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Abstract

After ovulation, somatic cells of the ovarian follicle (theca and granulosa cells) become the small
and large luteal cells of the corpus luteum. Aside from known cell type-specific receptors and
steroidogenic enzymes, little is known about the differences in the gene expression profiles of
these four cell types. Analysis of the RNA present in each bovine cell type using Affymetrix
microarrays yielded new cell-specific genetic markers, functional insight into the behavior of each
cell type via Gene Ontology Annotations and Ingenuity Pathway Analysis, and evidence of small
and large luteal cell lineages using Principle Component Analysis. Enriched expression of select
genes for each cell type was validated by gPCR. This expression analysis offers insight into cell-
specific behaviors and the differentiation process that transforms somatic follicular cells into luteal
cells.
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1. Introduction

1.1. Mammalian ovarian follicle and corpus luteum structure and function

A key feature of the mammalian female reproductive cycle is the ovarian follicle, which
contains an oocyte, granulosa cells (GCs), and theca cells (TCs). The somatic GCs and TCs
create a microenvironment that determines oocyte quality and maturation by synthesizing
steroid and peptide hormones, secreting extracellular matrix, and signaling to control the
development and health of the follicle/oocyte (Albertini et al., 2001; Hennet and Combelles,
2012). The TCs are primarily responsible for the synthesis of androgens within the ovary via
the enzyme cytochrome P450 17A1 (CYP17A1) (Young and McNeilly, 2010). The mural
GCs are positioned against the basement membrane on the periphery of the antrum while the
cumulus GCs surround and can physically interact with the oocyte. Both of these GCs
convert androgens to estrogens with the cytochrome P450 enzyme aromatase (CYP19A1)
(Erickson and Hsueh, 1978). When ovulation occurs in response to a surge of luteinizing
hormone (LH), the following series of events occurs: the follicle ruptures, the cumulus-
oocyte-complex is released, and the remaining GCs and TCs differentiate into luteal cells as
the ovulated follicle transforms into the corpus luteum (Stouffer and Hennebold, 2015). The
morphology of the corpus luteum consists of large luteal cells (LLCs, =25 um) and small
luteal cells (SLCs, 12-25 pm) intermixed and accompanied by other cells that migrate into
the tissue (Donaldson and Hansel, 1965; Fitz et al., 1982; Heath et al., 1983). Both LLCs
and SLCs secrete progesterone, a steroid hormone that is required for the maintenance of
pregnancy in most species including humans and cattle. However, in cows and sheep the
SLCs contain the majority of the luteinizing hormone receptors (LHCGR) and the LLCs
express the bulk of the prostaglandin F2 alpha (PGF2a) receptors (PTGFR) (Fitz et al.,
1982; Mamluk et al., 1998; Wiltbank et al., 2012). The corpus luteum becomes highly
vascularized in order to distribute progesterone, which inhibits the secretion of LH and thus
prevents ovulation. For subsequent ovulation to occur the corpus luteum must regress, and
this luteolysis can be triggered by PGF2a (Stouffer and Hennebold, 2015). Alternatively,
when fertilization of the oocyte and implantation are successful, maternal recognition of
pregnancy results in the maintenance of the corpus luteum which, in turn, plays a key role
supporting the developing embryo. Anti-luteolytic mechanisms such as secretion of
signaling molecules from the conceptus result in gene expression changes in the LLCs and
SLCs (Romero et al., 2013). For example, both luteal cell types in ruminant species respond
to the conceptus secretion of IFNT by increasing expression of 1ISG15 (interferon-stimulated
gene, 15 kDa) (Romero et al., 2013). Thus, ovarian somatic cells play essential roles in
oocyte and embryo fates.

1.2. Gene expression profiles of ovarian somatic cells

The physiological roles of GCs and TCs in the follicle are well studied in a variety of
mammalian species including humans, non-human primates, rodents, sheep, and cattle
(Edson et al., 2009). While there are some species-specific differences, many aspects of
ovarian physiology are well conserved. A wide variety of microarray-based investigations
have been performed in various species as well, often with the goal of understanding the
changes in a single cell type in response to time, external stimuli, or disease conditions
(Coskun et al., 2013; Kezele, 2005; McKenzie et al., 2004; Owens et al., 2002; Skinner et
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al., 2008; Tsubota et al., 2011; Uyar et al., 2013; Wood et al., 2003; Xu et al., 2011). There
are far fewer direct comparisons of the transcriptomes of specific cell types with the goal of
identifying cell type markers and functional differences, but some have been performed
including a recent direct comparison of the bovine GC and TC transcriptomes which
identified cellular markers unique to GC and TC in addition to the traditional markers
(steroidogenic enzymes and receptors) (Hatzirodos et al., 2015). Other studies have assessed
the shifts in transcription patterns that occur in ovine and bovine GCs and TCs during
follicular development (Bonnet et al., 2011 ; Hatzirodos et al., 20144, b; Khan et al., 2016)
or the gene expression changes in GCs and TCs during the attainment of follicle dominance
and preovulatory status in the cow (Zielak et al., 2008) and the horse (Donadeu et al., 2014).
However, characterization and comparison of the transcriptomes of GC and TC with LLC
and SLC cell types is not currently available. Therefore, there is a gap in knowledge
regarding how the follicular cells’ gene expression profiles relate to the luteal phase of the
reproductive cycle.

The transition from follicle to corpus luteum has also not been fully addressed by microarray
analyses, though there are publications covering the short-term changes that happen in
bovine GCs and TCs in response to the luteinizing hormone (LH) surge and intrafollicular
prostanoids (Christenson et al., 2013; Li et al., 2009). A study of the GCs before and after
human chorionic gonadotropin (hCG) administration in women undergoing controlled
ovarian stimulation identified many of the same differentially expressed genes (Wissing et
al., 2014). Other research conducted on the transcriptome of the corpus luteum has focused
on the mechanisms of luteal regression in cattle and non-human primates (Bogan et al.,
2009; Casey et al., 2005; Goravanahally et al., 2009) or on changes at progressive stages in
the luteal life cycle (early, mid, mid-late, late, and very-late) (Bogan et al., 2008). However,
these luteal microarrays did not distinguish between SLCs and LLCs.

1.3. Luteal cell type distinctions and lineages

There are currently no published microarray assessments of LLC and SLC gene expression
profiles. What is known of the disparate functions of these cell types in sheep and cows
comes from immunohistochemistiy, small-scale transcriptional analysis, and cell culture-
based experiments. The major known functional differences are that the basal progesterone
secretion of LLCs is about 6—20x greater than that of SLCs, but SLCs are able to robustly
respond to LH to amplify their progesterone production while LLCs have a modest
steroidogenic response to LH (Alila et al., 1988; Fitz et al., 1982; Harrison et al., 1987).
Importantly, in addition to the lack of a comprehensive transcriptome for LLCs and SLCs,
the question of their cellular origin and lineage has not been addressed with the latest
technologies. The prevailing understanding is that in cows LLCs originate from the GCs that
remain in the follicle after ovulation while the TCs give rise to SLCs (Donaldson and
Hansel, 1965; Hansel et al., 1991). With new technology and a comprehensive assessment of
the transcriptomes of the GC, TC, SLC, and LLC populations, possible lineage markers for
future investigation can be identified in addition to attaining an improved understanding of
the relative functions of each cell type. Thus the objective of this study was to comparatively
analyze RNA microarrays of these four ovarian somatic cells in order to corroborate existing
GC and TC transcriptomes, provide novel transcriptome data for LLCs and SLCs, perform
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bioinformatic analyses to expand on the functional roles of these cells in ovarian physiology,
and determine whether the existing luteal cell lineage model is supported by transcriptome
analysis.

2. Methods

2.1. Follicular cell isolation

Follicular granulosa (n = 4 cows) and theca cells (n = 3 cows) were isolated from estrogen-
active dominant follicles in ovaries of beef cows (75% Red Angus, 25% MARC I1l) from
the physiology herd located at the University of Nebraska Agricultural Research and
Development Center. The University of Nebraska-Lincoln Institutional Animal Care and
Use Committee approved all procedures and facilities used in this experiment. Estrous
cycles of cows were synchronized with a modified Co-Synch protocol using gonadotropin
releasing hormone (GnRH) and a controlled internal drug release device (CIDR; 1.38 g
progesterone, Zoetis) for 7 days with a PGF2a. (25 mg/mL; Lutalyse, Pfizer Animal Health)
injection at CIDR removal (Summers et al., 2014). Ovariectomy was performed
approximately 36 h after CIDR removal (Youngquist et al., 1995). Upon ovariectomy, the
largest (>10 mm diameter) antral follicle from each cow’s ovaries was aspirated/dissected
and the granulosa cells (=94% purity), theca cells (=82% purity), and follicular fluid were
isolated as described previously (Summers et al., 2014). The purity of the follicular cell
types using the same isolation method was determined by culturing 1 K cells per chamber on
a 4-chamber glass slide, performing immunofluorescence detection of aromatase and smooth
muscle actin, and manually counting the cells of six randomly selected regions. For the
microarray, both granulosa and theca cells were homogenized in Tri-reagent (Sigma-
Aldrich) for RNA isolation. It is important to note that follicles and RNA samples were
collected from a large number of cows for use in various experiments, and those used for the
microarray analyses were selected based on RNA quality and evidence of cell population
enrichment. Thus, the GC and TC samples discussed in this article are not pairs from the
same COws.

2.2. Luteal cell isolation

Luteal cells were isolated by elutriation from bovine corpora lutea of ovaries collected at a
local abattoir (JBSSA, Omaha, NE) as described previously for cattle (Mao et al., 2013).
Each corpus luteum (n = 3 cows for both LLC and SLC) was digested with collagenase to
dissociate the cells, which were then suspended in a solution of DMEM (calcium free, 3.0
g/L glucose, 25 mM HEPES, 3.8 g/L sodium bicarbonate; 0.1% BSA, 0.02 mg/mL
deoxyribonuclease, pH 7.2) to a total volume of 30 mL Elutriation was then performed with
a Beckman Coulter Avanti-J20X centrifuge with a JE 5.0 rotor. The cells were applied to a
Sanderson (Beckman) elutriation chamber and the eluates were collected with continuous
flow with each fraction comprising 100 mL of eluate. Cell number, approximate size, and
viability in collected fractions were determined with trypan blue staining using a
hemocytometer. Most of the endothelial cell population was removed in the first fraction, as
freshly isolated endothelial cells are smaller than SLCs (O’Shea et al., 1989). As described
previously, the second and third collected fractions contained =90% SLCs, while the fourth
fraction contained a majority of LLCs (=80%) along with some SLC and endothelial cells
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(Mao et al., 2013). Cells with a diameter of 15-25 pum were classified as small luteal cells,
and cells with a diameter >30 um were classified as large luteal cells. This approach
provided direct confirmation of the composition of the cell populations, and the potential for
a small proportion of cells to be retained that are of similar sizes to the luteal cells is
considered in the analysis. The average purity of SLC in F2 and LLC in F4 were 93.6

+ 1.5% and 83.3 £ 0.9% (n = 3). SLCs and LLCs were concentrated with additional
centrifugation of the relevant fractions, and the cells were homogenized in Tri-reagent
(Sigma-Aldrich) for RNA isolation.

2.3. Microarray transcriptome analysis

After RNA extraction, 200 ng RNA for each sample were submitted to the University of
Nebraska Microarray Core facility where the Affymetrix Bovine GeneChip® Gene 1.0 ST
Array RNA expression analysis was performed. The microarray results were normalized
with Robust Multi-Array Averaging. Array analysis was then performed using the National
Institute of Aging tool (http://Igsun.grc.nia.nih.gov/ANOVA/) for Analysis of Variance
(ANQVA), hierarchical clustering, and correlation between replicates. All functional
bioinformatic analyses were performed on transcripts above a linear noise threshold of 100.
Functional categorization of genes was determined by examining Gene Ontology
Annotations (included in the Affymetrix microarray probe annotations) in combination with
the gene descriptions from Entrez Gene (NCBI, http://www.ncbi.nlm.nih.gov/gene) and
UniProtKB/Swiss-Prot (http://www.uniprot.org/). Predicted cell function outcomes were
assessed with Ingenuity® Pathway Analysis (IPA; Winter 2015 release, Qiagen). The
Principle Component Analysis was performed in R using script written in collaboration with
the University of Nebraska-Lincoln Dept, of Statistics. Statistical significance of differences
between Eigenvalues was determined with a two-tailed Student’s T-tests with P < 0.005
indicating a significant difference.

2.4. Quantitative real-time PCR

To validate the microarray results, quantitative real-time PCR (qPCR) was performed in
triplicate on 384-well plates to amplify select targets from cDNA synthesized from the RNA
samples originally used for the microarray using the primers listed in Table 1. Power
SYBR™ Green Master Mix (Thermo-Fisher) was utilized with an Applied Biosystems
7900HT Fast Real-Time PCR System. Expression was normalized to the geometric mean of
the ribosomal RNA products RPL15 and RPL19. The results for each transcript are
represented as fold-changes relative to the expression of that transcript in the cell type of
interest.

3. Results and discussion

3.1. Cell type transcriptome clustering and correlation

To attain gene expression profiles for the somatic ovarian follicular and luteal cells, it was
necessary to obtain a cell population that was highly enriched in a single cell type. Follicular
cells were isolated from the ovaries of estrous-synchronized beef cows and the luteal cells
were obtained from corpora lutea of beef cows from a local abattoir. The GC purity based on
immunofluorescence (IF) against smooth muscle actin to detect any contaminating TCs was
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>94%. The TC population purity based on IF against aromatase to identify contaminating
GCs was =282%. Using cell size, the LLC purity was =80% (contaminating cells may include
clumps of endothelial cells or SLC and similarly sized fibroblasts or immune cells) and the
SLC purity was =95% (contaminating cells may include clumps of endothelial cells or
similarly sized fibroblasts or immune cells. Affymetrix RNA microarray analysis generated
the transcriptome data (Romereim et al., 2016) [NCBI GEO GSE83524]. An overall low
standard deviation profile indicated quality amplification, with slightly higher standard
deviations for lower-intensity RNAs suggesting more variability for low copy-number
targets [see Fig. 1 in accompanying Data in Brief article (Romereim et al., 2016)].
Hierarchical clustering to assess similarity between the gene expression profiles of the
tissues showed that the follicular cell types (TC and GC) were similar to each other while
the luteal cell types (LLC and SLC) were even more similar (Fig. 1A). The distance between
branch points in the dendrogram, shown on the x-axis, indicates the degree of similarity
between two samples (the shorter the distance, the greater the similarity in transcriptomes).
The similar gene expression profiles of the luteal cells are likely due to their shared
environment and related roles, but it is also important to note that the SLC and LLC samples
are paired samples with each set originating from three different cows. In contrast, the GC
and TC transcriptomes were not paired samples from the same cows but are still closely
related on the dendrogram. The relationship between individual microarray replicates (each
cell type from a separate cow) by hierarchical clustering confirmed that the gene expression
profiles for all samples of the same cell type were highly similar (Fig. 1A). The degree of
similarity in the samples’ transcriptomes was also represented quantitatively by a correlation
matrix that compares each microarray replicate against every other replicate (Fig. 1B). The
correlation between each replicate of the same cell type was =97.5%, which indicates quality
isolation methods and experimental reproducibility. Additional verification of experimental
reproducibility is evident in sections 3.2.1 and 3.2.2, as specific GC and TC markers
identified by other investigators were detected in the GC and TC microarrays (Christenson et
al., 2013; Hatzirodos et al., 2015). The LLCs and SLCs were also highly similar to each
other based on overall gene expression profile correlation, but as will be shown later these
luteal cell types did have some interesting distinctions in gene expression. The TC overall
expression profile was 92-95% correlated to the GCs, SLCs, and LLCs; while the GC
expression profile was <90% similar to the SLCs and LLCs. This broad view of the
similarities between the RNA expression of each cell type suggests similarities in function
and cellular environment.

3.2. Differentially expressed genes for each cell type

The transcriptomes for the follicular and luteal cells were analyzed in two complementary
ways. First, each individual microarray (linear intensity for all transcripts) was investigated
using the Ingenuity Pathway Analysis (IPA) tools that predict the functional outcome of a
given gene expression profile. Most of these results were highly similar for all four cell types
due to the fact that they have the same housekeeping genes, basic cellular functions, and a
shared ovarian environment. Some of the most prominent shared functions include cell
death, cell survival, cell cycle progression, proliferation, RNA expression, protein
metabolism, and organization of cytoplasm (Table 2). When the shared predicted functions
are excluded, though, several interesting differences were apparent for each cell type.
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The second analytical method used to assess the microarray data involved filtering the
datasets so that only a subset of transcripts was used. Within each cell type there were sets of
genes identified as differentially expressed for that cell type compared to the other three
types [for a complete list see Tables 1, 2, 3, and 4 in (Romereim et al., 2016)]. Each set of
genes that were differentially expressed (either =2-fold higher expression or =2-fold less
compared to all three other cell types) was used for functional analyses (IPA, functional
categorization) and to select targets for g°PCR validation of the microarray results. The IPA
input included the fold-changes for each transcript of the cell type of interest versus each of
the other three cell types separately. Most of the differentially regulated genes were more
highly expressed in their cell type, making them good candidates for cellular markers within
the context of the ovarian follicle and corpus luteum. Six genes for each cell type were
selected as marker genes (Table 3). Some published marker genes used to distinguish
between GC and TC cells are also represented on this list. Preference for genes encoding
membrane-bound proteins was also given to identify novel potential cell surface markers for
flow cytometry and similar applications.

3.2.1. The GC transaiptome—The entire RNA expression profile of the GC samples
revealed several features of the role of the GC in the ovary compared to the TCs, LLCs, and
SLCs [available in (Romereim et al,, 2016)]. The shared housekeeping/ovarian predicted
functions that were present in the other three cell types were predicted for the GC
transcriptome, but there were also many GC-specific predicted functional outcomes (Table
4). Select predicted functions unique to the GCs indicate abundant expression of genes
involved in S phase and G2 phase, more specifically than the general cell cycle progression
predicted for the other cell types (Table 4). There was also gene expression associated with
cellular colony formation (related to proliferation and cellular adhesion), RNA decay and
repression, and protein complex assembly. Interestingly, several other predicted functions
that are connected to G-protein coupled receptor or tyrosine kinase receptor signaling were
specific to GCs such as the formation of clathrin-coated structures that internalize receptors,
small GTPase-mediated signal transduction, and protein phosphorylation (Table 4). These
functions are likely related to FSH signaling. The transcriptome of the dominant follicle
GCs indicated a cell population with rapid proliferation, abundant G-protein coupled
receptor signaling (e.g. FSH signaling), and modified RNA dynamics (RNA decay and
repression).

Using the filtered set of genes that are differentially expressed in GCs, other distinguishing
characteristics of the GC population can be determined to supplement those based on the
global microarray results. The largest set of differentially expressed targets was identified for
the GCs (452 enriched RNAs and 115 decreased compared to TCs, LLCs, and SLCs). Select
genes including some well-known GC markers (CYP19A1, FSHR, and INHBB) were
validated with gPCR (Fig. 2A). The entire set of genes enriched in GCs is available in the
accompanying Data in Brief article [see Table 1 in (Romereim et al.(2016)]. Several of the
genes enriched in the GC transcriptome were also identified as GC markers by Hatzirodos et
al., in 2015, including MGARP, GLDC, CHST8, SLC35G1, CA8, CLGN, FAM78A, and
SLC16A3[Table 1 in (Romereim et al., 2016; Hatzirodos et al., 2015)]. Only three of the
markers in that article were not identified in the current microarray dataset: LOC404103,
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CSNZ, and GPX3 (Hatzirodos et al., 2015). The minor differences in the GC markers
identified likely lies in the methods and timing of cell collection. The GCs represented here
are from the dominant follicle from a synchronized and tracked estrous cycle, while
Hatzirodos et al., 2015, collected all follicles >9 mm from unsynchronized ovaries obtained
from an abattoir (Hatzirodos et al., 2015). In Fig. 2B, the functional classifications of the
GC-specific/enriched genes are shown. Increased RNA detection of genes involved in
mitosis, DNA replication/repair/structure, and signal transduction was evident. These
proliferation and signaling functions are known to be crucial for the role that GCs play in
follicular maturation. Some signaling receptors included in the GC gene set were receptors
for FSH, estrogen, Eph/ephrins, interleukin 6, insulin-like growth factor 1, and thrombin.
There were also many effector molecules upregulated in GCs compared to the TC, LLC, and
SLC gene set including SMADs, PLC, kinases involved in signaling cascades like
MAPK3KS5, and especially G-protein signaling modulators like Rac GTPases and GEFs.
The IPA-predicted consequences of the genes differentially regulated in GCs is summarized
in Table 4. The primary predictions included increases in cell proliferation, survival, DNA
replication and repair, and microtubule/chromosome rearrangement. These predicted
functions support the idea that proliferation is indeed central to the GC population. The
overall results of these GC array analyses confirmed existing knowledge about GC markers
and functions, provided a solid foundation for comparisons with the other ovarian somatic
cells, and identified novel GC markers.

3.2.2. The TC transcriptome—The global RNA expression profile of the TCs included
the same prominent, shared IPA predicted functions as the other three cell types (Table 2).
The predicted functions unique to the TC transcriptome included many cellular behaviors
related to metabolism including glycolysis, aerobic respiration, metabolism of heme,
oxidation of protein, synthesis of carbohydrate, and synthesis of sterols (Table 5).
Interestingly, insulin-like growth factor signaling and growth of ovarian follicles were also
predicted specifically for the TC population and not for the other ovarian cell types (Table
5).

While the main conclusion of the predicted functions of the TC transcriptome was increased
metabolic activities, the set of RNA transcripts enriched in TCs offered different insights. Of
the set of genes differentially expressed in the TC samples compared to the GCs, LLCs, and
SLCs [see Table 2 in (Romereim et al., 2016); 153 enriched RNAs and 11 decreased],
selected targets were validated with gPCR (Fig. 3A). As with the GC gene expression
profile, several of the genes enriched in these synchronized dominant follicle TC
microarrays were also identified in unsynchronized ovaries by Hatzirodos et al., in 2015, as
TC markers such as DCN, COL1AZ2, COL3A1, OGN, COL5AZ, NID1, ACTAZ, ACTG?,
EGFLAM, ADAMDECI HPGD, COL12A1, LOXL1, and RARRESI [see Table 2 in
(Romereim et al., 2016) (Hatzirodos et al., 2015)]. The TC gene set included a greater
proportion of extracellular matrix genes than the other cell types as shown by Gene
Ontology analysis (Fig. 3B). This included several collagens, elastin, decorin, fibrillin, and
proteins that bind to or link extracellular matrix proteins. Other categories of genes enriched
in TCs included signaling (such as receptors for PDGF, endothelin, and VIP as well as
secreted molecules like INSL3 and SLI1T2) and protein/nucleotide metabolism. The
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traditional TC steroidogenic enzyme CYP17A1 was also strongly enriched (Fig. 3A). Due to
the smaller number of differentially expressed genes, the Ingenuity Pathway Analysis was
only able to predict a small number of functions based on those genes, and few were relevant
given the ovarian context (Table 5). For example, the predicted cell migration likely implies
extracellular matrix remodeling and cytoskeletal dynamics rather than actual migration of
theca cells. As with the GC array results, these TC transcriptomes analyses confirmed
known marker genes and also indicated that the TC population is responsible for creating
and modifying the extracellular matrix of the follicle, communicating with endothelial cells
and GCs, and performing metabolic functions.

3.2.3. Shared genes enriched in both follicular cell types—The set of genes
shared between the GC and TC populations that were enriched compared to both LLCs and
SLCs provided information on what makes the follicular cells different from the luteal cells
[see Table 5 in (Romereim et al., 2016); 708 enriched RNAs]. Functional analysis with IPA
predicted that follicular cells (compared to luteal cells) have increased cell cycle progression
and proliferation (multiple cyclins, cyclin-dependent kinases, and cell division cycle
proteins), survival, organization of the cytoplasm and cytoskeleton (kinesins, dynein,
cytoskeleton-associated proteins), and DNA replication and repair (e.g. DNAZ, FANCC,
FANCI, RADS51) (Table 6). This was accompanied by a predicted decrease in cell death,
aneuploidy, and reproductive system hyperplasia. These predictions of active proliferation
and growth are consistent with the known behavior of the dominant follicle just prior to the
LH surge, the time when these samples were collected.

3.2.4. The LLC transcriptome—The IPA-predicted functional consequences of the
entire set of LLC RNA transcripts included the typical housekeeping functions shared
among all four cell types (Table 2) and also provided a variety of predicted functions
specific to the LLCs. Many of these functions were related to adhesion (binding of cells,
growth of epithelial tissue, and quantity of connective tissue) or cytoskeletal dynamics
(microtubules and cell branching) (Table 7). These predicted cellular behaviors are
consistent with the changes that occur during corpus luteum formation and LLC
differentiation. Other functions included molecular transport, development of blood cells,
production of reactive oxygen species, and cellular homeostasis (Table 7). The functions
predicted for the LLC population did not include some known LLC behaviors such as lipid
and protein production, but this is due to the fact that these are common to multiple cell
types and were thus excluded by the analysis. The remaining LLC-specific functions
covered behaviors necessary to maintain and support such a large cell including larger-scale
cytoplasmic, membrane component, and cytoskeletal production/turnover.

In addition to the global cellular functions, the LLCs had a set of differentially expressed
genes containing 300 enriched RNAs and 10 decreased transcripts when compared against
the GC, TC, and SLC transcriptomes [see Table 3 in (Romereim et al., 2016)]. Selected
genes were validated with gPCR, including the traditional LLC marker PTGFR (Fig. 4A).
Of those genes specific to or enriched in the LLC samples, the greatest proportion was
related to signaling (Fig. 4B). This includes receptors such as PTGER3, PDGFR, PRLR,
FLT1, KDR, adrenergic receptor (ADRAZB), endothelin receptor (EDNRB), TGFBRZ, and
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TINFRSF21. As a note, prolactin regulates the luteotropic response in rodents but not in
ruminants. Instead, prolactin is both produced within the bovine corpus luteum and regulates
its vascularization (Erdmann et al., 2007; Shibaya et al., 2006). A specific role for prolactin
signaling within in LLCs awaits discovery. Some secreted signaling molecules represented
were VEGFA, PDGFA, PTHLH, and KHIG. The IPA predicted functional outcome of the
LLC enriched set of genes included angiogenesis/vasculogenesis (.EFNBZ, PDGFRB,
VECFA), differentiation of cells (NOTCH3, PTHLH, TGFBRZ2, WNT11), immune and
inflammatory response (chemo-Kkines, interleukins, tumor necrosis factor family molecules),
synthesis of lipid (AC0X2, ACSL4, CYP7BI1, RDH10), and ion transport (SLC7AS,
ATP1B2) (Table 7). Overall, these data showed that the LLC population is actively engaged
in cell-cell communication to recruit immune/endothelial cells as well as synthesize lipids
while maintaining the adhesion, cytoskeleton, and homeostasis needed to support its large
size.

3.2.5. The SLC transaiptome—The global SLC microarray results had many predicted
functional consequences based on IPA, including those common to all four cell types (Table
2). Among the predicted functions that were exclusive to the SLCs, many specific types of
metabolism were found including metabolism of phospholipids, peptides, and sterols as well
as regulation of the concentration of ATP (Table 8). Other functions were related to signal
transduction such as dephosphorylation of proteins and oxidative stress response (Table 8).
And, interestingly, cellular storage in the form of inclusion bodies made a sole appearance
on the SLC list in addition to the transport of molecules and fluid into cells by pinocytosis
(Table 8). The large-scale transcript comparison thus suggested that the SLCs were
performing different metabolic, signaling, and storage functions than LLCs and follicular
cells.

While the whole SLC transcriptome yielded a wide variety of results, the SLC samples had
the fewest differentially represented RNAs with 48 increased and 12 decreased relative to
GCs, TCs, and LLCs [see Table 4 in (Romereim et al., 2016)]. A few select genes were
validated by gPCR (Fig. 5A) including the canonical SLC marker LHCGR. It has been
previously determined that the SLCs contain the majority of LH receptors in the bovine
corpus luteum, but that L HCGR expression does occur in the bovine LLCs (Mamluk et al.,
1998). However, the LHCGR expression activity in the LLCs can change based on external
stimuli such as seasonal changes and exogenous hormonal treatments, suggesting the
possibility that the disparity in SLC and LLC LHCGR expression may vary (Wiltbank,
1994). Additionally, LHCGR is even less suited to be a marker gene when all four cell types
are considered since that gene is expressed in both GCs and TCs (with the level of
expression depending on the stage in follicular development). The greatest number of the
genes were involved in signal transduction (Fig. 5B). This included both receptors and
ligands related to BMP signaling, complement components involved in immune response,
and effector molecules such as kinases and phospholipases. Interestingly, the receptor K/T
was present in the SLCs that corresponds to the K/7LG produced by the LLCs. Previous
work has also demonstrated that TCs express K/7to communicate with GCs, which express
KITLG (Parrott and Skinner, 1997). Due to the small set of genes involved, functional
assessment with IPA yielded only two predicted increased behaviors: aggregation of
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platelets and cancer (Table 8). Neither prediction shed much extra light on the SLCs within
the context of ovarian biology. The set of genes enriched in SLCs, however, was useful in
determining the distinguishing characteristics between LLCs and SLCs, which were
primarily the predominant active signaling pathways and some differences in extracellular
matrix (COL6A1, MMP7, CCBEI) and adhesion (CLDNI).

3.2.6. Shared genes enriched in both luteal cell types—When comparing the
luteal cells as a group to the follicular cells, 792 RNA transcripts were enriched in the LLC
and SLC populations together compared to both the GC and TC samples [see Table 6 in
(Romereim et al., 2016)]. IPA assessment of the transcripts enriched in both luteal cell types
indicated increased metabolism/synthesis of lipids and steroids (cholesterol, eicosanoid,
sterol, terpenoid, fatty acids, lipid membranes), cellular proliferation and survival, cell
maturation, increased quantity of gonad, inflammatory and immune response, angiogenesis
and migration of endothelial cells, and cell-to-cell signaling among other functions (Table
9). An additional consideration with the luteal cell microarrays is that the process of
elutriation causes mechanical stresses to the cells. The duration of the elutriation may allow
transcription of some early-response stress genes. Shared luteal cell microarray detection of
RNAs such as JUN, JUNB, JUND, NFKB2, EGR1, EGRZ, FOS, and FOSB could be due to
in vivo signaling responses or to the cellular isolation procedure.

3.3. Gene expression patterns and Principle Component Analysis

Beyond determining differentially expressed gene sets and evaluating the predicted
functional consequences, another method to analyze large datasets is Principle Component
Analysis (PCA). With this statistical tool, patterns of gene expression are grouped into
Principle Components (PC) that have their own Eigenvector (a vector within a matrix) and
each sample is given an Eigenvalue corresponding to how well it fits each PC (i.e. gene
expression pattern). The first PC explains the most variation within the dataset, and two to
three PCs should incorporate almost all of the variation. If two or three PCs are graphed
(either in two dimensions or in 3D) with the Eigenvalues converted to graphing coordinates,
the variation between samples is easily visualized. A two-dimensional representation of PC1
and PC2 shows that the microarray replicates of the same cell type clustered together (Fig.
6). This supported the hierarchical clustering results shown in Fig. 1A. However, unlike with
hierarchical clustering based on the global transcriptome for each microarray replicate, PCA
emphasizes variability in the data to tease out potential relationships and make those
relationships easier to visualize. In Fig. 6, using PC1 (which covers 79.15% of the
expression variance) as the x-axis placed the LLC and SLC populations adjacent to each
other (and not statistically significant via £test) and indicated their close relationship in
terms of gene expression patterns. Interestingly, the GC and TC populations were furthest
apart (emphasizing variability between the two populations) but TC and SLC were next to
each other and the LLC and GC samples were also adjacent (and had mean PC1 eigenvalues
that are not significantly different). This suggested a relationship between GC and LLC and
between TC and SLC, supporting the existing lineage model. However, PCA cannot
conclusively establish lineages, so future studies are needed to directly demonstrate this
model.
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3.4. Transcriptional effects of GC and TC luteinization

Based on these microarrays, there were markers that are highly enriched or specific to each
cell type and also potential lineage markers based on genes that were enriched in both GCs
and LLCs or in both TCs and SLCs (Table 2, Fig. 7). The process of luteinization is a
dramatic change in the morphology and function of the follicle, so the substantial differences
in the gene expression profiles of the follicular cells and the luteal cells is understandable.
Previous microarray analyses have investigated the TCs and GCs immediately before and
after the LH surge that triggers ovulation and luteinization. Thus, it is possible to look for
gene expression changes in the TCs and GCs caused by the LH surge that could be
maintained by SLCs and LLCs. Based on microarray data from Christenson et al., 2013,
some specific gene expression changes in GCs and TCs in response to the LH surge are
compatible with a transition to specific luteal cell types.

While the synchronized dominant follicles for these GC and TC microarrays were collected
approximately 36 h after injection with PGF2a to harvest pre-ovulatory follicular cells, the
dominant follicles for the Christenson et al., 2013, microarrays were either collected without
PGF2a during the height of the first follicular wave (pre-LH samples) or after a series of
injections to create an LH surge (PGF2a., a 48-h wait, a GnRH analog injection, and another
23-h wait to allow the cells time to respond to the LH) (Christenson et al., 2013). The GCs
and TCs compared here to luteal cells and the periovulatory/post-LH GCs and TCs from
Christenson et al., 2013, are thus only separated by approximately 36 h (with the data in this
manuscript providing the earlier time point) and an LH surge. The transformation that
happens during that event, however, provides an intermediate step between follicular cells
and luteal cells. As part of that shift, there were gene expression changes in TCs in response
to the LH surge that are compatible with a transition to an SLC phenotype including a
decrease in expression of CYPI17A1, SLCIA3, TRAF5, TSPAN33, and HPGD concurrent
with increased expression of RHOB [see Table 4 in (Romereim et al., 2016)] (Christenson et
al., 2013). There were even more parallels when assessing the effects of the LH surge on
GCs. The loss of GC expression of CYP19A1, CHST8, HSD17B1, GCLC, SLC35G1, and
GPT along with the gain of expression of PT.X3, RUNXZ2, POSTN, RND3, TIMP1, NTS,
FOS, and RCANI are all consistent with a switch from a GC transcriptome to an LLC gene
expression profile [see Table 3 in (Romereim et al., 2016)] (Christenson et al., 2013). Thus,
comparing microarray results provides an idea of the immediate changes during luteinization
that are maintained when the luteal phenotype is attained.

4. Conclusions

After analyzing the RNA profiles of the follicular GCs and TCs and the LLCs and SLCs of
the corpus luteum, we have determined cellular expression markers for each population
(both novel genes and validation of previously identified markers). We have also assessed
the functional implications of the differentially expressed genes for each cell type and
follicular/luteal cells as groups. These analyses are especially beneficial for the LLCs and
the SLCs, for which no transcriptome analysis is yet published. Further microarray
comparative analysis has provided both support and potential markers for the lineage model
that predicts that LLCs come from GCs and TCs primarily differentiate into SLCs.

Mol Cell Endocrinol. Author manuscript; available in PMC 2019 August 27.



1duosnue Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Romereim et al. Page 13

Acknowledgements

The authors would like to acknowledge the assistance of the University of Nebraska Medical Center Microarray
Core Facility for performing the microarrays and the University of Nebraska-Lincoln Department of Statistics for
their help in incorporating the Principle Component Analysis. The University of Nebraska Microarray Core receives
partial support from the National Institute for General Medical Science (NIGMS) INBRE - P20GM103427-14 and
COBRE -1P30GM110768-01 grants as well as The Fred & Pamela Buffett Cancer Center Support Grant -
P30CA036727. This publication’s contents are the sole responsibility of the authors and do not necessarily
represent the official views of the NIH or NIGMS.

Support

This research was supported by USDA Hatch grant NEB26-202/W2112 to ASC, Hatch -NEB ANHL 26-213 to
ASC and JRW, NEB 26-206 to ASC and JRW, NIFA 2013-67015-20965 to ASC, JRW and JSD, NIFA grant 2011-
67015-20076 to JSD and ASC, postdoctoral fellowship 2016-67012-24697 to SMR, and predoctoral fellowship
2014-67011-22280 to HAT. USDA is an equal opportunity provider and employer. Names are necessary to report
factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the
use of names by the USDA implies no approval of the product to the exclusion of others that may also be suitable.
The research was also supported by funds from the VA Research and Development service.

Abbreviations:

GC granulosa cell

IPA Ingenuity® Pathway Analysis

LLC large luteal cell

PC principle component

PCA principle component analysis

SLC small luteal cell; TC, theca cell
References

Albertini DF, Combelles CMH, Benecchi E, Carabatsos MJ, 2001 Cellular basis for paracrine
regulation of ovarian follicle development. Reproduction 121, 647-653. http://dx.doi.Org/10.1530/
reprod/121.5.647. [PubMed: 11427152]

Alila HW, Dowd JP, Corradino R. a, Harris WV, Hansel W., 1988 Control of progesterone production
in small and large bovine luteal cells separated by flow cytometry. Reproduction 82, 645-655.
10.1530/jrf.0.0820645.

Bogan RL, Murphy MJ, Hennebold JD, 2009 Dynamic changes in gene expression that occur during
the period of spontaneous functional regression in the rhesus macaque corpus luteum.
Endocrinology 150, 1521-1529. 10.1210/en.2008-1201. [PubMed: 18948396]

Bogan RL, Murphy MJ, Stouffer RL, Hennebold JD, 2008 Systematic determination of differential
gene expression in the primate corpus luteum during the luteal phase of the menstrual cycle. Mol.
Endocrinol 22, 1260-1273. 10.1210/me.2007-0484. [PubMed: 18258683]

Bonnet A, Bevilacqua C, Benne F, Bodin L, Cotinot C, Liaubet L, Sancristobal M, Sarry J, Terenina E,
Martin P, Tosser-Klopp G, Mandon-Pepin B, 2011 Transcriptome profiling of sheep granulosa cells
and oocytes during early follicular development obtained by Laser Capture Microdissection. BMC
Genomics 12, 417 10.1186/1471-2164-12-417. [PubMed: 21851638]

Casey OM, Morris DG, Powell R, Sreenan JM, Fitzpatrick R, 2005 Analysis of gene expression in
non-regressed and regressed bovine corpus luteum tissue using a customized ovarian cDNA array.
Theriogenology 64,1963-1976. 10.1016/j.theriogenology.2005.04.015. [PubMed: 15953631]

Mol Cell Endocrinol. Author manuscript; available in PMC 2019 August 27.


http://dx.doi.Org/10.1530/reprod/121.5.647
http://dx.doi.Org/10.1530/reprod/121.5.647

1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Romereim et al.

Page 14

Christenson LK, Gunewardena S, Hong X, Spitschak M, Baufeld A, Vanselow J, 2013 Research
resource: preovulatory LH surge effects on follicular theca and granulosa transcriptomes. Mol.
Endocrinol 27, 1153-1171. 10.1210/me.2013-1Q93. [PubMed: 23716604]

Coskun S, Otu HH, Awartani KA., Al-Alwan LA, Al-Hassan S, Al-Mayman H, Kaya N, Inan MS,
2013 Gene expression profiling of granulosa cells from PCOS patients following varying doses of
human chorionic gonadotropin. J. Assist. Reprod. Genet 30, 341-352. 10.1007/s10815-Q13-9935-y.
[PubMed: 23381551]

Donadeu FX, Fahiminiya S, Esteves CL, Nadaf J, Miedzinska K, McNeilly AS, Waddington D, Gérard
N, 2014 Transcriptome profiling of granulosa and theca cells during dominant follicle development
in the horse. Biol. Reprod 91, 111 10.1095/biolreprod.114.118943. [PubMed: 25253738]

Donaldson L, Hansel W, 1965 Histological study of bovine corpora lutea. J. Dairy Sci 48, 905-9009.
10.3168/jds.S0022-0302(65)88360-6. [PubMed: 14330748]

Edson MA, Nagaraja AK, Matzuk MM, 2009 The mammalian ovary from genesis to revelation.
Endocr. Rev. 30, 624-712. 10.1210/er.2009-0012. [PubMed: 19776209]

Erdmann S, Ricken A, Merkwitz C, Struman L, Castino R, Hummitzsch K, Gaunitz F, Isidora C,
Martial J, Spanel-Borowski K, 2007 The expression of prolactin and its cathepsin D-mediated
cleavage in the bovine corpus luteum vary with the estrous cycle. Am. J. Physiol. Endocrinol.
Metab 293, E1365-E1377. 10.1152/ajpendo.00280.2007. [PubMed: 17785503]

Erickson GF, Hsueh AJ, 1978 Stimulation of aromatase activity by follicle stimulating hormone in rat
granulosa cells in vivo and in vitro. Endocrinology 102, 1275-1282. 10.1210/endo-102-4-1275.
[PubMed: 744025]

Fitz TA., Mayan MH, Sawer HR, Niswender GD, 1982 Characterization of two steroidogenic cell
types in the ovine corpus luteum. Biol. Reprod 27, 703-711. http://dx.doi.Org/10.1095/
biolreprod27.3.703. [PubMed: 6291651]

Goravanahally MP, Salem M, Yao J, Inskeep EK, Flores J.a., 2009 Differential gene expression in the
bovine corpus luteum during transition from early phase to midphase and its potential role in
acquisition of luteolytic sensitivity to prostaglandin F2 alpha. Biol. Reprod 80, 980-988. 10.1095/
biolreprod.108.069518. [PubMed: 19164179]

Hansel W, Alila HW, Dowd j.P., Milvae RA, 1991 Differential origin and control mechanisms in small
and large bovine luteal cells. J. Reprod. Fertil Suppl. 43, 77-89.

Harrison LM, Kenny N, Niswender GD, 1987 Progesterone production, LH receptors, and oxytocin
secretion by ovine luteal cell types on days 6, 10 and 15 of the oestrus cycle and day 25 of
pregnancy. J. Reprod. Fertil 79, 539-548. 10.1530/jrf.0.0790539. [PubMed: 3572885]

Hatzirodos N, Hummitzsch K, Irving-Rodgers HF, Rodgers RJ, 2015 Transcriptome comparisons
identify new cell markers for theca interna and granulosa cells from small and large antral ovarian
follicles. PLoS One 10, 1-13. 10.1371/joumal.pone.0119800.

Hatzirodos N, Hummitzsch IC, Irving-Rodgers HF, Rodgers RJ, 2014a Transcriptome profiling of the
theca interna in transition from small to large antral ovarian Follicles. PLoS One 9 10.1371/
joumal.pone.0097489.

Hatzirodos N, Irving-Rodgers HF, Hummitzsch K, Harland ML, Morris SE, Rodgers RJ, 2014b
Transcriptome profiling of granulosa cells of bovine ovarian follicles during growth from small to
large antral sizes. BMC Genomics 15, 24 10.1186/1471-2164-15-24. [PubMed: 24422759]

Heath E, Weinstein P, Merritt B, Shanks R, Hixon J, 1983 Effects of prostaglandins on the bovine
corpus luteum: granules, lipid inclusions and progesterone secretion. Biol. Reprod 29, 977-985.
10.1095/biolreprod29.4.977. [PubMed: 6315098]

Hennet ML, Combelles CMH, 2012 The antral follicle: a microenvironment for oocyte differentiation.
Int. J. Dev. Biol 56, 819-831. 10.1387/ijdb.120133cc [PubMed: 23417404]

Kezele PR, 2005 Alterations in the ovarian transcriptome during primordial follicle assembly and
development. Biol. Reprod 72, 241-255. 10.1095/biolreprod.l04.032060. [PubMed: 15371273]

Khan DR, Fournier E, Dufort I, Richard FJ, Singh J, Sirard MA, 2016 Metaanalysis of gene expression
profiles in granulosa cells during folliculogenesis. Reproduction 15 10.1530/REP-15-0594.

Li Q, Jimenez-Krassel F, Ireland JJ, Smith GW, 2009 Gene expression profiling of bovine preovulatory
follicles: gonadotropin surge and prostanoid-dependent up-regulation of genes potentially linked to
the ovulatory process. Reproduction 137, 297-307. 10.1530/REP-08-0308. [PubMed: 18996975]

Mol Cell Endocrinol. Author manuscript; available in PMC 2019 August 27.


http://dx.doi.Org/10.1095/biolreprod27.3.703
http://dx.doi.Org/10.1095/biolreprod27.3.703

1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Romereim et al.

Page 15

Mamluk R, Chen D, Greber Y, Davis JS, Meidan R, 1998 Characterization of messenger ribonucleic
acid expression for prostaglandin F2 alpha and luteinizing hormone receptors in various bovine
luteal cell types. Biol. Reprod 58, 849-856. http://dx.doi.Org/10.1095/biolreprod58.3.849.
[PubMed: 9510976]

Mao D, Hou X, Talbott H, Cushman R, Cupp A, Davis JS, 2013 ATF3 expression in the corpus
luteum: possible role in luteal regression. Mol. Endocrinol 27, 2066-2079. http://dx.doi.Org/
10.1210/me.2013-1274. [PubMed: 24196350]

McKenzie LJ, Pangas SA, Carson SA, Kovanci E, Cisneros P, Buster JE, Amato P, Matzuk MM, 2004
Human cumulus granulosa cell gene expression: a predictor of fertilization and embryo selection
in women undergoing IVF. Hum. Reprod 19, 2869-2874. 10.1093/humrep/deh535. [PubMed:
15471935]

O’Shea JD, Rodgers RJ, D’Occhio MJ, 1989 Cellular composition of the cyclic corpus luteum of the
cow. J. Reprod. Fertil 85, 483-487. 10.1530/jrf.0.0850483. [PubMed: 2703988]

Owens GE, Keri RA, Nilson JH, 2002 Ovulatory surges of human CG prevent hormone-induced
granulosa cell tumor formation leading to the identification of tumor-associated changes in the
transcriptome. Mol. Endocrinol 16, 1230-1242. http://dx.doi.Org/10.1210/me.16.6.1230.
[PubMed: 12040011]

Parrott JA, Skinner MK, 1997 Direct actions of kit-ligand on theca cell growth and differentiation
during follicle development. Endocrinology 138, 3819-3827. http://dx.doi.Org/10.1210/en.
138.9.3819. [PubMed: 9275070]

Romereim SM, Summers AF, Pohlmeier WE, Hou X, Talbott HA, Cushman RA, Wood JR, Davis JS,
Cupp AS, 2016 Transcriptomes of Bovine Ovarian Follicular and Luteal Cells. Data Br. in press.

Romero JJ, Antoniazzi AQ, Smirnova NP, Webb BT, Yu F, Davis JS, Hansen TR, 2013 Pregnancy-
associated genes contribute to antiluteolytic mechanisms in ovine corpus luteum. Physiol.
Genomics 45,1095-1108. 10.1152/physiolgenomics.00082.2013. [PubMed: 24046284]

Shibaya M, Murakami S, Tatsukawa Y, Skarzynski DJ, Acosta TJ, Okuda K, 2006 Bovine corpus
luteum is an extrapituitary site of prolactin production. Mol. Reprod. Dev 73, 512-519. 10.1002/
mrd.20445. [PubMed: 16435374]

Skinner MK, Schmidt M, Savenkova MI, Sadler-Riggleman I, Nilsson EE, 2008 Regulation of
granulosa and theca cell transcriptomes during ovarian antral follicle development. Mol. Reprod.
Dev 75, 1457-1472. 10.1002/mrd.20883. [PubMed: 18288646]

Stouffer RL, Hennebold JD, 2015 Structure, function, and regulation of the corpus luteum. In: Knobil
and Neill’s Physiology of Reproduction, fourth ed. Elsevier Inc 10.1016/
B978-0-12-397175-3.00023-5.

Summers AF, Pohlmeier WE, Sargent KM, Cole BD, Vinton RJ, Kurz SG, McFee RM, Cushman R. a,
Cupp AS, Wood JR, 2014 Altered theca and cumulus oocyte complex gene expression, follicular
arrest and reduced fertility in cows with dominant follicle follicular fluid androgen excess. PLoS
One 9, 110683 10.1371/journal.pone.0110683. [PubMed: 25330369]

Tsubota K, Kanki M, Noto T, Shiraki K, Takeuchi A, Nakatsuji S, Seki J, Oishi Y, Matsumoto M,
Nakayama H, 2011 Transitional gene expression profiling in ovarian follicle during ovulation in
normal-cycle rats. Toxicol. Pathol 39, 641-652. 10.1177/0192623311406932. [PubMed:
21551027]

Uyar A, Torrealday S, Seli E, 2013 Cumulus and granulosa cell markers of oocyte and embryo quality.
Fertil. Steril 99, 979-997. 10.1016/j.fertnstert.2013.01.129. [PubMed: 23498999]

Wiltbank MC, 1994 Cell types and hormonal mechanisms associated with midcycle corpus luteum
function. J. Anim. Sci 72,1873-1883. [PubMed: 7928767]

Wiltbank MC, Salih SM, Atli MO, Luo W, Bormann CL, Ottobre JS, Vezina CM, Mehta V, Diaz FJ,
Tsai SJ, Sartori R, 2012 Comparison of endocrine and cellular mechanisms regulating the corpus
luteum of primates and ruminants. Anim. Reprod 9, 242-259. 10.1016/j.biotechadv.
2011.08.021.Secreted. [PubMed: 23750179]

Wissing ML, Kristensen SG, Andersen CY, Mikkelsen AL, Host T, Borup R, Grondahl ML, 2014
Identification of new ovulation-related genes in humans by comparing the transcriptome of
granulosa cells before and after ovulation triggering in the same controlled ovarian stimulation
cycle. Hum. Reprod 29, 997-1010. 10.1093/humrep/deu008. [PubMed: 24510971]

Mol Cell Endocrinol. Author manuscript; available in PMC 2019 August 27.


http://dx.doi.Org/10.1095/biolreprod58.3.849
http://dx.doi.Org/10.l210/me.2013-1274
http://dx.doi.Org/10.l210/me.2013-1274
http://dx.doi.Org/10.1210/me.16.6.1230
http://dx.doi.Org/10.1210/en.138.9.3819
http://dx.doi.Org/10.1210/en.138.9.3819

1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnue Joyiny

Romereim et al.

Page 16

Wood JR, Nelson VL, Ho C, Jansen E, Wang CY, Urbanek M, McAllister JM, Mosselman S, Strauss
JF, 2003 The molecular phenotype of polycystic ovary syndrome (PCOS) theca cells and new
candidate PCOS genes defined by microarray analysis. J. Biol. Chem 278, 26380-26390. 10.1074/
jbc.M300688200. [PubMed: 12734205]

Xu F, Stouffer RL, Mller J, Hennebold JD, Wright JW, Bahar A, Leder G, Peters M, Thorne M, Sims
M, Wintermantel T, Lindenthal B, 2011 Dynamics of the transcriptome in the primate ovulatory
follicle. Mol. Hum. Reprod 17,152-165. 10.1093/molehr/gaq089. [PubMed: 21036944]

Young JM, McNeilly a S., 2010 Theca: the forgotten cell of the ovarian follicle. Reproduction 140,
489-504. 10.1530/REP-10-0094. [PubMed: 20628033]

Youngquist RS, Garverick HA, Keisler DH, 1995 Use of umbilical cord clamps for ovariectomy in
cows. J. Am. Vet. Med. Assoc 207, 474-475. [PubMed: 7591949]

Zielak AE, Canty MJ, Forde N, Coussens PM, Smith GW, Lonergan P, Ireland JJ, Evans ACO, 2008
Differential expression of genes for transcription factors in theca and granulosa cells following
selection of a dominant follicle in cattle. Mol. Reprod. Dev 75, 904-914. 10.1002/mrd.20819.
[PubMed: 17948250]

Mol Cell Endocrinol. Author manuscript; available in PMC 2019 August 27.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnuely Joyiny

Romereim et al.

Page 17

A. Hierarchical Clustering of Microarray Replicates
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Fig. 1.
Hierarchical clustering and correlation matrix of all microarray replicates. (A) Hierarchical

cluster dendrograms indicate the degree of similarity between cell types and individual
replicates using the distance at which the branch point occurs. The replicates within a cell
type cluster closely together, and the two follicular cell types and two luteal cell types also
cluster together. (B) The correlation matrix allows a quantitative comparison of any two
microarray replicates. A correlation value of 1 indicates that the two replicates compared are
identical, and the correlation between each replicate of the same cell type is = 97.5% (red).
The large luteal cells (LLCs) and small luteal cells (SLCs) are also highly similar (>95% and
<97%, red), the theca cells (TCs) have an overall expression profile that is 92—-95%
correlated to the granulosa cells (GCs), SLCs, and LLCs (orange), and the GC expression
profile is <90% similar to the SLCs and LLCs (yellow). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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A. gPCR Validation of Genes Enriched in Granulosa Cells
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Fig. 2.
Granulosa cell-enriched gene set validation and functional categorization. (A) Validation of

select granulosa cell (GC)-enriched genes with gPCR (blue) compared to the microarray
fold changes (orange). (B) Functional categorization of genes enriched in GC samples
shown as a percentage of the 567 differentially regulated transcripts.
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A. gPCR Validation of Genes Enriched in Theca Cells
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B. Functions of Genes Enriched in Theca Cells
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Fig. 3.

Tt?eca cell-enriched gene set validation and functional categorization. (A) Validation of
select theca cell (TC)-enriched genes with gPCR (blue) compared to the microarray fold
changes (orange). (B) Functional categorization of genes enriched in TC samples shown as a
percentage of the 164 differentially regulated transcripts.
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A. gPCR Validation of Genes Enriched in Large Luteal Cells
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B. Functions of Genes Enriched in Large Luteal Cells
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Fig. 4.
Large luteal cell-enriched gene set validation and functional categorization. (A) Validation

of select large luteal cell (LLC)-enriched genes with gPCR (blue) compared to the
microarray fold changes (orange). (B) Functional categorization of genes enriched in LLC
samples shown as a percentage of the 311 differentially regulated transcripts.
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A. gPCR Validation of Genes Enriched in Small Luteal Cells
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Fig. 5.
Small luteal cell-enriched gene set validation and functional categorization. (A) Validation

of select small luteal cell (SLC)-enriched genes with qPCR (blue) compared to the
microarray fold changes (orange). (B) Functional categorization of genes enriched in SLC
samples shown as a percentage of the 60 differentially regulated transcripts.
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Principle Component Analysis of Microarray Replicates
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Fig. 6.

Pr?nciple Component Analysis of microarray replicates. The gene expression profile data for
each microarray was transformed with Principle Component Analysis to visualize
relationships between samples and emphasize variation by graphing them in two dimensions
based on Principle Component 1 (PC1) and PC2. The individual microarray replicates
within a sample type cluster together, and the Eigenvalues for PC1 (x coordinates) indicate
that granulosa cells (GC) and large lutea cells (LLC) share gene expression patterns (average
PC1 Eigenvalues not significantly different) as do theca cells (TC) and small luteal cells
(SLC).
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Diagram of the expression of the identified cell-type makers and potential lineage markers.
The ovarian follicle and the corpus luteum and the major cell types present are illustrated.
The expression of the newly identified and canonical (indicated with *) cellular markers are
shown along with the potential lineage markers.
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Table 4

Predicted functional consequences of the granulosa cell transcriptome.

Category and functional annotation p-Value #RNAs
Select predicted functional consequences of the entire CC transcriptome

Assembly of protein-protein complex 1.17E-04 85
Colony formation of cells 2.55E-04 200
Decay of RNA 7.31E-05 18
G2 phase 4.36E-08 126
Morphology of clathrin-coated structures 2.64E-04 33
Phosphorylation of protein 1.93E-04 292
Repression of RNA 2.99E-04 7
S phase 8.29E-11 131
Small GTPase mediated signal transduction 1.53E-04 81

Predicted functional consequences of the genes enriched/decreased in CCsvs. TCs, LLCs, and SLCs

Select granulosa cell functions with increased predicted activation state (z-score >2)

12
78
14
8
53
51
40
187
9
25
42

10
180
21
12

Alignment of chromosomes 2.97E-12
Cell survival 1.51E-04
Cycling of centrosome 3.34E-07
Formation of microtubules 2.83E-03
Growth of connective tissue 9.88E-08
Invasion of cells 1.54E-04
Metabolism of DNA 1.07E-08
Proliferation of cells 4.25E-06
Repair of cells 9.93E-04
Repair of DNA 3.14E-05
Synthesis of DNA 7.90E-10
Select granulosa cell functions with decreased predicted activation state (z-score < =7)
Aneuploidy 9.89E-05
Cell death 2.06E-07
DNA damage 1.41E-06
Formation of mitotic spindle 5.17E-07
Fragmentation of nucleus 9.31E-04

6
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Table 5

Predicted functional consequences of the theca cell transcriptome.

Category and functional annotation p-Value #RNAs

Select predicted functional consequences of the entire TC transcriptome

Aerobic respiration of cells 1.90E-04 14
Glycolysis of cells 1.62E-04 50
Growth of ovarian follicle 3.41E-05 29
Insulin-like growth factor receptor signaling pathway 1.89E-04 11
Metabolism of heme 1.61 E-04 10
Oxidation of protein 1.75E-06 19
Synthesis of carbohydrate 1.40E-04 182
Synthesis of sterol 4.14E-05 39
Tetramerization of protein 7.83E-06 56

Predicted functional consequences of the genes enriched/decreased in TCsvs. GCs, LLCs, and SLCs

Select theca cell functions with increased predicted activation state (z-score >2)

Development of urinary tract 1.91E-03 9
Formation of kidney 5.81E-03 8
Migration of cells 1.31E-02 30
Select theca cell functions with decreased predicted activation state (z-score < -2)

Aortic disorder 2.95E-03 6
Congenital anomaly of musculoskeletal system 6.29E-06 21
Hypoplasia of thorax 7.81E-03 6
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Predicted functional consequences of the large luteal cell transcriptome.

Table 7

Category and functional annotation p-Value #RNAs
Select predicted functional consequences of the entire LLC transcriptome

Binding of cells 7.00E-06 201
Branching of cells 2.63E-08 183
Cellular homeostasis 6.06E-10 702
Development of blood cells 2.11E-07 319
Growth of epithelial tissue 1.02E-07 309
Microtubule dynamics 4.86E-08 532
Production of reactive oxygen species 6.91E-06 159
Quantity of connective tissue 2.74E-06 269
Transport of molecule 1.20E-07 701

Predicted functional consequences of the genes enriched/decreased in LLCsvs. CCs, TCs, and SLCs

Select large luteal cell functions with increased predicted activation stale (z-score >2)

Activation of cells
Angiogenesis

Cell cycle progression
Cell movement

Cell survival

Cellular homeostasis
Chemotaxis

Development of cytoplasm
Differentiation of cells
Endocytosis

Formation of cytoskeleton
Inflammatory response
lon homeostasis of cells
Maturation of cells
Migration of cells
Migration of endothelial cells
Proliferation of cells
Quantity of Ca2+
Quantity of metal ion
Synthesis of DNA
Synthesis of lipid

Transport of ion

Select large luteal cell functions with decreased predicted activation state (z-score <-2)

Apoptosis
Cell death

Glucose metabolism disorder

8.92E-11
5.85E-31
2.64E-04
6.82E-25
1.36E-11
2.28E-07
1.16E-11
8.97E-05
6.62E-16
2.19E-05
8.03E-05
1.23E-13
3.73E-05
2.60E-07
4.60E-26
1.51E-14
1.79E-17
8.67E-06
4.13E-06
8.06E-07
5.28E-06
8.11E-05

1.38E-11
5.33E-12
1.18E-05

52
82
39
116
68
63
38
23
104
20
20
50
27
27
111
33
146
23
25
25
35
24

106
125
47
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Table 8

Predicted functional consequences of the small luteal cell transcriptome.

Category and functional annotation p-Value #RNAs
Select predicted functional consequences of the entire SLC transcriptome
Metabolism of phospholipid 2.78E-06 109
Metabolism of peptide 1.48E-05 86
Dephosphorylation of protein 1.01E-04 71
Migration of epithelial cells 3.16E-05 57
Concentration of ATP 1.09E-04 55
Metabolism of sterol 1.64E-05 52
Formation of cellular inclusion bodies 4.53E-05 43
Oxidative stress response of cells 5.51E-06 33
Pinocytosis 7.39E-05 19

Predicted functional consequences of the genes enriched/decreased in SLCsvs. GCs, TCs, and LLCs

Select small luteal cell functions with increased predicted activation state (z-score >2)

Category and Functional Annotation p-Value
Aggregation of blood platelets 8.36E-04
Cancer 2.13E-03

# RNAs
5
54
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