

the center of the seismic unit and occur where the seismic signal is 

“wiped- out”. Much of this unit is obscured by shallow gas or 

background noise outside of Big Traverse Bay. 

 

Reflection 

Configuration 

Strongly stratified wavy parallel with regions that are reflection-free to 

faintly stratified. Internal reflectors frequently onlap onto Unconformity 

1 and are ponded at topographic lows. Seismic profiles striking NE to 

SW display some internal reflections that have a divergent 

configuration. The magnitude and direction of divergence varies 

vertically in the seismic unit. In the middle of the basin, the upper part 

of this seismic unit is concordant with Unconformity 2. Near the 

margins, however, it is truncated by Unconformities 2 and 3 causing 

seismic Unit C to pinch out. Reflections become increasingly more 

planar moving up the seismic unit. 



 

External 

Geometry 

Seismic Unit C is observed mostly in the central part of Big Traverse 

Bay. It has characteristics of a sheet draped geometry (wavy 

configuration), a ponded geometry (onlapping reflections), and a 

divergent geometry (lateral thickening between high-amplitude 

reflectors). It is thickest in the center of Big Travers Bay and thins more 

rapidly to the NE than other direction. It is thinnest where 

Unconformities 2 and 3 truncate internal reflections, to the north and 

south of the middle of the basin. 

 
 

 Seismic Unit D 

 

Reflection 

Character 

 

Amplitude 

Low to moderate. Reflection amplitudes are highest near 

Unconformities  2 and 3. High-amplitude acoustic noise is frequent 

directly below Unconformity 3 and reflections often fade into the 

background noise. 

 

Continuity 

Mostly continuous, though, some discontinuous reflectors are observed 

throughout the seismic unit. Seismic Unit D is sometimes obscured by 

shallow gas or background noise (i.e. Buffalo and Sabaskong Bays). 

 

Reflection 

Configuration 

Strongly stratified parallel to sub-parallel. Internal reflections drape 

Unconformity 2 in the middle of the basin and onlap onto 

Unconformity 2 near the margins of the basin. Internal reflections in the 

upper part of the unit are truncated by Unconformity 3 in all survey 

lines. This relationship is most pronounced at the margins but internal 

reflections are truncated as much as 8 km into the middle of the basin. 

 

External 

Geometry 

Unit D is observed across the majority of the survey area. It is thickest 

in the center of Big Traverse Bay and thins radially towards the 

modern-day shoreline. This unit mainly lies unconformably over Unit C 

but also lies unconformably over Unit B in regions where Unit C 

pinches out (margins). It always underlies Unit E unconformably. 

 
 

 Seismic Unit E 

 

Reflection 

Character 

 

Amplitude 

The upper two-thirds of seismic Unit E is mostly reflection-free with 

occasional moderate-amplitude reflectors. The lower third contains 

high-  amplitude noise that increases in strength towards Unconformity 

3. A few high amplitude reflectors are present through the noise. The 

upper boundary (i.e., the lake floor) is moderate-amplitude. 

 

Continuity 

Internal reflections are mostly discontinuous. A few reflectors in the 

lower part of the seismic unit are laterally continuous for tens of 

kilometers. Shallow gas is common in this unit, obscuring any 

underlying reflections. 

 

Reflection 

Configuration 

Weakly stratified parallel. Low angle internal reflections onlap onto 

Unconformity 3 over tens of kilometers and occur more frequently in 

the southern part of the basin. The upper two-thirds of the seismic unit 

is mostly reflection-free. The lower third of the unit contains 

background noise that increases in thickness towards the middle of the 

basin. 

 

External 

Geometry 

Seismic Unit E is the uppermost unit and is observed over the majority 

of the survey area when not obscured by shallow gas. It distinctly 

increases in thickness from NE to SW within the survey area and the 

thicker regions wrap around Long Point. This seismic unit primarily lies 

unconformably over seismic Unit D but also lies unconformably over 

seismic Units C, B, and A at or near the margins. 

 
  



 
 

 
Figure S1. Stratigraphic data for core PALSS-1A; location shown in Fig. 1B. Columns show seismic units, 

drive length, lithology, magnetic susceptibility, and density data. Gray shaded bars and H labels represent 

prominent contrasts in acoustic impedance (reflections) identified from seismic-reflection images over the 

core site. A major abrupt change in lithology from mud-dominated sediment to clay occurs at a depth of ~2 

m (H2) and corresponds to UNCF-3.  
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Figure S2. Stratigraphic data for core PALSS-2A; location shown in Fig. 1B. Explanation as in Fig. S1. 

Triangles and numbers to the right of the lithology column are radiocarbon ages in cal yrs (Table 1). A major 

abrupt change in lithology from mud-dominated sediment to laminated silt and clay occurs at a depth of ~3 

m (H4) and corresponds to UNCF-3. Fig. S6 shows the seismic-reflection profile through this core site, 

along with reflection horizons H1-H7.  
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Figure S3. Stratigraphic data for core PALSS-3A; location shown in Fig. 1B. Explanation as in Fig. S1. A 

major abrupt change in lithology from mud-dominated sediment to sandy clay occurs at a depth of ~0.5 m 

(H2) and corresponds to UNCF-3.  
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Figure S4. Stratigraphic data for core PALSS-4A; location shown in Fig. 1B. Explanation as in Fig. S1. 

Triangle and number to the right of the lithology column is radiocarbon age in cal yrs (Table 1). A major 

abrupt change in lithology from mud-dominated sediment to sandy clay occurs at a depth of ~3.5 m and 

corresponds to UNCF-3.  
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Figure S5. Optical scans of seven segments of core PALSS-2B in the southern basin of LOTW. 

Top is to left. Location shown in Figure 1B. Numbers along line below core indicate total depth 

(m); each alternating shaded bar is 10 cm long. Arrow marks a major unconformity (UNCF-3) 

that separates Unit SU-D (lower) from Unit SU-E (upper).  



 

 
 

Figure S6. Seismic-reflection profile through core sites PALSS-2A and 2B. Location shown in Figure 1B. 

Interpreted seismic image (bottom) with the location and lengths of cores PALSS-2A and 2B (dashed red 

boxes). Seven prominent reflections are labeled (solid and dashed black lines) including UNCF-3 (H4) and 

UNCF-2 (H6). V.E.: ~9x. Fig. S2 shows the core log for core PALSS-2A and Fig. 6 that for PALSS-2B. 
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