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Groundwater pumping for agriculture is a major driver causing
declines of global freshwater ecosystems, yet the ecological conse-
quences for stream fish assemblages are rarely quantified. We
combined retrospective (1950–2010) and prospective (2011–2060)
modeling approaches within a multiscale framework to predict
change in Great Plains stream fish assemblages associated with
groundwater pumping from the United States High Plains Aquifer.
We modeled the relationship between the length of stream receiv-
ing water from the High Plains Aquifer and the occurrence of fishes
characteristic of small and large streams in the western Great Plains
at a regional scale and for six subwatersheds nested within the
region. Water development at the regional scale was associated
with construction of 154 barriers that fragment stream habitats,
increased depth to groundwater and loss of 558 km of stream,
and transformation of fish assemblage structure from dominance
by large-stream to small-stream fishes. Scaling down to subwater-
sheds revealed consistent transformations in fish assemblage struc-
ture among western subwatersheds with increasing depths to
groundwater. Although transformations occurred in the absence
of barriers, barriers along mainstem rivers isolate depauperate
western fish assemblages from relatively intact eastern fish assem-
blages. Projections to 2060 indicate loss of an additional 286 km of
stream across the region, as well as continued replacement of large-
stream fishes by small-stream fishes where groundwater pumping
has increased depth to groundwater. Our work illustrates the
shrinking of streams and homogenization of Great Plains stream
fish assemblages related to groundwater pumping, and we predict
similar transformations worldwide where local and regional aquifer
depletions occur.

ecology | conservation | freshwater | Great Plains | fishes

Worldwide, irrigation accounts for 90% of human water use
and is sustained by the annual pumping of 545 km3 of

water from global groundwater sources (1). In North America,
major aquifers are important sources of water for 60% of land
equipped for irrigation. One of these aquifers, the High Plains
Aquifer in the Great Plains, is the single greatest source of
groundwater and supports $35 billion [2007 US dollars (USD)]
in US market value of agricultural products (2). The total area
irrigated with groundwater from the High Plains Aquifer was
8,500 km2 in 1949 when large-scale pumping began, increased to
55,000 km2 by 1980, and reached 63,000 km2 by 2005 (3). Sus-
taining this level of agricultural productivity will depend on
continued extraction of water from the High Plains Aquifer, but
the aquifer is experiencing substantial declines in storage (4, 5).
Groundwater extraction from the aquifer is occurring faster than
recharge (6) and has resulted in the depletion of 410 km3 of
stored groundwater, a volume equal to 85% of the water in Lake
Erie, North America (5). Long-term depletion of the High Plains
Aquifer has caused water tables to drop by more than 50 m in
some portions of the Great Plains whereas redistribution of
water through surface canals and lateral subsurface flows has

contributed to rising water tables in other locations (7, 8). Rates
of groundwater depletion caused by pumping from the High
Plains Aquifer are similar to those measured on portions of every
continent except Antarctica, suggesting that the Great Plains is a
microcosm for the effects of global groundwater pumping on the
hydrologic cycle (9).
Pumping from the High Plains Aquifer has also caused surface

water to decline in streams of the western Great Plains (10, 11).
In the Republican River basin in southwestern Nebraska, de-
pleting groundwater has caused streamflow declines at 70% of
US Geological Survey stream gauges (12). In the Arikaree River
in eastern Colorado, mean annual discharge declined 60% from
the period 1932–1965 to the period 1966–2006 (13). In the
western third of Kansas, historically perennial streams are
now ephemeral or permanently dry, and groundwater extraction
combined with surface diversions permanently dry the Arkansas
River just downstream of the Colorado border (14). These losses
of surface stream flow are caused by declining water tables below
river beds, so much so that they no longer supply groundwater to
channels. Although rainstorms can produce floods in this region,
base flows are sustained by groundwater (15) and are thus sensitive
to water table fluctuations close to the ground surface (16–18). As
depth to groundwater increases beneath streambeds, streams be-
come decoupled from the aquifer, and aquatic habitat becomes
intermittent or completely dry (6). However, changes in depth to
groundwater are not consistent across space and time so broad-
scale ecological consequences of decoupling streams from the
High Plains Aquifer are sparsely studied despite widely accepted
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linkages between groundwater and the ecology of surface
streams (6, 19, 20).
Although stream drying is a natural and pervasive process in

Great Plains streams, the combination of groundwater pumping
and habitat fragmentation by diversion dams, reservoirs, and
other anthropogenic barriers now prevent many fishes from
finding refuge from increased drying (21–23). Across the western
Great Plains, stream fish biodiversity declined during 1950–
2010 as the area of irrigated land and pumping for irrigation
increased, diversion dams and reservoirs fragmented surface
habitats, and stream flows diminished due to reduced ground-
water input (13, 24–26). The combined effects of increased
drying and surface fragmentation “ratchet down” Great Plains
fish diversity because barriers prevent recolonization of dry
stream segments once precipitation restores flow (27). However,
despite the implied connections between groundwater levels and
stream fish communities, few studies have explicitly linked
groundwater depletion with stream fish community change (6,
13). Conservation of stream fishes in groundwater-dependent
ecosystems in the Great Plains and worldwide requires a better
understanding of how groundwater pumping reduces streamflow,
and how reduced streamflow affects stream fish assemblages (9,
19, 28). Ecological change associated with groundwater de-
pletion represents a rarely studied mechanism of biotic homog-
enization that ultimately results in loss of freshwater natural
resources (29). The ecological and evolutionary consequences of
reduced taxonomic, functional, and molecular diversity affect
global human livelihoods because biotic homogenization ulti-
mately compromises ecosystem function, services provided, and
resiliency to disturbance while simplifying food-web structures
and increasing community susceptibility to species invasions (30).
Collectively, these consequences of freshwater resource loss
represent human diminishment of the very resource required for
long-term persistence (31).
We used a retrospective approach to assess the effects of 60 y

of historical depletion of the High Plains Aquifer on fish as-
semblages inhabiting large and small streams in the western
Great Plains and combined this approach with prospective
modeling to develop baseline expectations for fish assemblage
change through 2060. We used historical groundwater-level data
from 3,431 observation wells distributed across the upper Kansas
River Basin of Colorado, Kansas, and Nebraska (Fig. 1) to create
annual interpolated surfaces representing depth to groundwater
during 1950–2010. These interpolated depths were subtracted

from a digital elevation model for the region (with a resolution of
0.5-km cells) to create spatially continuous estimates of depth to
groundwater across the study area. We then used stream loca-
tions derived from the National Hydrography Dataset Version 2
Plus (32) to classify stream segments into two categories re-
garding coupling with the aquifer: “coupled” (i.e., depth to
groundwater <1 m under stream location) or “uncoupled”
(depth to groundwater >1 m under stream location) (SI Meth-
ods). We classified all segments across the region for each year
and summed the length of coupled segments to quantify spa-
tiotemporal change in habitat for stream fishes. We used his-
torical fish collections (Table S1–S5 and Fig. S1) made across the
region during 1950–2010 to establish relationships between
length of coupled stream segments and species occurrences using
generalized regression models. Based on these retrospective re-
lationships, we forecasted (2011–2060) change in fish assemblage
structure for large streams (order ≥4) (33) and small streams
(order <4). Our analysis focused on two spatial scales: the re-
gional scale combining 24 subwatersheds in the upper Kansas
River basin and the subwatershed scale that focused on 6 sub-
watersheds arranged across a gradient of groundwater decline.

Results
Rapid and expansive increases in groundwater pumping and dam
construction during 1950–2010 drastically modified stream hab-
itats across the study region. Annual groundwater pumping from
the High Plains Aquifer in the Kansas portion of the study area
increased almost exponentially from 0 in 1950 to a peak of
1.31 km3 in 1980, and the number of diversion dams and reser-
voirs throughout the study area increased from 37 to 141 during
1950–1980 (Fig. 2A). During this same period, the total length of
stream coupled with the High Plains Aquifer decreased from
2,640 to 2,082 km (558 km lost) (Fig. 2B). During 1980–2010,
groundwater extraction in Kansas varied annually from 0.55 to
1.30 with an average of 0.91 km3, and the number of diversion
dams and reservoirs increased to 154. Meanwhile, the total
length of stream coupled with the aquifer varied from 2,046 to
2,194, with an average of 2,117 km. Projections for the period
2011–2060 indicated a further decrease in length of coupled
stream to 1,796 km (another 286 km lost). Most of this loss was
driven by declines in length of large (primarily fourth-order)
streams although small (second- and third-order) stream length
declined rapidly during 1950–1980 and then remained relatively
constant or increased slightly during 1980–2060 (Fig. 2B). Al-
though the length of fourth-order coupled streams was 1.4 times
greater than second-order coupled streams in 1950, by 2060,
lengths of both stream orders are projected to be similar (second,
495 km; fourth, 524 km). The coupled stream length of fifth-
order streams was reduced by 58 km during 1950–2010 and is
projected to decline by a total of 103 km by 2060.
At the regional scale, the fish assemblage was transformed

from dominance by large-stream fishes to small-stream fishes
during 1950–1980. The assemblage remained relatively stable
during 1980–2010, but projections for 2011–2060 indicate addi-
tional suppression of large-stream fishes and expansion of small-
stream fishes (Fig. 2C). The average capture probability for
large-stream fishes decreased by half, from 0.42 [95% confidence
interval (CI) = 0.28–0.56] in 1950 to 0.20 (95% CI = 0.11–0.29)
in 1980 and is predicted to decrease further to 0.16 (95% CI =
0.09–0.24) by 2060. The average capture probability for small-
stream fishes nearly doubled, from 0.20 (95% CI = 0.18–0.29) in
1950 to 0.39 (95% CI = 0.26–0.51) in 1980 and is predicted to
reach 0.49 (95% CI = 0.33–0.65) by 2060.
At the subwatershed scale, minimum stream flows, the number

of barriers to fish movement, and total length of coupled stream
varied among subwatersheds. From 1950 to 2010, the 90-d min-
imum flow declined in all but one subwatershed (Table S6 and
Fig. 3). The number of barriers remained at zero during 1950–
2010 for two subwatersheds (Fig. 3 B and C), increased from 3 to
4 in one (Fig. 3D), increased from 3 to 8 in one (Fig. 3A), and
increased from <3 to 27 in two subwatersheds (Fig. 3 E and F).

Fig. 1. Study region in the Great Plains of Colorado, Kansas, and Nebraska,
United States showing streams over the High Plains Aquifer, groundwater
observation wells, dams, and US Geological Survey streamflow gauges. Hy-
drologic units (shaded areas) define six subwatersheds in which detailed
analyses of hydrology and fish communities were conducted. The Inset il-
lustrates the upper Kansas River Basin boundary (dark shading) within the
broader extent of the High Plains Aquifer (blue shading). Data are from refs.
32, 53, and 56.
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During 1950–2010, total length of coupled stream declined in four
subwatersheds (Fig. 3 A, C, D, and E) but remained relatively
constant in the remaining two (Fig. 3 B and F). Projections for
length of coupled stream during 2011–2060 included continued
reduction in length for subwatersheds with historically declining
lengths but increased length of coupled streams for subwatersheds
with historically stable lengths. Declines in coupled stream length
for the four subwatersheds were primarily caused by reduced
length of fourth-order streams. Increases in coupled stream length
for two subwatersheds were owing to increases in length of sec-
ond- and third-order streams that offset declines in large streams
of fourth- (Fig. 3B) and sixth-order (Fig. 3F).
Long-term changes in fish assemblage composition at the sub-

watershed scale varied across the study area in the Kansas River
basin (Fig. 4). During 1950–2010, capture probabilities for small-
stream fish exceeded those for large-stream fish in two western
subwatersheds (Fig. 4 A and B); they increased from a mean
of <0.1 to >0.40 for small-stream fish whereas they declined from
a mean of >0.3 to <0.2 for large-stream fishes in two other
western subwatersheds (Fig. 4 C and D), and capture probabilities
for large-stream fishes exceeded those for small-stream fishes in

two eastern subwatersheds (Fig. 4 E and F). Projections for 2011–
2060 included relatively stable dominance by small-stream fishes
where this group was historically dominant (Fig. 4 A and B), in-
cluded continued increase of small-stream fishes combined with
continued suppression of large-stream fishes where historical
shifts in dominance occurred (Fig. 4 C and D), included steady
increase of small stream fishes lower in the basin (Fig. 4E), and
included continued dominance by large-stream fishes until at least
2050 in the farthest downstream subwatershed (Fig. 4F).

Discussion
Our study provides evidence that groundwater pumping during
the past half-century has caused declines in the length of stream
coupled with the High Plains Aquifer and greatly altered stream
fish assemblages of the western Great Plains. Rapid increases in
pumping in Kansas during 1950–1980, followed by sustained
pumping thereafter, increased depth to groundwater in broad
expanses of the study area and resulted in declines in the length
of stream coupled with the aquifer in many subwatersheds. De-
clines in stream length were coincident with reduced flows that
further diminished the prevalence of larger streams in the region.
Similar declines in groundwater, streamflow, and stream length

Fig. 2. Regional-scale change through time in (A) annual volume of
groundwater pumped from the High Plains Aquifer in the Kansas portion of
the study area (blue area) and the cumulative number of barriers con-
structed (dark-red line) during 1950–2010, (B) length of coupled stream for
all sizes (blue area) and for small (second- and third-order, blue lines) and
large (fourth- and fifth-order, dark-red lines) streams during 1950–2060, and
(C) mean (95% confidence interval) capture probabilities for fish species
associated with small (blue line and band) or large (red line and band)
streams during 1950–2060.

Fig. 3. Subwatershed-scale change through time in (Upper in each panel)
90-d minimum stream flow (gray circles) summarized by generalized additive
models (purple line and band, fit and 95% confidence interval) and cumu-
lative number of barriers on surface stream channels (red line) during 1950–
2010 and in (Lower in each panel) length of coupled streams (blue area), and
length for small (second- and third-order, dark-blue lines) and large (fourth-,
fifth-, sixth-order, dark-red lines) coupled streams during 1950–2060. Letters
represent subwatersheds as follows: (A) Frenchman Creek, (B) North Fork
Republican River, (C) Arikaree River, (D) South Fork Republican River,
(E) Upper Republican River, and (F) Harlan County Reservoir (see Fig. 1 for
locations).
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caused by groundwater pumping have been reported elsewhere
in the basin (34), across western Kansas (4), throughout the High
Plains Aquifer (2), and globally (9).
The disproportionate decline in the prevalence of larger

streams, in turn, contributed to disproportional declines in large-
stream fishes. However, decline of large streams and large-stream
fishes at the regional scale was confounded by a concurrent in-
crease in the number of barriers, which are demonstrated to have
negative effects on some large-stream fishes (24, 28). Our ap-
proach of scaling down to subwatersheds disentangled the relative
effects of barriers and groundwater declines. Specifically, barrier
numbers were greatest, and increased rapidly, in eastern sub-
watersheds where large-stream fish capture probabilities were
highest among all subwatersheds through time. Conversely, bar-
riers were rare or absent in western subwatersheds where small-
stream fish capture probabilities were greatest or increased most
rapidly, and where large-stream fish capture probabilities were
least or decreased most rapidly. Large-stream fish capture prob-
abilities were initially low or declined rapidly among upstream,
western subwatersheds where extinction and colonization are
naturally high for such fishes (35), and long-term declines atten-
uated in a downstream direction to the east (Fig. 4 C–F). These
patterns collectively illustrate accelerated fish assemblage trans-
formation along a natural stream size gradient initiated by the
decoupling of surface streams from groundwater sources and ul-
timately resulting in the permanent loss of large-stream fishes.
Spatial patterns in historical (pre-1950) and more recent (post-

1950) hydrologic alterations contributed to the observed patterns
in fish assemblage change. The greatest area of increased depth to
groundwater occurred in the North Fork Republican River sub-
watershed, and larger streams of fourth order generally dried over
this area. Streams that remained were small second- and third-
order channels near the westward extent of the subwatershed in
areas where depth to groundwater is projected to approach the
surface and create more small-stream habitat. This pattern ex-
plains the dominance by small-stream fishes in this subwatershed.
In contrast, the rates of decline in coupled stream lengths and
minimum flows were similar among Frenchman Creek, the Ari-
karee River, and the South Fork Republican River subwatersheds
although Frenchman Creek did not experience the same fish as-
semblage transformation as the Arikaree River and South Fork
Republican River subwatersheds. However, Frenchman Creek

had a large number of barriers that fragmented habitat before
1950 so it is possible that the fish assemblage was altered earlier
than 1950. For example, among the large-stream fishes excluded
from analysis because of rare occurrences (Table S5), four were
last reported from the region by 1940 (Hiodon alosoides, Macr-
hybopsis gelida, Macrhybopsis hyostoma, and Macrhybopsis store-
riana), and declines among three of these (all Macrhybopsis) have
been linked to fragmentation (26). Fragmentation of Great Plains
riverscapes began before 1950 (23), and recent work suggests that
widespread groundwater extraction may have begun about
1930 instead of 1950 in some portions of the Great Plains (5).
More historical information might be necessary for a complete
understanding of the ecological consequences of groundwater
extraction. Furthermore, declines in minimum flows cannot be
attributed to groundwater extraction alone because surface di-
versions and extractions also reduce water availability in the
Great Plains (10, 36), suggesting that the effects of surface bar-
riers on assemblage transformation cannot be ignored.
The mechanisms driving differential responses to groundwater

pumping by large- and small-stream fishes are reinforced by per-
manent water loss and barriers that fragment habitats. Larger
streams contain more predictable habitats characterized by greater
flows, deeper channels, longer longitudinal connectivity, and
higher autochthonous energy production (37). Examples of ad-
aptations of large-stream fishes to this environmental template
include migratory behavior, flow-induced synchronized spawning,
and spawning within the water column (38, 39). As groundwater
pumping shortens the length of stream coupled with the aquifer
and surface structures store or divert water, flows decline, chan-
nels become shallower, longitudinal connectivity is fragmented,
and instream (autochthonous) energy production decreases. Col-
lectively, these processes shift large streams into habitat templates
that no longer match the evolutionary history of large-stream
fishes. Rather, habitats become characteristic of those that sha-
ped the ecology and life history of small-stream fishes, thus pro-
viding increased opportunities for expansion (40). In our study
area, eastern subwatersheds with relatively stable depths to
groundwater maintained large-stream fish assemblages, but west-
ern subwatersheds with increasing depths to groundwater experi-
enced permanent reduction in large-stream fish assemblages.
Unfortunately, western assemblages of large-stream fishes that
decline or collapse have no opportunity for rebounding (e.g.,

Fig. 4. Change in estimated depth to groundwater
between 1950 and 2060 for the study region.
Change through time in mean (95% confidence in-
terval) capture probability for fishes characteristic of
small (<fourth-order, blue line and band) and large
(≥fourth-order, red line and band) streams are
shown for six subwatersheds as follows: (A) French-
man Creek, (B) North Fork Republican River,
(C) Arikaree River, (D) South Fork Republican River,
(E) Upper Republican River, and (F) Harlan County
Reservoir.
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recolonization, rescue effects) because flows are either perma-
nently desiccated or habitats are isolated from eastern sub-
watersheds behind dozens of instream barriers. Based on these
and related mechanisms of assemblage change (e.g., drought,
habitat destruction) (28), the shrinking of Great plains fish as-
semblages characterized by replacement of large-stream fishes
with small-stream fishes is reinforced by the existence of surface
barriers (27, 41).
Our projections of future ecological outcomes caused by

continued groundwater pumping from the High Plains Aquifer
rest on several critical assumptions. First, we assumed that
pumping rates were constant and rates of change in depth to
groundwater were linear at individual observation wells during
1980–2010. Although this assumption has considerable pre-
cedence (4, 36), rates of change at some wells might be more
dynamic or proceed faster than estimated. For example, we
validated our projected changes in depth to groundwater using
published US Geological Survey data and found evidence that
the magnitude of changes included in our study were relatively
less compared with changes documented by the US Geological
Survey (Figs. S2 and S3). Second, a simplifying assumption in our
model was that the aquifer was coupled with surface stream
dynamics (i.e., streams received water from the aquifer) if in-
terpolated depth to groundwater was within 1 m of the surface.
In reality, coupling between aquifers and surface ecosystems
occurs at depths of 0 m when water flows from groundwater
sources into streams (16–18), but our use of a 1-m threshold
allowed for measurement error for both depth to groundwater
and the digital elevation model (SI Methods). A related limita-
tion was the lack of a calibrated groundwater flow model cov-
ering the period 1950–2060. We used a method consistent with
existing applications for measuring groundwater change (SI
Methods), and we expect that future analyses at finer scales will
benefit from improved hydrologic models. Finally, our fish as-
semblage data originated from multiple sources that sampled
fish using a variety of gear types with species-specific capture
biases. We addressed this issue by using occurrence data origi-
nating only from collections targeting entire assemblages. How-
ever, change in collection gears over time could still affect
capture probabilities. We believe the potential effect of changes
in sampling gear to be minor compared with environmental
forcing because (i) subwatershed-scale analyses did not illustrate
uniform changes in capture probabilities (instead temporal
change in observed captures varied longitudinally), (ii) large-
stream fish capture probabilities generally declined through
time during 1950–1980 despite potential for increased capture
efficiency with modern gears (e.g., electrofishing), and (iii) the
effort required to capture 90 to 100% of species present in small
Great Plains stream ecosystems is relatively consistent among
commonly applied gear types (42).
Groundwater depletion caused by pumping is a global envi-

ronmental problem (9, 42), but analyses of ecological conse-
quences for fish assemblages are rare (6, 13). We documented
empirical evidence for the relationship between groundwater de-
pletion in the High Plains Aquifer and the decline in Great Plains
stream fish assemblages through extirpation of large-stream fishes
and expansion by small-stream fishes. Our analysis provides
baseline predictions for stream–aquifer coupling and the ecolog-
ical status of Great Plains fish assemblages over the next 45 y. The
predictions for streams could be used as a benchmark against
which long-term conservation goals might be set (e.g., slowing rate
of coupled stream loss), and the status of fishes provides a metric
of environmental change that is embedded within natural eco-
system functioning (43). Evolving scientific understanding will
improve projections and expectations for future change, and
adapting short-term groundwater policies and practices to ac-
commodate new information will be at the core of adaptive
management (44). This point is particularly critical in the context
of climate change, given expected regional precipitation regime
shifts, increased evapotranspiration, and accelerated stream loss
(45, 46). Groundwater pumping for agriculture is a major cause of

alteration to global freshwater ecosystems (47), and increasing the
efficiency of human water use is imperative for the future well-
being of nature and humans (48, 49). Thus, our study has global
implications, given consistencies in groundwater depletion from
the High Plains Aquifer and other local and regional aquifers
worldwide (9, 41, 50).

Methods
Study Area. We studied the upper Kansas River Basin in Colorado, Kansas,
and Nebraska, United States, where streams are underlain by the High Plains
Aquifer (Fig. 1). Here, depths to groundwater have increased up to 30 m
since 1950 when extensive groundwater pumping began (8). Natural
groundwater recharge rates and aquifer confinement vary across this region
(2) so pumping varies from sustainable (Nebraska) to unsustainable (Kansas).
Nevertheless, even in Nebraska, pumping and diversions have reduced
stream base flows by up to 50% (51). Groundwater declines have decoupled
more streams from the aquifer to the west whereas streams to the east are
more fragmented by diversion dams and impoundments (23). In Kansas and
Colorado, groundwater levels in portions of the aquifer are projected to
reach the bottom of the aquifer by 2060 (4), and many stream reaches have
already dried (13). Given this variation in groundwater levels and stream
drying, we selected six subwatersheds (Fig. 1 and Table S6) arrayed from east
to west across the region to analyze hydrologic and fish assemblage re-
sponses to groundwater pumping and fragmentation by barriers on
the surface.

Spatial Analysis. We used a combination of retrospective and prospective
approaches to estimate the length of stream coupled with the High Plains
Aquifer across the study region during 1950–2060. We first estimated the
timing and magnitude of groundwater pumping in the region using data
from the Kansas Geological Survey (52). We then used a network of obser-
vation wells monitored between 1950 and 2010 and distributed across the
study region (Fig. 1) to measure spatiotemporal changes in depth to
groundwater (SI Methods). Based on the rates of change in depth to
groundwater in individual wells during 1980–2010, we projected future
depths to groundwater for the period 2011–2060 using linear regression. We
then created interpolated surfaces (cell size 0.5 km) of water table elevations
by subtracting depth to groundwater from the elevation of the ground
surface at observation wells across the region for every year between
1950 and 2060. We then subtracted interpolated water table elevations
from the ground surface elevation at the locations of streams (based on ref.
32) and used groundwater depths to estimate the length of stream coupled
with the aquifer each year for the 110-y period. Finally, we validated depth
to groundwater estimates using existing published data and field re-
connaissance (SI Methods and Fig. S4).

Surface Stream Conditions. We analyzed changes in surface stream channel
connectivity and flow in six subwatersheds distributed across the region (Fig.
1). Diversion dams and impoundments that fragment stream channels were
located using the 2012 National Anthropogenic Barrier Dataset (53), which
included dates of construction for most barriers. We illustrate changes in
surface channel fragmentation in each subwatershed by plotting the cu-
mulative number of dams through time. We analyzed changes in stream
discharge at the downstream extent of each subwatershed using data from
US Geological Survey gauges (Fig. 1 and Table S6). Streamflow data for
1950–2010 were analyzed using the program Indicators of Hydrologic Al-
teration (54) to calculate the mean discharge for the lowest 90 consecutive
days each year (hereafter, 90-d minimum flow) to assess change in low flows
through time. We fit generalized additive models with a Poisson error dis-
tribution and overdispersion parameter to summarize change in minimum
flows through time for each subwatershed using the “mgcv” Package in the
program R (55).

Fish Assemblage Analysis. We assessed change in fish assemblage structure at
the regional and subwatershed scales using existing historical data from
Colorado, Kansas, and Nebraska (SI Methods). We selected species for
analysis based on occurrences across 940 collections and retained only those
species with at least 30 occurrences for regression analysis (Tables S1–S5). At
the regional and subwatershed scales, we used annual estimates for the
length of stream connected to the aquifer as the predictor variable and
occurrence of each retained species in collections taken during that year as
the response variable for the period 1950–2010. We fit binomial logistic
regression models to each species and used these models to predict capture
probability (range 0–1) for all years between 1950 and 2060 based on

Perkin et al. PNAS | July 11, 2017 | vol. 114 | no. 28 | 7377

EC
O
LO

G
Y

SU
ST

A
IN
A
BI
LI
TY

SC
IE
N
CE

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1618936114/-/DCSupplemental/pnas.201618936SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1618936114/-/DCSupplemental/pnas.201618936SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1618936114/-/DCSupplemental/pnas.201618936SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1618936114/-/DCSupplemental/pnas.201618936SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1618936114/-/DCSupplemental/pnas.201618936SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1618936114/-/DCSupplemental/pnas.201618936SI.pdf?targetid=nameddest=ST6
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1618936114/-/DCSupplemental/pnas.201618936SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1618936114/-/DCSupplemental/pnas.201618936SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1618936114/-/DCSupplemental/pnas.201618936SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1618936114/-/DCSupplemental/pnas.201618936SI.pdf?targetid=nameddest=ST6
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1618936114/-/DCSupplemental/pnas.201618936SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1618936114/-/DCSupplemental/pnas.201618936SI.pdf?targetid=nameddest=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1618936114/-/DCSupplemental/pnas.201618936SI.pdf?targetid=nameddest=ST5


estimated annual lengths of stream coupled with the aquifer. We calculated
the mean and 95% confidence interval across all species classified as small-
stream or large-stream inhabitants (SI Methods) to illustrate fish assemblage
response to spatiotemporal variability in stream lengths coupled with
groundwater. Although fish distributions in relation to stream size formed a
continuum (Fig. S1), we used the designation of first- to third-order streams
as “headwaters” (37) to facilitate comparison of how fishes in small and large
streams might be affected by groundwater depletion. Fish collection methods
were consistent with protocols approved by the Tennessee Technological
University Institutional Animal Care and Use Committee (permit TTU-IACUC-
14-15-001 to J.S.P.).
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SI Methods
In this section, we provide detail for the spatial analysis, fish
assemblage analysis, and validation used to characterize changes
in depth to groundwater across the upper Kansas River Basin in
Colorado, Kansas, and Nebraska.

Spatial Analysis. We used data from observation wells archived in
the US Geological Survey National Water Information System
(56) to analyze changes in depth to groundwater through space
and time. Methods to measure distance from ground surface to
the water table are in ref. 57 and are assumed to be accurate to
0.30 m (8). We selected wells with at least 10 measurements of
depth to groundwater during November through February to
provide sufficient data for modeling (4) and to avoid intraannual
fluctuations caused by pumping during the summer growing
season (7). We used geographic information systems to analyze
changes in groundwater elevation (i.e., groundwater elevation =
ground surface elevation – depth to groundwater) during 1950–
2010. This period included an estimate of conditions before
pumping began (i.e., 1950) (58) and continued through the most
recent decade (2010). Our geographic information system
modeling framework tracked changes in groundwater elevation
by interpolating among wells across the region to generate a
raster layer (see ref. 3 for detailed methods). Not all wells were
measured annually so we used the linear change in depth to
groundwater through time to predict missing years (4, 36). We
then used the “topo to raster” function in the Spatial Analyst
Extension of ArcMap 10.0 (Environmental Systems Research
Institute) to convert point data for wells into a raster layer for
each year. Interpolated groundwater elevations were subtracted
from a digital elevation model (1/3 arc-second or ∼10 m reso-
lution; vertical accuracy ±1.55 m) (59) from the National Ele-
vation Dataset (60). For spatial analyses, we used an Albers
equal-area conic projection, North American Datum of 1983
(NAD 1983), and raster grid cell size of 0.5-by-0.5 km to match
previous analyses of groundwater change in the Great Plains (8).
We used our raster model of depth to groundwater to estimate

where groundwater from the High Plains Aquifer reached the
surface and was coupled with streams (hereafter, “coupled”
streams), versus those places where groundwater did not reach
the surface and streams were dry (“decoupled”). We subtracted
the modeled groundwater elevations from the ground surface
elevation in the digital elevation model (“raster calculator”
function) to create a 0.5-km grid cell raster map of depth to
groundwater across the study area. We then overlaid streams
from the National Hydrography Dataset plus version 2 (32),
excluding those over perched or other regional aquifers (“extract
by mask” function) (8).
Within the Geospatial Modeling Environment (61), we cal-

culated the length-weighted mean depth to groundwater along
each stream segment for each calendar year. We assumed that
groundwater was coupled with stream channels if the water table
was within 1 m of the land surface estimated from the digital
elevation model at the exact location of streams. Although
previous studies suggest aquifers exchange water with the surface
when depth to groundwater is 0–5 m (16–18), our threshold of
1 m represents an estimate of aquifer–stream coupling within the
margins of error for measurements of aquifer depth and the
digital elevation model. We then summed the length of coupled
streams across the study area for each year to estimate the
lengths through time for all streams, as well as for streams of
orders first to sixth (33). For this analysis, we held stream order

constant according to segment attributes from the National
Hydrography dataset rather than reduce stream order as head-
waters and tributaries became decoupled from the aquifer. We
predicted future groundwater depths, groundwater elevation,
and stream coupling for 2011–2060 by assuming a linear re-
lationship between time and depth to groundwater within ob-
servation wells (4, 36). We used data from 1980 to 2010 only
because the rate of groundwater decline had slowed compared
with 1950–1979 (13, 36). The period to 2060 marks the estimated
usable life of portions of the aquifer (5) and the life of regional
reservoirs given projected drying (36), and is similar to periods
modeled for other ecological analyses (13).

Fish Assemblage Analysis. We assessed change in fish assemblage
structure using historical fish assemblage collections distributed
across the region. Data were obtained from the ColoradoDivision
of Parks andWildlife (collections during 1977–2010, n = 185), the
Kansas Aquatic Gap Program (1950–2010, n= 493), and the
Nebraska Game and Parks Commission (1950–2010, n = 262).
Collections were defined as all fish species captured from unique
sites on unique dates, excluding collections with only one species,
and retaining species for analysis if they occurred in at least
30 collections. We used presence/absence of each species in all
collections taken during a year as the response variable and the
annual modeled length of stream coupled with the aquifer for
the same year as the predictor variable. We fit binomial logistic
curves to occurrence data to estimate capture probability (i.e.,
the probability of being present and being detected; range 0–1)
as a function of the length of stream coupled with the aquifer for
the period 1950–2010. We initially included the number of dams
as a second predictor variable, but, because the number of dams
was constant through time across most subwatersheds and no
additional explanatory power was added, we excluded dams from
the final models. Given the exploratory nature of our work, we
assessed model significance at α = 0.10 and did not adjust for
experiment-wise error. Models were fit for each of 28 species
that occurred in the region and subwatersheds (Tables S1–S5).
We classified fishes according to stream order using occurrence
data from the Kansas Aquatic GAP Program. For this analysis,
we used the georeferenced spatial location of fish captures and
stream order for the segments from which captures were made to
calculate the mean and SD of stream orders used by each species
(Fig. S1). This approach provided an objective measure of
stream size occurrences for all members of the fish assemblage
but was not intended to be a rigorous assignment of habitat
suitability or preference on a species-by-species basis. We relied
on ref. 37 to define small (“headwater”) streams as <fourth or-
der and large streams as ≥fourth order.
Long-term change in fish assemblage composition was assessed

using average capture probabilities for small-stream and large-
stream fishes. We used predicted values from each logistic re-
gression model to estimate capture probability for each species at
both the region and subwatershed scales for the period 1950–
2060 using predictions of coupled stream length described earlier
(Spatial Analysis). We calculated the mean and 95% confidence
interval across all small-stream (<fourth-order) and large-stream
(≥fourth-order) species for every year between 1950 and 2060 to
illustrate long-term assemblage-scale change.

Depth to Groundwater Estimate Validations. We validated our
spatial predictions of stream coupling in three ways. First, we
compared our interpolated changes in depth to groundwater
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between 1950 and 2011 (i.e., 1 y after the last well observations
included in our analysis) with values published by theUSGeological
Survey (8). This comparison was necessary because different data
were used to estimate change in depth to groundwater over time.
For example, ref. 8 used a series of “pre-development” (circa 1950)
and “post-development” (circa 2011) observation wells distributed
across the region to estimate change in depth to groundwater. In
contrast, our approach used a smaller subset of these wells with
10 repeated measurements through time, and we projected change
for 2011–2060 using linear regression and observations made only
during 1980–2010. Spatially explicit comparisons of our modeled
change and those reported by the US Geological Survey showed
geographically similar changes in depth to groundwater across the
study region (Fig. S2). Second, we compared the magnitude of
change in depth to groundwater across the study region with values
reported by ref. 8. For this comparison, we used the geospatial
modeling environment to assign depth to groundwater values to
each stream segment over the US Geological Survey layer and our
layer for 2011. We then regressed the observations from ref. 8

(expected values) against our estimated values (observed values) to
assess agreement between the two datasets. This comparison
showed strong agreement (r = 0.90), especially at moderate levels
of change (Fig. S3). However, our projected changes were less than
those predicted by ref. 8 when increases or decreases in depth to
groundwater were larger. Finally, we visited streams in the study
area during December and January of 2013 and 2014 and surveyed
the presence/absence of water at individual stream segments that
were not influenced by upstream water releases (i.e., water im-
poundment releases, municipal effluents). These data were col-
lected outside of the growing season and therefore represented
surface water occurrence when depth to groundwater was not
drawn down by pumping activity or evapotranspiration. Data from
2013 and 2014 field surveys were compared with predicted occur-
rence of water in our spatial analysis for each year. We correctly
predicted the presence or absence of water for 87% of field-based
observations during 2013 and 2014 (Fig. S4). Misclassifications
occurred along the mainstem Republican River and toward the
eastern portion of the study area.

Fig. S1. Mean (SD) stream order for species occurrences in the Kansas Aquatic GAP Database for fishes characteristic of small (<fourth-order mean, blue) and
large (≥fourth-order mean, red) streams (“large” and “small” stream classifications based on ref. 37).
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Fig. S2. Comparison of change in estimated depth to groundwater between 1950 and 2011 derived from (A) ref. 8 and (B) this study. Note change in scaling of
legends between panels.

Fig. S3. Regression plot comparing estimated change in depth to groundwater (m) between 1950 and 2011 at individual stream segments distributed across
the study area as estimated by ref. 8 (x axis) and this study (y axis).
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Fig. S4. Regional map illustrating the spatial locations of stream segments coupled with (blue lines) or decoupled from (gray lines) the High Plains Aquifer for
the year 2013 based on depth to groundwater estimates generated during this study. Segments were visited during December and January of 2013 and
2014 and designated as correctly classified (gray symbols) or misclassified (black symbols) according to the presence of surface water.
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Table S1. Species, common name, stream size classification, native status, and parameter estimates (SE), Z value, and P value for
generalized linear models predicting species capture probability as a function of length of stream coupled with the High Plains Aquifer
for the region and the Arikaree River subwatershed

Species Common name Stream size
Native
status

Regional Arikaree River

Estimate (SE) Z value P value Estimate (SE) Z value P value

Ameiurus melas Black bullhead Small N 0.0006 (0.001) 0.577 0.564 −0.0155 (0.0314) −0.495 0.621
Ameiurus natalis Yellow bullhead Small N 0.0025 (0.0018) 1.417 0.156 −0.3699 (0.2152) −1.718 0.086
Aplodinotus grunniens Freshwater drum Large N 0.0008 (0.0016) 0.529 0.597 — — —

Campostoma anomalum Central stoneroller Small N −0.0015 (0.001) −1.545 0.122 −0.1715 (0.0898) −1.909 0.056
Carpiodes carpio River carpsucker Large N 0.0031 (0.0011) 2.888 0.004 — — —

Catostomus commersonii White sucker Small N −0.003 (0.0012) −2.527 0.012 −0.0352 (0.0439) −0.802 0.423
Ctenopharyngodon idella Grass carp Large I 0.0054 (0.0014) 3.887 <0.001 — — —

Cyprinus carpio Common carp Large I 0.0002 (0.001) 0.196 0.844 −0.0257 (0.1686) −0.152 0.879
Cyprinella lutrensis Red shiner Large N 0.0067 (0.0014) 4.744 <0.001 0.0758 (0.0347) 2.188 0.029
Dorosoma cepedianum Gizzard shad Large N 0.0003 (0.0014) 0.175 0.861 0.0094 (0.1071) 0.088 0.930
Etheostoma spectabile Orangethroat darter Small N −0.0055 (0.0013) −4.181 <0.001 −0.1132 (0.0573) −1.977 0.048
Fundulus zebrinus Plains killifish Large N 0.0008 (0.001) 0.809 0.418 −0.0163 (0.0277) −0.587 0.557
Gambusia affinis Western mosquitofish Large N −0.0031 (0.0025) −1.231 0.219 −0.325 (0.2091) −1.554 0.120
Hybognathus hankinsoni Brassy minnow Small N −0.0026 (0.0017) −1.503 0.133 −0.0461 (0.0347) −1.328 0.184
Hybognathus placitus Plains minnow Large N 0.0099 (0.0013) 7.480 <0.001 0.1032 (0.0344) 3.001 0.003
Ictalurus punctatus Channel chatfish Large N 0.0018 (0.001) 1.725 0.085 — — —

Lepomis cyanellus Green sunfish Small N −0.0015 (0.001) −1.471 0.141 −0.074 (0.0509) −1.452 0.146
Lepomis humilis Orangespotted sunfish Large N 0.0032 (0.0011) 2.874 0.004 — — —

Lepomis macrochirus Bluegill Small N −0.0015 (0.0012) −1.242 0.214 — — —

Micropterus salmoides Largemouth bass Small N −0.0017 (0.0013) −1.262 0.207 −0.0042 (0.1281) −0.033 0.974
Notropis atherinoides Emerald shiner Large N 0.0011 (0.0019) 0.580 0.562 −0.0257 (0.1686) −0.152 0.879
Notropis blennius River shiner Large N 0.0034 (0.0014) 2.392 0.017 3.213 (1098.659) 0.003 0.998
Noturus flavus Stonecat Large N −0.0033 (0.0024) −1.381 0.167 2.985 (1107.701) 0.003 0.998
Notropis stramineus Sand shiner Large N 0.0011 (0.001) 1.062 0.288 0.086 (0.0395) 2.179 0.029
Phenacobius mirabilis Suckermouth minnow Large N 0.0042 (0.0011) 3.646 <0.001 0.0195 (0.0942) 0.206 0.836
Pimephales promelas Fathead minnow Large N 0.0024 (0.0013) 1.810 0.070 0.0026 (0.0313) 0.084 0.933
Pomoxis annularis White crappie Large N −0.0001 (0.0019) −0.037 0.971 — — —

Semotilus atromaculatus Creek chub Small N −0.0025 (0.001) −2.471 0.013 −0.0714 (0.0421) −1.697 0.090

Significant (P < 0.01) regression models are underlined and bolded. Cells with dashes represent species not present in subwatershed. I, introduced; N, native.
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Table S2. Species, common name, stream size classification, native status, and parameter estimates (SE), Z value, and P value for
generalized linear models predicting species capture probability as a function of length of stream coupled with the High Plains Aquifer
for the North Fork Republican River and South Fork Republican River subwatersheds

Species Common name Stream size
Native
status

North Fork Republican River South Fork Republican River

Estimate (SE) Z value P value Estimate (SE) Z value P value

Ameiurus melas Black bullhead Small N 0.0359 (0.0485) 0.740 0.459 −0.0034 (0.0223) −0.154 0.878
Ameiurus natalis Yellow bullhead Small N −0.0463 (0.0615) −0.753 0.451 — — —

Aplodinotus grunniens Freshwater drum Large N — — — 0.0286 (0.0469) 0.609 0.543
Campostoma anomalum Central stoneroller Small N −0.1044 (0.0398) −2.625 0.009 −0.0642 (0.0287) −2.237 0.025
Carpiodes carpio River carpsucker Large N 0.1282 (0.1172) 1.094 0.274 0.0508 (0.0376) 1.350 0.177
Catostomus commersonii White sucker Small N −0.0851 (0.0386) −2.205 0.028 −0.0973 (0.0374) −2.602 0.009
Ctenopharyngodon idella Grass carp Large I −0.1214 (0.1197) −1.014 0.310 −0.0766 (0.0465) −1.647 0.100
Cyprinus carpio Common carp Large I 0.0255 (0.0433) 0.590 0.555 −0.0256 (0.0259) −0.986 0.324
Cyprinella lutrensis Red shiner Large N 0.0837 (0.0412) 2.032 0.042 0.0091 (0.0214) 0.428 0.669
Dorosoma cepedianum Gizzard shad Large N 0.1556 (0.1802) 0.863 0.388 −0.0949 (0.1684) −0.563 0.573
Etheostoma spectabile Orangethroat darter Small N −0.1067 (0.0393) −2.714 0.007 −0.1026 (0.0377) −2.725 0.006
Fundulus zebrinus Plains killifish Large N 0.0332 (0.0333) 0.997 0.319 0.0289 (0.025) 1.155 0.248
Gambusia affinis Western mosquitofish Large N −0.0075 (0.1234) −0.061 0.952 −0.1444 (0.0732) −1.972 0.049
Hybognathus hankinsoni Brassy minnow Small N −0.092 (0.0427) −2.156 0.031 −0.0005 (0.022) −0.022 0.982
Hybognathus placitus Plains minnow Large N 0.1502 (0.103) 1.459 0.145 0.0517 (0.0289) 1.787 0.074
Ictalurus punctatus Channel chatfish Large N −0.0206 (0.0561) −0.367 0.713 0.0172 (0.0302) 0.571 0.568
Lepomis cyanellus Green sunfish Small N −0.0374 (0.0295) −1.266 0.206 −0.06 (0.0323) −1.859 0.063
Lepomis humilis Orangespotted sunfish Large N −0.0513 (0.1189) −0.431 0.666 0.0905 (0.0343) 2.643 0.008
Lepomis macrochirus Bluegill Small N 0.0301 (0.036) 0.836 0.403 −0.0504 (0.0405) −1.245 0.213
Micropterus salmoides Largemouth bass Small N 0.0273 (0.0302) 0.904 0.366 0 (0.0258) 0.000 1.000
Notropis atherinoides Emerald shiner Large N — — — — — —

Notropis blennius River shiner Large N 0.1531 (0.0745) 2.056 0.040 0.0432 (0.0295) 1.468 0.142
Noturus flavus Stonecat Large N −0.0093 (0.0345) −0.270 0.787 −0.1724 (0.0767) −2.249 0.025
Notropis stramineus Sand shiner Large N 0.0048 (0.0284) 0.168 0.867 0.053 (0.0276) 1.922 0.055
Phenacobius mirabilis Suckermouth minnow Large N 0.0081 (0.0895) 0.091 0.928 0.1047 (0.0422) 2.484 0.013
Pimephales promelas Fathead minnow Large N −0.0614 (0.0308) −1.993 0.046 −0.0809 (0.0329) −2.459 0.014
Pomoxis annularis White crappie Large N — — — −0.0949 (0.1684) −0.563 0.573
Semotilus atromaculatus Creek chub Small N −0.1314 (0.0467) −2.814 0.005 −0.0605 (0.0309) −1.960 0.050

Significant (P < 0.01) regression models are underlined and bolded. Cells with dashes represent species not present in sub-watershed. I, introduced; N, native.
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Table S3. Species, common name, stream size classification, native status, and parameter estimates (SE), Z value, and P value for
generalized linear models predicting species capture probability as a function of length of stream coupled with the High Plains Aquifer
for the Upper Republican River and Frenchman Creek subwatersheds

Species Common name Stream size
Native
status

Upper Republican River Frenchman Creek

Estimate (SE) Z value P value Estimate (SE) Z value P value

Ameiurus melas Black bullhead Small N −0.0264 (0.0192) −1.377 0.168 0.0857 (0.0459) 1.868 0.062
Ameiurus natalis Yellow bullhead Small N −0.0565 (0.0353) −1.600 0.110 — — —

Aplodinotus grunniens Freshwater drum Large N −0.0383 (0.0244) −1.570 0.116 — — —

Campostoma anomalum Central stoneroller Small N −0.0195 (0.0181) −1.074 0.283 0.0115 (0.0248) 0.463 0.643
Carpiodes carpio River carpsucker Large N −0.0258 (0.0176) −1.467 0.142 −0.0239 (0.0434) −0.551 0.582
Catostomus commersonii White sucker Small N −0.0202 (0.0189) −1.067 0.286 0.028 (0.0258) 1.085 0.278
Ctenopharyngodon idella Grass carp Large I — — — — — —

Cyprinus carpio Common carp Large I −0.03 (0.0177) −1.692 0.091 −0.0144 (0.0252) −0.573 0.567
Cyprinella lutrensis Red shiner Large N 0.0083 (0.0186) 0.447 0.655 0.0671 (0.0323) 2.076 0.038
Dorosoma cepedianum Gizzard shad Large N −0.0071 (0.0189) −0.378 0.705 −0.0398 (0.0357) −1.115 0.265
Etheostoma spectabile Orangethroat darter Small N −0.0453 (0.0349) −1.297 0.194 0.0054 (0.0247) 0.218 0.828
Fundulus zebrinus Plains killifish Large N 0.0142 (0.0171) 0.827 0.408 −0.01 (0.0739) −0.135 0.893
Gambusia affinis Western mosquitofish Large N −0.0509 (0.0233) −2.190 0.029 — — —

Hybognathus hankinsoni Brassy minnow Small N 0.08 (0.0487) 1.644 0.100 — — —

Hybognathus placitus Plains minnow Large N −0.0087 (0.0263) −0.330 0.741 — — —

Ictalurus punctatus Channel chatfish Large N −0.0242 (0.0179) −1.350 0.177 −0.0141 (0.0273) −0.515 0.607
Lepomis cyanellus Green sunfish Small N −0.0353 (0.0189) −1.870 0.062 −0.0364 (0.0272) −1.337 0.181
Lepomis humilis Orangespotted sunfish Large N 0.0209 (0.0366) 0.572 0.568 0.0273 (0.0414) 0.659 0.510
Lepomis macrochirus Bluegill Small N −0.0204 (0.018) −1.134 0.257 −0.0498 (0.0291) −1.713 0.087
Micropterus salmoides Largemouth bass Small N −0.0004 (0.0193) −0.023 0.982 −0.0199 (0.0263) −0.757 0.449
Notropis atherinoides Emerald shiner Large N 0.0191 (0.0239) 0.799 0.424 — — —

Notropis blennius River shiner Large N 0.0342 (0.0186) 1.843 0.065 0.0311 (0.0792) 0.393 0.694
Noturus flavus Stonecat Large N −0.081 (0.0392) −2.065 0.039 −0.018 (0.0327) −0.551 0.582
Notropis stramineus Sand shiner Large N 0.0022 (0.0169) 0.127 0.899 0.0185 (0.0247) 0.747 0.455
Phenacobius mirabilis Suckermouth minnow Large N −0.023 (0.0212) −1.088 0.277 −0.0174 (0.0351) −0.496 0.620
Pimephales promelas Fathead minnow Large N 0.03 (0.022) 1.364 0.173 0.0051 (0.0242) 0.212 0.832
Pomoxis annularis White crappie Large N 0.0209 (0.0366) 0.572 0.568 0.0115 (0.0456) 0.252 0.801
Semotilus atromaculatus Creek chub Small N −0.0073 (0.0171) −0.430 0.667 0.0142 (0.0245) 0.581 0.561

Significant (P < 0.01) regression models are underlined and bolded. Cells with dashes represent species not present in sub-watershed. I, introduced; N, native.

Perkin et al. www.pnas.org/cgi/content/short/1618936114 7 of 9

www.pnas.org/cgi/content/short/1618936114


Table S4. Species, common name, stream size classification, native status, and parameter estimates (SE), Z value,
and P value for generalized linear models predicting species capture probability as a function of length of stream
coupled with the High Plains Aquifer for the Harlan County Reservoir subwatershed

Species Common name Stream size Native status

Harlan County Reservoir

Estimate (SE) Z value P value

Ameiurus melas Black bullhead Small N 0.0542 (0.0259) 2.089 0.037
Ameiurus natalis Yellow bullhead Small N 0.0284 (0.0515) 0.551 0.582
Aplodinotus grunniens Freshwater drum Large N 0.012 (0.0219) 0.549 0.583
Campostoma anomalum Central stoneroller Small N 0.1489 (0.0716) 2.081 0.037
Carpiodes carpio River carpsucker Large N −0.043 (0.0235) −1.832 0.067
Catostomus commersonii White sucker Small N 0.0604 (0.0944) 0.640 0.522
Ctenopharyngodon idella Grass carp Large I — — —

Cyprinus carpio Common carp Large I −0.0451 (0.033) −1.368 0.171
Cyprinella lutrensis Red shiner Large N −0.0233 (0.0296) −0.785 0.432
Dorosoma cepedianum Gizzard shad Large N 0.0339 (0.0228) 1.485 0.138
Etheostoma spectabile Orangethroat darter Small N 0.1115 (0.0654) 1.704 0.088
Fundulus zebrinus Plains killifish Large N −0.0201 (0.0302) −0.665 0.506
Gambusia affinis Western mosquitofish Large N 0.0363 (0.0295) 1.231 0.219
Hybognathus hankinsoni Brassy minnow Small N 0.079 (0.0983) 0.803 0.422
Hybognathus placitus Plains minnow Large N 0.2288 (0.0869) 2.632 0.008
Ictalurus punctatus Channel chatfish Large N −0.0364 (0.0269) −1.352 0.176
Lepomis cyanellus Green sunfish Small N −0.022 (0.0227) −0.967 0.334
Lepomis humilis Orangespotted sunfish Large N 0.0134 (0.0263) 0.511 0.609
Lepomis macrochirus Bluegill Small N −0.0183 (0.0212) −0.865 0.387
Micropterus salmoides Largemouth bass Small N 0.004 (0.0316) 0.126 0.900
Notropis atherinoides Emerald shiner Large N 0.021 (0.0227) 0.923 0.356
Notropis blennius River shiner Large N 0.0841 (0.0341) 2.469 0.014
Noturus flavus Stonecat Large N 0.079 (0.0983) 0.803 0.422
Notropis stramineus Sand shiner Large N −0.0372 (0.0221) −1.687 0.092
Phenacobius mirabilis Suckermouth minnow Large N 0.031 (0.0518) 0.599 0.549
Pimephales promelas Fathead minnow Large N 0.052 (0.0277) 1.878 0.060
Pomoxis annularis White crappie Large N −0.0149 (0.0316) −0.472 0.637
Semotilus atromaculatus Creek chub Small N 0.0485 (0.0289) 1.676 0.094

Significant (P < 0.01) regression models are underlined and bolded. Cells with dashes represent species not present in sub-water-
shed. I, introduced; N, native.
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Table S5. Species, common name, stream size classification, native status, number of occurrences, and the last year
reported for fishes excluded from analysis because of rare occurrences (i.e., <30) or because identification was
not to the species rank

Species Common name Stream size Native status Occurrences Last reported

Chrosomus eos Northern redbelly dace Small N 3 1997
Esox lucius Northern pike Small I 23 2012
Etheostoma nigrum Johnny darter Small N 4 1930
Fundulus sciadicus Plains topminnow Small N 23 2008
Labidesthes sicculus Brook silverside Small N 2 1997
Lepomis gibbosus Pumpkinseed Small I 1 1977
Luxilus cardinalis Cardinal shiner Small N 3 2003
Luxilus cornutus Common shiner Small N 12 1995
Lythrurus umbratilis Redfin shiner Small N 2 1939
Moxostoma erythrurum Golden redhorse Small N 1 2001
Nocomis biguttatus Hornyhead chub Small N 2 1887
Notemigonus crysoleucas Golden shiner Small N 18 2012
Notropis dorsalis Bigmouth shiner Small I 9 1995
Notropis heterolepis Blacknose shiner Small N 1 1887
Notropis topeka Topeka shiner Small N 15 2000
Percina caprodes Common logperch Small N 14 2012
Pimephales notatus Bluntnose minnow Small N 19 2012
Rhinichthys cataractae Longnose dace Small N 1 1972
Salmo trutta Brown trout Small I 24 2012
Ambloplites rupestris Rock bass Large N 21 2004
Carpiodes cyprinus Quillback Large N 10 2011
Catostomus catostomus Longnose sucker Large N 7 2013
Hiodon alosoides Goldeye Large N 1 1887
Hybognathus argyritis Western silvery minnow Large N 10 1995
Ictiobus bubalus Smallmouth buffalo Large N 1 2000
Lepomis microlophus Redear sunfish Large I 3 2006
Macrhybopsis gelida Sturgeon chub Large N 1 1940
Macrhybopsis hyostoma Shoal chub Large N 4 1940
Macrhybopsis storeriana Silver chub Large N 2 1939
Micropterus dolomieu Smallmouth bass Large I 10 2007
Morone americana White perch Large I 2 2012
Morone chrysops White bass Large I 8 2000
Morone spp. Hybrid white bass Large I 19 2011
Morone saxatilis Striped bass Large I 1 1980
Moxostoma macrolepidotum Shorthead redhorse Large N 7 2003
Oncorhynchus mykiss Rainbow trout Large I 11 2004
Perca flavescens Yellow perch Large I 20 2004
Pimephales vigilax Bullhead minnow Large N 1 2003
Platygobio gracilis Flathead chub Large N 14 1972
Pomoxis nigromaculatus Black crappie Large N 24 2006
Pylodictis olivaris Flathead catfish Large N 12 2012
Sander vitreus Walleye Large N 19 1996
Scardinius erythrophthalmus Rudd Large I 3 2000

I, introduced; N, native.

Table S6. Generalized additive model results for the relationship between time (year) and
annual 90-d minimum flow statistics calculated using US Geological Survey (USGS) flow data for
six subwatersheds

Subwatershed 8-digit ID USGS gauge ID F value P value Deviance

Arikaree River 10250001 06821500 2.535 0.015 53.1
North Fork Republican River 10250002 06824500 1.219 0.313 23.5
South Fork Republican River 10250003 06827500 5.616 <0.001 47.0
Upper Republican River 10250004 06843500 8.594 <0.001 56.7
Frenchman Creek 10250005 06835500 12.02 <0.001 62.2
Harlan County Reservoir 10250009 06844500 5.232 <0.001 44.6

Test statistic (F value), P value, and percent residual deviance explained (interpreted as R2) are given for
each model.
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